JPS626614B2 - - Google Patents

Info

Publication number
JPS626614B2
JPS626614B2 JP21147081A JP21147081A JPS626614B2 JP S626614 B2 JPS626614 B2 JP S626614B2 JP 21147081 A JP21147081 A JP 21147081A JP 21147081 A JP21147081 A JP 21147081A JP S626614 B2 JPS626614 B2 JP S626614B2
Authority
JP
Japan
Prior art keywords
steel
austenite
core
content
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21147081A
Other languages
Japanese (ja)
Other versions
JPS58113316A (en
Inventor
Susumu Kanbara
Yasuo Ootani
Fukukazu Nakazato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP21147081A priority Critical patent/JPS58113316A/en
Publication of JPS58113316A publication Critical patent/JPS58113316A/en
Publication of JPS626614B2 publication Critical patent/JPS626614B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、変態ひずみや熱ひずみ、すなわち
熱処理ひずみのきわめて少ない肌焼鋼の製造法に
関するものである。 一般に、肌焼鋼としては、JIS規格にSCr415、
SCr420、SCM415、およびSCM420などとして規
定されているC含有量が0.13〜0.25%の鋼が多用
されており、通常、これらの鋼を900〜950℃で浸
炭処理した後、850℃近傍から焼入れすることに
よつて製造されている。 しかし、上記従来肌焼鋼の製造においては、浸
炭処理後の芯部焼入れ処理が、浸炭表面部だけで
なく芯部も完全にオーステナイト相からの焼入れ
となるため、焼入れ後の組織はマルテンサイト組
織となり、この結果肌焼鋼に残留する変態ひずみ
は著しく大きなものとなる。このため、変態ひず
みを少なくする目的で、焼入れ処理後の芯部組織
をマルテンサイト組織としないようにすることも
考えられるが、この場合には、特に芯部のC含有
量が上記のように0.13〜0.25%と低いために、芯
部硬さが急激に低下し、かつ疲労強度が低下する
るようになることから、機械構造用として実用に
供することができないものとなる。 また、上記従来肌焼鋼の製造に際しては、上記
のように高温からの焼入れを行なうために熱ひず
みの発生も大きなものとなる。 そこで、本発明者等は、上述のような観点か
ら、熱処理ひずみの少ない肌焼鋼を得べく研究を
行なつた結果、オーステナイト領域で浸炭処理を
行なつた後の鋼を、浸炭処理後の冷却過程、また
はA1点以下まで冷却後再加熱して、鋼芯部がオ
ーステナイト+フエライト相で構成され、かつ鋼
浸炭表面部がオーステナイト相で構成された組織
に調整し、この状態から焼入れすると、鋼の主要
部分を占める芯部のオーステナイト+フエライト
組織のうちの一部であるオーステナイトがマルテ
ンサイトまたはベーナイトに変態するだけですむ
ので、変態ひずみの発生が、従来のオーステナイ
ト相全体がマルテンサイトに変態する場合に比し
て著しく小さくなり、かつ前記組織状態からの焼
入れは、比較的低温焼入れとなるため熱ひずみの
発生も相対的に小さく、さらに前記芯部における
低温焼入れに伴う硬さ低下は、C含有量を高める
ことによつて、これを阻止することができるとい
う知見を得たのである。 この発明は、上記知見にもとづいてなされたも
のであつて、C:0.35〜0.50%、Si:0.25%以
下、Mn:0.3〜1.3%、Cr:0.6〜1.5%、sol.Al:
0.02〜0.06%、N:0.006〜0.015%を含有し、さ
らに必要に応じてV:0.05〜0.5%を含有し、残
りがFeと不可避不純物からなる組成(以上重量
%)を有する鋼を、前記鋼のオーステナイト領域
で浸炭処理した後、浸炭処理後の冷却過程で、あ
るいはA1点以下(通常室温)まで冷却後再加熱
して、前記浸炭処理後の鋼の芯部がオーステナイ
ト+フエライト相で構成され、かつ同浸炭表面部
がオーステナイト相で構成された組織に調整し、
この状態から焼入れすることによつて、所定の芯
部硬さを有し、かつ熱処理ひずみの少ない肌焼鋼
を製造することに特徴を有するものである。 なお、この発明における鋼芯部がオーステナイ
ト+フエライト相からなり、一方鋼浸炭表面部が
オーステナイト相からなる組織は、浸炭表面部の
平衡変態温度であるAe3点またはAcm点(浸炭表
面部が亜共析または共析の場合にはAe3点、過共
析の場合にはAcm点)以上にして、芯部の平衡
変態温度であるAe3点以下の温度範囲内の所定温
度に20分以上保持することによつて形成すること
ができる。 つぎに、この発明の肌焼鋼の製造法において、
鋼の成分組成を上記の通りに限定した理由を説明
する。 (a) C C成分は、鋼芯部硬さを確保するために、通常
の肌焼鋼のC含有量:0.13〜0.25%に比して高い
0.35〜0.50%を含有するが、その含有量が0.35%
未満では、通常の肌焼鋼の芯部組織がマルテンサ
イトからなるのに対して、この発明の肌焼鋼の芯
部組織はフエライト+マルテンサイト(ベイナイ
ト)となることから、所定の硬さを確保すること
ができず、機械構造用鋼に要求される強度を得る
ことが困難となり、一方0.50%を越えて含有させ
ると、切削性、冷間加工性、および靭性が急激に
低下するようになることから、その含有量を0.35
〜0.50%と定めた。 (b) Si Siは溶製時の脱酸用として必須のものである
が、0.25%を越えて含有すると、浸炭性が劣化す
るようになるばかりでなく、浸炭処理中の表面粒
界酸化が助長されるようになることから、その上
限値を0.25%と定めた。 (c) Mn Mnは、溶製時の脱酸脱硫剤として不可欠であ
るばかりでなく、焼入性確保のためにも必要な成
分であるが、その含有量が0.30%未満では、前記
のMn成分のもつ作用が充分に発揮されず、一方
1.3%を越えて含有させると、冷間加工性および
切削性が急激に劣化するようになることから、そ
の含有量を0.30〜1.3%と定めた。 (d) Cr Cr成分には、浸炭表面部の耐摩耗性を高める
と共に、芯部の強度および靭性を向上させる作用
があるが、その含有量が0.6%未満では前記作用
に所望の効果が得られず、一方1.5%を越えて含
有させると、浸炭表面部が過剰浸炭されて耐ピツ
チング性が劣化するようになることから、その含
有量を0.6〜1.5%と定めた。 (e) sol.Al Alは溶製時に脱酸剤として働き、かつNと結
合してAlNを生成し、もつて浸炭時の結晶粒粗大
化を抑制する作用があるが、その含有量がsol.Al
で0.02%未満では前記作用に所望の効果が得られ
ず、一方同じくsol.Alで0.06%を越えて含有させ
ると、結晶粒に粗大化傾向が表われるようになる
と共に、Al2O3が多量に生成するようになつて、
切削性が劣化することから、その含有量を0.02〜
0.06%と定めた。 (f) N NにはAlと結合してAlNを形成し、浸炭時の結
晶粒粗大化を抑制する作用があるが、その含有量
が0.006%未満では所望の結晶粒粗大化抑制効果
を確保することができず、一方0.015%を越えて
含有すると、冷間加工性が急激に劣化するように
なることから、その含有量を0.006〜0.015%と定
めた。 (g) V Vには、浸炭処理後、芯部をオーステナイト+
フエライト組織とし、浸炭表面部をオーステナイ
ト組織とするための所定温度に所定時間保持する
工程で、芯部中に微細に分散したV炭窒化物とし
て析出し、芯部の硬さを向上させる作用があるの
で、特に芯部に高硬度が要求される場合に必要に
応じて含有されるが、その含有量が0.05%未満で
は所望の硬さ向上効果が得られず、一方0.5%を
越えて含有させても、より一層の硬さ向上効果は
現われず、飽和状態となることから、経済性も考
慮して、その含有量を0.05〜0.5%と定めた。 なお、この発明にかかる鋼にCa、P、および
Sの1種以上を含有させると特性が何らそこなわ
れることなく快削性が一段と向上するようにな
る。 つぎに、この発明の方法を実施例により具体的
に説明する。 実施例 通常の溶解法および鋳造法により、それぞれ第
1表に示される成分組成をもつた鋼を製造し、こ
れらの鋼より第1図aに正面図で、同bに側面図
で示される形状をもつた外径:55mmφ×内径:35
mmφ×厚さ:10mm×切欠き開口部幅:6mmのCリ
ング試片を切出し、ついでこれら試片をガス浸炭
炉中に装入し、炉温:930℃、カーボンポテンシ
ヤル:0.75%、処理時間:6時間の条件で浸炭処
理を施し、浸炭処理後の冷却過程で、あるいは一
旦A1点以下に冷却後再加熱して、同じく第1表
に示される温度および時間の条件にて組織調整
し、直ちに60℃の油中に焼入れることによつて、
本発明肌焼鋼1〜13、比較肌焼鋼1〜4、および
従来肌焼鋼1,2をそれぞれ製造した。 なお、比較肌焼鋼1,2は、本発明肌焼鋼4と
同一の成分組成をもつが、組織調整時の温度が著
しく高い条件で製造されたものであり、また比較
肌焼鋼3は、同じく本発明肌焼鋼4と同一の成分
組成をもつが、組織調整時の保持時間が短かい条
件で製造されたものであり、したがつていずれの
比較肌焼鋼もこの発明に定める組織をもたない状
態で焼入れ処理が施されたものである。さらに、
比較肌焼鋼4は、C含有量がこの発明の範囲から
外れて低い組成をもつものである。 また、従来肌焼鋼1,2は、それぞれJIS・
SCr420および同SCM420に相当する組成をもつも
のである。 つぎに、この結果得られた各種肌焼鋼試片にお
ける切欠き開口部の変位量を測定し、第1表に合
せて示した。また第1表には前記試片の肉厚部芯
部のビツカース硬さも示した。 第1表に示される結果から明らかなように、製
造条件がこの発明の範囲から外れた比較肌焼鋼1
〜4および従来肌焼鋼1,2は、変位量および硬
さのうちいずれかの特性が劣るのに対して、本発
The present invention relates to a method for manufacturing case-hardened steel with extremely low transformation strain and thermal strain, that is, heat treatment strain. In general, case hardening steels include SCr415 and JIS standards.
Steels with a C content of 0.13 to 0.25%, such as SCr420, SCM415, and SCM420, are often used, and these steels are usually carburized at 900 to 950°C and then quenched at around 850°C. It is manufactured by. However, in the production of conventional case-hardened steel, the core quenching treatment after carburizing involves quenching not only the carburized surface but also the core completely from the austenitic phase, so the structure after quenching is martensitic. As a result, the transformation strain remaining in the case hardening steel becomes extremely large. Therefore, in order to reduce the transformation strain, it may be possible to prevent the core structure after quenching from becoming a martensitic structure, but in this case, especially if the C content in the core is Since the content is as low as 0.13 to 0.25%, the core hardness rapidly decreases and the fatigue strength also decreases, making it impossible to put it to practical use in mechanical structures. Further, in manufacturing the conventional case hardened steel, since quenching is performed from a high temperature as described above, thermal strain is also generated. Therefore, from the above-mentioned viewpoint, the present inventors conducted research to obtain a case hardened steel with less heat treatment strain. During the cooling process, or by reheating after cooling to below A1 point, the steel core is adjusted to a structure consisting of austenite + ferrite phases, and the steel carburized surface is composed of austenite phases, and then quenched from this state. , since austenite, which is a part of the austenite + ferrite structure in the core that makes up the main part of the steel, only needs to transform into martensite or bainite, the generation of transformation strain will be avoided when the entire conventional austenite phase turns into martensite. The size is significantly smaller than that in the case of transformation, and since quenching from the above-mentioned structure state is quenched at a relatively low temperature, the occurrence of thermal strain is also relatively small. They found that this can be prevented by increasing the C content. This invention was made based on the above findings, and includes C: 0.35 to 0.50%, Si: 0.25% or less, Mn: 0.3 to 1.3%, Cr: 0.6 to 1.5%, sol.Al:
0.02 to 0.06%, N: 0.006 to 0.015%, further containing V: 0.05 to 0.5% as necessary, and the remainder consisting of Fe and unavoidable impurities (weight% above). After carburizing the steel in the austenitic region, the core of the steel after carburizing becomes an austenite + ferrite phase, either during the cooling process after carburizing or by reheating after cooling to below A1 point (usually room temperature). and the carburized surface part is adjusted to a structure composed of austenite phase,
By quenching from this state, case hardened steel having a predetermined core hardness and less heat treatment strain is produced. In this invention, the steel core consists of austenite + ferrite phases, while the steel carburized surface consists of an austenite phase . In the case of eutectoid or eutectoid, Ae 3 points, in case of hypereutectoid, Acm point) or higher, and at a specified temperature within the temperature range of Ae 3 points or less, which is the equilibrium transformation temperature of the core, for 20 minutes or more. It can be formed by holding. Next, in the method for producing case hardened steel of this invention,
The reason why the composition of the steel is limited as described above will be explained. (a) C The C content is higher than the C content of normal case hardening steel: 0.13-0.25% in order to ensure the hardness of the steel core.
Contains 0.35-0.50%, but its content is 0.35%
If the hardness is less than 1, the core structure of normal case hardened steel is martensite, but the core structure of the case hardened steel of this invention is ferrite + martensite (bainite). If the content exceeds 0.50%, the machinability, cold workability, and toughness will decrease rapidly. Therefore, its content is 0.35
It was set at ~0.50%. (b) Si Si is essential for deoxidizing during melting, but if it is contained in excess of 0.25%, not only will carburizability deteriorate, but surface grain boundary oxidation during carburizing will also occur. The upper limit was set at 0.25%. (c) Mn Mn is not only indispensable as a deoxidizing and desulfurizing agent during melting, but also a necessary component to ensure hardenability. The effects of the ingredients are not fully exerted, and on the other hand,
If the content exceeds 1.3%, the cold workability and machinability will deteriorate rapidly, so the content was set at 0.30 to 1.3%. (d) Cr The Cr component has the effect of increasing the wear resistance of the carburized surface and improving the strength and toughness of the core, but if its content is less than 0.6%, the desired effect will not be achieved. On the other hand, if the content exceeds 1.5%, the carburized surface portion will be excessively carburized and the pitting resistance will deteriorate, so the content was set at 0.6 to 1.5%. (e) sol.Al Al acts as a deoxidizing agent during melting and combines with N to form AlN, which has the effect of suppressing grain coarsening during carburizing. .Al
If the content of sol.Al is less than 0.02%, the desired effect cannot be obtained; on the other hand, if the content of sol.Al exceeds 0.06%, the crystal grains tend to coarsen, and Al 2 O 3 It started to be produced in large quantities,
Since the machinability deteriorates, the content should be reduced from 0.02 to
It was set at 0.06%. (f) N N combines with Al to form AlN and has the effect of suppressing crystal grain coarsening during carburizing, but if its content is less than 0.006%, the desired effect of suppressing crystal grain coarsening is ensured. On the other hand, if the content exceeds 0.015%, the cold workability will deteriorate rapidly, so the content was set at 0.006 to 0.015%. (g) V V has austenite+ core after carburizing treatment.
In the process of holding at a predetermined temperature for a predetermined time to create a ferrite structure and carburized surface part to an austenite structure, V carbonitrides are precipitated as finely dispersed V carbonitrides in the core, which has the effect of improving the hardness of the core. Therefore, it is included as necessary, especially when high hardness is required for the core part, but if the content is less than 0.05%, the desired hardness improvement effect cannot be obtained, whereas if the content exceeds 0.5%, the desired effect of improving hardness cannot be obtained. Even if it is, the effect of further improving the hardness does not appear and the state becomes saturated, so the content was determined to be 0.05 to 0.5%, taking economic efficiency into account. Incidentally, when the steel according to the present invention contains one or more of Ca, P, and S, the free machinability is further improved without any deterioration of the properties. Next, the method of the present invention will be specifically explained using examples. Example: Steels having the compositions shown in Table 1 were manufactured by ordinary melting and casting methods, and from these steels the shape shown in the front view in Figure 1a and in the side view in Figure 1b was produced. Outer diameter with: 55mmφ x inner diameter: 35
C-ring specimens of mmφ x thickness: 10mm x notch opening width: 6mm were cut out, and then these specimens were charged into a gas carburizing furnace, furnace temperature: 930°C, carbon potential: 0.75%, processing time. : Carburizing was carried out for 6 hours, and the structure was adjusted during the cooling process after carburizing, or by reheating after cooling to below 1 point A, and adjusting the structure under the same temperature and time conditions shown in Table 1. , by immediately quenching in oil at 60°C.
Case hardened steels 1 to 13 of the present invention, comparative case hardened steels 1 to 4, and conventional case hardened steels 1 and 2 were manufactured, respectively. Comparative case hardening steels 1 and 2 have the same composition as inventive case hardening steel 4, but were manufactured under extremely high temperature conditions during structure adjustment, and comparative case hardening steel 3 was , which also has the same composition as the present invention case hardening steel 4, but was manufactured under conditions where the retention time during structure adjustment was shortened. Therefore, both comparative case hardening steels have the structure defined in the present invention. It has been hardened without having any moreover,
Comparative case hardening steel 4 has a composition in which the C content is low and outside the range of the present invention. In addition, conventional case hardening steels 1 and 2 are JIS/
It has a composition equivalent to SCr420 and SCM420. Next, the amount of displacement of the notch opening in the various case-hardened steel specimens obtained as a result was measured and shown in Table 1. Table 1 also shows the Vickers hardness of the core of the thick wall portion of the sample. As is clear from the results shown in Table 1, comparative case hardening steel 1 whose manufacturing conditions were outside the scope of the present invention.
~4 and conventional case hardening steels 1 and 2 are inferior in either displacement or hardness, whereas the present invention

【表】 明肌焼鋼1〜13は、いずれも変位量が小さく、
熱処理ひずみの少ないものであるばかりでなく、
320以上のビツカース硬さを示し、機械構造用と
して充分に実用に供せられるものであることがわ
かる。 また、第2図には、本発明肌焼鋼4について、
焼入れ温度となる組織調整時の温度を種々変化さ
せた場合の変位量と硬さの変化を示した。なお、
第2図における浸炭表面部の硬さは表面より0.05
mm深さ位置のものである。 第2図に示されるように、焼入れ温度となる組
織調整時の温度を、浸炭表面部のAe3点と芯部の
Ae3点の範囲内の温度とした場合に、浸炭表面部
がオーステナイト相で、芯部がオーステナイト+
フエライト相で構成された組織となることから、
相対的に熱ひずみが少ない状態で、機械構造用と
して十分実用に供せられる硬さを確保できること
が明らかである。 上述のように、この発明によれば、熱処理ひず
みがきわめて小さく、かつ機械構造用として十分
実用に供される浸炭表面部硬さおよび芯部硬さを
もつた肌焼鋼を製造することができるのである。
[Table] Light-hardened steels 1 to 13 all have small displacements;
It not only has less heat treatment distortion, but also
It shows a Vickers hardness of 320 or higher, which indicates that it can be fully used for practical use in mechanical structures. In addition, FIG. 2 shows the case hardening steel 4 of the present invention.
The changes in displacement and hardness are shown when the temperature during structure adjustment, which is the quenching temperature, is varied. In addition,
The hardness of the carburized surface in Figure 2 is 0.05 lower than the surface.
It is at a depth of mm. As shown in Figure 2, the temperature during structure adjustment, which is the quenching temperature, was set at three points Ae on the carburized surface and at the core.
When the temperature is within the range of Ae 3 points, the carburized surface part is austenite phase and the core part is austenite +
Since the structure is composed of ferrite phase,
It is clear that it is possible to secure enough hardness for practical use in mechanical structures with relatively little thermal strain. As described above, according to the present invention, it is possible to produce case hardened steel that has extremely small heat treatment distortion and has carburized surface hardness and core hardness that are sufficiently practical for use in mechanical structures. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCリング試片を示し、同aは正面図、
同bは側面図、第2図は焼入れ温度と、Cリング
試片の開口部変位量および同硬さとの関係を示し
た図である。
Figure 1 shows a C-ring specimen, and Figure a is a front view;
FIG. 2B is a side view, and FIG. 2 is a diagram showing the relationship between the quenching temperature, the opening displacement amount, and the hardness of the C-ring specimen.

Claims (1)

【特許請求の範囲】 1 C:0.35〜0.5%、Si:0.25%以下、 Mn:0.3〜1.3%、Cr:0.6〜1.5%、 sol.Al:0.02〜0.06%、 N:0.006〜0.015%、 を含有し、残りがFeと不可避不純物からなる組
成(以上重量%)を有する鋼を、前記鋼のオース
テナイト領域で浸炭処理した後、鋼浸炭表面部組
織をオーステナイト相に、かつ鋼芯部組織をオー
ステナイト+フエライト相に組織調整し、この状
態から焼入れすることを特徴とする熱処理ひずみ
の少ない肌焼鋼の製造法。 2 C:0.35〜0.5%、Si:0.25%以下、 Mn:0.3〜1.3%、Cr:0.6〜1.5%、 sol.Al:0.02〜0.06%、 N:0.006〜0.015%、 を含有し、さらに、 V:0.05〜0.5%、 を含有し、残りがFeと不可避不純物からなる組
成(以上重量%)を有する鋼を、前記鋼のオース
テナイト領域で浸炭処理した後、鋼浸炭表面部組
織をオーステナイト相に、かつ鋼芯部組織をオー
ステナイト+フエライト相に組織調整し、この状
態から焼入れすることを特徴とする熱処理ひずみ
の少ない肌焼鋼の製造法。
[Claims] 1 C: 0.35-0.5%, Si: 0.25% or less, Mn: 0.3-1.3%, Cr: 0.6-1.5%, sol.Al: 0.02-0.06%, N: 0.006-0.015%, After carburizing the steel in the austenitic region of the steel, the steel has a composition (by weight % or more) containing Fe and unavoidable impurities, and then the carburized surface structure is changed to the austenite phase, and the steel core structure is changed to the austenite phase. A method for producing case-hardened steel with little heat treatment strain, which is characterized by adjusting the structure to an austenite + ferrite phase and quenching from this state. 2 Contains C: 0.35 to 0.5%, Si: 0.25% or less, Mn: 0.3 to 1.3%, Cr: 0.6 to 1.5%, sol.Al: 0.02 to 0.06%, N: 0.006 to 0.015%, and further, V: 0.05 to 0.5%, and the rest is Fe and unavoidable impurities (wt%). After carburizing the steel in the austenitic region, the steel carburized surface structure changes to the austenitic phase. , and a method for producing case hardened steel with little heat treatment strain, characterized by adjusting the steel core structure to an austenite + ferrite phase and quenching from this state.
JP21147081A 1981-12-25 1981-12-25 Manufacture of case hardening steel having low heat treatment strain Granted JPS58113316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21147081A JPS58113316A (en) 1981-12-25 1981-12-25 Manufacture of case hardening steel having low heat treatment strain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21147081A JPS58113316A (en) 1981-12-25 1981-12-25 Manufacture of case hardening steel having low heat treatment strain

Publications (2)

Publication Number Publication Date
JPS58113316A JPS58113316A (en) 1983-07-06
JPS626614B2 true JPS626614B2 (en) 1987-02-12

Family

ID=16606468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21147081A Granted JPS58113316A (en) 1981-12-25 1981-12-25 Manufacture of case hardening steel having low heat treatment strain

Country Status (1)

Country Link
JP (1) JPS58113316A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170543A (en) * 1985-01-23 1986-08-01 Sumitomo Metal Ind Ltd Wear resisting steel for nitriding
JPS61210154A (en) * 1985-03-13 1986-09-18 Kobe Steel Ltd Low strain carburizing steel
JPS6365053A (en) * 1986-09-04 1988-03-23 Kobe Steel Ltd Two-phase steel for gas carburization at high temperature
JP5664803B2 (en) 2012-01-26 2015-02-04 新日鐵住金株式会社 Case-hardened steel with low heat treatment distortion

Also Published As

Publication number Publication date
JPS58113316A (en) 1983-07-06

Similar Documents

Publication Publication Date Title
JP2007077411A (en) Machine structural component having excellent fatigue strength and wear property, and method for producing the same
JP2000054069A (en) Carburized material excellent in rolling fatigue characteristic
JPH08311607A (en) Low strain carburized gear excellent in deddendum bending strength and its production
JP3033349B2 (en) Carburized steel parts with excellent pitting resistance
JPS6311423B2 (en)
JP2549039B2 (en) Carbonitriding heat treatment method for high strength gears with small strain
JPS6263653A (en) High strength case hardening steel
JPS626614B2 (en)
JPH07188895A (en) Manufacture of parts for machine structure use
JP3467929B2 (en) High toughness hot forged non-heat treated steel for induction hardening
JPS5916948A (en) Soft-nitriding steel
JPH0254416B2 (en)
JPH0254403B2 (en)
JPH0227408B2 (en)
JPH0447023B2 (en)
JPH108199A (en) Case hardening steel excellent in carburizing hardenability
JPH0568526B2 (en)
JP2767254B2 (en) Method for producing Cr-Mo case hardened steel
JPH10140236A (en) Production of high damping alloy
JPH0416538B2 (en)
JPS61261427A (en) Production of steel having superior cold workability and preventing coarsening of grain during carburization heating
JPS61166922A (en) Manufacture of wire rod for carburization
JP2611241B2 (en) Low alloy nitrocarburized steel
JPH08157946A (en) Production of steel member having high vibration damping capacity and high surface hardness
JP2907011B2 (en) Method for producing nitrided steel member with less heat treatment distortion