JP3436867B2 - Induction hardened part excellent in strength and fatigue resistance and method of manufacturing the same - Google Patents

Induction hardened part excellent in strength and fatigue resistance and method of manufacturing the same

Info

Publication number
JP3436867B2
JP3436867B2 JP23399497A JP23399497A JP3436867B2 JP 3436867 B2 JP3436867 B2 JP 3436867B2 JP 23399497 A JP23399497 A JP 23399497A JP 23399497 A JP23399497 A JP 23399497A JP 3436867 B2 JP3436867 B2 JP 3436867B2
Authority
JP
Japan
Prior art keywords
less
induction
steel
strength
hardened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23399497A
Other languages
Japanese (ja)
Other versions
JPH1171633A (en
Inventor
秀雄 蟹澤
誠司 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP23399497A priority Critical patent/JP3436867B2/en
Publication of JPH1171633A publication Critical patent/JPH1171633A/en
Application granted granted Critical
Publication of JP3436867B2 publication Critical patent/JP3436867B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、静的強度、耐疲労
特性に優れた高周波焼入れ部品およびその製造方法に関
し、より詳しくは疲労による歯元の折損が問題になる自
動車の差動装置用歯車などの高周波焼入部品およびその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an induction hardened part having excellent static strength and fatigue resistance and a method for manufacturing the same, and more particularly to a gear for a differential gear of an automobile in which breakage of a tooth root due to fatigue is a problem. Induction-hardened parts and the manufacturing method thereof.

【0002】[0002]

【従来の技術】従来、自動車用差動装置は表面硬化処理
を施して使用されることが多く、表面硬化法としては浸
炭、窒化および高周波焼き入れが採用されている。この
中で、「浸炭」はマトリックスが高靱性で材料の表層を
高炭素化することにより硬化することを狙ったもので、
疲労強度の向上を目的とした主にギヤ等の材料に適用さ
れる。しかし、浸炭処理はガス雰囲気中でのバッチ処理
が主流をなしており、例えば930℃近傍で数時間以上
の加熱保持を有するといったように多くのエネルギーと
コストが費やされる。また、実操業においては浸炭材の
処理等のために環境の悪化を伴いがちである等といった
問題のほか、インライン化が困難であるといった様な問
題もあった。
2. Description of the Related Art Conventionally, an automobile differential device is often used after being subjected to a surface hardening treatment, and carburizing, nitriding and induction hardening are adopted as the surface hardening method. Among these, "carburizing" is aimed at hardening by the matrix having high toughness and high carbonization of the surface layer of the material.
It is mainly applied to materials such as gears for the purpose of improving fatigue strength. However, the carburizing process is mainly performed in a batch process in a gas atmosphere, and a large amount of energy and cost are consumed, for example, having a heating and holding temperature of around 930 ° C. for several hours or more. In addition, in the actual operation, there is a problem that the environment tends to be deteriorated due to the treatment of carburized materials and the like, and there is a problem that it is difficult to inline.

【0003】そこで、これらの問題の解決のため、高周
波焼き入れ処理のみで所望の強度特性をえるための研究
がなされるようになった。なぜなら、高周波焼き入れは
表面硬化処理時間の短縮やエネルギーの低減、さらには
環境のクリーン化に非常に有利だからである。
Therefore, in order to solve these problems, studies have been conducted to obtain desired strength characteristics only by induction hardening. This is because induction hardening is very advantageous for shortening the time for surface hardening treatment, reducing energy, and further for making the environment cleaner.

【0004】なお、高周波焼き入れ処理については幾つ
かの報告がなされている。例えば特開平5−33101
号公報には高周波焼入用非調質鋼に関する提案が掲載さ
れている。これはC、Mn、Cr量を調整することによ
ってマトリックス(芯部)自体にも所要硬さを確保した
ものである。しかし、その実施例の記載からもわかるよ
うに、靭性の観点からC量を0.52%以下にしたもの
である。即ち、浸炭鋼の代替には表層硬度を浸炭鋼並み
の硬度(ビッカース硬度で約700以上)にすることが
必要であるのに対し、C量を0.55%以上にしたとき
のマトリックス(芯部)の靭性および低サイクル疲労の
低下対策が不十分であるため、やはり浸炭代替鋼として
は十分なものとは言えなかった。
Several reports have been made on the induction hardening treatment. For example, JP-A-5-33101
The publication discloses a proposal regarding non-heat treated steel for induction hardening. This is to ensure the required hardness of the matrix (core portion) itself by adjusting the amounts of C, Mn and Cr. However, as can be seen from the description of the example, the amount of C is set to 0.52% or less from the viewpoint of toughness. In other words, in order to substitute for carburized steel, it is necessary to make the surface layer hardness as high as that of carburized steel (Vickers hardness of about 700 or more), whereas the matrix (core) when the C content is 0.55% or more. However, it cannot be said that it is a sufficient alternative steel for carburizing because the measures to reduce the toughness of the part) and the low cycle fatigue are insufficient.

【0005】また、高炭素鋼の靭性向上の手段として結
晶粒の微細化が有効であることが知られている。例え
ば、特開昭61−147849号公報では未再結晶域で
鍛造後焼き入れることにより、微細なフェライトと微細
ラスのマルテンサイトを得ることが示されている。さら
に、特開平5−9576号公報では非調質棒鋼を未再結
晶域で圧延し、圧延後に加速冷却することにより微細な
フェライトパーライト組織を得ることが示されている。
しかしながら、両者ともに高周波焼き入れ鋼とは全く別
な鋼材であり、しかも鋼種が異なるため強度レベルも浸
炭鋼並みの硬度(ビッカース硬度で約700以上)には
到達していない。さらに硬化層の組織に微細フェライト
を混在させることは両者ともに特徴となっているが、フ
ェライトの混在は歯車の疲労にとって有害な降伏現象を
促進するため、やはり浸炭代替鋼の靭性向上としては実
用上好ましいものとは言えなかった。
Further, it is known that grain refinement is effective as a means for improving the toughness of high carbon steel. For example, Japanese Patent Laid-Open No. 61-147849 discloses that fine ferrite and fine lath martensite are obtained by quenching after forging in a non-recrystallized region. Further, JP-A-5-9576 discloses that a fine ferrite pearlite structure is obtained by rolling a non-heat treated steel bar in a non-recrystallized region and accelerating cooling after rolling.
However, both steels are completely different from induction hardened steels, and since the steel types are different, the strength level has not reached the hardness equivalent to carburized steel (Vickers hardness of about 700 or more). In addition, both of the characteristics of mixing fine ferrite in the structure of the hardened layer are characteristic, but the mixing of ferrite promotes a yield phenomenon that is harmful to fatigue of gears. It was not preferable.

【0006】[0006]

【発明が解決しようとする課題】本発明は、部品に成形
した後に高周波焼入処理を施すのみで経済的にかつ浸炭
材なみの強度、耐疲労特性を有する高周波焼入れ部品お
よびその製造方法を提供することであり、特に自動車の
差動装置用歯車などに使用される部品の浸炭処理から高
周波焼入処理への転換を図ろうとうするものである。
DISCLOSURE OF THE INVENTION The present invention provides an induction-hardened component which is economical and has strength and fatigue resistance equivalent to a carburized material only by subjecting the component to induction-hardening treatment, and a method for producing the same. In particular, the present invention intends to convert from the carburizing process to the induction hardening process for parts used for gears for automobile differentials.

【0007】[0007]

【課題を解決するための手段】本発明は、その要旨とす
るところは下記のとおりである。 (1)質量%で、C:0.40%以上0.70%以下、
Si:0.05%以上0.80%以下、Mn:0.50
%以上2.00%以下、S:0.01%以上0.03%
以下、V:0.30%以上1.00%以下、Al:0.
010%以上0.050%以下、N:0.0050%以
上0.0200%以下を含有し、Pは0.030%以下
であり、残部Feおよび不可避不純物からなり、高周波
焼入硬化層のマルテンサイトの結晶粒度がJIS粒度番
号で14番以上であることを特徴とする静的強度と耐疲
労特性に優れた高周波焼入れ部品。 (2)(1)に記載の成分に加えて更に質量%で、N
b:0.05%以上0.50%以下を含有することを特
徴とする( 1) 記載の高周波焼入れ部品。 (3)(1)又は(2)に記載の成分に加えて更に質量
で、Cr:0.1%以上1.50%以下を含有するこ
とを特徴とする(1)又は(2)記載の高周波焼入れ部
品。
The gist of the present invention is as follows. (1) C: 0.40% or more and 0.70% or less by mass %,
Si: 0.05% or more and 0.80% or less, Mn: 0.50
% To 2.00%, S: 0.01% to 0.03%
Hereinafter, V: 0.30% or more and 1.00% or less, Al: 0.
It contains 010% or more and 0.050% or less, N: 0.0050% or more and 0.0200% or less, P is 0.030% or less, and the balance is Fe and unavoidable impurities. Induction-hardened parts with excellent static strength and fatigue resistance, characterized in that the grain size of the site is JIS No. 14 or above. (2) In addition to the components described in (1), further in mass% , N
b: The induction-hardened component according to (1), which contains 0.05% or more and 0.50% or less. (3) In addition to the components described in (1) or (2), further mass
% , Cr: 0.1% or more and 1.50% or less, The induction hardened component according to (1) or (2), characterized in that

【0008】(4)質量%で、C:0.40%以上0.
70%以下、Si:0.05%以上0.80%以下、M
n:0.50%以上2.00%以下、S:0.01%以
上0.03%以下、V:0.30%以上1.00%以
下、Al:0.010%以上0.050%以下、N:
0.0050%以上0.0200%以下を含有し、Pは
0.030%以下であり、残部Feおよび不可避不純物
からなる鋼を素材とし、該素材を900℃以上1150
℃以下の温度で加熱した後、600℃850℃以下の温
度で加工を開始する加工率30%以上の温間加工を2回
以上行い、次いで高周波焼入れ処理を行い、硬化層のマ
ルテンサイトの結晶粒度がJIS粒度番号で14番以上
とすることを特徴とする静的強度と耐疲労特性に優れた
高周波焼入れ部品の製造方法。 (5)(4)に記載の成分に加えて更に質量%で、N
b:0.05%以上0.50%以下を含有する鋼を素材
とすることを特徴とする(4)記載の高周波焼入れ部品
の製造方法。 (6)(4)又は(5)に記載の成分に加えて更に質量
で、Cr:0.1%以上1.50%以下を含有する鋼
を素材とすることを特徴とする(4)又は(5)記載の
高周波焼入れ部品の製造方法。
(4) C: 0.40% or more by mass% ,
70% or less, Si: 0.05% or more and 0.80% or less, M
n: 0.50% to 2.00%, S: 0.01% to 0.03%, V: 0.30% to 1.00%, Al: 0.010% to 0.050% Below, N:
Containing 0.0050% to 0.0200% or less, P is at 0.030% or less, the steel and the balance Fe and unavoidable impurities as a material, the said workpiece 900 ° C. or higher 1150
After heating at a temperature below ℃, 600 ℃ below 850 ℃
2 times warm processing with a processing rate of 30% or more
The method for producing an induction-hardened component having excellent static strength and fatigue resistance is characterized in that the above-mentioned and then induction hardening treatment is performed so that the grain size of martensite in the hardened layer is 14 or more in JIS grain size number. (5) In addition to the components described in (4), further in mass% , N
b: The method for producing an induction-hardened component according to (4), characterized in that steel containing 0.05% or more and 0.50% or less is used as a raw material. (6) In addition to the components described in (4) or (5), further mass
% , Cr: 0.1% or more and 1.50% or less of steel is used as a raw material, The manufacturing method of the induction hardening component of (4) or (5) characterized by the above-mentioned.

【0009】本発明(1)〜(3)によれば、高周波焼
入れ後の硬化層のマルテンサイト組織の粒度は、通常の
高周波焼入鋼ではJIS粒度番号で10番(粒径12.
4μm)であるのに対し、本発明においては平均14番
以上(粒径3.1μm以下)としたことから、従来の高
周波焼入材に比べ、硬化層の静的強度、衝撃特性ならび
に耐疲労特性が大幅に向上し、本発明が目的とする性能
を得ることができる。
According to the present inventions (1) to (3), the grain size of the martensite structure of the hardened layer after induction hardening is JIS No. 10 (particle size 12.
4 μm), whereas in the present invention, the average number of particles is 14 or more (grain size 3.1 μm or less), the static strength of the hardened layer, impact characteristics and fatigue resistance are higher than those of conventional induction hardened materials. The characteristics are significantly improved, and the performance targeted by the present invention can be obtained.

【0010】本発明(4)〜(6)によれば、所要の成
分を有する機械構造用鋼を、未再結晶域で、1回の加工
量は30%以上の大歪加工の2回以上の温間加工を実施
して累積の加工量で60%以上の大歪み加工を行い、そ
の後室温まで放冷し、その後、高周波焼入れを施すこと
により、旧オーステナイト粒径が極めて微細な組織が得
られる。すなわち、未再結晶域での大歪み加工により、
γ粒界の増加ならびに変形帯の導入により、オーステナ
イトから微細なフェライト/フェライト組織に変態し、
その後、高周波焼入れを施すと、前組織の細粒化効果と
高周波による急速加熱効果が組合わされ、再加熱時のオ
ーステナイト粒が微細化され、焼入組織も微細化され
る。
According to the present inventions (4) to (6) , the steel for machine structural use having the required components is processed in the unrecrystallized region at least two times of large strain processing of 30% or more. By performing the warm working of the above, large strain processing of 60% or more with the cumulative working amount, then allowing to cool to room temperature, and then induction hardening, a structure with extremely fine former austenite grain size was obtained. To be That is, by large strain processing in the non-recrystallized region,
Transformation of austenite to fine ferrite / ferrite structure due to increase of γ grain boundary and introduction of deformation zone,
Then, when induction hardening is performed, the grain refinement effect of the preceding structure and the rapid heating effect by high frequency are combined, the austenite grains at the time of reheating are refined, and the quenching structure is also refined.

【0011】ここで、所定量のV添加、あるいはさらに
Nbを添加の結果、温間鍛造における冷却時にV炭窒化
物、Nb炭窒化物が生成され、冷却後の組織は微細化さ
れる。その後、高周波焼入れを施すと、前組織の細粒化
効果と高周波による急速加熱効果が組合わされ、再加熱
時のオーステナイト粒がさらに微細化される。
Here, as a result of adding a predetermined amount of V or further adding Nb, V carbonitrides and Nb carbonitrides are produced during cooling in warm forging, and the microstructure after cooling is refined. After that, when induction hardening is applied, the grain refinement effect of the preceding structure and the rapid heating effect by high frequency are combined, and the austenite grains at the time of reheating are further refined.

【0012】V炭窒化物およびNb炭窒化物による細粒
化効果を温間鍛造時に有効に作用させるためには、一度
900℃から1150℃の間の温度に加熱し、V炭窒化
物およびNb炭窒化物を一旦固溶させ、その後の冷却工
程で析出させることにより、大歪加工との協働して大き
な微細化効果を発揮する。
In order to make the grain-refining effect of V carbonitride and Nb carbonitride work effectively during warm forging, heating is performed once to a temperature between 900 ° C. and 1150 ° C. , and V carbonitride and Nb The carbonitride is once made into a solid solution and then precipitated in the subsequent cooling step, thereby exerting a large refining effect in cooperation with large strain processing.

【0013】上記温間加工と高周波焼入れの組合わせに
より、高周波焼入れ後の硬化層のマルテンサイト組織の
粒度は、通常の高周波焼入鋼ではJIS粒度番号で10
番(粒径12.4μm)であるのに対し、本発明によれ
ば平均14番以上(粒径3.1μm以下)を得ることが
でき、従来の高周波焼入材に比べ、硬化層の静的強度、
衝撃特性ならびに耐疲労特性の大幅に向上し、本発明が
目的とする性能を得ることができる。
Due to the combination of the above-mentioned warm working and induction hardening, the grain size of the martensite structure of the hardened layer after induction hardening is 10 in JIS in the case of ordinary induction hardened steel.
No. 14 (particle size 12.4 μm), on the other hand, according to the present invention, an average number of 14 or more (particle size 3.1 μm or less) can be obtained. Strength,
The impact characteristics and fatigue resistance characteristics are significantly improved, and the performance targeted by the present invention can be obtained.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳しく説明する。本発明の素材鋼の化学組成は以下の
とおりである。Cには鋼(芯部)に所望の強度を確保す
る作用、更には高周波焼入後の表面硬さを確保する作用
があるが、その含有量が0.40%を下回ると前記作用
による所望の効果が得られず、一方、0.70%を越え
て含有させると靭性が劣化するようになる。従って、C
含有量は0.40%から0.70%と定めたが、上記効
果をより安定に確保するためには0.53%から0.7
0%に調整するのが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below. The chemical composition of the material steel of the present invention is as follows. C has a function of ensuring a desired strength in steel (core portion) and further a function of ensuring a surface hardness after induction hardening, but when the content thereof is less than 0.40%, the above-mentioned effect is desired. However, if the content exceeds 0.70%, the toughness deteriorates. Therefore, C
The content was set to 0.40% to 0.70%, but 0.53% to 0.70% to secure the above effect more stably.
It is preferably adjusted to 0%.

【0015】Siは製鋼時の脱酸材として含有させると
ともに鋼材の強度向上元素であり、要求強度に応じてそ
の含有量を調節される。但し、Si含有量は脱酸作用を
有効ならしめるためには0.05%以上の含有量が必要
であり、一方、0.80%超では鋼材の靭性、延性が低
くなると同時に、その鋼材の加工性が低下する。そのた
め、Si含有量は0.05%以上0.80%以下と定め
た。
Si is contained as a deoxidizing material during steel making and is an element for improving the strength of steel, and its content is adjusted according to the required strength. However, the Si content needs to be 0.05% or more in order to make the deoxidizing effect effective. On the other hand, if it exceeds 0.80%, the toughness and ductility of the steel become low, and at the same time, the Workability is reduced. Therefore, the Si content is determined to be 0.05% or more and 0.80% or less.

【0016】MnはSi同様に鋼材の強度向上元素であ
って、要求強度に応じてその含有量を調節される。従っ
て、この作用を有効ならしめるために0.50%以上の
含有量を確保する必要がある。但し、Mn含有量が2.
00%超では焼入性が向上し過ぎて、素材製造ならびに
温間鍛造時にベイナイト組織あるいは島状マルテンサイ
ト組織の生成が促進され、加工性が低下するようにな
る。従って、Mn含有量は0.50%から2.00%と
定めたが、上記効果をより安定に確保するためには0.
70%から1.50%に調整するのが好ましい。
Like Si, Mn is an element for improving the strength of steel, and its content is adjusted according to the required strength. Therefore, in order to make this effect effective, it is necessary to secure the content of 0.50% or more. However, the Mn content is 2.
If it exceeds 00%, the hardenability is excessively improved, and the production of the bainite structure or the island martensite structure is promoted during the production of the raw material and the warm forging, so that the workability is deteriorated. Therefore, the Mn content is set to 0.50% to 2.00%, but in order to secure the above effect more stably, it is set to 0.
It is preferably adjusted to 70% to 1.50%.

【0017】CrはMnと同様に鋼材の強度向上元素で
あって、要求強度および部品の大きさに応じて所定量添
加しても本開発鋼の特性が損われることがない。但し、
Cr含有量が0.1%未満では前記作用による所望の効
果を得ることができず、一方、1.50%超では焼入性
が向上し過ぎて、素材製造ならびに温間加工時にベイナ
イト組織あるいは島状マルテンサイト組織の生成が促進
され、加工性が低下するようになる。従って、添加する
際は0.1%以上1.50%以下に調整するのが好まし
い。
Like Mn, Cr is an element for improving the strength of steel materials, and the characteristics of the developed steel are not impaired even if a predetermined amount is added according to the required strength and the size of parts. However,
If the Cr content is less than 0.1%, the desired effect due to the above action cannot be obtained, while if it exceeds 1.50%, the hardenability is excessively improved and the bainite structure or The formation of the island martensite structure is promoted and the workability is lowered. Therefore, when adding, it is preferable to adjust to 0.1% or more and 1.50% or less.

【0018】MoおよびNiは粒界偏析を軽減してオー
ステナイト強化をする作用があり、所定量添加しても本
開発鋼の特性が損われることがない。
Mo and Ni have the function of reducing grain boundary segregation and strengthening austenite, and the addition of a predetermined amount does not impair the characteristics of the developed steel.

【0019】Pは硬化層の靭性を劣化させる。特に0.
030%超では靭性の劣化をもたらすようになるので、
P含有量は0.030%以下と定めたが、好ましくは
0.020%以下に調整するのが良い。
P deteriorates the toughness of the hardened layer. Especially 0.
If it exceeds 030%, the toughness will deteriorate, so
Although the P content is set to 0.030% or less, it is preferably adjusted to 0.020% or less.

【0020】Sは被削性の改善に有効な元素であり、そ
の含有量が0.01%未満では該作用による所望の効果
を得ることができず、一方、0.03%超では鋼材の延
性が大幅に低下する。従って、S含有量は0.01%以
上0.03%以下と定めた。
S is an element effective in improving machinability. If the content of S is less than 0.01%, the desired effect due to the action cannot be obtained. On the other hand, if it exceeds 0.03%, S of the steel material cannot be obtained. Ductility is significantly reduced. Therefore, the S content is set to 0.01% or more and 0.03% or less.

【0021】Vは焼入性を高め疲労強度を向上させるの
に有効な元素であり、かつ、炭窒化物を生成し、結晶粒
を微細化させる元素であり、所望の効果を確保するには
0.30%以上含有させることが必要である。しかし、
1.00%超ではその効果が飽和する。従って、V含有
量は0.30%から1.00%と定めた。
V is an element effective for enhancing hardenability and fatigue strength, and is an element for forming carbonitrides and refining crystal grains, in order to secure a desired effect. It is necessary to contain 0.30% or more. But,
If it exceeds 1.00%, the effect is saturated. Therefore, the V content is set to 0.30% to 1.00%.

【0022】Nbは窒化物を生成し、結晶粒を微細化さ
せる元素であり、所望の効果を確保するには0.050
%以上含有させることが必要である。しかし、0.50
%超ではその効果が飽和する。従って、Nb含有量は
0.050%から0.50%と定めた。
Nb is an element that produces a nitride and refines the crystal grains, and 0.050 is necessary to secure a desired effect.
% Or more is necessary. But 0.50
If it exceeds%, the effect is saturated. Therefore, the Nb content is set to 0.050% to 0.50%.

【0023】Alは脱酸作用を持ち、AlNとして細粒
化効果を有する元素であり、所望の効果を確保するため
には0.010%以上を含有させる必要がある。しか
し、0.050%超ではその効果が飽和してしまうばか
りか、鋼材の加工性や疲労特性を低下させるようにな
る。従って、Al含有量は0.010%から0.050
%と定めたが、好ましくは0.015%から0.030
%に調整するのが良い。
Al is an element which has a deoxidizing action and has a grain refining effect as AlN, and it is necessary to contain 0.010% or more in order to secure a desired effect. However, if it exceeds 0.050%, not only the effect is saturated, but also the workability and fatigue characteristics of the steel material are deteriorated. Therefore, the Al content is 0.010% to 0.050.
%, But preferably 0.015% to 0.030
It is good to adjust to%.

【0024】NはAl、V、Nbとの親和力が強い元素
であり、鋼中にAl、V、Nbを窒化物として析出させ
て結晶粒の微細化をはかる元素である。N含有量が0.
0050%未満では前記作用による所望の効果が得られ
ず、一方、0.0200%を越えて含有させると靭性が
低下するようになる。従って、N含有量を0.0050
%から0.0200%と定めた。
N is an element having a strong affinity with Al, V and Nb, and is an element for precipitating crystal grains by precipitating Al, V and Nb as nitrides in steel. N content is 0.
If it is less than 0050%, the desired effect due to the above-mentioned action cannot be obtained, while if it exceeds 0.0200%, the toughness decreases. Therefore, the N content is 0.0050
% To 0.0200%.

【0025】なお、本発明鋼では、本発明に係る前記各
成分の他、Pb、Bi、Te、Ca等の被削性を改善す
る快削元素を添加しても前述した効果が損われることが
ない。従って、温間鍛造後、部品の仕上げ加工に一層の
被削性が望まれる場合には、上記快削元素の一種または
2種以上を添加しても良い。
In addition, in the steel of the present invention, the above-mentioned effects are impaired even if free-cutting elements such as Pb, Bi, Te, Ca, etc., which improve the machinability, are added in addition to the respective components according to the present invention. There is no. Therefore, if more machinability is desired for finishing the part after warm forging, one or more of the above free-cutting elements may be added.

【0026】本発明の硬化層の結晶粒度条件について以
下に述べる。高周波焼入鋼の靭性および強度は、硬化層
の硬さおよび芯部硬度をほぼ一定とした場合、硬化層の
結晶粒度に強く影響を受ける。図1に示すように、結晶
粒の微細化とともに衝撃値及び三点曲げ強度は向上し、
特にJIS粒度番号で14番(3.1μm)以上に微細
化することにより著しく向上する。従って、硬化層の結
晶粒度はJIS粒度番号で14番以上と定めた。
The crystal grain condition of the hardened layer of the present invention will be described below. The toughness and strength of the induction hardened steel are strongly influenced by the grain size of the hardened layer when the hardness of the hardened layer and the hardness of the core are substantially constant. As shown in FIG. 1, the impact value and the three-point bending strength are improved with the refinement of crystal grains,
In particular, it can be remarkably improved by making the particle size to be JIS No. 14 (3.1 μm) or more. Therefore, the crystal grain size of the cured layer was determined to be JIS No. 14 or above.

【0027】本発明の温間加工の条件を以下に述べる。
温間加工は温間鍛造あるいは温間転造等により高周波熱
処理前の組織の微細化と同時に部品の形状を造り込む工
程である。一般に浸炭部品、あるいは高周波焼入部品は
熱間鍛造後、機械加工で仕上げられている。しかし、高
周波表面処理の前に調質や焼鈍を省略しつつ、高周波焼
入後に極めて微細な組織を達成するために温間鍛造は不
可欠な工程である。すなわち、素材を未再結晶域で大歪
み加工を行い、その後室温まで放冷し、高周波焼入れ前
の組織を十分に微細化するものである。
The conditions of the warm working of the present invention will be described below.
The warm working is a step of forming the shape of the component at the same time as miniaturizing the structure before induction heat treatment by warm forging or warm rolling. Generally, carburized parts or induction hardened parts are machined after hot forging. However, warm forging is an indispensable step in order to achieve an extremely fine structure after induction hardening while omitting heat treatment and annealing before the induction surface treatment. That is, the material is subjected to large strain processing in the non-recrystallized region and then allowed to cool to room temperature to sufficiently refine the structure before induction hardening.

【0028】この場合、温間鍛造の鍛造前の加熱温度は
900℃未満ではV、Nbの固溶が不十分であり前記の
所望の効果が得られず、また1150℃超では未再結晶
域での加工が極めて困難となるため、加熱温度は900
℃以上1150℃以下に調整するのが良い。加工開始温
度は、未再結晶温度域での加工を経るため600℃以上
850℃以下、好ましくは600℃以上700℃以下に
調整するのが良い。
In this case, if the heating temperature of the warm forging before forging is less than 900 ° C., the solid solution of V and Nb is insufficient, and the desired effect described above cannot be obtained, and if it exceeds 1150 ° C., the unrecrystallized region is not obtained. The heating temperature is 900
It is better to adjust the temperature to 1150 ° C. or higher. The processing start temperature is 600 ° C or higher because it goes through processing in the non-recrystallization temperature range.
It is preferable to adjust the temperature to 850 ° C. or lower, preferably 600 ° C. or higher and 700 ° C. or lower.

【0029】また、未再結晶域での大歪み加工は、γ粒
界の増加ならびに変形帯の導入により、オーステナイト
から微細なフェライト/フェライト組織に変態し、高周
波焼入れ前の組織を微細化する効果がある。この場合、
一回加工率が30%未満では細粒化効果が不十分であ
り、また、累積の加工率が60%未満では細粒化効果が
不十分である。従って、未再結晶域での大歪み加工は加
工率30%以上の大歪み加工を2回以上行うことと定め
た。
Further, the large strain working in the non-recrystallized region is an effect of transforming austenite into a fine ferrite / ferrite structure by increasing the γ grain boundaries and introducing a deformation zone, and refining the structure before induction hardening. There is. in this case,
If the single processing rate is less than 30%, the grain refining effect is insufficient, and if the cumulative processing rate is less than 60%, the grain refining effect is insufficient. Therefore, it was determined that the large strain processing in the non-recrystallized region should be performed twice or more at a processing rate of 30% or more.

【0030】なお、大歪み加工後の冷却は放冷を基本と
するが、取り扱い上の対策から風冷あるいは水冷を実施
しても前述した効果が損われることがない。
Although cooling after the large strain processing is basically allowed to cool, the above-mentioned effects are not impaired even if air cooling or water cooling is performed as a measure for handling.

【0031】本発明の高周波焼入条件を以下に述べる。
温間加工後、仕上げの機械加工処理を施された後、高周
波表面焼入処理を実施する。この場合、850℃未満の
温度では高周波加熱という短時間処理で、十分に溶態化
できず、また1100℃超の温度では結晶粒の成長が生
じ、組織微細化効果を十分に発揮できない。従って、加
熱温度は850℃から1100℃、好ましくは850℃
から900℃に調整するのが良い。なお、高周波加熱後
は水焼入を行い、必要に応じて焼戻しを行う。
The induction hardening conditions of the present invention are described below.
After the warm working, a finishing machining process is performed, and then an induction surface quenching process is performed. In this case, if the temperature is lower than 850 ° C., it cannot be sufficiently dissolved by a short time treatment such as high frequency heating, and if the temperature is higher than 1100 ° C., the growth of crystal grains occurs and the structure refining effect cannot be sufficiently exerted. Therefore, the heating temperature is 850 ° C to 1100 ° C, preferably 850 ° C.
It is better to adjust the temperature to 900 ° C. After induction heating, water quenching is performed, and tempering is performed if necessary.

【0032】[0032]

【実施例】表1に示す化学成分の鋼を真空溶解炉で溶製
し、インゴットに鋳造した。次いで得られたインゴット
を熱間鍛造により直径50mmの丸棒鋼に成形した。続
いて、加熱温度、加工開始温度および加工率を種々変更
し、温間鍛造を行った。加熱温度は850、900、9
50、1100、1150、1200℃とし、温間鍛造
の加工開始温度は500、600、650、750、8
00、850、950℃とした。なお、加工温度は丸棒
鋼の半径の1/2の位置に熱電対を埋め込み、放冷によ
り所定温度に達した時点で鍛造を開始した。また、加工
率は1回の加工率を20、30、40、60%とし、更
に同じ加工率を2回以上繰り返す加工も行い、累積の加
工率を20%から91%に種々変更した。温間加工の
後、丸棒鋼を放冷により室温まで冷却した。その後、丸
棒鋼から機械加工により、10mm角、長さ70mm、
中央に2mmRの半円の切欠付きの三点曲げ試験片、掴
み部15mmφ、平行部9mmφの切欠付き(ρ=1、
α=1.66)の小野式の回転曲げ疲労試験片および2
0mmφ、長さ200mmLの材質調査用の試験片を作
成した。なお、各種加工条件については表2および表3
にまとめて示した。化学成分は表1との対比で示され
る。
Example Steels having the chemical composition shown in Table 1 were melted in a vacuum melting furnace and cast into ingots. Then, the obtained ingot was formed into a round steel bar having a diameter of 50 mm by hot forging. Subsequently, the heating temperature, the processing start temperature and the processing rate were variously changed, and warm forging was performed. The heating temperature is 850, 900, 9
50, 1100, 1150, 1200 ° C., and the working start temperature of warm forging is 500, 600, 650, 750, 8
The temperature was set to 00, 850, and 950 ° C. A thermocouple was embedded at a position of 1/2 the radius of the round steel bar, and forging was started when the temperature reached a predetermined temperature by cooling. Further, the processing rate was set to 20, 30, 40, 60% once, and the same processing rate was repeated twice or more, and the cumulative processing rate was variously changed from 20% to 91%. After the warm working, the round steel bar was cooled to room temperature by cooling. Then, by machining from round bar steel, 10 mm square, 70 mm long,
Three-point bending test piece with a semicircular cutout of 2 mmR in the center, grip portion 15 mmφ, parallel portion 9 mmφ notch (ρ = 1,
Ono-type rotary bending fatigue test piece with α = 1.66) and 2
A 0 mmφ and 200 mmL length test piece for material investigation was prepared. For the various processing conditions, see Tables 2 and 3.
Are summarized in. The chemical components are shown in comparison with Table 1.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【表3】 [Table 3]

【0036】次に各試験材に高周波焼入れを施した。こ
れによって達成された表面硬さ、硬化層の結晶粒度、三
点曲げ強度、回転曲げ疲労強度を調査した。調査結果は
表2および表3に示した。なお、この時の高周波焼入条
件は、周波数:3kHz出力:100kw移動速度:5
mm/sであった。また、比較のため従来鋼に温間鍛造
なしで高周波焼入れ、および浸炭処理を行った結果も調
査した。
Next, each test material was subjected to induction hardening. The surface hardness, the grain size of the hardened layer, the three-point bending strength, and the rotational bending fatigue strength achieved by this were investigated. The survey results are shown in Tables 2 and 3. The induction hardening conditions at this time were: frequency: 3 kHz output: 100 kW moving speed: 5
It was mm / s. For comparison, the results of induction hardening and carburizing treatment of conventional steel without warm forging were also investigated.

【0037】表2および表3に示した調査結果からは次
のことが分かる。ここで、本発明法(A1からA13を
用いて、本発明範囲の加工条件で実施)は、高周波焼入
れした硬化層は結晶粒度がJIS粒度番号ですべて14
番以上と極めて微細な結晶粒度を達成し、表面硬度も高
く、三点曲げ強度および回転曲げ疲労強度も高く、通常
の浸炭処理鋼(C2)と同等以上の特性が得られる。つ
まり、本開発法は高周波焼入れ処理ではあるものの、浸
炭処理と同等以上の優れた特性が得られることが分か
る。
The survey results shown in Tables 2 and 3 show the following. Here, in the method of the present invention (using A1 to A13 and carried out under the processing conditions within the scope of the present invention), the induction hardened hardened layer has a crystal grain size of 14 according to the JIS grain size number.
It achieves a very fine grain size as high as or better than No. 2, has a high surface hardness, a high three-point bending strength and a high rotational bending fatigue strength, and has characteristics equal to or higher than those of ordinary carburized steel (C2). In other words, it can be seen that although the developed method is an induction hardening treatment, it has excellent characteristics equivalent to or better than the carburizing treatment.

【0038】これに対して、本発明範囲外の成分を有す
る鋼(B1からB13)を本発明範囲内の加工条件で処
理した場合、B1とB2では14番以上の細粒鋼は得ら
れないため、強度と疲労強度は低く、また、B4からB
13では14番以上の細粒は得られるもの靭性の低下や
硬度の不足により、本発明法並みの優れた特性は得られ
ないことが分かる。さらに、本発明範囲内の成分を有す
る鋼(A1)を本発明範囲外の加工条件で処理した場
合、14番以上の細粒は得られないため、強度と疲労強
度は従来の高周波焼入鋼(C1)に比べやや良好ではあ
るものの、通常の浸炭処理鋼(C2)には及ばないこと
は明らかである。
On the other hand, when steels (B1 to B13) having components outside the scope of the present invention are treated under the processing conditions within the scope of the present invention, B1 and B2 do not produce fine grain steel of No. 14 or above. Therefore, strength and fatigue strength are low, and B4 to B
In No. 13, although fine particles of No. 14 and above can be obtained, it can be seen that excellent characteristics comparable to those of the method of the present invention cannot be obtained due to deterioration of toughness and lack of hardness. Furthermore, when steel (A1) having a component within the scope of the present invention is processed under processing conditions outside the scope of the present invention, fine grains of No. 14 and above cannot be obtained, so the strength and fatigue strength are the same as those of conventional induction hardened steels. Although it is slightly better than (C1), it is clear that it does not reach the level of ordinary carburized steel (C2).

【0039】[0039]

【発明の効果】以上述べたように、本発明の高周波焼入
れ部品は高周波焼入れ処理のみで浸炭処理鋼と同等以上
の静的強度および曲げ疲労強度を得ることが可能とな
り、従来は浸炭処理を施していた鋼種に代って各種機械
構造部品の性能向上および製造コストの低減に大きく資
するなど、産業上有用な効果がもたされる。
As described above, the induction hardened parts of the present invention can obtain static strength and bending fatigue strength equal to or higher than those of carburized steel only by induction hardening, and conventionally, carburized. Instead of the conventional steel grade, it will contribute to the improvement of the performance of various machine structural parts and the reduction of the manufacturing cost, and will have useful effects in industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】衝撃値および三点曲げ強度に及ぼす硬化層の結
晶粒度の影響を示す図である。
FIG. 1 is a diagram showing the influence of grain size of a hardened layer on impact value and three-point bending strength.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 38/38 C22C 38/38 F16H 55/06 F16H 55/06 (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 C21D 1/00 - 11/00 F16H 55/06 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 identification code FI C22C 38/38 C22C 38/38 F16H 55/06 F16H 55/06 (58) Fields investigated (Int.Cl. 7 , DB name) C22C 38/00 C21D 1/00-11/00 F16H 55/06

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 質量%で、 C:0.40%以上0.70%以下、 Si:0.05%以上0.80%以下、 Mn:0.50%以上2.00%以下、 S:0.01%以上0.03%以下、 V:0.30%以上1.00%以下、 Al:0.010%以上0.050%以下、 N:0.0050%以上0.0200%以下を含有し、 Pは0.030%以下であり、 残部Feおよび不可避不純物からなり、 高周波焼入れ硬化層のマルテンサイトの結晶粒度がJI
S粒度番号で14番以上であることを特徴とする静的強
度と耐疲労特性に優れた高周波焼入れ部品。
1. In mass% , C: 0.40% or more and 0.70% or less, Si: 0.05% or more and 0.80% or less, Mn: 0.50% or more and 2.00% or less, S: 0.01% or more and 0.03% or less, V: 0.30% or more and 1.00% or less, Al: 0.010% or more and 0.050% or less, N: 0.0050% or more and 0.0200% or less Included, P is 0.030% or less, the balance is Fe and unavoidable impurities, and the grain size of martensite in the induction hardening layer is JI.
Induction-hardened parts with excellent static strength and fatigue resistance, characterized by having an S grain size number of 14 or more.
【請求項2】 請求項1に記載の成分に加えて更に
%で、Nb:0.05%以上0.50%以下を含有する
ことを特徴とする請求項1記載の高周波焼入れ部品。
2. In yet mass% in addition to the ingredients mentioned in claim 1, Nb: induction hardening component according to claim 1, characterized in that it contains 0.05% to 0.50% or less.
【請求項3】 請求項1又は2に記載の成分に加えて更
量%で、Cr:0.1%以上1.50%以下を含有
することを特徴とする請求項1又は2記載の高周波焼入
れ部品。
In 3. Further mass% in addition to the ingredients mentioned in claim 1 or 2, Cr: according to claim 1 or 2, characterized in that it contains 0.1% to 1.50% or less Induction hardened parts.
【請求項4】 質量%で、 C:0.40%以上0.70%以下、 Si:0.05%以上0.80%以下、 Mn:0.50%以上2.00%以下、 S:0.01%以上0.03%以下、 V:0.30%以上1.00%以下、 Al:0.010%以上0.050%以下、 N:0.0050%以上0.0200%以下を含有し、 Pは0.030%以下であり、 残部Feおよび不可避不純物からなる鋼を素材とし、該素材を900℃以上1150℃以下の温度で加熱した
後、600℃850℃以下の温度で加工を開始する加工
率30%以上の温間加工を2回以上行い、 次いで高周波焼入れ処理を行い、硬化層のマルテンサイ
トの結晶粒度がJIS粒度番号で14番以上とすること
を特徴とする静的強度と耐疲労特性に優れた高周波焼入
れ部品の製造方法。
4. In mass% , C: 0.40% or more and 0.70% or less, Si: 0.05% or more and 0.80% or less, Mn: 0.50% or more and 2.00% or less, S: 0.01% or more and 0.03% or less, V: 0.30% or more and 1.00% or less, Al: 0.010% or more and 0.050% or less, N: 0.0050% or more and 0.0200% or less Contained, P is 0.030% or less, and a steel composed of the balance Fe and unavoidable impurities is used as a material, and the material is heated at a temperature of 900 ° C. or more and 1150 ° C. or less.
After that, processing that starts processing at a temperature of 600 ° C or below 850 ° C
Static strength and fatigue resistance, characterized in that the grain size of martensite in the hardened layer is 14 or more in JIS grain size number after performing the warm working of the rate of 30% or more twice or more and then the induction hardening treatment. Manufacturing method of induction hardened parts with excellent characteristics.
【請求項5】 請求項4に記載の成分に加えて更に質量
%で、 Nb:0.05%以上0.50%以下を含有する鋼を素
材とすることを特徴とする請求項4記載の高周波焼入れ
部品の製造方法。
5. The steel according to claim 4, characterized in that, in addition to the components described in claim 4, a steel containing Nb: 0.05% or more and 0.50% or less by mass % is used as a raw material. Manufacturing method of induction hardened parts.
【請求項6】 請求項4又は5に記載の成分に加えて更
質量%で、 Cr:0.1%以上1.50%以下を含有する鋼を素材
とすることを特徴とする請求項4又は5記載の高周波焼
入れ部品の製造方法。
6. A steel material containing, in addition to the components described in claim 4 or 5, a mass % of Cr: 0.1% or more and 1.50% or less, as a raw material. Alternatively, the method for producing an induction-hardened component according to item 5.
JP23399497A 1997-08-29 1997-08-29 Induction hardened part excellent in strength and fatigue resistance and method of manufacturing the same Expired - Fee Related JP3436867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23399497A JP3436867B2 (en) 1997-08-29 1997-08-29 Induction hardened part excellent in strength and fatigue resistance and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23399497A JP3436867B2 (en) 1997-08-29 1997-08-29 Induction hardened part excellent in strength and fatigue resistance and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH1171633A JPH1171633A (en) 1999-03-16
JP3436867B2 true JP3436867B2 (en) 2003-08-18

Family

ID=16963892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23399497A Expired - Fee Related JP3436867B2 (en) 1997-08-29 1997-08-29 Induction hardened part excellent in strength and fatigue resistance and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3436867B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100626A1 (en) * 2004-04-16 2005-10-27 Jfe Steel Corporation Crankshaft excellent in flexural fatigue strength
EP1956100B1 (en) * 2005-11-21 2019-04-24 National Institute for Materials Science Method of warm working of a steel material and steel material obtained by the same
JP4560141B2 (en) * 2008-12-19 2010-10-13 新日本製鐵株式会社 Surface hardening machine structural steel and machine structural steel parts
CN114574771A (en) * 2022-03-04 2022-06-03 武安市裕华钢铁有限公司 High-elongation-flange-performance and fatigue-resistant special steel for wheels and production process

Also Published As

Publication number Publication date
JPH1171633A (en) 1999-03-16

Similar Documents

Publication Publication Date Title
CN101646788B (en) Case-hardened steel pipe excellent in workability and process for production thereof
JP4581966B2 (en) Induction hardening steel
JPH08311607A (en) Low strain carburized gear excellent in deddendum bending strength and its production
WO2019244503A1 (en) Mechanical component
JP3901994B2 (en) Non-tempered high-strength and high-toughness forged product and its manufacturing method
JP3036416B2 (en) Hot forged non-heat treated steel having high fatigue strength and method for producing forged product
JP3327635B2 (en) Non-tempered steel for hot forging excellent in fatigue strength and method for producing non-heat-treated hot forged product using the steel
JP2000129347A (en) Production of high strength parts
JPH08277437A (en) Production of high strength and high toughness non-heat treated steel for hot forging and forged product thereof
JPH06172867A (en) Production of gear excellent in impact fatigue life
JPH11131176A (en) Induction hardened parts and production thereof
JP4488228B2 (en) Induction hardening steel
JP3550886B2 (en) Manufacturing method of gear steel for induction hardening excellent in machinability and fatigue strength
JP3551573B2 (en) Steel for carburized gear with excellent gear cutting
JP3436867B2 (en) Induction hardened part excellent in strength and fatigue resistance and method of manufacturing the same
JP2000063935A (en) Production of nitrided part
JP4556770B2 (en) Carburizing steel and method for producing the same
JP2894184B2 (en) Steel for soft nitriding
JP2768062B2 (en) Manufacturing method of high strength tough steel
JP3480630B2 (en) Case-hardened steel with excellent cold workability and crystal grain coarsening properties
JPH08260039A (en) Production of carburized and case hardened steel
JP4232242B2 (en) High strength high toughness non-tempered steel
JP3240627B2 (en) Manufacturing method of constant velocity joint parts
JP3907986B2 (en) Method for producing case-hardened steel with excellent cold workability and grain size characteristics
JPH11131135A (en) Induction-hardened parts and production thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees