JP2885061B2 - Method for producing nitrided steel member excellent in fatigue characteristics - Google Patents

Method for producing nitrided steel member excellent in fatigue characteristics

Info

Publication number
JP2885061B2
JP2885061B2 JP8158794A JP8158794A JP2885061B2 JP 2885061 B2 JP2885061 B2 JP 2885061B2 JP 8158794 A JP8158794 A JP 8158794A JP 8158794 A JP8158794 A JP 8158794A JP 2885061 B2 JP2885061 B2 JP 2885061B2
Authority
JP
Japan
Prior art keywords
nitriding
fatigue strength
treatment
temperature
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8158794A
Other languages
Japanese (ja)
Other versions
JPH07286256A (en
Inventor
信行 石川
哲夫 白神
守幸 石黒
均 椛澤
美博 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP8158794A priority Critical patent/JP2885061B2/en
Publication of JPH07286256A publication Critical patent/JPH07286256A/en
Application granted granted Critical
Publication of JP2885061B2 publication Critical patent/JP2885061B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は優れた疲労強度が要求さ
れる歯車等の機械構造部品に適した、疲労特性に優れた
窒化鋼部材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a nitrided steel member having excellent fatigue characteristics, which is suitable for mechanical structural parts such as gears requiring excellent fatigue strength.

【0002】[0002]

【従来の技術】機械構造用鋼の疲労強度向上のための表
面硬化処理方法の一つとしてガス窒化処理がある。この
ガス窒化処理は、同じ表面硬化処理方法である高周波焼
入や浸炭焼入に比べて熱処理歪が小さいため、寸法精度
が要求される機械構造部品の表面硬化処理方法として有
効な手段である。
2. Description of the Related Art As one of surface hardening treatment methods for improving the fatigue strength of steel for machine structural use, there is a gas nitriding treatment. This gas nitriding treatment is an effective means as a surface hardening method for mechanical structural parts requiring dimensional accuracy because the heat treatment distortion is smaller than that of induction hardening or carburizing quenching which is the same surface hardening method.

【0003】窒化処理用鋼材としては、従来からJIS
SACM645や、JIS SCM435等が使用さ
れている。しかし、SACM645は表面硬度がHv1
000程度と硬すぎる上、表面に脆い化合物層が形成さ
れるため、高い疲労強度は得られない。また、SCM4
35も十分な硬化層深さが得られないため、やはり高い
疲労強度は得られない。
[0003] Conventionally, JIS has been used as a steel material for nitriding.
SACM645, JIS SCM435 and the like are used. However, SACM645 has a surface hardness of Hv1.
In addition to a hardness as high as about 000, a brittle compound layer is formed on the surface, so that high fatigue strength cannot be obtained. Also, SCM4
In the case of No. 35, too, a sufficient hardened layer depth cannot be obtained, so that high fatigue strength cannot be obtained.

【0004】そこで、疲労強度の改善を目的として、特
開平4−45244号公報、特開平4−66646号公
報、特開平5−25538号公報等において、Cr−M
o−V鋼を基本とした高疲労強度の窒化用鋼又は軟窒化
鋼が提案されている。また、特開昭63−93821号
公報には窒化処理後にショットピーニングを施す方法が
開示されており、特開平2−204463号公報にはイ
オン窒化により2段階の窒化処理を施す方法が開示され
ている。
In order to improve the fatigue strength, Japanese Patent Application Laid-Open Nos. 4-45244, 4-66646, 5-25538, and the like disclose a Cr-M
High fatigue strength steel for nitriding or soft nitrided steel based on oV steel has been proposed. JP-A-63-93821 discloses a method of performing shot peening after nitriding, and JP-A-2-204463 discloses a method of performing two-stage nitriding by ion nitriding. I have.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、特開平
4−45244号公報、特開平4−66646号公報に
開示されている窒化用鋼は、Cr,Mo,Vの複合添加
により硬化層深さが大きくなるが、Al含有量が低く窒
化処理後の表面硬さが低いために、疲労強度が未だ不十
分である。
However, the nitriding steels disclosed in JP-A-4-45244 and JP-A-4-66646 have a hardened layer depth due to the combined addition of Cr, Mo and V. Although it becomes large, the fatigue strength is still insufficient because the Al content is low and the surface hardness after nitriding is low.

【0006】また、特開平5−25538号公報に開示
されている軟窒化用鋼は、0.5%以下のAlを含有し
ているために軟窒化処理後の表面硬さが高く、疲労強度
も高くなっている。しかし、この技術は従来から行われ
ている一定温度での軟窒化処理を採用しており、十分な
硬化層深さが得られず、また表層部に厚い化合物層が形
成するため、浸炭焼入れ処理材に比較して疲労強度が劣
る。
[0006] Further, the steel for nitrocarburizing disclosed in Japanese Patent Application Laid-Open No. 5-25538 has a high surface hardness after nitrocarburizing treatment since it contains 0.5% or less of Al and has a high fatigue strength. Is also higher. However, this technology employs the conventional nitrocarburizing treatment at a constant temperature, which does not provide a sufficient hardened layer depth and forms a thick compound layer on the surface layer. The fatigue strength is inferior to the material.

【0007】また、特開昭63−93821号公報に開
示された方法は、ショットピーニングという別工程を付
加する必要があり、さらに特開平2−294463号公
報に開示された方法はイオン窒化という高価な方法を用
いる必要があり、いずれもコストアップにつながるとい
う問題点がある。
Further, the method disclosed in Japanese Patent Application Laid-Open No. 63-93821 needs to add another step called shot peening, and the method disclosed in Japanese Patent Application Laid-Open No. 2-294463 is expensive. It is necessary to use an appropriate method, and there is a problem that all of these methods lead to an increase in cost.

【0008】本発明は、かかる事情に鑑みてなされたも
のであって、大きなコスト上昇を招くことなく、浸炭焼
入れ処理に匹敵する優れた疲労強度を有する窒化鋼部材
の製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a method of manufacturing a nitrided steel member having excellent fatigue strength comparable to carburizing and quenching without causing a large increase in cost. Aim.

【0009】[0009]

【課題を解決するための手段及び作用】本願発明者ら
は、疲労強度に及ぼす化学成分、組成及び窒化条件の影
響を詳細に検討した結果、以下の2つの知見を得るに至
った。第1に、歯車のように応力集中を受ける部品での
疲労強度を高めるためには、窒化処理後の表面硬度をH
v700以上にし、十分な硬化深さを有することが必要
である。表面硬度を高めるためには0.1%以上のAl
の添加が必須であり、さらにCrを複合添加することに
より十分な表面硬度が得られ、Mo、Vの複合添加によ
り大きな硬化層深さを得ることができる。
Means and Action for Solving the Problems The present inventors have studied in detail the effects of chemical components, compositions and nitriding conditions on the fatigue strength, and as a result have obtained the following two findings. First, in order to increase the fatigue strength of components that are subject to stress concentration, such as gears, the surface hardness after nitriding must be H
It is necessary to have v700 or more and have a sufficient curing depth. 0.1% or more Al to increase surface hardness
In addition, sufficient surface hardness can be obtained by adding Cr in combination, and a large hardened layer depth can be obtained by adding Mo and V in combination.

【0010】第2に、ガス窒化により部品の表面部分に
生成する化合物層は非常に脆く、その厚さが厚すぎる場
合には容易に剥離し、疲労強度の低下を招く。このよう
な化合物層の生成を抑制する窒化処理方法として従来か
ら2段窒化法が採用されているが、2段窒化法では十分
な硬化層深さが得られず、また疲労強度も十分ではなか
った。これに対し、処理開始温度及び処理終了温度をあ
る特定の温度範囲に規定し、その間を連続的に昇温する
方法を適用すれば、化合物が形成されてもすぐに昇温さ
れて化合物層が消滅しやすく化合物層の生成が抑制さ
れ、また大きな硬化深さが得られるため、著しく疲労強
度が向上される。
Second, the compound layer formed on the surface of the component by gas nitriding is very brittle, and when the thickness is too large, it is easily peeled off, resulting in a decrease in fatigue strength. Conventionally, a two-step nitriding method has been adopted as a nitriding method for suppressing the formation of such a compound layer. However, the two-step nitriding method does not provide a sufficient hardened layer depth and does not have sufficient fatigue strength. Was. On the other hand, if the process start temperature and the process end temperature are defined in a specific temperature range and a method of continuously increasing the temperature during the process is applied, the temperature is immediately increased even if the compound is formed, and the compound layer is heated. It easily disappears, the formation of the compound layer is suppressed, and a large hardening depth is obtained, so that the fatigue strength is remarkably improved.

【0011】本発明は、このような知見に基づいてなさ
れたものであって、C:0.10〜0.30wt%、C
r:0.5〜1.5wt%、Mo:0.2〜1.0wt
%、Al:0.1〜0.5wt%、V:0.1〜0.5
wt%を含有する鋼に対し、処理開始温度が480〜5
50℃、処理終了温度が560〜630℃の範囲であ
り、処理開始から処理終了までを連続的に昇温させる窒
化処理を施すことを特徴とする、疲労特性に優れた窒化
鋼部材の製造方法を提供するものである。
The present invention has been made based on such findings, and has a C content of 0.10 to 0.30 wt%,
r: 0.5 to 1.5 wt%, Mo: 0.2 to 1.0 wt%
%, Al: 0.1-0.5 wt%, V: 0.1-0.5
The treatment start temperature is 480 to 5 for steel containing wt%.
A method for producing a nitrided steel member having excellent fatigue properties, characterized by performing a nitriding treatment at 50 ° C and a treatment end temperature in a range of 560 to 630 ° C, and continuously increasing the temperature from the start to the end of the treatment. Is provided.

【0012】以下、本発明の限定理由について説明す
る。先ず化学成分の限定理由について示す。 (1)C:0.10〜0.30wt% Cは強度確保のため必要な元素である。しかし、その量
が0.1wt%未満では芯部強度が低くなり過ぎるため
に十分な硬化層深さが得られず、必要な疲労強度が得ら
れない。一方、0.3wt%を超えると素材強度が高く
なりすぎ靭性が劣化し、さらに切削性ないし冷間鍛造性
も著しく低下する。従ってC量を0.10〜0.30w
t%の範囲とした。
Hereinafter, the reasons for limitation of the present invention will be described. First, the reasons for limiting the chemical components will be described. (1) C: 0.10 to 0.30 wt% C is an element necessary for securing strength. However, if the amount is less than 0.1 wt%, the core strength becomes too low, so that a sufficient hardened layer depth cannot be obtained, and the required fatigue strength cannot be obtained. On the other hand, if it exceeds 0.3% by weight, the material strength becomes too high, the toughness is deteriorated, and the machinability or cold forgeability is remarkably reduced. Therefore, the C amount is set to 0.10 to 0.30 w
t% range.

【0013】(2)Cr:0.5〜1.5wt% Crは窒化処理後の表面硬さを上昇させ及び硬化層深さ
を増加させる元素である。しかし、その量が0.5wt
%未満ではその効果が小さく、1.5wt%を超えると
硬化層深さが逆に低下する。従ってCr含有量を0.5
〜1.5wt%の範囲とした。
(2) Cr: 0.5-1.5 wt% Cr is an element that increases the surface hardness after nitriding and increases the depth of the hardened layer. However, the amount is 0.5wt
%, The effect is small, and if it exceeds 1.5 wt%, the depth of the hardened layer is reduced conversely. Therefore, when the Cr content is 0.5
-1.5 wt%.

【0014】(3)Mo:0.2〜1.0wt% Moは窒化処理後の硬化層深さを高め、それによって疲
労強度を著しく向上させる元素である。しかし、その量
が0.2wt%未満ではその効果が不十分であり、1.
0wt%を超えると効果が飽和するばかりでなく素材強
度が高くなりすぎ、切削性ないし冷間鍛造性が著しく低
下し、またコスト的にも不利である。従ってMo量を
0.2〜1.0wt%の範囲とした。
(3) Mo: 0.2 to 1.0 wt% Mo is an element which increases the depth of the hardened layer after the nitriding treatment, thereby significantly improving the fatigue strength. However, if the amount is less than 0.2 wt%, the effect is insufficient.
If it exceeds 0 wt%, not only the effect is saturated, but also the material strength becomes too high, so that the machinability or cold forgeability is remarkably reduced, and the cost is disadvantageous. Therefore, the Mo amount is set in the range of 0.2 to 1.0 wt%.

【0015】(4)Al:0.1〜0.5wt% Alは窒化処理後の表面硬さを高めることで疲労強度を
著しく向上させる元素である。しかし、その量が0.1
wt%未満では必要な表面硬さが得られず、0.5wt
%を超えると硬化層深さに悪影響を及ぼす。従ってAl
量を0.1〜0.5wt%の範囲とした。
(4) Al: 0.1 to 0.5 wt% Al is an element which remarkably improves the fatigue strength by increasing the surface hardness after the nitriding treatment. However, the amount is 0.1
If it is less than 0.5 wt%, the required surface hardness cannot be obtained, and 0.5 wt%
%, The depth of the hardened layer is adversely affected. Therefore, Al
The amount was in the range of 0.1-0.5 wt%.

【0016】(5)V:0.1〜0.5wt% Vは窒化処理後の硬化層深さを向上させる元素である。
しかし、その量が0.1wt%未満ではその効果が不十
分であり、0.5wt%を超えて添加してもその効果が
飽和すると共にコスト的にも不利になる。従ってV量を
0.1〜0.5wt%の範囲とした。
(5) V: 0.1 to 0.5 wt% V is an element for improving the depth of the hardened layer after the nitriding treatment.
However, if the amount is less than 0.1 wt%, the effect is insufficient, and if it is added more than 0.5 wt%, the effect is saturated and the cost is disadvantageous. Therefore, the V amount is set in the range of 0.1 to 0.5 wt%.

【0017】次に、窒化処理条件の限定理由について示
す。 (1)処理開始温度:480〜550℃ 処理開始温度が480℃未満では窒化反応が遅いため有
効な硬化深さが得られず、一方、550℃を超えると化
合物層厚さが大きくなり、疲労強度に悪影響を及ぼす。
従って窒化処理開始温度を480℃〜550℃の範囲と
した。
Next, the reasons for limiting the nitriding conditions will be described. (1) Treatment start temperature: 480 to 550 ° C. If the treatment start temperature is lower than 480 ° C., an effective hardening depth cannot be obtained due to a slow nitridation reaction, while if it exceeds 550 ° C., the thickness of the compound layer increases, resulting in fatigue. Affects strength.
Therefore, the nitriding treatment starting temperature was set in the range of 480 ° C to 550 ° C.

【0018】(2)処理終了温度:560〜630℃ 処理終了温度が560℃未満では窒素の拡散が遅いため
有効な硬化深さが得られず、一方、630℃を超えると
窒素がより内部まで拡散するため表面硬さが低下し疲労
強度が劣化する。従って窒化処理終了温度を560〜6
30℃の範囲とした。
(2) Processing end temperature: 560-630 ° C. If the processing end temperature is lower than 560 ° C., effective diffusion depth cannot be obtained due to slow diffusion of nitrogen. Due to diffusion, the surface hardness decreases and the fatigue strength deteriorates. Therefore, the end temperature of the nitriding treatment is set to 560 to 6
The range was 30 ° C.

【0019】(3)処理開始から処理終了までを連続的
に昇温 上述したように、処理開始から終了まで連続的に昇温す
ることにより、低温で化合物が形成されてもすぐに昇温
されて化合物層が消滅しやすく、結果として化合物層の
生成が抑制され、また大きな硬化深さが得られるため、
著しく疲労強度が向上されるからである。なお、本発明
では処理開始から処理終了までを連続的に昇温させる限
りその態様は限定されないが、直線的に昇温することが
好ましい。
(3) Continuously raising the temperature from the start to the end of the process As described above, by continuously raising the temperature from the start to the end of the process, even if the compound is formed at a low temperature, the temperature is raised immediately. The compound layer easily disappears, and as a result, the formation of the compound layer is suppressed, and a large curing depth is obtained.
This is because the fatigue strength is remarkably improved. In the present invention, the mode is not limited as long as the temperature is continuously increased from the start of the process to the end of the process, but it is preferable that the temperature is increased linearly.

【0020】[0020]

【実施例】以下、本発明の実施例について説明する。 (実施例1)表1の組成を有する鋼150kgを真空溶
解により溶製し、熱間圧延により厚さ30mmの板にし
た後、900℃×1時間の焼ならし処理を行い、切欠き
係数1.8の切欠きを有する小野式回転曲げ疲労試験片
に加工した。その後、表1のNo.1〜14の供試材に
対して窒化処理を施した。窒化処理はN2 −NH3 −C
2 雰囲気のガス窒化炉を用い、図1に示した温度パタ
ーンの中で連続的に昇温する方法(傾斜窒化法)にて行
った。なお、窒化処理は、処理開始温度:510℃、処
理終了温度:620℃、処理時間:20時間の条件にて
行った。
Embodiments of the present invention will be described below. (Example 1) 150 kg of steel having the composition shown in Table 1 was melted by vacuum melting, formed into a plate having a thickness of 30 mm by hot rolling, and then subjected to a normalizing treatment at 900 ° C for 1 hour, and a notch coefficient was obtained. The specimen was processed into an Ono-type rotating bending fatigue test piece having a notch of 1.8. Then, in Table 1, No. The nitriding treatment was performed on the test materials 1 to 14. Nitriding treatment N 2 -NH 3 -C
Using a gas nitriding furnace in an O 2 atmosphere, the temperature was continuously increased in the temperature pattern shown in FIG. 1 (gradient nitriding method). Note that the nitriding treatment was performed under the conditions of a treatment start temperature: 510 ° C., a treatment end temperature: 620 ° C., and a treatment time: 20 hours.

【0021】このように窒化処理を施した供試材を用い
て小野式回転曲げ疲労試験を行い、繰返し数107 回で
の応力値を疲労強度として求めた。また、窒化処理後の
表面硬さ(表面から0.05mm位置の硬さ)及び硬化
層深さ(Hvが420になる距離)の測定も行った。そ
の結果を表2に示す。
[0021] In this manner performs a rotary bending fatigue test Ono equation using the test materials subjected to nitriding treatment, were determined stress value at repeated several 10 7 times as fatigue strength. The surface hardness (hardness at a position of 0.05 mm from the surface) after the nitriding treatment and the depth of the hardened layer (distance at which Hv becomes 420) were also measured. Table 2 shows the results.

【0022】なお、表1及び表2において、供試材N
o.1〜7は本発明例であり、No.8〜14は比較例
である。また、No.15は肌焼鋼として従来より使用
されているSCM420に相当する従来例であり、93
0℃で4時間の浸炭処理後、焼入れし、120℃で2時
間の焼戻しという条件の浸炭焼入・焼戻し処理を施した
後、表面硬さを測定し、さらに小野式回転曲げ疲労試験
を行って疲労強度の測定を行った。
In Tables 1 and 2, the test material N
o. Nos. 1 to 7 are examples of the present invention. 8 to 14 are comparative examples. In addition, No. Numeral 15 is a conventional example corresponding to SCM420 conventionally used as case hardening steel.
After carburizing at 0 ° C. for 4 hours, quenching, and carburizing and tempering at 120 ° C. for 2 hours, the surface hardness was measured, and the Ono-type rotary bending fatigue test was performed. And the fatigue strength was measured.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】表2から明らかなように、本発明例である
No.1〜7はいずれも窒化処理後の表面硬さがHv8
00以上、硬化層深さが0.5mm以上となるために高
い疲労強度が得られており、No.15の浸炭処理材と
比較しても疲労強度が優れていることが確認された。
As is evident from Table 2, No. 1 which is an example of the present invention. 1 to 7 have a surface hardness of Hv8 after nitriding.
No. 00 or more, and the hardened layer depth was 0.5 mm or more, so that high fatigue strength was obtained. It was confirmed that the fatigue strength was superior to that of the 15 carburized materials.

【0026】一方、比較例であるNo.8はV量が本発
明で規定する範囲よりも低いために硬化層深さが小さく
疲労強度が低かった。またNo.9はAlが本発明で規
定する範囲よりも低いために表面硬度が低く疲労強度も
低くなった。No.10はAl量が本発明で規定する範
囲よりも高いために硬化層深さが小さく疲労強度が低か
った。No.11、12はそれぞれMo量、Cr量が本
発明で規定する範囲よりも低いために硬化層深さが小さ
く疲労強度が低かった。No.13はCr量が本発明で
規定する範囲よりも高く、高い表面硬度が得られるが、
硬化層深さが小さいため疲労強度が低かった。さらにN
o.14はC量が本発明で規定する範囲よりも低いため
硬化層深さが小さく疲労強度も低かった。
On the other hand, in Comparative Example No. In No. 8, since the V content was lower than the range specified in the present invention, the depth of the hardened layer was small and the fatigue strength was low. No. In No. 9, the surface hardness was low and the fatigue strength was low because Al was lower than the range specified in the present invention. No. In No. 10, the hardened layer depth was small and the fatigue strength was low because the Al content was higher than the range specified in the present invention. No. In Nos. 11 and 12, since the Mo content and the Cr content were respectively lower than the ranges specified in the present invention, the hardened layer depth was small and the fatigue strength was low. No. No. 13 has a Cr content higher than the range specified in the present invention, and a high surface hardness can be obtained.
The fatigue strength was low due to the small depth of the hardened layer. Further N
o. In No. 14, the C content was lower than the range specified in the present invention, so that the hardened layer depth was small and the fatigue strength was low.

【0027】(実施例2)次に、No.1の組成を有す
る鋼を用いて実施例1と同様に切欠き係数1.8の切欠
きを有する小野式回転曲げ疲労試験片に加工し、図1に
示す3つの温度パターンを用い、表3に示す条件で処理
時間20時間の窒化処理を施した。そして、これら供試
材について疲労試験を行った。この際の窒化処理後の表
面硬さ、硬化層深さ、化合物層厚さ(表面に形成された
窒化物層の厚さ)、及び疲労強度を併せて表3に示す。
なお、記号A〜Dは本発明例であり、記号E〜Lは本発
明の窒化処理条件から外れる比較例である。
(Embodiment 2) The steel having the composition of No. 1 was processed into an Ono-type rotating bending fatigue test piece having a notch with a notch coefficient of 1.8 in the same manner as in Example 1, and the three temperature patterns shown in FIG. The nitriding treatment was performed for 20 hours under the conditions shown in FIG. Then, a fatigue test was performed on these test materials. Table 3 shows the surface hardness, the depth of the hardened layer, the thickness of the compound layer (the thickness of the nitride layer formed on the surface) and the fatigue strength after the nitriding treatment.
Symbols A to D are examples of the present invention, and symbols E to L are comparative examples out of the nitriding conditions of the present invention.

【0028】[0028]

【表3】 [Table 3]

【0029】表3から明らかなように、本発明例である
記号A〜Dはいずれも、表面硬さ、表面層深さが大き
く、化合物層厚さが小さいために高い疲労強度を有して
いることが確認された。
As is clear from Table 3, symbols A to D of the present invention all have high fatigue strength due to large surface hardness and surface layer depth and small compound layer thickness. It was confirmed that.

【0030】これに対して、記号E〜Hは傾斜窒化法を
採用してはいるが、処理開始温度又は処理終了温度が本
発明の範囲から外れており、表面硬さ、硬化層深さ又は
化合物層厚さのいずれかが不十分であった。
On the other hand, although the symbols E to H adopt the gradient nitriding method, the treatment start temperature or the treatment end temperature is out of the range of the present invention, and the surface hardness, hardened layer depth or One of the compound layer thicknesses was insufficient.

【0031】記号I,Jは二段窒化法を採用したもので
あり、化合物層厚さは小さいが、硬化層深さが小さいた
め、疲労強度が低かった。記号K,Lは最も一般的な一
段の窒化方法を採用したものであり、硬化層深さが十分
ではなく、また化合物層厚さが厚すぎるため、疲労強度
が低かった。
Symbols I and J indicate that the two-step nitriding method was adopted, and the fatigue strength was low because the thickness of the compound layer was small but the depth of the hardened layer was small. Symbols K and L are those employing the most common one-step nitriding method, and the fatigue strength was low because the depth of the hardened layer was not sufficient and the thickness of the compound layer was too thick.

【0032】[0032]

【発明の効果】以上のように本発明によれば、特定の組
成の鋼材に対し、処理開始温度と処理終了温度とを特定
温度範囲に規定すると共にその間を連続的に昇温するこ
とにより、化合物層の生成が非常に少なく、かつ高い表
面硬さ及び大きな硬化層深さが得られるため、大きなコ
スト上昇を招くことなく、浸炭焼入れ処理に匹敵する優
れた疲労強度を有する窒化鋼部材を得ることができる。
As described above, according to the present invention, for a steel material having a specific composition, the treatment start temperature and the treatment end temperature are specified in a specific temperature range, and the temperature is continuously raised between them. Since the formation of the compound layer is extremely small, and a high surface hardness and a large hardened layer depth can be obtained, a nitrided steel member having excellent fatigue strength comparable to carburizing and quenching can be obtained without causing a large increase in cost. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明及び比較例における窒化処理の温度パタ
ーンを示す図。
FIG. 1 is a diagram showing a temperature pattern of a nitriding treatment in the present invention and a comparative example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 椛澤 均 埼玉県蓮田市大字閏戸2358番地の1 株 式会社日本テクノ内 (72)発明者 桑原 美博 新潟県長岡市下条町777番地 長岡電子 株式会社内 (56)参考文献 特開 平5−25538(JP,A) 特開 昭63−14854(JP,A) 特公 平3−12140(JP,B2) (58)調査した分野(Int.Cl.6,DB名) C23C 8/24 - 8/26 C22C 38/00,38/24 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hitoshi Kabasawa 2358, Ohirato, Hatsuda-shi, Saitama 1-share, Japan Techno Co., Ltd. (72) Mihiro Kuwahara 777, Shimojo-cho, Nagaoka-shi, Niigata Nagaoka Electronics Co. In-house (56) References JP-A-5-25538 (JP, A) JP-A-63-14854 (JP, A) JP-B-3-12140 (JP, B2) (58) Fields investigated (Int. . 6, DB name) C23C 8/24 - 8/26 C22C 38 / 00,38 / 24

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C:0.10〜0.30wt%、Cr:
0.5〜1.5wt%、Mo:0.2〜1.0wt%、
Al:0.1〜0.5wt%、V:0.1〜0.5wt
%を含有する鋼に対し、処理開始温度が480〜550
℃、処理終了温度が560〜630℃の範囲であり、処
理開始から処理終了までを連続的に昇温させる窒化処理
を施すことを特徴とする、疲労特性に優れた窒化鋼部材
の製造方法。
1. C: 0.10 to 0.30 wt%, Cr:
0.5 to 1.5 wt%, Mo: 0.2 to 1.0 wt%,
Al: 0.1-0.5 wt%, V: 0.1-0.5 wt%
% Of steel, the treatment start temperature is 480-550.
A method for producing a nitrided steel member having excellent fatigue characteristics, characterized by performing a nitriding treatment at a temperature of 560 to 630 ° C. and a continuous temperature increase from the start to the end of the treatment.
JP8158794A 1994-04-20 1994-04-20 Method for producing nitrided steel member excellent in fatigue characteristics Expired - Fee Related JP2885061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8158794A JP2885061B2 (en) 1994-04-20 1994-04-20 Method for producing nitrided steel member excellent in fatigue characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8158794A JP2885061B2 (en) 1994-04-20 1994-04-20 Method for producing nitrided steel member excellent in fatigue characteristics

Publications (2)

Publication Number Publication Date
JPH07286256A JPH07286256A (en) 1995-10-31
JP2885061B2 true JP2885061B2 (en) 1999-04-19

Family

ID=13750457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8158794A Expired - Fee Related JP2885061B2 (en) 1994-04-20 1994-04-20 Method for producing nitrided steel member excellent in fatigue characteristics

Country Status (1)

Country Link
JP (1) JP2885061B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2783840B1 (en) * 1998-09-30 2000-11-10 Aubert & Duval Sa STEEL ALLOWING HIGH NITRURATION KINETICS, PROCESS FOR OBTAINING SAME AND PARTS FORMED THEREFROM
US7021291B2 (en) 2003-12-24 2006-04-04 Cummins Inc. Juncture for a high pressure fuel system
JP2006115975A (en) * 2004-10-20 2006-05-11 Japan Lifeline Co Ltd Manufacturing method for guide wire for medical use
US20120080122A1 (en) * 2009-06-17 2012-04-05 Tetsushi Chida Steel for nitriding use and nitrided part

Also Published As

Publication number Publication date
JPH07286256A (en) 1995-10-31

Similar Documents

Publication Publication Date Title
KR101892531B1 (en) Method for nitriding iron-based metal
JP4962695B2 (en) Steel for soft nitriding and method for producing soft nitriding component
JP2906996B2 (en) Method for producing nitrided steel member excellent in cold forgeability and fatigue characteristics
JP3381738B2 (en) Manufacturing method of mechanical structural parts with excellent mechanical strength
JP2006348321A (en) Steel for nitriding treatment
JP2885061B2 (en) Method for producing nitrided steel member excellent in fatigue characteristics
JPH0971841A (en) Steel for soft-nitriding
JP2549039B2 (en) Carbonitriding heat treatment method for high strength gears with small strain
JP2907011B2 (en) Method for producing nitrided steel member with less heat treatment distortion
JPS5916948A (en) Soft-nitriding steel
JP3037891B2 (en) High-strength case hardened steel that facilitates induction annealing of carburized part and method of manufacturing the same
JP2600174B2 (en) Low alloy nitrocarburized steel
JP3283088B2 (en) Machine structural parts with excellent fatigue strength
JPS626614B2 (en)
JP2611241B2 (en) Low alloy nitrocarburized steel
JPH0849058A (en) Production of wear resistant nitrided steel member small in heat treating strain
JPH0762492A (en) Steel for nitriding treatment
JP7167482B2 (en) Non-heat treated steel for nitriding and crankshaft
JP3567713B2 (en) Steel with excellent ductility and excellent surface hardness and internal hardness after nitrocarburizing
JP2907041B2 (en) High-strength nitrided steel member with excellent fatigue properties
JP3109146B2 (en) Manufacturing method of low strain high strength member
JP3534506B2 (en) Low distortion type steel material for carburized hardened gears
JPH108199A (en) Case hardening steel excellent in carburizing hardenability
JPH0625797A (en) Steel for soft-nitriding
JP2878331B2 (en) Manufacturing method of nitrided steel member

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080212

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090212

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100212

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100212

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110212

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120212

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120212

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20130212

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees