JPS616212A - Manufacture of case hardening steel for bearing - Google Patents
Manufacture of case hardening steel for bearingInfo
- Publication number
- JPS616212A JPS616212A JP12823684A JP12823684A JPS616212A JP S616212 A JPS616212 A JP S616212A JP 12823684 A JP12823684 A JP 12823684A JP 12823684 A JP12823684 A JP 12823684A JP S616212 A JPS616212 A JP S616212A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- temperature
- amount
- rolling
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はベアリング用肌焼鋼の製造方法に関し、詳しく
は、オーステナイト結晶粒粗大化温度が高いと共に、転
勤疲労特性にすぐれたベアリングを製造するのに好適で
ある肌焼鋼の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing case hardened steel for bearings, and more specifically, to a method for manufacturing case hardened steel for bearings, and more specifically, a case hardened steel that has a high austenite grain coarsening temperature and is suitable for manufacturing bearings that have excellent rolling fatigue characteristics. Concerning a method of manufacturing steel.
肌焼鋼を用いたベアリングは、すぐれた靭性及び耐衝撃
性を有するので、車両、自動車、建設機械、圧延機等の
ように衝撃荷重の加わるころがり軸受に好適に使用され
ている。しかし、従来、知られている肌焼鋼によるベア
リングは、その転勤特性において尚十分ではない。更に
、一般に、肌焼鋼は、冷間加工を要する場合には、低加
工時にはそのまま冷間加工し、加工率が大きいときは、
焼きなまし処理により加工性を良好にして冷間加工し、
この後に浸炭処理することが多いが、このような場合、
加工率によっては、浸炭時に非浸炭部のオーステナイト
結晶粒が粗大化し、内部硬さを高め、また、焼入れ歪や
靭性の低下をもたらすことは既によく知られている。Bearings made of case-hardened steel have excellent toughness and impact resistance, and are therefore suitably used in rolling bearings that are subject to impact loads, such as in vehicles, automobiles, construction machinery, rolling mills, and the like. However, conventionally known bearings made of case-hardened steel do not have sufficient transfer characteristics. Furthermore, in general, when case hardening steel requires cold working, it is cold worked as is when the working rate is low, and when the working rate is high,
Good workability is achieved through annealing treatment, and cold processing is performed.
This is often followed by carburizing, but in such cases,
It is already well known that depending on the processing rate, austenite crystal grains in non-carburized parts become coarse during carburizing, increasing internal hardness, and causing quenching distortion and a decrease in toughness.
本発明者らは上記した問題を解決するために鋭意研究し
た結果、鋼中におけるS量及び^1□0.介在物量を低
減すると共に、AlとNの含有量をAl7N重量比及び
(、l+2N)、即ちAl量とN量の2倍量との和によ
って規定し、かかる鋼を熱間圧延前に所定の温度に加熱
して、熱間圧延後のAIN量を所定値以下に抑えること
により、オーステナイト結晶粒粗大化温度の高い鋼材が
得られ、従って、かかる鋼材は焼きなまし処理し、冷間
加工し、この後に浸炭処理しても、オーステナイト結晶
粒の粗大化が抑えられて、細粒組織を保持し、更に、ベ
アリングの特性として最も重要である転勤特性が著しく
改善された肌焼鋼を得ることができることを見出して、
本発明に至ったものである。As a result of intensive research by the present inventors to solve the above-mentioned problems, the amount of S in steel and ^1□0. In addition to reducing the amount of inclusions, the content of Al and N is defined by the weight ratio of Al7N and (, l + 2N), that is, the sum of the amount of Al and twice the amount of N, and such steel is heated to a specified level before hot rolling. By heating to a high temperature and suppressing the amount of AIN after hot rolling to a predetermined value or less, a steel material with a high austenite grain coarsening temperature can be obtained. It is possible to obtain a case hardened steel in which coarsening of austenite crystal grains is suppressed and a fine grain structure is maintained even after subsequent carburizing treatment, and the transfer characteristics, which are the most important characteristics of bearings, are significantly improved. Find out,
This led to the present invention.
従って、本発明は、オーステナイト結晶粒粗大化温度が
高く、且つ、転勤疲労特性のすぐれたベアリングを得る
ことができる肌焼鋼の製造方法を提供することを目的と
する。Accordingly, an object of the present invention is to provide a method for manufacturing case hardening steel that can obtain a bearing having a high austenite grain coarsening temperature and excellent rolling fatigue characteristics.
本発明によるベアリング用肌焼鋼の製造方法は、重量%
で
C0.05〜0.35%、
Si0.4%以下、
Mn 0.5〜2.0%、
AIzOs 201)11111以下、Al及びNt−
A7!/N重量比1.9〜3.5の範囲で(Aj2+2
N)として0.045〜0.065%、S 0.0
1%以下、及び
Cr0.3〜1.5%を含有する鋼を、熱間圧延前に次
式で規定される温度T (℃)T
≧3750(Al1%+2N%)+950(但し、元素
%は当該元素の鋼中の重量%を意味する。)
に加熱し、この後に熱間圧延して、圧延後の^IN析出
量を40ppm以下とすることを特徴とする。The method for producing case-hardened steel for bearings according to the present invention is characterized in that the weight%
C 0.05-0.35%, Si 0.4% or less, Mn 0.5-2.0%, AIzOs 201) 11111 or less, Al and Nt-
A7! /N weight ratio in the range of 1.9 to 3.5 (Aj2+2
N) 0.045-0.065%, S 0.0
1% or less and 0.3 to 1.5% of Cr is heated before hot rolling at a temperature defined by the following formula: T (°C) (means the weight percent of the element in the steel) and then hot rolling to reduce the amount of ^IN precipitation to 40 ppm or less after rolling.
本発明の方法において用いる鋼材の化学成分組成につい
て説明する。The chemical composition of the steel used in the method of the present invention will be explained.
Cは、浸炭処理後に鋼材を焼入れ焼戻ししたときに心部
の靭性を高く保持するために、少なくとも0.05重量
%含有させることが必要である。しかし、余りに多量に
含有させるときは、上記調質処理後の鋼の靭性を劣化さ
せるので、上限は0.35重量%とする。C must be contained in an amount of at least 0.05% by weight in order to maintain high core toughness when the steel material is quenched and tempered after carburizing. However, if it is contained in an excessively large amount, the toughness of the steel after the tempering treatment will be deteriorated, so the upper limit is set to 0.35% by weight.
Slは脱酸剤として添加されるが、余りに多いときは、
Sho□系介在物の量が増加して、冷間加工性を著しく
阻害するので、上限を0.4重量%とする。Sl is added as a deoxidizing agent, but if it is too much,
Since the amount of Sho□-based inclusions increases and significantly impairs cold workability, the upper limit is set at 0.4% by weight.
Mnは焼入れ性を増し、調質処理後の強度を高くするた
めに必須の元素であるが、過多に添加するときは、靭性
や被削性を低下させるので、その含有量は0.5〜2.
0重量%の範囲とする。Mn is an essential element to increase hardenability and increase strength after tempering treatment, but when added in excess, it reduces toughness and machinability, so its content should be 0.5~ 2.
The range is 0% by weight.
本発明の方法においては、AIとNとをAt’/N重量
比が1.9〜3.5であり、且つ、(A j2 +2N
)を0.045〜0.065重量%の範囲に規制するこ
とを要する。(Am!+2N)量が上記範囲よりも少な
いとき、及びkl/N重量比が上記範囲からはずれてい
るときは、熱間圧延前に本発明に従って所定の温度に加
熱し、熱間圧延しても、焼きなまし処理後に冷間加工し
、更にこの後に浸炭処理したとき、オーステナイト結晶
粒のネ■大化を防ぐに足る量のAINが析出しないので
、オーステナイト結晶粒の粗大化が避けられない。一方
、(Az+2N)量が上記範囲より多いときは、圧延前
の加熱によって、鋼中にAi’Nを十分に溶は込ますこ
とができず、やはり浸炭時にオーステナイトが粗大化す
る。即ち、本発明においては、鋼は、Al及びNを(A
j!+2N)量及びAl/Nが共に所定の範囲にあるよ
うに含有する。ことを要する。In the method of the present invention, the At'/N weight ratio of AI and N is 1.9 to 3.5, and (A j2 +2N
) is required to be controlled within the range of 0.045 to 0.065% by weight. (Am!+2N) amount is less than the above range, or when the kl/N weight ratio is out of the above range, heat to a predetermined temperature according to the present invention before hot rolling. Also, when cold working is performed after annealing treatment and carburizing treatment is performed after this, AIN is not precipitated in an amount sufficient to prevent austenite crystal grains from becoming enlarged, so coarsening of austenite crystal grains is unavoidable. On the other hand, when the amount of (Az+2N) is greater than the above range, Ai'N cannot be sufficiently infused into the steel by heating before rolling, and austenite becomes coarse during carburization. That is, in the present invention, the steel contains Al and N (A
j! +2N) and Al/N are both within predetermined ranges. It requires that.
更に、本発明の方法においては、用いる鋼中のA+、O
3介在物量を20ppm以下とし、且つ、S量を0.0
1%以下とすることが必要である。Al□0゜及びSは
、肌焼鋼を浸炭し、焼入れ焼戻しの!jlIt処理を行
なったときの鋼の転勤疲労特性に顕著な影響を与え、A
l.0.量が20ppHを越えるとき、又はS量が0.
01%を越える多量であるときは、いずれの場合につい
ても転勤疲労特性が劣化する。Furthermore, in the method of the present invention, A+, O in the steel used
3 The amount of inclusions is 20 ppm or less, and the amount of S is 0.0
It is necessary to keep it below 1%. Al□0° and S are case hardened steel that is carburized, quenched and tempered! It has a significant effect on the transfer fatigue properties of steel when subjected to jlIt treatment, and
l. 0. When the amount exceeds 20 pppH, or when the amount of S is 0.
If the amount exceeds 0.1%, the transfer fatigue characteristics deteriorate in any case.
Crは浸炭性及び焼入れ性を確保するために、0.3重
量%以上を添加することが必要であるが、過多に添加す
るときは、表層部において残留オーステナイトにより硬
度が低下し、また、巨大炭化物が生成して、靭性を劣化
させるので、その添加量の上限は1.5重量%とする。It is necessary to add 0.3% by weight or more of Cr to ensure carburizability and hardenability. However, when adding too much, the hardness decreases due to residual austenite in the surface layer, and Since carbides are generated and deteriorate the toughness, the upper limit of the amount added is 1.5% by weight.
本発明の方法においては、用いる鋼は上記した合金元素
に加えて、例えば、鋼の焼入れ性を改善するためにMO
を0.05〜0.50重量%、浸炭時のオーステナイト
粒の粗大化を抑制し、また、焼き歪を軽減するためにN
iを0.01〜1.50重量%の範囲で含有することが
できる。In the method of the present invention, in addition to the above-mentioned alloying elements, the steel used includes, for example, MO to improve the hardenability of the steel.
0.05 to 0.50% by weight of N to suppress coarsening of austenite grains during carburizing and to reduce firing distortion.
i can be contained in a range of 0.01 to 1.50% by weight.
更に、本発明の方法においては、上記のような化学組成
を有する鋼を熱間圧延した後の鋼中のAJNが40pp
m以下であることを要する。このように熱間圧延後のA
INを40pp+m以下にするには、上記のように本発
明に従って所定量のAj!及びNを含有する鋼を、熱間
圧延前にその(Al+2N)量によって次式で規定され
る温度T (℃)以上に加熱することによって達成され
る。Furthermore, in the method of the present invention, AJN in the steel after hot rolling the steel having the above chemical composition is 40pp.
m or less. In this way, A after hot rolling
To reduce IN to 40 pp+m or less, a predetermined amount of Aj! according to the present invention as described above. This is achieved by heating the steel containing N and N to a temperature T (° C.) or higher defined by the following formula depending on the amount of (Al+2N) before hot rolling.
T≧3750(、l!%+2N%)+950(但し、元
素%は当該元素の鋼中の重量%を意味する。)
本発明者らの広範囲にわたる実験の結果、熱間圧延後の
鋼中のAINの量は、熱間圧延前の鋼加熱温度と明瞭な
相関関係を有し、鋼中の(Al!+2N)量が増すにつ
れて、熱間圧延後の鋼中のAINの量を40ppm以下
とする下限温度は高くなり、この下限温度がほぼ上に示
すような(/1十2N)量の一次関数として規定される
ことが見出されたのである。T≧3750(,l!%+2N%)+950 (However, element % means the weight % of the element in the steel.) As a result of extensive experiments by the present inventors, the The amount of AIN has a clear correlation with the heating temperature of the steel before hot rolling, and as the amount of (Al!+2N) in the steel increases, the amount of AIN in the steel after hot rolling is reduced to 40 ppm or less. It was discovered that the lower limit temperature becomes higher, and that this lower limit temperature is defined as a linear function of the amount (/112N) approximately as shown above.
本発明の方法によれば、以上のように、CAI+2N)
[1とAj!/N重量比を規制した鋼材を、熱間圧延前
に上記(Az+2N)量によって前記式にて規定される
温度以上に加熱して、圧延後のAN/Nを4oppm以
下とすることによって、そのオーステナイト結晶粒粗大
化温度を高めたので、得られる鋼材は、焼きなまし処理
し、冷間加工した後に、浸炭処理しても、オーステナイ
ト結晶粒の粗大化が抑えられ、かくして、細粒組織を保
持することができるうえに、鋼におけるAl□031と
S量とを所定値以下に規制することによって、転動疲労
特性が著しく向上した肌焼鋼を得ることができる。According to the method of the present invention, as described above, CAI+2N)
[1 and Aj! /N weight ratio is heated to a temperature higher than the temperature specified by the above formula according to the amount of (Az + 2N) before hot rolling, and the AN/N after rolling is 4 oppm or less. Since the austenite grain coarsening temperature has been raised, the coarsening of the austenite grains is suppressed in the obtained steel even after annealing, cold working, and carburizing, and thus the fine grain structure is maintained. In addition, by regulating the amount of Al□031 and S in the steel to below predetermined values, case hardening steel with significantly improved rolling contact fatigue properties can be obtained.
以下に参考例及び実施例を挙げて本発明をより詳細に具
体的に説明する。The present invention will be specifically explained in more detail with reference to Reference Examples and Examples below.
参考例
第1表に示す鋼について、熱間圧延前に第2表に示す各
温度に加熱した後、直径15mの線材に圧延し、これを
740℃の温度で焼きなまし処理した後、10%又は5
0%の加工率で冷間加工し、次いで、平均加熱速度1℃
/分で950℃に昇温し、この温度に3時間保持した後
、オーステナイト粒の粗大化率を測定した。結果を第2
表及び第1図、第2図、第3図に示すように、本発明に
従って、鋼材を熱間圧延前にその(Aj!+2N)!に
よって前記式で規定される温度以上に加熱し、この後に
熱間圧延して得られる鋼は、いずれもAINが40pp
m以下であって、焼きなまし処理後に冷間加工し、更に
高温熱処理しても、組織は細粒組織を保っている。しか
し、熱間圧延前の温度が前記式で規定される温度以下で
あるときは、いずれも圧延後のAl/N量が40ppm
を越えるので、浸炭処理時にオーステナイト結晶粒のネ
ロ大化が著しい。Reference Example The steel shown in Table 1 was heated to each temperature shown in Table 2 before hot rolling, then rolled into a wire rod with a diameter of 15 m, and annealed at a temperature of 740°C. 5
Cold worked at 0% working rate, then average heating rate 1°C
After increasing the temperature to 950° C./min and maintaining this temperature for 3 hours, the coarsening rate of the austenite grains was measured. Second result
As shown in the table and FIGS. 1, 2, and 3, according to the present invention, the steel material is (Aj!+2N) before hot rolling. All steels obtained by heating above the temperature specified by the above formula and then hot rolling have an AIN of 40pp.
m or less, and the structure maintains a fine-grained structure even after cold working after annealing and further high-temperature heat treatment. However, when the temperature before hot rolling is below the temperature specified by the above formula, the amount of Al/N after rolling is 40 ppm.
, the austenite crystal grains are significantly enlarged during the carburizing process.
圧延後のAl1N量が40ppm以下であるとき、オー
ステナイト結晶粒の粗大化は観察されないが、圧延後の
AIN量が40ppm以上であるとき、加工率10%及
び40%以上の場合に粗大化が顕著であることが明らか
である。When the amount of Al1N after rolling is 40 ppm or less, coarsening of austenite crystal grains is not observed, but when the amount of Al1N after rolling is 40 ppm or more, coarsening is noticeable when the processing rate is 10% and 40% or more. It is clear that
第3図は(A l + 2 N)量と熱間圧延前の加熱
温度とによって、圧延後のAl量が規制されることを示
し、熱間圧延後の鋼中のAt’N量を40ppm以下と
する下限温度は(A l + 2 N>量の一次函数と
して規定される。Figure 3 shows that the amount of Al after rolling is regulated by the amount of (A l + 2 N) and the heating temperature before hot rolling. The lower limit temperature below is defined as a linear function of (A l + 2 N> quantity.
実施例1
第3表鋼番号1〜5に示す化学成分組成を有する肌焼鋼
を1250℃の加熱炉中で加熱した後、直径151mの
線材に圧延した。これら圧延材におけるAl1N析出量
を第3表に示す。次いで、この圧延材から円筒型の転勤
疲労試験片を作製した。Example 1 Case hardened steels having chemical compositions shown in Table 3 Steel No. 1 to 5 were heated in a heating furnace at 1250° C. and then rolled into wire rods with a diameter of 151 m. Table 3 shows the amount of Al1N precipitated in these rolled materials. Next, a cylindrical transfer fatigue test piece was prepared from this rolled material.
比較鋼2及び4はS含有量が本発明で規定する範回外で
あり、比較鋼3及び5はAI!03 IFが本発明で規
定する範囲外である。各試験片を975℃の温度で2時
間浸炭後、焼入れし、次いで、160℃の温度で2時間
加熱して焼戻しをした後、試験片をラッピング加工して
仕上げ、ヘルツ応力600kg/112にて試験に供し
た。Comparative steels 2 and 4 have S contents outside the range specified by the present invention, and comparative steels 3 and 5 have an AI! 03 IF is outside the range defined by the present invention. Each specimen was carburized at a temperature of 975°C for 2 hours, then quenched, then tempered by heating at a temperature of 160°C for 2 hours, and then finished by lapping and subjected to a Hertzian stress of 600 kg/112. Tested.
応力繰り返し数と破損率との関係を第4図に示す。本発
明による肌焼鋼が従来鋼に比べて転勤疲労特性に著しく
すぐれていることが明らかである。Figure 4 shows the relationship between the number of stress repetitions and the failure rate. It is clear that the case hardened steel according to the present invention has significantly better transfer fatigue properties than conventional steel.
また、これらの結果に基づいて、転勤試験において試験
片の10%の破壊が生じるときを寿命とし、この寿命と
S含有量との関係を第5図に示し、また、Al.0.量
と関係を第6図に示す。S含有量が0.01%以下のと
き、及びAl.0.含有量が20ppn+以下のときに
、転勤疲労特性が著しく改善されることが明らかである
。Based on these results, the life span is defined as the time when 10% of the specimen breaks in the transfer test, and the relationship between this life span and the S content is shown in Figure 5. 0. The quantities and relationships are shown in Figure 6. When the S content is 0.01% or less, and when the Al. 0. It is clear that when the content is below 20 ppn+, the transfer fatigue properties are significantly improved.
次に、上記の本発明鋼1を上記と同じ条件で加熱し、熱
間圧延した後、酸洗いし、脱スケールし、次いで、97
5℃の温度でカーボン・ポテンシャル0.87の条件下
に3時間浸炭し、焼入れ後、160℃の温度で2時間焼
戻しした。この浸炭品の硬さ分布曲線を第7図に示す。Next, the above invention steel 1 was heated under the same conditions as above, hot rolled, pickled, descaled, and then 97%
Carburizing was carried out at a temperature of 5° C. for 3 hours under the condition of a carbon potential of 0.87, and after quenching, the material was tempered at a temperature of 160° C. for 2 hours. The hardness distribution curve of this carburized product is shown in FIG.
また、上記本発明鋼1について浸炭温度(浸炭時間3時
間)とオーステナイト粒度階との関係を第8図に示す。Further, FIG. 8 shows the relationship between carburizing temperature (carburizing time: 3 hours) and austenite grain size for the steel 1 of the present invention.
本発明の方法によれば、浸炭処理後にも細粒組織が保持
される。他方、本発明tillを1100℃に加熱し、
熱間圧延し、AIN量を1102ppとした。これを同
様に浸炭処理したときの浸炭温度とオーステナイト粒度
階との関係を第8図に示す。浸炭温度が高くなるにつれ
て、オーステナイトが粗大化することが明らかである。According to the method of the present invention, a fine grain structure is maintained even after carburizing treatment. On the other hand, the present invention till is heated to 1100°C,
It was hot rolled to have an AIN content of 1102 pp. FIG. 8 shows the relationship between carburizing temperature and austenite grain size when this was similarly carburized. It is clear that as the carburizing temperature increases, the austenite becomes coarser.
実施例2
第3表に示す化学組成を有する本発明鋼6については、
実施例1と同様に′して1250℃の温度に加熱した後
、また、比較鋼7については、これを前記式で規定され
る温度(1160℃)よりも低い温度1100℃に加熱
した後に、それぞれを熱間圧延して直径15龍の圧延材
とした。これを酸洗いし、脱スケールした後、そのまま
、又は10%の冷間加工を施し、975℃の温度に7時
間加熱して、疑似浸炭処理し、このようにして得られた
鋼について、そのオーステナイト結晶粒度を測定した。Example 2 Regarding the invention steel 6 having the chemical composition shown in Table 3,
After heating to a temperature of 1250°C in the same manner as in Example 1, and for comparative steel 7, after heating it to a temperature of 1100°C lower than the temperature specified by the above formula (1160°C), Each was hot rolled into a rolled material with a diameter of 15 mm. After pickling and descaling, the steel is used as it is or subjected to 10% cold working and heated to a temperature of 975°C for 7 hours to undergo pseudo-carburizing treatment. The austenite grain size was measured.
その結果、本発明鋼によれば、オーステナイト粗大化率
は非冷間加工部でも、10%加工部でも0%であったが
、比較鋼によれば、非加工部で50%、10%加工部で
は100%に達した。尚、ここにオーステナイト粗大化
率とは、粒度陽6より大きい結晶粒の割合を示す。As a result, according to the invention steel, the austenite coarsening rate was 0% in both the non-cold worked part and the 10% worked part, but according to the comparison steel, the austenite coarsening rate was 50% in the unworked part and 10% worked part. It reached 100% in the department. Note that the austenite coarsening rate here indicates the proportion of crystal grains with a grain size larger than 6.
第1図はAl7N重量比と結晶粒粗大化率との関係を示
すグラフ、第2図は(Az千2N)Iと結晶粒粗大化率
との関係を示すグラフ、第3図は(A I + 2 N
)量と熱間圧延前加熱温度と熱間圧延後の鋼中のAl’
Nlとの関係を示すグラフ、第4図は本発明の方法によ
る鋼1及び比較鋼2.3.4及び5の転勤疲労試験にお
ける応力繰り返し数と破損率との関係を示すグラフ、第
5図は転勤疲労試験において試験片の10%の破壊が生
じるときを寿命とし、この寿命とS含有量との関係を示
すグラフ、第6図は第5図と同様に試験片寿命とAha
、量との関係を示すグラフ、第7図は本発明による鋼を
浸炭焼入れ焼戻し処理したときの表面からの深さとHv
硬さとの関係を示すグラフ、第8図は本発明鋼1を本発
明に従って処理したときの浸炭温度とオーステナイト粒
度陽との関係を比較方法と共に示すグラフである。
第1図
AQ/ N棗童比
第2図
0.050 0.+00
A0.+2NC亨i%)
第4図
弔 5Q
第6図
0 20 40 6O
A&’203 Cpprn)Fig. 1 is a graph showing the relationship between Al7N weight ratio and crystal grain coarsening rate, Fig. 2 is a graph showing the relationship between (Az 1,2N) I and crystal grain coarsening rate, and Fig. 3 is a graph showing the relationship between (Az 1,2N)I and crystal grain coarsening rate. + 2 N
) amount, heating temperature before hot rolling, and Al' in steel after hot rolling
FIG. 4 is a graph showing the relationship between stress repetition rate and failure rate in the transfer fatigue test of Steel 1 and Comparative Steels 2.3.4 and 5 according to the method of the present invention. FIG. Figure 6 is a graph showing the relationship between the life span and the S content, with the life span defined as the time when 10% of the specimen breaks in the transfer fatigue test.
FIG. 7 is a graph showing the relationship between the amount and the depth from the surface and Hv when the steel according to the present invention is carburized, quenched and tempered.
FIG. 8 is a graph showing the relationship between carburizing temperature and austenite grain size when Inventive Steel 1 is treated according to the present invention, along with a comparative method. Figure 1 AQ/N Natsume Do Ratio Figure 2 0.050 0. +00 A0. +2NC +i%) Figure 4 Condolence 5Q Figure 6 0 20 40 6O A&'203 Cpprn)
Claims (1)
Al+2N)として0.045〜0.065%、 S0.01%以下、及び Cr0.3〜1.5%を含有する鋼を、熱間圧延前に次
式で規定される温度T(℃) T≧3750(Al%+2N%)+950 (但し、元素%は当該元素の鋼中の重量%を意味する。 ) に加熱し、この後に熱間圧延して、圧延後のAlN析出
量を40ppm以下とすることを特徴とするベアリング
用肌焼鋼の製造方法。(1) C0.05-0.35% by weight, Si 0.4% or less, Mn 0.5-2.0%, Al_2O_3 20ppm or less, Al and N at an Al/N weight ratio of 1.9-3.5 In the range of (
A steel containing 0.045 to 0.065% as Al+2N), 0.01% or less of S, and 0.3 to 1.5% of Cr is heated to a temperature T (℃) T defined by the following formula before hot rolling. ≧3750 (Al% + 2N%) + 950 (However, element % means the weight % of the element in the steel.) After that, hot rolling is performed to reduce the amount of AlN precipitation after rolling to 40 ppm or less. A method for manufacturing case-hardened steel for bearings, characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12823684A JPS616212A (en) | 1984-06-20 | 1984-06-20 | Manufacture of case hardening steel for bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12823684A JPS616212A (en) | 1984-06-20 | 1984-06-20 | Manufacture of case hardening steel for bearing |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS616212A true JPS616212A (en) | 1986-01-11 |
JPH0568526B2 JPH0568526B2 (en) | 1993-09-29 |
Family
ID=14979855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12823684A Granted JPS616212A (en) | 1984-06-20 | 1984-06-20 | Manufacture of case hardening steel for bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS616212A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63137145A (en) * | 1986-11-29 | 1988-06-09 | Nippon Steel Corp | Steel for carburizing |
JPS63247426A (en) * | 1987-03-31 | 1988-10-14 | Kensetsu Kiso Eng Kk | Construction of slope frame |
JPS6447838A (en) * | 1987-08-13 | 1989-02-22 | Nippon Steel Corp | Curburizing steel |
JPH0428938Y2 (en) * | 1987-11-06 | 1992-07-14 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5675551A (en) * | 1979-11-22 | 1981-06-22 | Sanyo Tokushu Seikou Kk | Grain stabilized carburizing steel |
JPH0254403A (en) * | 1988-08-01 | 1990-02-23 | Internatl Business Mach Corp <Ibm> | Circuit and method for lowering disturbance of data signal |
-
1984
- 1984-06-20 JP JP12823684A patent/JPS616212A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5675551A (en) * | 1979-11-22 | 1981-06-22 | Sanyo Tokushu Seikou Kk | Grain stabilized carburizing steel |
JPH0254403A (en) * | 1988-08-01 | 1990-02-23 | Internatl Business Mach Corp <Ibm> | Circuit and method for lowering disturbance of data signal |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63137145A (en) * | 1986-11-29 | 1988-06-09 | Nippon Steel Corp | Steel for carburizing |
JPH049858B2 (en) * | 1986-11-29 | 1992-02-21 | ||
JPS63247426A (en) * | 1987-03-31 | 1988-10-14 | Kensetsu Kiso Eng Kk | Construction of slope frame |
JPH0477765B2 (en) * | 1987-03-31 | 1992-12-09 | Kensetsu Kiso Eng | |
JPS6447838A (en) * | 1987-08-13 | 1989-02-22 | Nippon Steel Corp | Curburizing steel |
JPH0428938Y2 (en) * | 1987-11-06 | 1992-07-14 |
Also Published As
Publication number | Publication date |
---|---|
JPH0568526B2 (en) | 1993-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08311607A (en) | Low strain carburized gear excellent in deddendum bending strength and its production | |
JPH0892690A (en) | Carburized parts excellent in fatigue resistance and its production | |
JP3033349B2 (en) | Carburized steel parts with excellent pitting resistance | |
JPH06293939A (en) | Bearing parts excellent in high temperature rolling fatigue characteristic | |
JP2000192962A (en) | Rolling bearing | |
JPH07179985A (en) | High strength suspension spring excellent in corrosion resistance and its production | |
JPH0617224A (en) | Carburized bearing parts excellent in high temperature rolling fatigue property | |
JP3219167B2 (en) | Manufacturing method of high surface pressure parts | |
JPS616212A (en) | Manufacture of case hardening steel for bearing | |
KR101713677B1 (en) | Steel for high nitrogen air hardened bearing with high performance on rolling contact fatigue and method producing the same | |
JPH07188895A (en) | Manufacture of parts for machine structure use | |
JPH0617225A (en) | Carburized bearing parts excellent in rolling fatigue property | |
JPH05239602A (en) | High bearing pressure parts | |
JPH0254403B2 (en) | ||
JPH06228734A (en) | Production of steel for clutch diaphragm spring | |
JP2767254B2 (en) | Method for producing Cr-Mo case hardened steel | |
JP2600174B2 (en) | Low alloy nitrocarburized steel | |
JP3411387B2 (en) | Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load | |
JPH11279713A (en) | Martensitic stainless steel for disk brake excellent in rust resistance and heat degradation resistance | |
JP2611241B2 (en) | Low alloy nitrocarburized steel | |
JP3411388B2 (en) | Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load | |
JP7111029B2 (en) | Method for manufacturing steel parts | |
JPS626614B2 (en) | ||
JPH108199A (en) | Case hardening steel excellent in carburizing hardenability | |
JP2952862B2 (en) | Manufacturing method of spring steel with excellent hardenability and warm set resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |