JP3567713B2 - Steel with excellent ductility and excellent surface hardness and internal hardness after nitrocarburizing - Google Patents

Steel with excellent ductility and excellent surface hardness and internal hardness after nitrocarburizing Download PDF

Info

Publication number
JP3567713B2
JP3567713B2 JP00659298A JP659298A JP3567713B2 JP 3567713 B2 JP3567713 B2 JP 3567713B2 JP 00659298 A JP00659298 A JP 00659298A JP 659298 A JP659298 A JP 659298A JP 3567713 B2 JP3567713 B2 JP 3567713B2
Authority
JP
Japan
Prior art keywords
hardness
steel
ductility
nitrocarburizing
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00659298A
Other languages
Japanese (ja)
Other versions
JPH11199970A (en
Inventor
輝樹 林田
宏司 岸田
信行 金山
敦 村上
年生 久野
正雄 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Nippon Steel Corp
Original Assignee
Honda Motor Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Nippon Steel Corp filed Critical Honda Motor Co Ltd
Priority to JP00659298A priority Critical patent/JP3567713B2/en
Publication of JPH11199970A publication Critical patent/JPH11199970A/en
Application granted granted Critical
Publication of JP3567713B2 publication Critical patent/JP3567713B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、軟窒化用鋼に係わるものであり、鋼の組成を特定の範囲にすることにより、延性に優れ、一定値以下の硬さを持ち、軟窒化処理後に表面の硬さおよび内部の硬さも向上する鋼に関するものである。
【0002】
【従来の技術】
軟窒化により、鋼の表面硬さと内部の硬さを向上させる技術は、以前より種々提案されており、例えば特開平3−122254号公報に示されるように、Cu、Tiを含有する熱延鋼板がある。この技術では、軟窒化後の表面硬さは、Hv:350以上を目標としており、その実績は特開平3−122254号公報の第2表、第1図に示されるように、Hv:395〜410である。しかし、この硬さでは、輸送機器部品や機械部品に適用するには不十分な場合があり、例えば「特殊鋼」41(1992)P28の図4に示されるように、Hv:600以上が必要とされる用途には適用できない。
【0003】
上記技術以外の軟窒化による表面硬度上昇の手段としては、「特殊鋼」41(1992)P11に示されるように、鋼にCr、Mo、V、Alなどを添加する方法がある。しかし、これらの鋼は、同文献のP15に示されるように、伸びが低いという問題がある。そのため、これらの鋼を使った部品を製造する際には、冷間鍛造や冷間でのプレス成形加工など困難な場合が多いため、材料の歩留りの悪い熱間鍛造とするか、または冷間鍛造の前に素材の球状化焼鈍等の熱処理が必要となり、さらに塑性加工後に内部の硬さを必要とする硬度まで上昇させるために、焼き入れ、焼き戻しなどの熱処理工程も必要となる。そのため、これらの鋼を使った部品の製造コストが高くなるという問題がある。
【0004】
また、V、Crなどを含む鋼は硬いため、軟窒化処理前に部品の形状をつくりだすための切削工程の前に焼きなましなどの熱処理が必要とされることもあり、これも製造コストアップの要因となっている。
これらの、部品製造工程で行われる熱間鍛造を、冷間鍛造や冷間でのプレス成形加工とし、材料の歩留りを向上させ、かつ塑性加工前後での熱処理を省略し、コストアップの問題を解決するためには、25%以上の伸びを持たせる必要がある。また、切削性を良好にするためには、軟窒化前の素材は柔らかくなければならず、Hv:160以下が必要であるが、輸送機器部品や機械部品に適用するためには、軟窒化処理によって鋼の表面の硬さをHv:600以上に向上させる必要があり、さらに軟窒化後はこれらの強度部品として使用するために、強度も必要である。そのためには、軟窒化後の内部の硬度もHv:190以上とする必要がある。
【0005】
【発明が解決しようとする課題】
本発明は、鋼の延性を25%以上と高くし、軟窒化前の硬度をHvで160以下とし、かつ軟窒化処理により表面部分の硬さを向上させてHvで600以上とし、同時に内部の硬度もHvで190以上とする鋼を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明者らは、鋼の組成を特定の範囲とすることで、上記課題が解決されることを見出した。
すなわち、本発明の要旨とするところは、重量比にて、C:0.0003〜0.010%、Si:0.050%以下、Mn:0.10〜0.50%、P:0.035%以下、S:0.030%以下、N:0.0050%以下、Al:0.015〜1.50%、Ti:0.030〜0.500%、Cu:0.8〜2.2%、Ni:0.5×(Cu)〜1.5%を含有し、さらにV:0.2〜1.0%、Cr:0.2〜1.5%のうち1種または2種を含有し、残部がFeおよび不可避的不純物よりなり、さらに0.8%以上のCuを固溶していることを特徴とする延性に優れ、軟窒化後の表面硬さおよび内部硬さの優れた鋼にある。
【0007】
以下、本発明について詳細に説明する。
まず、本発明における鋼の化学成分の限定理由について説明する。
鋼中のCが増加するにしたがい、鋼の延性は低下する。特に、V、Crなどが添加された場合は、ある量以上のCが存在すると、延性の低下が極めて顕著になる。これは、V、Crなどが鋼中でCと反応して炭化物を形成し、強度が上昇する反面、延性も低下するためと考えられる。この場合、切削性も同時に低下する。図1は、表1に示されるように、V、Crなどを含有し、種々のC量を持つ鋼の鋳片を1200℃に加熱し、仕上温度900℃で、4.3mmまで熱延した後、室温まで急冷して製造した熱延鋼板の延性とC量の関係を示したものである。図1から明らかなように、窒化物形成元素であるV、Crなどが添加された場合においても高い延性を確保するためには、C量を0.010%以下にする必要がある。Cが0.0003%未満になると、脱炭のためのコストが高くなるので好ましくない。したがって、C量を0.0003〜0.010%に限定した。
【0008】
【表1】

Figure 0003567713
【0009】
Siは微量では問題はないが、0.050%を超えると延性を低下させる。したがって、Siは0.050%以下でなければならない。
Mnは鋼中のSと反応し、MnSを形成することで、鋼を製造する際の高温での割れを防止する役割をはたす。そのためには、0.1%以上の添加が必要である。しかし、0.5%を超えると、延性を低下させる。したがって、Mn量を0.1〜0.5%に限定した。
【0010】
Pはその添加量を増すことにより鋼板の強度を高めることができるが、本発明においては積極的に添加される必要のない元素である。含有量が0.035%を超えると延性の低下が大きくなる。したがって、Pは0.035%以下でなければならない。
Sは多いほど鋼の延性は低下し、鋼を製造する際に高温で加工を行った場合の割れの原因ともなる。したがって、Sは少ないほどよく、0.030%以下でなければならない。
【0011】
Alは、V、Crが添加された鋼の延性の低下を防止するのに有効な元素であり、その効果を発揮させるためには0.015%以上が必要である。また、その添加に伴い、窒化によって鋼中に侵入するNと反応し、AlNを形成することによって表面硬さを向上させる役割がある。しかし、添加量が多すぎても延性が低下し、その上限は1.50%である。したがって、Alを0.015〜1.50%に限定した。
【0012】
Nは延性を低下させるので、その量は低いほど好ましく、0.0050%以下でなければならない。
Tiは鋼中のCおよびNと結び付いて固溶Cおよび固溶Nを低減させることで、延性を確保するとともに、後述するVやCrに軟窒化後の硬度上昇作用を持たせるために必要な元素である。また、CおよびNと反応した後、鋼中に固溶状態になっているTiは軟窒化において、窒化物を形成し、表面付近の硬さを向上させるのに必要な元素である。これらの効果を発揮させるには、0.030%以上が必要である。しかし、0.500%を超えると延性を低下させる。したがって、Tiは0.030〜0.500%に限定した。
【0013】
Cuは軟窒化処理において鋼の硬さを上昇させるのに必要な元素である。この元素を添加することにより、軟窒化時の表面および表面近傍への窒素の拡散による硬さ向上のみでなく、この部分以外の部分の硬さを向上させることができる。その効果を発揮させるには0.8%以上が必要であり、さらに軟窒化処理前には0.8%以上が固溶状態にあることが必要である。しかし、2.2%を超えると延性が低下し、さらに軟窒化処理による鋼の内部強度向上の効果が減少する。したがって、Cu量を0.8〜2.2%に限定し、さらに軟窒化前には0.8%以上のCuが固溶状態にあることが必要である。
【0014】
Niは鋼を製造する際に高温で加工を行った場合のCuによる割れを防止するために必要な元素である。その効果を発揮させるためには、重量比にてCuの0.5倍以上の添加が必要である。しかし、1.5%を超える量が添加されると、延性の低下につながる。したがって、Niは0.5×(Cu)〜1.5%に限定した。
【0015】
Vは軟窒化において窒化物を形成させ、表面付近を硬化させることができる。本発明では低いC量を規定しており、さらにTiを添加することによって固溶Cを極めて低く抑えているため、添加されたVの大部分が固溶Vとなり、0.2%以上の少量の添加で軟窒化時の表面硬化に寄与することが本発明者らの検討によって見出された。しかし、Vが1.0%を超えると延性の低下が大きくなる。したがって、Vは0.2〜1.0%に限定した。なお、Vを無添加とし、Crの添加によっても表面付近の硬さ向上を図ることができる。あるいは、VとCrの両方を添加して表面付近の硬さ向上を図ることもできる。
【0016】
Crも軟窒化において窒化物を形成させ、表面付近を硬化させることができる。本発明では低いC量を規定しており、さらにTiを添加することによって固溶Cを極めて低く抑えているため、添加されたCrの大部分が固溶Crとなり、Crを本発明範囲内で含有する場合に、0.2%以上の少量の添加で軟窒化時の表面硬化に寄与することが本発明者らの検討によって見出された。しかし、Crが1.5%を超えると延性の低下が大きくなる。したがって、Crは0.2〜1.5%に限定した。
【0017】
以上示した鋼を製造する手段は、熱間圧延、鍛造、鋳造あるいは冷間圧延後の焼鈍などいずれの方法でもよいが、高い延性と軟窒化処理における表面付近以外の部分の硬さ向上を実現させるためには、添加したCuを固溶状態に保つ必要があり、そのためには、製造工程において800℃以上の温度に加熱し、800℃以上の温度から50℃/s以上の冷却速度で340℃以下に急冷する必要がある。また、軟窒化処理によって高い表面硬さとそれ以外の部分の硬さを向上させるためには、500〜650℃で処理する必要があり、好ましくは550〜600℃での処理である。
【0018】
以下に本発明の実施例を比較例と共に示す。
【0019】
【実施例】
表2、表3(表2のつづき−1)、表4(表2のつづき−2)に示す化学成分の鋼塊を製造し、熱間圧延によって薄鋼板とした。鋳片の加熱温度は1200℃とし、熱延においては仕上温度を900℃として3.5mmの厚みに仕上げた後、120℃まで100C/sで急冷し、添加しているCuを固溶状態とした。得られた熱延鋼板の硬さおよび伸びを測定した。伸びはJIS5号試験片に加工して測定した。ここで、硬さHv:160以下、かつ伸び25%以上のものは、冷間加工性が優れていると判断し、いずれか一方または両方が外れているものは冷間加工性が劣ると判断した。
【0020】
さらに、熱延鋼板をアンモニアガスを含んだ雰囲気において、580℃で80minの軟窒化処理を施し、板厚方向の硬さ分布を測定し、表面硬さ、内部硬さなどを求めた。ここで、表面硬さHv:600以上かつ内部硬さHv:190以上のものは、窒化部品として強度が優れていると判断し、いずれか一方または両方が外れているものは、強度が劣ると判断した。これらの測定結果を表5、表6(表5のつづき)に示す。
【0021】
図2は、試料番号30の軟窒化前後の板厚方向の硬さ分布を示したものである。
【0022】
【表2】
Figure 0003567713
【0023】
【表3】
Figure 0003567713
【0024】
【表4】
Figure 0003567713
【0025】
【表5】
Figure 0003567713
【0026】
【表6】
Figure 0003567713
【0027】
表5、表6から明らかなように、本発明範囲の組成のいずれか一つあるいは複数が外れている鋼は、軟窒化前の鋼板の伸び、硬さ、および軟窒化後の表面硬さ、内部硬さのいずれか一つあるいは複数が本発明範囲内の鋼により得られた値よりも劣っていることがわかる。
【0028】
【発明の効果】
以上のように、鋼の組成を特定範囲とすることにより、25%以上の延性とHv:160以下の特性を持たせることができ、さらに、軟窒化後には表面硬さHv:600以上で内部硬さHv:190以上の特性を得ることができる。
【図面の簡単な説明】
【図1】延性に及ぼすC量の影響を示した図である。
【図2】鋼板の板厚方向の硬さ分布を示した図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a steel for nitrocarburizing, by setting the composition of the steel to a specific range, excellent ductility, having a hardness of a certain value or less, the hardness of the surface and the internal hardness after nitrocarburizing treatment. The present invention relates to steel having improved hardness.
[0002]
[Prior art]
Various techniques for improving the surface hardness and the internal hardness of steel by nitrocarburizing have been proposed before, for example, as disclosed in JP-A-3-122254, a hot-rolled steel sheet containing Cu and Ti. There is. In this technique, the surface hardness after nitrocarburizing is targeted at Hv: 350 or more, and the results are shown in Table 2 and FIG. 1 of JP-A-3-122254. 410. However, this hardness may not be enough to be applied to transportation equipment parts and machine parts. For example, as shown in FIG. 4 of “Special Steel” 41 (1992) P28, Hv: 600 or more is required. It cannot be applied to the use described.
[0003]
As a means of increasing the surface hardness by nitrocarburizing other than the above technique, there is a method of adding Cr, Mo, V, Al, etc. to steel as shown in “Special Steel” 41 (1992) P11. However, these steels have a problem of low elongation as shown in P15 of the same document. Therefore, when manufacturing parts using these steels, it is often difficult to perform cold forging or cold press forming, so hot forging with a low material yield or cold forging Heat treatment such as spheroidizing annealing of the material is required before forging, and heat treatment steps such as quenching and tempering are also required after plastic working to increase the internal hardness to the required hardness. Therefore, there is a problem that the manufacturing cost of parts using these steels increases.
[0004]
In addition, since steel containing V, Cr, etc. is hard, heat treatment such as annealing may be required before the cutting process to create the shape of the part before nitrocarburizing, which also increases manufacturing costs. It has become.
The hot forging performed in the component manufacturing process is cold forging or cold press forming, improving the yield of materials and omitting heat treatment before and after plastic working, eliminating the problem of cost increase. In order to solve the problem, it is necessary to give an elongation of 25% or more. Further, in order to improve the machinability, the material before nitrocarburizing must be soft, and Hv: 160 or less is required. Therefore, it is necessary to improve the hardness of the steel surface to Hv: 600 or more, and furthermore, after nitrocarburizing, it is necessary to have strength in order to use these as strength parts. For that purpose, the internal hardness after soft nitriding also needs to be Hv: 190 or more.
[0005]
[Problems to be solved by the invention]
The present invention increases the ductility of steel to 25% or more, sets the hardness before nitrocarburizing to 160 or less in Hv, and improves the hardness of the surface portion by nitrocarburizing treatment to 600 or more in Hv, It is an object of the present invention to provide a steel having a hardness of 190 or more in Hv.
[0006]
[Means for Solving the Problems]
The present inventors have found that the above problems can be solved by setting the steel composition to a specific range.
That is, the gist of the present invention is that, by weight ratio, C: 0.0003 to 0.010%, Si: 0.050% or less, Mn: 0.10 to 0.50%, P: 0. 035% or less, S: 0.030% or less, N: 0.0050% or less, Al: 0.015 to 1.50%, Ti: 0.030 to 0.500%, Cu: 0.8 to 2. 2%, Ni: 0.5 × (Cu) -1.5%, V: 0.2-1.0%, Cr: 0.2-1.5%, 1 or 2 types , The balance being Fe and unavoidable impurities, and further containing 0.8% or more of Cu as a solid solution, and having excellent ductility and excellent surface hardness and internal hardness after nitrocarburizing. In steel.
[0007]
Hereinafter, the present invention will be described in detail.
First, the reasons for limiting the chemical components of steel in the present invention will be described.
As C in the steel increases, the ductility of the steel decreases. In particular, when V, Cr, or the like is added, if a certain amount or more of C is present, the decrease in ductility becomes extremely significant. This is presumably because V, Cr, etc. react with C in the steel to form carbides and increase the strength, but also decrease the ductility. In this case, the machinability also decreases at the same time. FIG. 1 shows that, as shown in Table 1, a steel slab containing V, Cr and the like and having various C contents was heated to 1200 ° C. and hot rolled to 4.3 mm at a finishing temperature of 900 ° C. The relationship between the ductility and the C content of a hot-rolled steel sheet manufactured by rapid cooling to room temperature is shown below. As is apparent from FIG. 1, the C content needs to be 0.010% or less in order to ensure high ductility even when V, Cr, or the like, which is a nitride-forming element, is added. If C is less than 0.0003%, the cost for decarburization increases, which is not preferable. Therefore, the amount of C was limited to 0.0003 to 0.010%.
[0008]
[Table 1]
Figure 0003567713
[0009]
Although there is no problem with a small amount of Si, if it exceeds 0.050%, the ductility is reduced. Therefore, Si must be 0.050% or less.
Mn reacts with S in steel to form MnS, thereby playing a role in preventing cracking at a high temperature when manufacturing steel. For that purpose, addition of 0.1% or more is necessary. However, if it exceeds 0.5%, the ductility is reduced. Therefore, the amount of Mn was limited to 0.1 to 0.5%.
[0010]
P can increase the strength of the steel sheet by increasing the amount of P added, but is an element that does not need to be positively added in the present invention. If the content exceeds 0.035%, the ductility is significantly reduced. Therefore, P must be less than 0.035%.
As the amount of S increases, the ductility of the steel decreases, which causes cracking when the steel is processed at a high temperature. Therefore, S should be as small as possible, and should be 0.030% or less.
[0011]
Al is an element that is effective in preventing a decrease in ductility of steel to which V and Cr are added, and 0.015% or more is required to exert its effect. Further, with the addition, it has a role of improving the surface hardness by forming a AlN by reacting with N penetrating into the steel by nitriding. However, the ductility is reduced even if the addition amount is too large, and the upper limit is 1.50%. Therefore, Al was limited to 0.015 to 1.50%.
[0012]
N lowers the ductility, so the lower the amount, the better, and it should be 0.0050% or less.
Ti binds to C and N in the steel to reduce solid solution C and solid solution N, thereby ensuring ductility and making V and Cr, which will be described later, have a hardness increasing effect after nitrocarburizing. Element. Further, Ti which is in a solid solution state in steel after reacting with C and N is an element necessary for forming a nitride and improving the hardness near the surface in soft nitriding. To achieve these effects, 0.030% or more is required. However, when it exceeds 0.500%, the ductility decreases. Therefore, Ti was limited to 0.030 to 0.500%.
[0013]
Cu is an element necessary for increasing the hardness of the steel in the nitrocarburizing treatment. By adding this element, it is possible not only to improve the hardness by diffusion of nitrogen to the surface and the vicinity of the surface during soft nitriding, but also to improve the hardness of portions other than this portion. 0.8% or more is required to exhibit the effect, and more than 0.8% must be in a solid solution state before the nitrocarburizing treatment. However, if it exceeds 2.2%, the ductility decreases, and the effect of improving the internal strength of the steel by the nitrocarburizing treatment decreases. Therefore, it is necessary to limit the amount of Cu to 0.8 to 2.2%, and it is necessary that 0.8% or more of Cu is in a solid solution state before nitrocarburizing.
[0014]
Ni is an element necessary for preventing cracking due to Cu when processing at a high temperature when producing steel. In order to exhibit the effect, it is necessary to add 0.5 times or more of Cu in a weight ratio. However, the addition of more than 1.5% leads to reduced ductility. Therefore, Ni is limited to 0.5 × (Cu) to 1.5%.
[0015]
V can form nitrides in nitrocarburizing and harden near the surface. In the present invention, a low C content is specified, and furthermore, since the dissolved C is extremely low by adding Ti, most of the added V is dissolved V, and a small amount of 0.2% or more is added. It has been found by the present inventors that the addition contributes to the surface hardening during nitrocarburizing. However, when V exceeds 1.0%, the ductility is greatly reduced. Therefore, V was limited to 0.2 to 1.0%. The hardness near the surface can also be improved by adding Cr without adding V and adding Cr. Alternatively, both V and Cr can be added to improve the hardness near the surface.
[0016]
Cr can also form nitrides in soft nitriding and harden near the surface. In the present invention, a low C content is specified, and furthermore, since the dissolved C is extremely low by adding Ti, most of the added Cr becomes solid-dissolved Cr, and Cr is contained within the range of the present invention. It has been found by the present inventors that addition of a small amount of 0.2% or more contributes to the surface hardening during nitrocarburizing. However, if Cr exceeds 1.5%, the ductility is greatly reduced. Therefore, Cr was limited to 0.2 to 1.5%.
[0017]
Means for producing the steel shown above may be any method such as hot rolling, forging, casting or annealing after cold rolling, but it realizes high ductility and improvement in hardness of parts other than near the surface in soft nitriding treatment. In order to achieve this, it is necessary to keep the added Cu in a solid solution state. To this end, the Cu is heated to a temperature of 800 ° C. or more in the manufacturing process and is cooled from a temperature of 800 ° C. or more at a cooling rate of 50 ° C./s or more to 340 It is necessary to quench below ℃. Further, in order to improve the high surface hardness and the hardness of the other parts by the nitrocarburizing treatment, it is necessary to perform the treatment at 500 to 650 ° C., preferably at 550 to 600 ° C.
[0018]
Hereinafter, examples of the present invention are shown together with comparative examples.
[0019]
【Example】
Steel ingots having the chemical components shown in Tables 2 and 3 (continuation-1 in Table 2) and Table 4 (continuation-2 in Table 2) were manufactured, and were thinned by hot rolling. The heating temperature of the slab was 1200 ° C, and in hot rolling, the finishing temperature was 900 ° C and after finishing to a thickness of 3.5 mm, it was rapidly cooled to 120 ° C at 100 C / s to bring the added Cu into a solid solution state. did. The hardness and elongation of the obtained hot-rolled steel sheet were measured. The elongation was measured by processing a JIS No. 5 test piece. Here, those having a hardness Hv of 160 or less and an elongation of 25% or more are judged to be excellent in cold workability, and those having one or both of them deviated are judged to be poor in cold workability. did.
[0020]
Further, the hot rolled steel sheet was subjected to a soft nitriding treatment at 580 ° C. for 80 minutes in an atmosphere containing ammonia gas, and the hardness distribution in the thickness direction was measured to determine the surface hardness, the internal hardness and the like. Here, those having a surface hardness of Hv: 600 or more and an internal hardness of Hv: 190 or more are judged to have excellent strength as nitrided parts, and those having one or both of them deviated have poor strength. It was judged. The measurement results are shown in Tables 5 and 6 (continuation of Table 5).
[0021]
FIG. 2 shows the hardness distribution in the thickness direction of sample No. 30 before and after soft nitriding.
[0022]
[Table 2]
Figure 0003567713
[0023]
[Table 3]
Figure 0003567713
[0024]
[Table 4]
Figure 0003567713
[0025]
[Table 5]
Figure 0003567713
[0026]
[Table 6]
Figure 0003567713
[0027]
As is evident from Tables 5 and 6, the steel having one or more of the compositions falling outside the range of the present invention is the elongation and hardness of the steel sheet before nitrocarburizing, and the surface hardness after nitrocarburizing, It can be seen that any one or more of the internal hardnesses are inferior to those obtained with steels within the scope of the present invention.
[0028]
【The invention's effect】
As described above, by setting the composition of the steel to a specific range, it is possible to impart a ductility of 25% or more and a property of Hv: 160 or less, and further, after soft nitriding, the surface hardness Hv: 600 or more and the internal Hardness Hv: A characteristic of 190 or more can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing the effect of the amount of C on ductility.
FIG. 2 is a diagram showing a hardness distribution of a steel sheet in a thickness direction.

Claims (1)

重量比にて、
C:0.0003〜0.010%、
Si:0.050%以下、
Mn:0.10〜0.50%、
P:0.035%以下、
S:0.030%以下、
Al:0.015〜1.50%、
N:0.0050%以下、
Ti:0.030〜0.500%、
Cu:0.8〜2.2%、
Ni:0.5×(Cu)〜1.5%
を含有し、さらに
V:0.2〜1.0%、
Cr:0.2〜1.5%
のうち1種または2種を含有し、残部がFeおよび不可避的不純物よりなり、さらに0.8%以上のCuを固溶していることを特徴とする延性に優れ、軟窒化後の表面硬さおよび内部硬さの優れた鋼。
By weight ratio,
C: 0.0003-0.010%,
Si: 0.050% or less,
Mn: 0.10 to 0.50%,
P: 0.035% or less,
S: 0.030% or less,
Al: 0.015 to 1.50%,
N: 0.0050% or less,
Ti: 0.030 to 0.500%,
Cu: 0.8 to 2.2%,
Ni: 0.5 × (Cu) to 1.5%
And V: 0.2 to 1.0%;
Cr: 0.2-1.5%
One or two of the above, the balance being Fe and unavoidable impurities, and further having a solid solution of 0.8% or more of Cu, which is excellent in ductility and surface hardness after soft nitriding. Steel with excellent hardness and internal hardness.
JP00659298A 1998-01-16 1998-01-16 Steel with excellent ductility and excellent surface hardness and internal hardness after nitrocarburizing Expired - Fee Related JP3567713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00659298A JP3567713B2 (en) 1998-01-16 1998-01-16 Steel with excellent ductility and excellent surface hardness and internal hardness after nitrocarburizing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00659298A JP3567713B2 (en) 1998-01-16 1998-01-16 Steel with excellent ductility and excellent surface hardness and internal hardness after nitrocarburizing

Publications (2)

Publication Number Publication Date
JPH11199970A JPH11199970A (en) 1999-07-27
JP3567713B2 true JP3567713B2 (en) 2004-09-22

Family

ID=11642615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00659298A Expired - Fee Related JP3567713B2 (en) 1998-01-16 1998-01-16 Steel with excellent ductility and excellent surface hardness and internal hardness after nitrocarburizing

Country Status (1)

Country Link
JP (1) JP3567713B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102421927B (en) * 2010-03-16 2013-10-23 新日铁住金株式会社 Steel for nitrocarburization, nitrocarburized components, and production method for same
JP5796815B2 (en) * 2011-05-30 2015-10-21 大同特殊鋼株式会社 Nitriding apparatus and cross-sectional hardness distribution prediction system

Also Published As

Publication number Publication date
JPH11199970A (en) 1999-07-27

Similar Documents

Publication Publication Date Title
JPH08311607A (en) Low strain carburized gear excellent in deddendum bending strength and its production
JPH0892690A (en) Carburized parts excellent in fatigue resistance and its production
JP7172275B2 (en) Hot stamping die steel, hot stamping die and manufacturing method thereof
JP4291941B2 (en) Soft nitriding steel with excellent bending fatigue strength
JPH09279295A (en) Steel for soft-nitriding excellent in cold forgeability
JP2991064B2 (en) Non-tempered nitrided forged steel and non-tempered nitrided forged products
JPWO2017056896A1 (en) Crankshaft rough profile, nitrided crankshaft, and method of manufacturing the same
JP4488228B2 (en) Induction hardening steel
JP2894184B2 (en) Steel for soft nitriding
JPH0559488A (en) Precipitation hardening type high strength steel for soft-nitriding excellent in machinability
JP3567713B2 (en) Steel with excellent ductility and excellent surface hardness and internal hardness after nitrocarburizing
JP4010023B2 (en) Soft nitrided non-tempered crankshaft and manufacturing method thereof
JP2000008141A (en) Non-heat treated soft-nitrided steel forged parts and production thereof
JP2003201513A (en) High strength case hardening steel
JP3471576B2 (en) Surface high hardness, high corrosion resistance, high toughness martensitic stainless steel
JP3546284B2 (en) Method for producing steel for nitriding and mechanical structural parts
JP3211627B2 (en) Steel for nitriding and method for producing the same
JPH09279296A (en) Steel for soft-nitriding excellent in cold forgeability
JP3907986B2 (en) Method for producing case-hardened steel with excellent cold workability and grain size characteristics
JP3436867B2 (en) Induction hardened part excellent in strength and fatigue resistance and method of manufacturing the same
JP4325245B2 (en) Nitrided member excellent in durability fatigue characteristics and method for producing the same
JP2000345292A (en) Manufacture of nitrocarburizing steel and nitrocarburized parts
JPH0447023B2 (en)
JP2003119548A (en) Steel sheet for soft nitriding treatment superior in press formability, and manufacturing method therefor
JP2008523250A (en) Method and process for thermochemical treatment of high strength and toughness alloys

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040607

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees