JPH0416538B2 - - Google Patents

Info

Publication number
JPH0416538B2
JPH0416538B2 JP57046359A JP4635982A JPH0416538B2 JP H0416538 B2 JPH0416538 B2 JP H0416538B2 JP 57046359 A JP57046359 A JP 57046359A JP 4635982 A JP4635982 A JP 4635982A JP H0416538 B2 JPH0416538 B2 JP H0416538B2
Authority
JP
Japan
Prior art keywords
carburizing
less
steel
austenite
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57046359A
Other languages
Japanese (ja)
Other versions
JPS58164758A (en
Inventor
Katsunori Takada
Kenji Isokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP57046359A priority Critical patent/JPS58164758A/en
Publication of JPS58164758A publication Critical patent/JPS58164758A/en
Publication of JPH0416538B2 publication Critical patent/JPH0416538B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、とくに高温において浸炭処理を行つ
たときでも結晶粒度を安定して細かなものとする
ことができる浸炭用鋼に関するものである。 自動車をはじめとする輸送用機械、産業用機
械、農業用機械等における動力伝達機構部分に
は、各種の歯車、軸受、プロペラシヤフト、カム
シヤフト等の部品が使用されている。これらの部
品は、一般に機械構造用鋼を素材にして成形加工
され、得られた成形品に対してさらにガス浸炭や
浸炭窒化処理などの表面硬化処理を施して製品と
されていた。 この場合、従来の表面硬化処理はいずれも約
950℃未満の温度で行われており、所要の浸炭あ
るいは浸炭窒化深さを得るためには長時間の処理
を必要とし、部品の生産性向上を阻害する大きな
要因の一つとなつていた。 そこで、このような状況を背景として、950℃
以上の高温で浸炭処理を行つて処理時間の短縮化
をはかる真空浸炭処理が開発された。しかしなが
ら、従来の構造用はだ焼鋼をそのまま素材として
成形加工したのち上記高温の真空浸炭処理を行う
と、オーステナイト結晶粒が粗大化して大きな熱
処理歪が発生したり、部品強度が低下したりする
という問題が生ずる。そのため、真空浸炭処理後
いつたん変態点以下の温度まで急冷し、再度オー
ステナイト温度域まで加熱して焼入れするという
いわゆる細粒化処理を行う方法を採用することが
あるが、再加熱焼入れを行うために処理時間が増
加し、従来のガス浸炭処理に比べてあまり処理時
間が短縮せず、浸炭処理性能の優れた真空浸炭処
理普及の大きな阻害要因となつていた。 本発明は、上記したような従来の問題点に着目
してなされたもので、とくに950℃以上の高温に
おいて浸炭処理を施したときでもオーステナイト
結晶粒が粗大化せず、結晶粒度を安定して細かな
ものとすることができる浸炭用鋼を提供すること
を目的としている。 本発明に係わる浸炭用鋼は、重量%で、C:
0.1〜0.4%、Si:0.05〜1.5%、Mn:0.05〜2.0%、
SolAl:0.015〜0.07%、Ti:0.007〜0.07%、N:
0.013〜0.03%を含み、B:0.0005%未満に規制
し、必要に応じて、Ni:4.5%以下、Cr:2%以
下、Mo:0.6%以下のうち1種または2種以上を
含有し、残部実質的にFeよりなることを特徴と
しており、この浸炭用鋼を素材として成形加工し
た部品を950℃以上の高温浸炭処理を施した際に
オーステナイト結晶粒の粗大化が発生することな
くオーステナイトの平均結晶粒度が7.5番以上の
細粒が得られるようにしたことを特徴としてい
る。 次に、本発明に係わる浸炭用鋼の成分範囲(重
量%)の限定理由について説明する。 C:0.1〜0.4% Cは構造部品として必要な強度ならびに浸炭処
理後の表面硬さを得るために含有させる元素であ
るが、含有量が0.1%よりも少ないと上記した必
要な強度ならびに表面硬さを得ることができず、
0.4%を超えると靭性ならびに冷鍛性が劣化する
ので、0.1〜0.4%の範囲とする。 Si:0.05〜1.5% Siは脱酸元素として有効であるが、0.05%より
も少ないと上記の脱酸効果が得られず、1.5%を
超えると靭性ならびに冷鍛性を劣化させるので、
0.05〜1.5%の範囲とする。 Mn:0.05〜2.0% Mnは脱酸および脱硫元素として有効である
が、0.05%よりも少ないと上記の脱酸および脱硫
効果が得られず、また浸炭処理後の表面硬さも十
分なものが得られない。一方、2.0%を超えると
加工性ならびに被削性が劣化する。したがつて、
Mn含有量は0.05〜2.0%とする。 Al:0.015〜0.07% Alは高温での浸炭処理時にオーステナイト結
晶粒の粗大化を防止するのに有効な元素であつ
て、そのためには0.015%以上含有させることが
必要である。しかし、含有量が0.07%を超えると
結晶粒粗大化の防止効果がかえつて低下するた
め、SolAl含有量は0.015〜0.07%の範囲とする。 Ti:0.007〜0.07% Tiは高温での浸炭処理時にオーステナイト結
晶粒の粗大化を防止するのに有効な元素であつ
て、そのためには0.007%以上含有させることが
必要である。しかし、含有量が0.07%を超えると
結晶粒粗大化の防止効果がかえつて低下するた
め、0.007〜0.07%の範囲とする。 N:0.013〜0.03% Nは高温での浸炭処理時にオーステナイト結晶
粒の粗大化を防止するのに有効な元素であつて、
そのためには0.013%以上含有させることが必要
である。しかし、含有量が0.03%を超えるとNの
ブローホールによつて鋼塊または鋳片の健全性が
損われるので、Nの含有量は0.013〜0.03%の範
囲とする。 B:0.0005%未満 B含有量が0.0005%以上となると、高温での浸
炭処理時にオーステナイト結晶粒の粗大化を生じ
やすくなるので、その上限を0.0005%未満に規制
する。 Ni:4.5%以下、Cr:2%以下、Mo:0.6%以下
のうちの1種または2種以上 Ni、Cr、Moは鋼の焼入性をより一層向上させ
るのに有効な元素であるが、Ni含有量が4.5%を
超え、Cr含有量が2%を超え、Mo含有量が0.6%
を超えると鋼の靭性が劣化するので、鋼の焼入性
をより一層向上させる場合には、Ni:4.5%以下、
Cr:2%以下、Mo:0.6%以下の範囲内でこれら
の1種または2種以上を含有させるのが良い。 このように成分調整した本発明に係わる浸炭用
鋼を素材として、歯車、ボールジヨイント、ドラ
イブシヤフト、カムシヤフト、ステアリング部
品、ベアリング、ベアリングレース等の構造部分
を成形加工し、その後950℃以上の真空浸炭処理
を施すことによつて、オーステナイト結晶粒度が
平均7.5番以上の細粒で疲労強度等に優れ、寸法
精度の良好な構造部品を短かい処理時間で得るこ
とができる。 次に実施例について説明する。 第1表に示す化学成分の鋼を溶製したのち造塊
し、添付図に示すように、直径30mmの丸棒に圧延
したのち一部は直径25mmの丸棒に切削加工し、そ
の後真空浸炭処理を行つた。また、上記丸棒の残
りについては925℃×1hr加熱後空冷の条件で焼き
ならしを施したのち冷間鍛造し、次いで真空浸炭
処理を行つた。そして、各々について浸炭層の旧
オーステナイト結晶粒度を測定すると共に、耐疲
労強度および寸法精度を測定した。また、第2表
にはこのときの真空浸炭処理条件を示す。 これらのうち、旧オーステナイト結晶粒度の測
定は、JIS G0551に規定する“鋼のオーステナイ
ト結晶粒度試験方法”に準じて行つた。また、耐
疲労強度の測定は、小野式回転曲げ疲労試験を実
施することにより行つた。さらに、寸法精度の測
定は、外径90mm、内径45mm、厚さ30mmの環状試験
片を用いて上記真空浸炭処理を施した後の前記厚
さの寸法変化量(μm)を調べることにより行つ
た。これらの結果を同じく第1表に示す。
The present invention relates to a steel for carburizing that can stably make the grain size fine even when carburizing is performed at high temperatures. BACKGROUND ART Various gears, bearings, propeller shafts, camshafts, and other parts are used in power transmission mechanisms in automobiles and other transportation machines, industrial machines, agricultural machines, and the like. These parts are generally molded from mechanical structural steel, and the molded products are then subjected to surface hardening treatments such as gas carburizing and carbonitriding. In this case, conventional surface hardening treatments are all about
The process is carried out at a temperature of less than 950°C, requiring a long treatment time to obtain the required depth of carburization or carbonitriding, which has been one of the major factors hindering improvements in parts productivity. Therefore, against this background, 950℃
A vacuum carburizing process has been developed in which carburizing is carried out at higher temperatures to shorten the processing time. However, if conventional case hardened structural steel is used as a raw material and then subjected to the above-mentioned high-temperature vacuum carburizing treatment, the austenite crystal grains will become coarse, resulting in large heat treatment distortions and a decrease in component strength. This problem arises. Therefore, after vacuum carburizing, a so-called grain refining process is sometimes adopted, in which the temperature is rapidly cooled to a temperature below the transformation point, and then heated again to the austenite temperature range and quenched. However, the processing time was not significantly reduced compared to the conventional gas carburizing process, and this was a major impediment to the spread of vacuum carburizing process, which has excellent carburizing performance. The present invention has been made by focusing on the above-mentioned conventional problems, and in particular, the austenite crystal grains do not become coarse even when carburized at a high temperature of 950°C or higher, and the crystal grain size is stabilized. The purpose is to provide a carburizing steel that can be made fine. The carburizing steel according to the present invention has C:
0.1~0.4%, Si: 0.05~1.5%, Mn: 0.05~2.0%,
SolAl: 0.015-0.07%, Ti: 0.007-0.07%, N:
Contains 0.013 to 0.03%, B: regulated to less than 0.0005%, and if necessary, contains one or more of Ni: 4.5% or less, Cr: 2% or less, Mo: 0.6% or less, The remainder is essentially made of Fe, and when a part formed from this carburizing steel is subjected to high-temperature carburizing treatment at 950°C or higher, the austenite crystal grains do not coarsen, and the austenite grains do not coarsen. It is characterized by being able to obtain fine grains with an average grain size of 7.5 or higher. Next, the reason for limiting the composition range (wt%) of the carburizing steel according to the present invention will be explained. C: 0.1 to 0.4% C is an element to be included to obtain the strength required for structural parts and surface hardness after carburizing treatment, but if the content is less than 0.1%, the above-mentioned required strength and surface hardness will be reduced. I can't get the feeling,
If it exceeds 0.4%, toughness and cold forgeability will deteriorate, so it should be in the range of 0.1 to 0.4%. Si: 0.05-1.5% Si is effective as a deoxidizing element, but if it is less than 0.05%, the above deoxidizing effect cannot be obtained, and if it exceeds 1.5%, it deteriorates toughness and cold forgeability.
It should be in the range of 0.05-1.5%. Mn: 0.05-2.0% Mn is effective as a deoxidizing and desulfurizing element, but if it is less than 0.05%, the above deoxidizing and desulfurizing effects cannot be obtained, and sufficient surface hardness after carburizing treatment cannot be obtained. I can't do it. On the other hand, if it exceeds 2.0%, workability and machinability deteriorate. Therefore,
Mn content shall be 0.05-2.0%. Al: 0.015 to 0.07% Al is an element effective in preventing coarsening of austenite crystal grains during carburizing treatment at high temperatures, and for this purpose it is necessary to contain it in an amount of 0.015% or more. However, if the SolAl content exceeds 0.07%, the effect of preventing crystal grain coarsening will be reduced, so the SolAl content should be in the range of 0.015 to 0.07%. Ti: 0.007 to 0.07% Ti is an effective element for preventing coarsening of austenite crystal grains during carburizing treatment at high temperatures, and for this purpose it is necessary to contain it in an amount of 0.007% or more. However, if the content exceeds 0.07%, the effect of preventing crystal grain coarsening is reduced, so it is set in the range of 0.007 to 0.07%. N: 0.013-0.03% N is an element effective in preventing coarsening of austenite crystal grains during carburizing treatment at high temperatures.
For this purpose, it is necessary to contain 0.013% or more. However, if the content exceeds 0.03%, the integrity of the steel ingot or slab will be damaged by N blowholes, so the N content is set in the range of 0.013 to 0.03%. B: less than 0.0005% If the B content exceeds 0.0005%, coarsening of austenite crystal grains tends to occur during carburizing treatment at high temperatures, so the upper limit is regulated to less than 0.0005%. One or more of the following: Ni: 4.5% or less, Cr: 2% or less, Mo: 0.6% or less Ni, Cr, and Mo are effective elements to further improve the hardenability of steel. , Ni content exceeds 4.5%, Cr content exceeds 2%, Mo content 0.6%
If the toughness of the steel is exceeded, the toughness of the steel will deteriorate, so if you want to further improve the hardenability of the steel, Ni: 4.5% or less,
It is preferable to contain one or more of these within the ranges of Cr: 2% or less and Mo: 0.6% or less. Using the carburized steel according to the present invention whose composition has been adjusted in this way as a raw material, structural parts such as gears, ball joints, drive shafts, camshafts, steering parts, bearings, and bearing races are formed and then processed in a vacuum at 950°C or higher. By performing carburizing treatment, structural parts with fine austenite grain size of 7.5 or higher on average, excellent fatigue strength, etc., and good dimensional accuracy can be obtained in a short processing time. Next, an example will be described. After melting steel with the chemical composition shown in Table 1, it is ingot-formed, rolled into a round bar with a diameter of 30 mm, and part of it is cut into a round bar with a diameter of 25 mm, and then vacuum carburized. I processed it. The rest of the round bar was normalized under the conditions of heating at 925° C. for 1 hour and air cooling, then cold forging, and then vacuum carburizing. Then, the prior austenite grain size of the carburized layer was measured for each, as well as the fatigue strength and dimensional accuracy. Further, Table 2 shows the vacuum carburizing treatment conditions at this time. Among these, the prior austenite grain size was measured in accordance with the "Austenite grain size test method for steel" specified in JIS G0551. In addition, the fatigue strength was measured by conducting the Ono rotary bending fatigue test. Furthermore, dimensional accuracy was measured by using a circular test piece with an outer diameter of 90 mm, an inner diameter of 45 mm, and a thickness of 30 mm and examining the amount of dimensional change (μm) in the thickness after the vacuum carburizing treatment. . These results are also shown in Table 1.

【表】【table】

【表】【table】

【表】 第1表に示すように、Al、Ti、NおよびB含
有量が本発明の範囲外にある比較鋼ではいずれも
旧オーステナイト平均結晶粒度が7.5番よりも小
さく、真空浸炭時にオーステナイト結晶粒の粗大
化を生じたことが明らかであつて、耐疲労強度が
低いと共に寸法変化量は大きいものとなつてい
た。 これに対して、Al、Ti、NおよびB含有量が
この発明の範囲内にある本発明鋼ではいずれも旧
オーステナイト平均結晶粒度が7.5番以上で微細
化していることが明らかであり、耐疲労強度が向
上したものになつていると共に寸法変化量が小さ
いものとなつており、歯車等の構造部品の疲労強
度ならびに寸法精度をよりすぐれたものとするこ
とが可能であることが認められた。 以上説明してきたように、本発明に係わる浸炭
用鋼では、この浸炭用鋼を素材として歯車やカム
シヤフト等の構造部品を成形加工し、その後950
℃以上の高温で浸炭処理を行つたときでも、この
真空浸炭処理時にオーステナイト結晶粒が粗大化
するのを防止することができ、耐疲労強度に優
れ、寸法精度が高い構造部品を短時間の浸炭処理
によつて製造することができるという非常に優れ
た効果を有する。
[Table] As shown in Table 1, in all comparative steels whose Al, Ti, N, and B contents are outside the range of the present invention, the average grain size of prior austenite is smaller than No. 7.5, and austenite crystals are formed during vacuum carburizing. It was clear that the grains had become coarser, and the fatigue strength was low and the amount of dimensional change was large. On the other hand, in the steels of the present invention whose Al, Ti, N, and B contents are within the range of the present invention, it is clear that the average grain size of prior austenite is finer than 7.5, and the fatigue resistance is The strength has been improved and the amount of dimensional change has been reduced, and it has been recognized that it is possible to improve the fatigue strength and dimensional accuracy of structural parts such as gears. As explained above, in the carburizing steel according to the present invention, structural parts such as gears and camshafts are formed using this carburizing steel as a raw material, and then 950
Even when carburizing is performed at high temperatures above ℃, it is possible to prevent austenite crystal grains from becoming coarse during vacuum carburizing, allowing structural parts with excellent fatigue resistance and high dimensional accuracy to be carburized in a short time. It has a very excellent effect of being able to be manufactured through processing.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例において採用した工程の
説明図である。
The drawings are explanatory diagrams of steps adopted in the embodiments of the present invention.

Claims (1)

【特許請求の範囲】 1 重量%で、C:0.1〜0.4%、Si:0.05〜1.5%、
Mn:0.05〜2.0%、Al:0.015〜0.07%、Ti:
0.007〜0.07%、N:0.013〜0.03%を含み、B:
0.0005%未満に規制し、残部実質的にFeよりなる
ことを特徴とする浸炭用鋼。 2 重量%で、C:0.1〜0.4%、Si:0.05〜1.5%、
Mn:0.05〜2.0%、Al:0.015〜0.07%、Ti:
0.007〜0.07%、N:0.013〜0.03%、およびNi:
4.5%以下、Cr:2%以下、Mo:0.6%以下のう
ちの1種または2種以上を含み、B:0.0005%未
満に規制し、残部実質的にFeよりなることを特
徴とする浸炭用鋼。
[Claims] 1% by weight, C: 0.1 to 0.4%, Si: 0.05 to 1.5%,
Mn: 0.05~2.0%, Al: 0.015~0.07%, Ti:
Contains 0.007-0.07%, N: 0.013-0.03%, B:
A steel for carburizing that is regulated to less than 0.0005%, with the remainder essentially consisting of Fe. 2 In weight%, C: 0.1-0.4%, Si: 0.05-1.5%,
Mn: 0.05~2.0%, Al: 0.015~0.07%, Ti:
0.007-0.07%, N: 0.013-0.03%, and Ni:
For carburizing, containing one or more of the following: 4.5% or less, Cr: 2% or less, Mo: 0.6% or less, B: regulated to less than 0.0005%, and the remainder substantially consisting of Fe. steel.
JP57046359A 1982-03-25 1982-03-25 Carburizing steel Granted JPS58164758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57046359A JPS58164758A (en) 1982-03-25 1982-03-25 Carburizing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57046359A JPS58164758A (en) 1982-03-25 1982-03-25 Carburizing steel

Publications (2)

Publication Number Publication Date
JPS58164758A JPS58164758A (en) 1983-09-29
JPH0416538B2 true JPH0416538B2 (en) 1992-03-24

Family

ID=12744952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57046359A Granted JPS58164758A (en) 1982-03-25 1982-03-25 Carburizing steel

Country Status (1)

Country Link
JP (1) JPS58164758A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253347A (en) * 1985-04-30 1986-11-11 Kobe Steel Ltd Low carbon steel having superior cold workability
EP0682123A1 (en) * 1994-04-25 1995-11-15 Samsung Heavy Industry Co., Ltd Method of manufacturing carburized steel products
JP5487778B2 (en) * 2009-07-29 2014-05-07 愛知製鋼株式会社 Carburizing steel with high strength without addition of Mo and carburized parts using the same
CN113005366B (en) * 2021-02-25 2022-01-04 天津荣程联合钢铁集团有限公司 Hardenability-maintaining gear steel and preparation method thereof
CN113373382B (en) * 2021-05-26 2022-03-25 东风商用车有限公司 Cold forming method of Cr-Ni carburizing steel for Nb-containing cold forming and parts

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798657A (en) * 1980-12-06 1982-06-18 Nisshin Steel Co Ltd Carburizing steel with superior workability and carburizability
JPS57134543A (en) * 1981-02-10 1982-08-19 Nisshin Steel Co Ltd Low alloy carburizing steel with high toughness

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798657A (en) * 1980-12-06 1982-06-18 Nisshin Steel Co Ltd Carburizing steel with superior workability and carburizability
JPS57134543A (en) * 1981-02-10 1982-08-19 Nisshin Steel Co Ltd Low alloy carburizing steel with high toughness

Also Published As

Publication number Publication date
JPS58164758A (en) 1983-09-29

Similar Documents

Publication Publication Date Title
JPH06293939A (en) Bearing parts excellent in high temperature rolling fatigue characteristic
JP4185997B2 (en) Manufacturing method of bearing parts
JPH10306343A (en) Steel for soft-nitriding, excellent in cold forgeability and pitting resistance
JPS6033338A (en) Steel to be carburized
JPH0416538B2 (en)
JPH0559488A (en) Precipitation hardening type high strength steel for soft-nitriding excellent in machinability
JPH07188895A (en) Manufacture of parts for machine structure use
WO2017170127A1 (en) Case hardened steel
JPH10147814A (en) Production of case hardening steel product small in heat treating strain
JP3927420B2 (en) Case-hardened steel with excellent resistance to temper softening
JP3579558B2 (en) Bearing steel with excellent resistance to fire cracking
JPH08260039A (en) Production of carburized and case hardened steel
JPH0454736B2 (en)
WO2000028102A1 (en) High-temperature rolling bearing part
JPH0447023B2 (en)
JPH0360899B2 (en)
JP2002194492A (en) High hardness parts
JP2000204444A (en) Rolling bearing parts for high temperature use
JP3409276B2 (en) High carbon steel with low heat treatment strain
JPS626614B2 (en)
JPH0641630A (en) Softening heat treatment method of steel for power transmitting part
JPH0797656A (en) Cold forging steel
JPS61133366A (en) Case hardening steel for cold forging provided with free-machinability
JPH05279796A (en) Case hardening steel for bearing
JPH08295981A (en) Case hardening steel with grain coarcening resistance, surface-hardened parts excellent in strength and toughness, and their production