JP3109146B2 - Manufacturing method of low strain high strength member - Google Patents

Manufacturing method of low strain high strength member

Info

Publication number
JP3109146B2
JP3109146B2 JP03176891A JP17689191A JP3109146B2 JP 3109146 B2 JP3109146 B2 JP 3109146B2 JP 03176891 A JP03176891 A JP 03176891A JP 17689191 A JP17689191 A JP 17689191A JP 3109146 B2 JP3109146 B2 JP 3109146B2
Authority
JP
Japan
Prior art keywords
temperature
forging
nitrocarburizing
treatment
strength member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03176891A
Other languages
Japanese (ja)
Other versions
JPH0525538A (en
Inventor
木 邦 夫 並
川 憲 二 礒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP03176891A priority Critical patent/JP3109146B2/en
Publication of JPH0525538A publication Critical patent/JPH0525538A/en
Application granted granted Critical
Publication of JP3109146B2 publication Critical patent/JP3109146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、耐摩耗性および疲労強
度に優れていることが要求される歯車類,軸類などの機
械構造用部品を低歪でかつまた高強度部材として製造す
るのに利用される低歪高強度部材の製造方法に関するも
のである。
BACKGROUND OF THE INVENTION The present invention relates to a method for producing mechanical structural parts such as gears and shafts, which are required to have excellent wear resistance and fatigue strength, with low distortion and high strength. The present invention relates to a method for producing a low-strain and high-strength member used in the above.

【0002】[0002]

【従来の技術】自動車用や工作機械用などの各種機械構
造用部品において、特に歯車類や軸類などに対しては優
れた耐摩耗性および疲労強度を有していることが望まれ
る。
2. Description of the Related Art It is desired that components for various mechanical structures such as those for automobiles and machine tools have excellent wear resistance and fatigue strength, especially for gears and shafts.

【0003】このような機械構造用部品において、その
耐摩耗性および疲労強度を向上させる手段として、種々
の表面硬化処理を施すことが良く行われている。
[0003] In such mechanical structural parts, various surface hardening treatments are often performed as means for improving the wear resistance and fatigue strength.

【0004】そして、このような表面硬化処理において
最も多く利用されるものとして、浸炭焼入れがあり、こ
のような浸炭焼入れを施すにあたっては、例えば、JI
SSCr420,SCM420,SNCM420などの
はだ焼用に適する鋼が素材として用いられている。
[0004] Carburizing and quenching are the most widely used in such surface hardening treatments. For such carburizing and quenching, for example, JI
Steel suitable for sintering such as SSCr420, SCM420, SNCM420 is used as a material.

【0005】ところが、このような浸炭焼入れにおいて
は、浸炭および拡散処理をA1 変態点以上のオーステナ
イト領域で行い、その後油焼入れすることによってマル
テンサイト変態を生じさせるようにしているため、熱処
理変形を生じやすいという問題点があった。
However, in such carburizing and quenching, the carburizing and diffusion treatment is performed in the austenite region at or above the A 1 transformation point, and thereafter the martensitic transformation is caused by oil quenching. There was a problem that it was easy to occur.

【0006】そこで、このような熱処理変形の発生によ
る機械構造用部品の歪を防止するため、変態点の通過を
伴わない低い温度での表面硬化処理、例えば、窒化や軟
窒化処理などが施されることもあった。
Therefore, in order to prevent distortion of the mechanical structure component due to such heat treatment deformation, a surface hardening treatment at a low temperature without passing through a transformation point, for example, nitriding or nitrocarburizing treatment is performed. Sometimes.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うな窒化や軟窒化処理は、通常の場合にA1 変態点以下
の500〜600℃の温度で行われるため、変態点の通
過による強度の向上が望めないことから、心部強度が低
下したものとなりやすく、十分な疲労強度を有する機械
構造用部品に適用しにくいという問題点があり、このよ
うな問題点を解決することが課題となっていた。
However, such a nitriding or nitrocarburizing treatment is usually performed at a temperature of 500 to 600 ° C. below the A 1 transformation point, so that the strength is improved by passing through the transformation point. However, there is a problem that the strength of the core tends to be reduced, and it is difficult to apply to a component for a machine structure having a sufficient fatigue strength, and it has been a problem to solve such a problem. Was.

【0008】[0008]

【発明の目的】本発明は、上記した従来の課題にかんが
みてなされたものでもあって、A1 変態点を通過しない
低温の表面硬化処理を施すことによって歪の発生を伴う
ことなく耐摩耗性の向上をはかることができると共に、
心部の強度をも向上させて優れた疲労強度を有する機械
構造用部品を得ることが可能である低歪高強度部材の製
造方法を提供することを目的としている。
The present invention is an object of the invention, there is also one has been made in view of the conventional problems described above, the wear resistance without the occurrence of distortion by performing a surface hardening treatment of the low temperature which does not pass through the A 1 transformation point Can be improved,
It is an object of the present invention to provide a method for manufacturing a low-strain high-strength member capable of obtaining a mechanical structural part having excellent fatigue strength by improving the strength of a core.

【0009】[0009]

【課題を解決するための手段】本発明に係わる、低歪高
強度部材の製造方法は、重量%で、C:0.10〜0.
25%、Si:0.50%以下、Mn:0.50〜1.
50%、Cr:0.5〜2.0%、Mo:0.1〜1.
0%、V:0.05〜0.50%、Al:0.50%以
下、さらに被削性のより一層の向上が望まれる場合に
B:0.0040〜0.0200%、N:0.005〜
0.025%を含み、残部Feおよび不純物よりなる鋼
を素材とし、通常の熱間鍛造温度よりも低い900〜1
050℃の温度にしたのち鍛造加工を行い、部材形状に
機械加工を行ったあと550〜600℃で軟窒化処理を
施して軟窒化処理時にMoおよびVの炭化物を析出させ
て二次硬化させ、心部硬さをHv304以上とする構成
としたことをことを特徴としており、上記したような低
歪高強度部材の製造方法に係わる発明の構成をもって前
述した従来の課題を解決するための手段としている。
According to the present invention, there is provided a method for producing a low-strain high-strength member according to the present invention.
25%, Si: 0.50% or less, Mn: 0.50-1.
50%, Cr: 0.5-2.0%, Mo: 0.1-1.
0%, V: 0.05 to 0.50%, Al: 0.50% or less, B: 0.0040 to 0.0200%, and N: 0 when further improvement in machinability is desired. .005-
Steel containing 0.025%, the balance being Fe and impurities, 900 to 1 lower than the normal hot forging temperature
After forging at a temperature of 050 ° C., machining is performed on the member shape, then nitrocarburizing treatment is performed at 550 to 600 ° C., and during the nitrocarburizing treatment, carbides of Mo and V are precipitated and secondarily cured, It is characterized in that the core hardness is Hv304 or more, and as a means for solving the above-mentioned conventional problems with the configuration of the invention relating to the method for manufacturing a low-strain high-strength member as described above. I have.

【0010】次に、本発明に係わる低歪高強度部材の製
造方法において適用される鋼素材の化学成分組成および
前記鋼素材を用いる部材の製造工程の限定理由について
説明する。
Next, the chemical composition of the steel material applied in the method for manufacturing a low-strain and high-strength member according to the present invention and the reason for limiting the manufacturing process of the member using the steel material will be described.

【0011】C:0.10〜0.25% Cは機械構造用部材の心部硬さを確保するのに有効な元
素であり、このような心部硬さを得るために、0.10
%以上とした。しかし、C含有量が増加して心部硬さが
増大するのに伴って被削性が低下するので、0.25%
以下とした。
C: 0.10 to 0.25% C is an element effective for securing the core hardness of the member for mechanical structure.
% Or more. However, as the C content increases and the core hardness increases, the machinability decreases.
It was as follows.

【0012】Si:0.50%以下 Siは鍛造加工後の冷却時における焼入性を良好なもの
とするために適宜添加することが望ましい元素である
が、多すぎると軟窒化性を劣化するので、0.50%以
下とした。
Si: 0.50% or less Si is an element that is desirably added as appropriate in order to improve the hardenability during cooling after forging, but if it is too much, the soft nitriding property is deteriorated. Therefore, it was set to 0.50% or less.

【0013】Mn:0.50〜1.50% Mnは鍛造加工後の冷却時における焼入性を良好なもの
とするために0.50%以上含有させるのが良いが、多
すぎると軟窒化性を劣化するので、1.50%以下とし
た。
Mn: 0.50 to 1.50% Mn is preferably contained in an amount of 0.50% or more in order to improve the hardenability during cooling after forging. Therefore, the content is reduced to 1.50% or less.

【0014】Cr:0.5〜2.0%、 Crは焼入性を向上させて心部硬さを確保するのに有効
であると共に軟窒化性を良好なものとするのに有効な元
素であるので、これらの効果を得るために0.5%以上
とした。しかし、多く含有すると心部硬さが高すぎるも
のとなり、被削性を低下することとなるので、2.0%
以下とした。
Cr: 0.5-2.0%, Cr is an element effective for improving hardenability and securing core hardness and effective for improving soft nitriding property. Therefore, in order to obtain these effects, the content is set to 0.5% or more. However, if a large amount is contained, the core hardness becomes too high, and the machinability is reduced.
It was as follows.

【0015】Mo:0.1〜1.0% Moは焼入性を向上すると共に軟窒化性を良好なものと
し、さらには軟窒化処理時に炭化物Mo2 Cとして析出
することにより二次硬化して心部硬さを増大し、機械構
造用部材の疲労強度を向上するのに有効な元素であるの
で、0.1%以上含有させることとした。しかし、含有
量が多くなっても効果が飽和し、むしろ硬さが増加しす
ぎて被削性が低下し、また、溶製時に一次炭化物が析出
して最終製品での靭性が劣化することとなるので、1.
0%以下とした。
Mo: 0.1 to 1.0% Mo improves the hardenability and improves the nitrocarburizing property. Further, Mo precipitates as a carbide Mo 2 C during the nitrocarburizing treatment, so that it is secondarily hardened. Therefore, the content is 0.1% or more because it is an element effective for increasing the core hardness and improving the fatigue strength of the machine structural member. However, even if the content increases, the effect saturates, rather, the hardness increases too much and the machinability decreases, and the primary carbides precipitate during melting and the toughness in the final product deteriorates. Therefore, 1.
0% or less.

【0016】V:0.05〜0.50% Vは軟窒化性を向上し、軟窒化処理時に炭化物V4 3
として析出することにより二次硬化して心部硬さを増大
し、機械構造用部材の疲労強度を向上するのに有効な元
素であるので、0.05%以上含有させることとした。
しかし、含有量を多くしても900〜1050℃の温度
では十分に固溶せず、析出硬化に寄与しないこととなる
ので、0.50%以下とした。
V: 0.05 to 0.50% V improves nitrocarburizing property and carbides V 4 C 3 during nitrocarburizing treatment.
The element is effective for increasing the core hardness and improving the fatigue strength of the machine structural member by secondary hardening by precipitating as an element.
However, even if the content is increased, it does not sufficiently form a solid solution at a temperature of 900 to 1050 ° C. and does not contribute to precipitation hardening.

【0017】Al:0.50%以下 Alは軟窒化性を確保するのに有効な元素であるので適
宜添加することが可能であり、添加する場合には0.1
0%以上とすることが望ましい。しかし、多すぎると靭
性を劣化するので、0.50%以下とした。
Al: 0.50% or less Al is an element effective for securing soft nitriding properties, and thus can be added as appropriate.
Desirably, it is 0% or more. However, if the content is too large, the toughness deteriorates.

【0018】B:0.0040〜0.0200% N:0.005〜0.025% BおよびNは化合物BNを形成して鋼素材の被削性を向
上させ、機械加工によって部材形状に成形する場合の工
具寿命を増大させるのに有効な元素であるので、被削性
に優れていることがさらに望まれる場合に、Bについて
は0.0040%以上、Nについては0.005%以上
含有させることができる。しかし、N含有量の上限は鋼
の製造性から0.025%であり、このN含有量の上限
に見合うB含有量の上限は0.0200%であって、こ
れよりもB含有量が多いときは単独のBが存在すること
となって焼入性を不安定なものとするので好ましくな
い。
B: 0.0040 to 0.0200% N: 0.005 to 0.025% B and N form compound BN to improve the machinability of the steel material, and are formed into a member shape by machining. In the case where it is further desired to have excellent machinability, the content of B is 0.0040% or more, and the content of N is 0.005% or more. Can be done. However, the upper limit of the N content is 0.025% from the viewpoint of productivity of steel, and the upper limit of the B content corresponding to the upper limit of the N content is 0.0200%, and the B content is higher than this. In some cases, B alone is present, making the hardenability unstable, which is not preferable.

【0019】鍛造前鋼素材温度:900〜1050℃ 上記化学成分組成よりなる鋼素材に対する鍛造前の温度
は、通常の熱間鍛造温度よりも低い900〜1050℃
としているが、この場合、900℃よりも低いとこの後
の鍛造加工性が低下することとなり、鍛造型の寿命を低
下させることになるため好ましくないと共に、適量のM
o,Vを固溶させるためには900℃以上とした。しか
し、温度が高くなると結晶粒の粗大化を抑止することが
できなくなり、鍛造加工後に溶体化処理を施すことが必
要となるので、結晶粒の粗大化を抑止すると共に鍛造加
工後に細粒組織を得て靭性の向上をはかるために105
0℃以下とした。
Temperature of steel material before forging: 900 to 1050 ° C. The temperature before forging of a steel material having the above-mentioned chemical composition is 900 to 1050 ° C. lower than a normal hot forging temperature.
However, in this case, if the temperature is lower than 900 ° C., the subsequent forging workability is reduced, and the life of the forging die is shortened.
In order to make o and V form a solid solution, the temperature was set to 900 ° C. or higher. However, when the temperature increases, it becomes impossible to suppress the coarsening of the crystal grains, and it is necessary to perform a solution treatment after the forging, so that the coarsening of the crystal grains is suppressed and the fine grain structure is reduced after the forging. 105 to improve toughness.
0 ° C. or less.

【0020】軟窒化温度:550〜600℃ 鍛造加工を行い、部材形状に機械加工を行ったあとに施
す軟窒化処理は、軟窒化性と、軟窒化処理時におけるM
o,V炭化物の析出による二次硬化を考慮した場合に5
50〜600℃の範囲で行うのが適しているので、この
ような軟窒化温度とした。
The nitrocarburizing temperature: 550 to 600 ° C. The nitrocarburizing treatment to be performed after forging and machining to the shape of the member is performed by the nitrocarburizing property and the M
5 when considering secondary hardening due to precipitation of o, V carbides
Since it is suitable to carry out in the range of 50 to 600 ° C., such a soft nitriding temperature was used.

【0021】[0021]

【発明の作用】本発明に係わる低歪高強度部材の製造方
法では、心部硬さを考慮してC含有量を定め、鍛造加工
後の焼入性を考慮してSi,Mn,Cr,Moの含有量
を定め、軟窒化性を考慮してCr,Mo,V,Alの含
有量を定め、軟窒化処理時の二次硬化を考慮してMo,
Vの含有量を定め、被削性のより一層の向上が要求され
る場合に被削性向上元素を添加することとした鋼を素材
とし、900〜1050℃の温度にしたのち例えば部材
形状に近い形状まで鍛造加工を行い、部材形状に切削等
の機械加工を行ったあと550〜600℃で軟窒化処理
を施すようにしているので、鍛造前温度を通常の熱間鍛
造温度よりも低くしていることから鍛造加工後の溶体化
処理を省略できるようになると共に、部材の形状に機械
加工を行ったあと軟窒化処理を施すことによって表面硬
さが増大することにより耐摩耗性が向上したものとな
る。
In the method for producing a low-strain high-strength member according to the present invention, the C content is determined in consideration of the core hardness, and Si, Mn, Cr, and C are determined in consideration of the hardenability after forging. The content of Mo is determined, the content of Cr, Mo, V, and Al is determined in consideration of the nitrocarburizing property, and the content of Mo,
The content of V is determined, and when a further improvement in machinability is required, a steel to which a machinability improving element is added is used as a material, and after a temperature of 900 to 1050 ° C., for example, a member shape is formed. The forging process is performed to a close shape, and after performing machining such as cutting to the member shape, the nitrocarburizing process is performed at 550 to 600 ° C. As a result, the solution treatment after forging can be omitted, and the wear resistance is improved by increasing the surface hardness by performing nitrocarburizing treatment after machining the member shape. It will be.

【0022】さらに、軟窒化処理時にMo2 CやV4
3 のごとき炭化物が析出して二次硬化することにより心
部硬さが増大して十分な疲れ強さが得られるようにな
り、表面硬化処理はA1 変態点より低い温度としている
ことから熱処理変形をほとんど伴わないものとなり、歪
が少なく安定した疲れ強さをもつ耐摩耗性の優れた低歪
高強度部材よりなる機械構造用部品となる。
Further, Mo 2 C or V 4 C
3 such as carbide precipitates eccentric part hardness by curing secondarily is increased become sufficient fatigue strength can be obtained, the surface hardening treatment is a heat treatment since it is a temperature lower than the A 1 transformation point It becomes a component for a mechanical structure made of a low-distortion high-strength member having little wear, excellent in wear resistance and having stable fatigue strength with little distortion.

【0023】[0023]

【実施例】表1のNo.1〜6に示した本発明を満足す
る化学成分よりなる鋼を溶製したのち、直径70mmに
圧延し、表2に示した鍛造前加熱温度に加熱したのち鍛
造加工を行って歯車に近い形状に成形し、次いで機械加
工(切削加工)を行うことによって歯車形状に加工し、
次いで580℃×5hのガス軟窒化処理を施して、モジ
ュール:1.75,歯数:34,内径20mmの歯車と
した。
Embodiment No. 1 in Table 1 A steel having a chemical composition satisfying the present invention shown in 1 to 6 is melted, then rolled to a diameter of 70 mm, heated to a pre-forging heating temperature shown in Table 2, and then forged to form a shape close to a gear. Into a gear shape by performing machining (cutting),
Next, a gas soft nitriding treatment at 580 ° C. × 5 h was performed to obtain a gear having a module of 1.75, a number of teeth of 34, and an inner diameter of 20 mm.

【0024】また、比較のために、表1のNo.7に示
した化学成分を有するSCM420鋼の焼ならし素材を
用い、歯車形状に加工したのち910℃×3.5hの浸
炭→2hの拡散→830℃×30min加熱後の油冷に
よる焼入れ→160℃×2hの焼もどしの工程を経るこ
とによって、上記実施例と同じ仕様の歯車を得た。
For comparison, No. 1 in Table 1 was used. Using a normalizing material of SCM420 steel having the chemical composition shown in Fig. 7, carburizing at 910 ° C × 3.5h → diffusion of 2h → 830 ° C × quenching by oil cooling after heating for 30 minutes → 160 → A gear having the same specifications as in the above example was obtained through a tempering step at 2 ° C. × 2 h.

【0025】上記各工程により得た各々の歯車の表面硬
さ、心部硬さおよびHv550が得られる硬化層深さを
測定したところ、表2に示す結果であった。
The surface hardness, core hardness, and hardened layer depth at which Hv550 was obtained for each of the gears obtained in the above steps were measured. The results are shown in Table 2.

【0026】また、ガス軟窒化(本発明実施例のNo.
1〜6の場合)および浸炭(比較例のNo.7の場合)
の処理前後における寸法変化を調べるため、内径の寸法
変化(n=25の平均)およびまたぎ歯厚(5枚の歯の
またぎ歯厚)の寸法変化(n=25の平均)を測定した
ところ、同じく表2に示す結果であった。
In addition, gas soft nitriding (No.
1 to 6) and carburizing (in the case of Comparative Example No. 7)
In order to investigate the dimensional change before and after the treatment, the dimensional change of the inner diameter (average of n = 25) and the dimensional change of the tooth thickness (the tooth thickness of five teeth) (average of n = 25) were measured. The results are also shown in Table 2.

【0027】さらに、動力循環式疲れ試験を行って疲労
強度を測定したところ、同じく表2に示す結果であっ
た。
Further, when the fatigue strength was measured by performing a power circulation type fatigue test, the results are also shown in Table 2.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】表1および表2に示した結果より明らかな
ように、本発明実施例No.1〜6による歯車の寸法変
化は、比較例No.7による浸炭焼入れ歯車の寸法変化
に比べてかなり小さなものとなっており、表面硬化処理
時の歪が著しく小さい低歪のものとなっていて、歯車の
かみ合い時における騒音の発生を著しく低減できると共
に、浸炭焼入れ歯車に匹敵する良好なる疲れ強さを有し
ており、従来の浸炭焼入れした歯車に比べて著しく低歪
であり、そしてまた従来の軟窒化処理した歯車に比べて
疲労強度の高い特性の優れた歯車を得ることができた。
As is clear from the results shown in Tables 1 and 2, Example No. 1 of the present invention. The dimensional change of the gears according to Comparative Examples Nos. 7, which is considerably smaller than the dimensional change of the carburized and quenched gear due to the fact that the distortion during surface hardening treatment is extremely small and low distortion. It has good fatigue strength comparable to carburized and quenched gears, has significantly lower strain than conventional carburized and quenched gears, and also has higher fatigue strength than conventional nitrocarburized gears Excellent gears were obtained.

【0031】さらにまた、表1に示した本発明実施例N
o.1〜6の成分組成を有する直径90mmの鍛造材
(1050℃加熱)および比較例No.7の成分組成を
有する直径90mmの焼ならし材を供試材とし、表3に
示すホブ切削試験条件によって被削性(工具寿命;切削
速度100m/minで切削したときに工具摩耗が0.
3mmとなるときの切削長さ)を評価したところ、表4
に示す結果であった。
Further, Example N of the present invention shown in Table 1
o. No. 1 to 6 forged material having a diameter of 90 mm (heated at 1050 ° C.) and Comparative Example No. A normalizing material having a diameter of 90 mm having a component composition of No. 7 was used as a test material, and the machinability (tool life; tool abrasion was 0.
Table 4 shows the results of evaluation of the cutting length when it becomes 3 mm.
The results are shown in FIG.

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【表4】 [Table 4]

【0034】表3および表4に示した結果より明らかな
ように、本発明実施例No.1〜4の鋼では素材硬さが
大きい割には工具寿命が良好なものとなっており、ま
た、鋼中にB,Nを適量含有させた実施例No.5,6
の鋼では、比較例No.7の焼ならし材の硬さよりもか
なり硬さが大であるにもかかわらず、鍛造材を加工した
際の工具寿命が比較例No.7の焼ならし材を加工した
際の工具寿命を上回る良好なる被削性を有するものとな
っていることが認められた。
As is clear from the results shown in Tables 3 and 4, Example No. 1 of the present invention. In the steels Nos. 1 to 4, the tool life was good in spite of the large material hardness, and in Example No. 4 in which B and N were contained in appropriate amounts in the steel. 5,6
In the steel of Comparative Example No. Although the hardness of the forged material was considerably larger than that of the normalized material of No. 7, the tool life when the forged material was processed was compared with that of Comparative Example No. 7. It was confirmed that the sample had good machinability that exceeded the tool life when the normalized material No. 7 was processed.

【0035】[0035]

【発明の効果】本発明に係わる低歪高強度部材の製造方
法によれば、前述した構成としたものであるから、A
変態点を通過しない低温の表面硬化処理を施すことによ
って歪の発生を伴うことなく耐摩耗性の向上をはかるこ
とができると共に、表面硬化処理時に心部の強度をも向
上させて優れた疲労強度を有する機械構造用部品を製造
することが可能になるという著しく優れた効果がもたら
される。
According to the manufacturing method of low distortion and high strength member according to the present invention, since it is obtained by the configuration described above, A 1
By applying a low-temperature surface hardening treatment that does not pass through the transformation point, it is possible to improve the wear resistance without generating distortion, and also to improve the core strength during the surface hardening treatment, resulting in excellent fatigue strength A remarkably excellent effect that it becomes possible to manufacture a machine structural part having

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21D 8/00 - 8/10 C23C 8/00 - 8/54 Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) C21D 8/00-8/10 C23C 8/00-8/54

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、C:0.10〜0.25%、
Si:0.50%以下、Mn:0.50〜1.50%、
Cr:0.5〜2.0%、Mo:0.1〜1.0%、
V:0.05〜0.50%、Al:0.50%以下、残
部Feおよび不純物よりなる鋼を素材とし、通常の熱間
鍛造温度よりも低い900〜1050℃の温度にしたの
ち鍛造加工を行い、部材形状に機械加工を行ったあと5
50〜600℃で軟窒化処理を施して軟窒化処理時にM
oおよびVの炭化物を析出させて二次硬化させ、心部硬
さをHv304以上とすることを特徴とする低歪高強度
部材の製造方法。
(1) C: 0.10 to 0.25% by weight,
Si: 0.50% or less, Mn: 0.50 to 1.50%,
Cr: 0.5 to 2.0%, Mo: 0.1 to 1.0%,
V: 0.05 to 0.50%, Al: 0.50% or less, steel containing the balance of Fe and impurities is used as a material, and forging is performed at a temperature of 900 to 1050 ° C. lower than a normal hot forging temperature. After performing machining to the member shape, 5
A nitrocarburizing treatment is performed at 50 to 600 ° C.
A method for producing a low-strain, high-strength member, wherein carbides of o and V are precipitated and secondarily hardened to have a core hardness of Hv304 or more.
【請求項2】 重量%で、C:0.10〜0.25%、
Si:0.50%以下、Mn:0.50〜1.50%、
Cr:0.5〜2.0%、Mo:0.1〜1.0%、
V:0.05〜0.50%、Al:0.50%以下、
B:0.0040〜0.0200%、N:0.005〜
0.025%、残部Feおよび不純物よりなる鋼を素材
とし、通常の熱間鍛造温度よりも低い900〜1050
℃の温度にしたのち鍛造加工を行い、部材形状に機械加
工を行ったあと550〜600℃で軟窒化処理を施して
軟窒化処理時にMoおよびVの炭化物を析出させて二次
硬化させ、心部硬さをHv304以上とすることを特徴
とする低歪高強度部材の製造方法。
2. C: 0.10 to 0.25% by weight,
Si: 0.50% or less, Mn: 0.50 to 1.50%,
Cr: 0.5 to 2.0%, Mo: 0.1 to 1.0%,
V: 0.05 to 0.50%, Al: 0.50% or less,
B: 0.0040 to 0.0200%, N: 0.005 to
Steel made of 0.025%, balance Fe and impurities, 900 to 1050 lower than normal hot forging temperature
Temperature, then forging, machining into the shape of the member, nitrocarburizing at 550-600 ° C, and precipitating Mo and V carbides during nitrocarburizing and secondary hardening. A method for producing a low-strain, high-strength member, wherein the part hardness is Hv304 or more.
JP03176891A 1991-07-17 1991-07-17 Manufacturing method of low strain high strength member Expired - Fee Related JP3109146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03176891A JP3109146B2 (en) 1991-07-17 1991-07-17 Manufacturing method of low strain high strength member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03176891A JP3109146B2 (en) 1991-07-17 1991-07-17 Manufacturing method of low strain high strength member

Publications (2)

Publication Number Publication Date
JPH0525538A JPH0525538A (en) 1993-02-02
JP3109146B2 true JP3109146B2 (en) 2000-11-13

Family

ID=16021561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03176891A Expired - Fee Related JP3109146B2 (en) 1991-07-17 1991-07-17 Manufacturing method of low strain high strength member

Country Status (1)

Country Link
JP (1) JP3109146B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005056468A1 (en) 2003-12-09 2005-06-23 Matsushita Electric Industrial Co., Ltd. Hydrogen generating apparatus
JP5783101B2 (en) 2012-03-22 2015-09-24 新日鐵住金株式会社 Steel for nitriding

Also Published As

Publication number Publication date
JPH0525538A (en) 1993-02-02

Similar Documents

Publication Publication Date Title
TWI464281B (en) Nitriding and nitriding parts
JP2006307273A (en) Case hardening steel having excellent crystal grain coarsening resistance and cold workability and in which softening can be obviated, and method for producing the same
JP4737601B2 (en) High temperature nitriding steel
JP4962695B2 (en) Steel for soft nitriding and method for producing soft nitriding component
JPS6043431B2 (en) Manufacturing method of nitrided machine parts for light loads
JP3006034B2 (en) High strength mechanical structural members with excellent surface pressure strength
JP2000129347A (en) Production of high strength parts
JPS6033338A (en) Steel to be carburized
JP2549039B2 (en) Carbonitriding heat treatment method for high strength gears with small strain
JPS6127460B2 (en)
JP4488228B2 (en) Induction hardening steel
JP3109146B2 (en) Manufacturing method of low strain high strength member
JPH10147814A (en) Production of case hardening steel product small in heat treating strain
JPH07188895A (en) Manufacture of parts for machine structure use
JPH05239602A (en) High bearing pressure parts
JPS62196322A (en) Manufacture of parts for mechanical structure
JPH0570924A (en) Method for carburizing heat treatment of high strength gear small in strain and the gear
JP3623313B2 (en) Carburized gear parts
JP2706940B2 (en) Manufacturing method of non-heat treated steel for nitriding
JP3436867B2 (en) Induction hardened part excellent in strength and fatigue resistance and method of manufacturing the same
JPH0227408B2 (en)
JPH09279296A (en) Steel for soft-nitriding excellent in cold forgeability
JPWO2002044435A1 (en) Carburizing steel and carburizing gear
US20200370159A1 (en) Steel material for cvt sheave, cvt sheave, and method for manufacturing cvt sheave
JPH0559432A (en) Production of carburized gear excellent in fatigue strength

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees