JPH0568526B2 - - Google Patents

Info

Publication number
JPH0568526B2
JPH0568526B2 JP59128236A JP12823684A JPH0568526B2 JP H0568526 B2 JPH0568526 B2 JP H0568526B2 JP 59128236 A JP59128236 A JP 59128236A JP 12823684 A JP12823684 A JP 12823684A JP H0568526 B2 JPH0568526 B2 JP H0568526B2
Authority
JP
Japan
Prior art keywords
steel
temperature
amount
rolling
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59128236A
Other languages
Japanese (ja)
Other versions
JPS616212A (en
Inventor
Koji Kaneko
Juji Sawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP12823684A priority Critical patent/JPS616212A/en
Publication of JPS616212A publication Critical patent/JPS616212A/en
Publication of JPH0568526B2 publication Critical patent/JPH0568526B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はベアリング用肌焼鋼の製造方法に関
し、詳しくは、オーステナイト結晶粒大化温度が
高いと共に、転動疲労特性にすぐれたベアリング
を製造するのに好適である肌焼鋼の製造方法に関
する。 肌焼鋼を用いたベアリングは、すぐれた靭性及
び耐衝撃性を有するので、車両、自動車、建設機
械、圧延機等のように衝撃荷重に加わるころがり
軸受に好適に使用されている。しかし、従来、知
られている肌焼鋼によるベアリングは、その転動
特性において尚十分ではない。更に、一般に、肌
焼鋼は、冷間加工を要する場合には、低加工時に
はそのまま冷間加工し、加工率が大きいときは、
焼きなまし処理により加工性を良好にして冷間加
工し、この後に浸炭処理することが多いが、この
ような場合、加工率によつては、浸炭時に非浸炭
部のオーステナイト結晶粒が粗大化し、内部硬さ
を高め、また、焼入れや歪や靭性の低下をもたら
すことは既によく知られている。 本発明者らは上記した問題を解決するために鋭
意研究した結果、鋼中におけるS量及びAl2O3
在物量を低減すると共に、AlとNの含有量を
Al/N重量比及び(Al+2N)、即ちAl量とN量
の2倍量の和によつて規定し、かかる鋼を熱間圧
延前に所定の温度に加熱して、熱間圧延後の
AlN量を所定値以下に抑えることにより、オー
ステナイト結晶粒粗大化温度の高い鋼材が得ら
れ、従つて、かかる鋼材は焼きなまし処理し、冷
間加工し、この後に浸炭処理しても、オーステナ
イト結晶粒の粗大化が抑えられて、細粒組織を保
持し、更に、ベアリングの特性として最も重要で
ある転動特性が著しく改善された肌焼鋼を得るこ
とができることを見出して、本発明に至つたもの
である。 従つて、本発明は、オーステナイト結晶粒粗大
化温度が高く、且つ、転動疲労特性のすぐれたベ
アリングを得ることができる肌焼鋼の製造方法を
提供することを目的とする。 本発明による転動疲労特性の優れたベアリング
用肌焼鋼の製造方法は、 重量%で C 0.05〜0.35%、 Si 0.4%以下、 Mn 0.5〜2.0%、 Al2O3 20ppm以下、 Al及びNをAl/N重量比1.9〜3.5範囲で(Al+
2N)として0.045〜0.065%、 S 0.01%以下、及び Cr 0.3〜1.5%を含有する鋼を、熱間圧延前に
次式で規定される温度T(℃) T≧3750(Al%+2N%)+950 (但し、元素%は当該元素の鋼中の重量%を意味
する。) に加熱し、この後に熱間圧延として、圧延後の
AlN析出量を40ppm以下とすることを特徴とす
る。 本発明の方法において用いる鋼材の化学成分組
成について説明する。 Cは、浸炭処理後に鋼材を焼入れ焼戻ししたと
きに心部の靭性を高く保持するために、少なくと
も0.05重量%含有させることが必要である。しか
し、余りに多量に含有させるときは、上記調質処
理後の鋼の靭性を劣化させるので、上限は0.35重
量%とする。 Siは脱酸剤として添加されるが、余りに多いと
きは、SiO2系介在物の量が増加して、冷間加工
性を著しく阻害するので、上限を0.4重量%とす
る。 Mnは焼入れ性を増し、調質処理後の強度を高
くするために必須の元素であるが、過多に添加す
るときは、靭性や被削性を低下させるので、その
含有量は0.5〜2.0重量%の範囲とする。 本発明の方法において、AlとNとをAl/N重
量比が1.9〜3.5であり、且つ、(Al+2N)を0.045
〜0.065重量%の範囲に規制することを要する。
(Al+2N)量が上記範囲よりも少ないとき、及
びAl/N重量比が上記範囲からはずれていると
きは熱間圧延前に本発明に従つて所定の温度に加
熱し熱間圧延しても、焼きなまし処理後に冷間加
工し、更にこの後に浸炭処理したとき、オーステ
ナイト結晶粒の粗大化を防ぐに足る量のAlNが
析出しないので、オーステナイト結晶粒の粗大化
が避けられない。一方、(Al+2N)量が上記範
囲より多いときは、圧延前の加熱によつて、鋼中
にAlNを十分に溶け込ますことができず、やは
り浸炭時にオーステナイトが粗大化する。即ち、
本発明においては、鋼は、Al及びNの(Al+
2N)量及びAl/Nが共に所定の範囲にあるよう
に含有する。ことを要する。 更に、本発明の方法においては、用いる鋼中の
Al2O3介在物量を20ppm以下とし、且つ、S量を
0.01%以下とすることが必要である。Al2O3及び
Sは、肌焼鋼を浸炭し、焼入れ焼戻しの調質処理
を行なつたときの鋼の転動疲労特性に顕著な影響
を与え、Al2O3の量が20ppmを越えるとき、又は
S量が0.01%を越える多量であるときは、いずれ
の場合いついても転動疲労特性が劣化する。 Crは浸炭性及び焼入れ性を確保するために、
0.3重量%以上を添加することが必要であるが、
過多に添加するときは、表層部において残留オー
ステナイトにより硬度が低下し、また、巨大炭化
物が生成して、靭性を劣化させるので、その添加
量の上限は1.5重量%とする。 本発明の方法においては、用いる鋼は上記した
合金元素に加えて、例えば、鋼の焼入れ性を改善
するためにMoを0.05〜0.50重量%、浸炭時のオ
ーテステナイト粒の粗大化を抑制し、また、焼き
歪を軽減するためにNiを0.01〜1.50重量%の範囲
で含有することができる。 更に、本発明の方法においては、上記のような
化学組成を有する鋼を熱間圧延した後の鋼中の
AlNが40ppm以下であることを要する。このよ
うに熱間圧延後のAlNを40ppm以下にするには、
上記のように本発明に従つて所定量のAl及びN
を含有する鋼を熱間圧延前にその(Al+2N)量
によつて次式で規定される温度T(℃)以上に加
熱することによつて達成される。 T≧3750(Al%+2N%)+950 (但し、元素%は当該元素の鋼中の重量%を意味
する。) 本発明者らの広範囲にわたる実験の結果、熱間
圧延後の鋼中のAlNの量は、熱間圧延前の鋼加
熱温度と明瞭な相関関係を有し、鋼中の(Al+
2N)量が増すにつれて、熱間圧延後の鋼中の
AlNの量を40ppm以下とする下限温度は高くな
り、この下限温度がほぼ上に示すような(Al+
2N)量の一次関数として規定されることが見出
されたのである。 本発明の方法によれば、以上のように、(Al+
2N)量とAl/N重量比を規制した鋼材を、熱間
圧延前に上記(Al+2N)量によつて前記式にて
規定される温度以上加熱して、圧延後のAl/N
を40ppm以下とすることによつて、そのオーステ
ナイト結晶粒粗大化温度を高めたので、得られる
鋼材は、焼きなまし処理し、冷間加工した後に、
浸炭処理しても、オーステナイト結晶粒の粗大化
が抑えられ、かくして、細粒組織を保持すること
ができるうえに、鋼におけるAl2O3量とS量とを
所定値以下に規制することによつて、転動疲労特
性が著しく向上した肌焼鋼を得ることができる。 以下に参考例及び実施例を挙げて本発明をより
詳細に具体的に説明する。 参考例 第1表に示す鋼について、熱間圧延前に第2表
に示す各温度に加熱した後、直径15mmの線材に圧
延し、これを740℃の温度で焼きなまし処理した
後、10%又は50%の加工率で冷間加工し、次い
で、平均加熱速度1℃/分で950℃に昇温し、こ
の温度に3時間保持した後、オーステナイト粒の
粗大化率を測定した。結果を第2表及び第1図、
第2図、第3図に示すように、本発明に従つて、
鋼材を熱間圧延前にその(Al+2N)量によつて
前記式で規定される温度以上に加熱し、この後に
熱間圧延して得られる鋼は、いずれもAlNが
40ppm以下であつて、焼きなまし処理後に冷間加
工し、更に高温熱処理しても、組織は細粒組織を
保つている。しかし、熱間圧延前の温度が前記式
で規定される温度以下であるときは、いずれも圧
延後のAl/N量が40ppmを越えるので、浸炭処
理時にオーステナイト結晶粒の粗大化が著しい。 圧延後のAlN量が40ppm以下であるとき、オ
ーステナイト結晶粒の粗大化は観察されないが、
圧延後のAlN量が40ppm以上であるとき、加工
率10%及び40%以上の場合に粗大化が顕著である
ことが明らかである。 第3図は(Al+2N)量と熱間圧延前の加熱温
度とによつて、圧延後のAl量が規制されること
を示し、熱間圧延後の鋼中のAlN量を40ppm以
下とする下限温度は(Al+2N)量の一次函数と
して規定される。 実施例 1 第3表鋼番号1〜5に示す化学成分組成を有す
る肌焼鋼を1250℃の加熱炉中で加熱した後、直径
15mmの線材に圧延した。これら圧延材における
AlN折出量を第3表に示す。次いで、この圧延
材から円筒型の転動疲労試験片を作製した。比較
鋼2及び4はS含有量が本発明で規定する範囲外
であり、比較鋼3及び5はAl2O3量が本発明で規
定する範囲外である。各試験片を975℃の温度で
2時間浸炭後、焼入れし、次いで、160℃の温度
で2時間加熱して焼戻しをした後、試験片をラツ
ピング加工して仕上げ、ヘルツ応力60Kg/mm2にて
試験に供した。 応力繰り返し数と破損率との関係を第4図に示
す。本発明による肌焼鋼が従来鋼に比べて転動疲
労特性に著しくすぐれていることが明らかであ
る。また、これらの結果に基づいて、転動試験に
おいて試験片を10%の破損が生じるときを寿命と
し、この寿命とS含有量との関係を第5図に示
し、またAl2O3量と関係を第6図に示す。S含有
量が0.01%以下のとき、及びAl2O3含有量が
20ppm以下のときに、転動疲労特性が著しく改善
されることが明らかである。 次に、上記の本発明鋼1を上記と同じ条件で加
熱し、熱間圧延した後、酸洗いし、脱スケール
し、次いで、975℃の温度でカーボン・ポテンシ
ヤル0.87の条件下に3時間浸炭し、焼入れ後、
160℃の温度で2時間焼戻しした。この浸炭品の
硬さ分布曲線を第7図に示す。 また、上記本発明鋼1について浸炭温度(浸炭
時間3時間)とオーステナイト粒度No.との関係を
第8図に示す。本発明の方法によれば、浸炭処理
後にも細粒組織が保持される。他方、本発明鋼1
を1100℃に加熱し、熱間圧延し、AlN量を
102ppmとした。これを同様に浸炭処理したとき
の浸炭温度とオーステナイト粒度No.との関係を第
8図に示す。浸炭温度が高くなるにつれて、オー
ステナイトが粗大化することが明らかである。 実施例 7 第3表に示す化学組成を有する本発明鋼6につ
いては、実施例1と同様にして1250℃の温度に加
熱した後、また、比較鋼7については、これを前
記式で規定される温度(1160℃)よりも低い温度
1100℃に加熱した後に、それぞれを熱間圧延して
直径15mmの圧延材とした。これを酸洗いし、脱ス
ケールした後、そのまま、又は10%の冷間加工を
施し、975℃の温度に7時間
The present invention relates to a method for manufacturing case hardened steel for bearings, and more particularly to a method for manufacturing case hardened steel that has a high austenite grain enlarging temperature and is suitable for manufacturing bearings with excellent rolling fatigue characteristics. Bearings made of case-hardened steel have excellent toughness and impact resistance, and are therefore suitably used in rolling bearings that are subjected to impact loads, such as in vehicles, automobiles, construction machinery, rolling mills, and the like. However, conventionally known bearings made of case-hardened steel do not have sufficient rolling characteristics. Furthermore, in general, when case hardening steel requires cold working, it is cold worked as is when the working rate is low, and when the working rate is high,
In many cases, cold working is performed to improve workability through annealing, followed by carburizing, but in such cases, depending on the working rate, the austenite grains in the non-carburized area become coarse during carburizing, causing internal damage. It is already well known that it increases hardness and also causes quenching, distortion, and a decrease in toughness. As a result of intensive research to solve the above-mentioned problems, the present inventors have succeeded in reducing the amount of S and Al 2 O 3 inclusions in steel, as well as increasing the content of Al and N.
It is defined by the Al/N weight ratio and (Al + 2N), that is, the sum of the amount of Al and twice the amount of N, and the steel is heated to a predetermined temperature before hot rolling.
By suppressing the amount of AlN below a predetermined value, a steel material with a high austenite grain coarsening temperature can be obtained. The inventors have discovered that it is possible to obtain a case-hardened steel that suppresses coarsening, retains a fine grain structure, and has significantly improved rolling characteristics, which are the most important characteristics of bearings, and have thus arrived at the present invention. It is something. Accordingly, an object of the present invention is to provide a method for manufacturing case hardening steel that can obtain a bearing having a high austenite grain coarsening temperature and excellent rolling fatigue characteristics. The method for producing case hardened steel for bearings with excellent rolling fatigue properties according to the present invention includes, in weight percent, C 0.05 to 0.35%, Si 0.4% or less, Mn 0.5 to 2.0%, Al 2 O 3 20 ppm or less, Al and N. at an Al/N weight ratio of 1.9 to 3.5 (Al+
Steel containing 0.045 to 0.065% as 2N), 0.01% or less of S, and 0.3 to 1.5% of Cr is heated to a temperature T (℃) defined by the following formula before hot rolling: T≧3750 (Al% + 2N%) +950 (However, element % means the weight % of the element in the steel.) After this, hot rolling is performed.
It is characterized by an AlN precipitation amount of 40 ppm or less. The chemical composition of the steel used in the method of the present invention will be explained. C must be contained in an amount of at least 0.05% by weight in order to maintain high core toughness when the steel material is quenched and tempered after carburizing. However, if it is contained in an excessively large amount, the toughness of the steel after the heat treatment will be deteriorated, so the upper limit is set to 0.35% by weight. Si is added as a deoxidizing agent, but if it is too large, the amount of SiO 2 inclusions will increase and the cold workability will be significantly inhibited, so the upper limit is set to 0.4% by weight. Mn is an essential element to increase hardenability and increase strength after heat treatment, but when added in excess, it reduces toughness and machinability, so the content should be 0.5 to 2.0% by weight. % range. In the method of the present invention, the Al/N weight ratio of Al and N is 1.9 to 3.5, and (Al+2N) is 0.045.
It is necessary to regulate the content within the range of ~0.065% by weight.
When the amount of (Al+2N) is less than the above range, and when the Al/N weight ratio is out of the above range, even if heated to a predetermined temperature according to the present invention before hot rolling, When cold working is performed after annealing treatment and carburizing treatment is performed after this, a sufficient amount of AlN is not precipitated to prevent coarsening of austenite crystal grains, so coarsening of austenite crystal grains is unavoidable. On the other hand, when the amount of (Al+2N) is greater than the above range, AlN cannot be sufficiently dissolved into the steel by heating before rolling, and austenite becomes coarse during carburization. That is,
In the present invention, the steel is made of Al and N (Al+
2N) and Al/N are both within predetermined ranges. It requires that. Furthermore, in the method of the present invention, in the steel used,
The amount of Al 2 O 3 inclusions is 20 ppm or less, and the amount of S is
It is necessary to keep it below 0.01%. Al 2 O 3 and S have a significant effect on the rolling fatigue properties of steel when case hardened steel is carburized and subjected to quenching and tempering treatment, and the amount of Al 2 O 3 exceeds 20 ppm. When the amount of S exceeds 0.01%, the rolling fatigue properties deteriorate in either case. Cr is used to ensure carburizability and hardenability.
Although it is necessary to add 0.3% by weight or more,
When added in excess, the hardness decreases due to residual austenite in the surface layer, and giant carbides are generated, deteriorating toughness, so the upper limit of the amount added is 1.5% by weight. In the method of the present invention, in addition to the above-mentioned alloying elements, the steel used contains, for example, 0.05 to 0.50% by weight of Mo to improve the hardenability of the steel, suppressing coarsening of autestenite grains during carburization, Further, Ni can be contained in a range of 0.01 to 1.50% by weight in order to reduce baking distortion. Furthermore, in the method of the present invention, after hot rolling steel having the above-mentioned chemical composition,
AlN must be 40ppm or less. In this way, in order to reduce the AlN content after hot rolling to 40ppm or less,
As described above, according to the present invention, predetermined amounts of Al and N
This is achieved by heating the steel containing (Al + 2N) to a temperature equal to or higher than the temperature T (°C) defined by the following formula depending on the amount of (Al + 2N) before hot rolling. T≧3750 (Al% + 2N%) + 950 (However, element % means the weight % of the element in the steel.) As a result of extensive experiments by the present inventors, the AlN content in the steel after hot rolling was The amount has a clear correlation with the steel heating temperature before hot rolling, and the (Al +
2N) in the steel after hot rolling increases.
The lower limit temperature for keeping the amount of AlN below 40 ppm is high, and this lower limit temperature is approximately as shown above (Al+
2N) was found to be defined as a linear function of quantity. According to the method of the present invention, as described above, (Al+
2N) and Al/N weight ratio are heated above the temperature specified by the above formula according to the above (Al + 2N) amount before hot rolling to reduce the Al/N after rolling.
By setting the austenite grain coarsening temperature to 40 ppm or less, the resulting steel material can be annealed and cold-worked.
Even with carburizing treatment, coarsening of austenite crystal grains is suppressed, thus not only can a fine grain structure be maintained, but also the amount of Al 2 O 3 and S amount in the steel can be regulated to below predetermined values. Therefore, case hardening steel with significantly improved rolling contact fatigue properties can be obtained. The present invention will be specifically explained in more detail by referring to Reference Examples and Examples below. Reference example The steel shown in Table 1 is heated to each temperature shown in Table 2 before hot rolling, then rolled into a wire rod with a diameter of 15 mm, annealed at a temperature of 740°C, and then 10% or Cold working was carried out at a processing rate of 50%, then the temperature was raised to 950°C at an average heating rate of 1°C/min, and after this temperature was maintained for 3 hours, the coarsening rate of the austenite grains was measured. The results are shown in Table 2 and Figure 1.
As shown in FIGS. 2 and 3, according to the present invention,
The steel material is heated to a temperature higher than the temperature specified by the above formula depending on the amount of (Al + 2N) before hot rolling, and then the steel obtained by hot rolling has no AlN.
It is 40 ppm or less, and the structure maintains a fine-grained structure even after cold working after annealing and further high-temperature heat treatment. However, when the temperature before hot rolling is below the temperature specified by the above formula, the Al/N amount after rolling exceeds 40 ppm, so that the austenite crystal grains become significantly coarsened during the carburizing treatment. When the amount of AlN after rolling is 40 ppm or less, coarsening of austenite grains is not observed, but
It is clear that when the amount of AlN after rolling is 40 ppm or more, coarsening is noticeable when the processing rate is 10% or 40% or more. Figure 3 shows that the amount of Al after rolling is regulated by the amount of (Al + 2N) and the heating temperature before hot rolling, and the lower limit is 40 ppm or less for the amount of AlN in the steel after hot rolling. Temperature is defined as a linear function of (Al+2N) quantity. Example 1 After heating case hardening steel having the chemical composition shown in Table 3 steel numbers 1 to 5 in a heating furnace at 1250°C, the diameter
It was rolled into a 15mm wire rod. In these rolled materials
Table 3 shows the amount of AlN precipitated. Next, a cylindrical rolling contact fatigue test piece was prepared from this rolled material. Comparative Steels 2 and 4 have S contents outside the range specified by the present invention, and Comparative Steels 3 and 5 have Al 2 O 3 amounts outside the range specified by the present invention. Each specimen was carburized at a temperature of 975°C for 2 hours, quenched, then tempered by heating at a temperature of 160°C for 2 hours, and finished by wrapping the specimen to a Hertzian stress of 60 kg/mm 2. was used for testing. Figure 4 shows the relationship between the number of stress repetitions and the failure rate. It is clear that the case hardened steel according to the present invention has significantly better rolling fatigue properties than conventional steel. In addition, based on these results, the life of the test piece is defined as the time when 10% damage occurs in the rolling test, and the relationship between this life and the S content is shown in Figure 5, and the relationship between the amount of Al 2 O 3 and the The relationship is shown in FIG. When the S content is 0.01% or less, and when the Al 2 O 3 content is
It is clear that rolling fatigue properties are significantly improved when the content is 20 ppm or less. Next, the above-mentioned invention steel 1 was heated under the same conditions as above, hot-rolled, pickled, descaled, and then carburized for 3 hours at a temperature of 975°C and a carbon potential of 0.87. After quenching,
It was tempered at a temperature of 160°C for 2 hours. The hardness distribution curve of this carburized product is shown in FIG. Further, FIG. 8 shows the relationship between carburizing temperature (carburizing time: 3 hours) and austenite grain size No. for the steel 1 of the present invention. According to the method of the present invention, a fine grain structure is maintained even after carburizing treatment. On the other hand, the invention steel 1
was heated to 1100℃, hot rolled, and the amount of AlN was reduced.
It was set to 102ppm. FIG. 8 shows the relationship between carburizing temperature and austenite grain size No. when this was similarly carburized. It is clear that as the carburizing temperature increases, the austenite becomes coarser. Example 7 Inventive steel 6 having the chemical composition shown in Table 3 was heated to a temperature of 1250°C in the same manner as in Example 1, and comparative steel 7 was heated to a temperature of 1250°C as specified by the above formula. (1160℃)
After heating to 1100°C, each was hot rolled into a rolled material with a diameter of 15 mm. After pickling and descaling, it is left as is or subjected to 10% cold processing and heated to a temperature of 975℃ for 7 hours.

【表】【table】

【表】【table】

【表】 加熱して、疑似浸炭処理し、このようにして得ら
れた鋼について、そのオーステナイト結晶粒度を
測定した。その結果、本発明鋼によれば、オース
テナイト粗大化率は非冷間加工部でも、10%加工
部でも0%であつたが、比較鋼によれば、非加工
部で50%、10%加工部では100%に達した。尚、
ここにオーステナイト粗大化率とは、粒度No.6よ
り大きい結晶粒の割合を示す。
[Table] The austenite grain size of the steel thus obtained by heating and pseudo-carburizing was measured. As a result, according to the inventive steel, the austenite coarsening rate was 0% in both the non-cold worked part and the 10% worked part, but according to the comparative steel, the austenite coarsening rate was 50% in the unworked part, and 0% in the 10% worked part. It reached 100% in the department. still,
Here, the austenite coarsening rate indicates the proportion of crystal grains larger than grain size No. 6.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はAl/N重量非と結晶粒粗大化率との
関係を示すグラフ、第2図(Al+2N)量と結晶
粒粗大化率との関係を示すグラフ、第3図は
(Al+2N)量と熱間圧前加熱温度と熱間圧延後
の鋼中のAlN量との関係を示すグラフ、第4図
は本発明の方法による鋼1及び比較鋼2,3,4
及び5の転動疲労試験における応力繰り返し数と
破損率との関係を示すグラフ、第5図は転動疲労
試験において試験片の10%の破壊が生じるときを
寿命とし、この寿命とS含有量との関係を示すグ
ラフ、第6図は第5図と同様に試験片寿命と
Al2O3量との関係を示すグラフ、第7図は本発明
による鋼を浸炭焼入れ焼戻し処理したときの表面
からの深さとHv硬さとの関係を示すグラフ、第
8図は本発明鋼1を本発明に従つて処理したとき
の浸炭温度とオーステナイト粒度No.との関係を比
較方法と共に示すグラフである。
Figure 1 is a graph showing the relationship between Al/N weight and crystal grain coarsening rate, Figure 2 is a graph showing the relationship between (Al + 2N) amount and grain coarsening rate, and Figure 3 is a graph showing the relationship between (Al + 2N) amount and grain coarsening rate. A graph showing the relationship between pre-hot rolling heating temperature and AlN content in the steel after hot rolling, Figure 4 shows Steel 1 produced by the method of the present invention and Comparative Steels 2, 3, and 4.
Figure 5 is a graph showing the relationship between the number of stress repetitions and the failure rate in the rolling contact fatigue test. Figure 6 is a graph showing the relationship between test piece life and
A graph showing the relationship between the amount of Al 2 O 3 , FIG. 7 is a graph showing the relationship between the depth from the surface and Hv hardness when the steel according to the present invention is carburized, quenched and tempered, and FIG. 2 is a graph showing the relationship between carburizing temperature and austenite particle size No. when treated according to the present invention, together with a comparative method.

Claims (1)

【特許請求の範囲】 1 重量%で C 0.05〜0.35%、 Si 0.4%以下、 Mn 0.5〜2.0%、 Al2O3 20ppm以下、 Al及びNをAl/N重量比1.9〜3.5の範囲で(Al
+2N)として0.045〜0.065%、 S 0.01%以下、及び Cr 0.3〜1.5%を含有する鋼を、熱間圧延前に
次式で規定される温度T(℃) T≧3750(Al%+2N%)+950 (但し、元素%は当該元素の鋼中の重量%を意味
する。) に加熱し、この後に熱間圧延して、圧延後の
AlN析出量を40ppm以下とすることを特徴とす
る転動疲労特性のすぐれたベアリング用肌焼鋼の
製造方法。
[Claims] 1% by weight: C 0.05-0.35%, Si 0.4% or less, Mn 0.5-2.0%, Al 2 O 3 20ppm or less, Al and N in an Al/N weight ratio of 1.9-3.5 ( Al
+2N) 0.045 to 0.065%, S 0.01% or less, and Cr 0.3 to 1.5% before hot rolling at a temperature T (°C) defined by the following formula: T≧3750 (Al% + 2N%) +950 (However, element % means the weight % of the element in the steel.) After that, it is hot rolled and the rolled
A method for producing case hardened steel for bearings with excellent rolling contact fatigue properties characterized by having an AlN precipitation amount of 40 ppm or less.
JP12823684A 1984-06-20 1984-06-20 Manufacture of case hardening steel for bearing Granted JPS616212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12823684A JPS616212A (en) 1984-06-20 1984-06-20 Manufacture of case hardening steel for bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12823684A JPS616212A (en) 1984-06-20 1984-06-20 Manufacture of case hardening steel for bearing

Publications (2)

Publication Number Publication Date
JPS616212A JPS616212A (en) 1986-01-11
JPH0568526B2 true JPH0568526B2 (en) 1993-09-29

Family

ID=14979855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12823684A Granted JPS616212A (en) 1984-06-20 1984-06-20 Manufacture of case hardening steel for bearing

Country Status (1)

Country Link
JP (1) JPS616212A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137145A (en) * 1986-11-29 1988-06-09 Nippon Steel Corp Steel for carburizing
JPS63247426A (en) * 1987-03-31 1988-10-14 Kensetsu Kiso Eng Kk Construction of slope frame
JPH06941B2 (en) * 1987-08-13 1994-01-05 新日本製鐵株式会社 Carburizing steel
JPH0428938Y2 (en) * 1987-11-06 1992-07-14

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5675551A (en) * 1979-11-22 1981-06-22 Sanyo Tokushu Seikou Kk Grain stabilized carburizing steel
JPH0254403A (en) * 1988-08-01 1990-02-23 Internatl Business Mach Corp <Ibm> Circuit and method for lowering disturbance of data signal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5675551A (en) * 1979-11-22 1981-06-22 Sanyo Tokushu Seikou Kk Grain stabilized carburizing steel
JPH0254403A (en) * 1988-08-01 1990-02-23 Internatl Business Mach Corp <Ibm> Circuit and method for lowering disturbance of data signal

Also Published As

Publication number Publication date
JPS616212A (en) 1986-01-11

Similar Documents

Publication Publication Date Title
JP3358135B2 (en) High strength steel excellent in sulfide stress cracking resistance and method of manufacturing the same
US5454887A (en) Process for manufacturing a medium-carbon steel plate with improved formability and weldability
JPH0892690A (en) Carburized parts excellent in fatigue resistance and its production
EP3971307A1 (en) Electric-resistance-welded steel pipe for hollow stabilizer
JP3550886B2 (en) Manufacturing method of gear steel for induction hardening excellent in machinability and fatigue strength
EP3020841B1 (en) Coil spring, and method for manufacturing same
JPH0568526B2 (en)
JPH0488148A (en) High strength gear steel capable of rapid carburization and high strength gear
JP3467929B2 (en) High toughness hot forged non-heat treated steel for induction hardening
JPH08260039A (en) Production of carburized and case hardened steel
JPH06228734A (en) Production of steel for clutch diaphragm spring
JP3996386B2 (en) Carburizing steel with excellent torsional fatigue properties
JP2952318B2 (en) High strength steel for induction hardening
JP2767254B2 (en) Method for producing Cr-Mo case hardened steel
JP3411387B2 (en) Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load
JP2813917B2 (en) High fatigue strength structural steel
JPH04337048A (en) Carburizing steel minimal in abnormal layer
JP2952862B2 (en) Manufacturing method of spring steel with excellent hardenability and warm set resistance
JPH108199A (en) Case hardening steel excellent in carburizing hardenability
JP3055050B2 (en) Method of improving impact resistance of high toughness gear steel
JPS626614B2 (en)
JP7111029B2 (en) Method for manufacturing steel parts
JP3411388B2 (en) Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load
JP2611241B2 (en) Low alloy nitrocarburized steel
JP2753998B2 (en) Carburizing steel with few carburized abnormal layers

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term