JPS6131184B2 - - Google Patents

Info

Publication number
JPS6131184B2
JPS6131184B2 JP57010932A JP1093282A JPS6131184B2 JP S6131184 B2 JPS6131184 B2 JP S6131184B2 JP 57010932 A JP57010932 A JP 57010932A JP 1093282 A JP1093282 A JP 1093282A JP S6131184 B2 JPS6131184 B2 JP S6131184B2
Authority
JP
Japan
Prior art keywords
less
steel
soft
cooling
hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57010932A
Other languages
Japanese (ja)
Other versions
JPS58130269A (en
Inventor
Susumu Kanbara
Yasuo Ootani
Fukukazu Nakazato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1093282A priority Critical patent/JPS58130269A/en
Publication of JPS58130269A publication Critical patent/JPS58130269A/en
Publication of JPS6131184B2 publication Critical patent/JPS6131184B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、軟窒化処理物品、特に、軟窒化処理
を行なつたときに硬化深さが大であつて、表面部
から芯部への硬さ勾配の緩やかな硬化曲線が得ら
れる軟窒化処理物品の製法に関する。 軟窒化処理は、A1変態点以下、一般に570℃程
度の温度で、例えばシアン系化合物の塩浴、RX
ガス(吸熱型変性ガス)またはNガス(発熱型変
性ガス)等により被処理物を処理して、窒素と共
に一部の炭素を鋼中に侵入させ、表層部を硬化さ
せる表面硬化法の1種である。 この方法は浸炭―焼入法と異り被処理物に歪を
生じさせることがなく、また窒化の如く長時間を
要することもないので、機械部品等の量産に適し
た方法であるが、これに適する鋼種としての軟窒
化用鋼の開発は未だ十分でなく、短時間の軟窒化
処理で所望の特性が得られるものはこれまでみら
れなかつた。 例えば、従来、軟窒化用鋼としては、JIS
SCM435(0.35C―0.75Mn―1.1Cr―0.2Mo)や
SACM645(0.45C―0.4Si―1.5Cr―0.2Mo)が多
く使用されているが、SCM435鋼の場合、軟窒化
処理後の有効硬化深さ(微小ビツカース硬さHv
=500に対応する表面からの距離)はたかだか
0.10mm程度であり、表面硬さ(表面下25μmでの
微小ビツカース硬さ)もHv650以上にはならない
ため、疲労強度、耐摩耗性の点で満足のゆくもの
ではなかつた。また、このような欠点を改良して
窒化特性を向上させるAlおよびCrを多量に添加
したSACM645の場合には、軟窒化処理によつて
表面硬さはHv800〜1100と非常に高くなるが、有
効硬化深さは高高0.15mm程度と小さいため、表面
部から芯部への硬さ勾配が急激になりすぎる。そ
のため、高負荷の下で運転される歯車やベアリン
グなどの物品表面硬化部と芯部の境界付近からの
剥離現象が起きやすく、耐ピツチング性あるいは
耐スポーリング性が劣つていた。 ここに、本発明者らの知見によれば、通常の軟
窒化処理条件下で、表面硬さをHv650以上、有効
硬化深さを0.2mm以上とすることによつて疲労強
度および耐摩耗性は著しく改善され、一方、同時
に表面硬さをHv750以下に制限すると共に芯部硬
さを大きくすることによつて、表面部から芯部へ
の硬さ勾配を緩やかにすることができ、耐ピツチ
ング性および耐スポーリング性が著しく改善され
る。 かかる状況に鑑み、本発明者らは、鋭意研究の
結果、疲労強度、耐摩耗性にすぐれているととも
に、耐ピツチング性、耐スポーリング性にもすぐ
れた軟窒化用鋼を得るのに成功し(特開昭58―
71357号、同58―71358号および同58―71359号参
照)、そして、さらに研究を続けたところ、軟窒
化処理時の鋼組織としては、表面近傍においてフ
エライト+パーライト組織であることが最適であ
ることを見い出して本発明を完成した。 すなわち、本発明は、所望の表面硬さを得るた
めにCrおびAlの添加量を調整すると共に、表面
からの硬さ勾配を緩やかにするために、まず第一
に硬化深さを大きくするのに有効なVを添加し、
同時に、Vとの共存効果によつて芯部の硬さ向上
に有効な鋼中Nの量を特定した鋼組成と、表面近
傍のフエライト+パーライト組織とを組合せて備
えた鋼物品に軟窒化処理を行なうことを本質的特
徴とする。 ここに、本発明は、C:0.15〜0.35%,Si:
0.35%以下,Mn:0.60〜1.30%,Cr:0.70%を越
え1.50%以下、V:0.05〜0.50%,sol.Al:0.02〜
0.10%,N:0.006〜0.020%,さらに、必要によ
り、S:0.04〜0.13%,Pb:0.03〜0.35%および
Ca:0.0010〜0.0100%のうちの1種または2種以
上を含有し、残部Feと不可避的不純物からなる
組成を有する加工素材をA3点以上の熱間で加工
してから冷却するに際して800℃と500℃との間を
表面冷却速度2℃/秒以下で調整冷却し、次いで
軟窒化処理を行なうことを特徴とする、硬化深さ
の大きな軟窒化処理物品の製法、および、同じく
上記組成の鋼組成を有する加工素材を適宜加工し
てからA3点以上に加熱して焼ならしを行なうに
際して、800℃と500℃との間を表面冷却速度2
℃/秒以下で調整冷却し、次いで軟窒化処理を行
なうことを特徴とする、硬化深さの大きな軟窒化
処理物品の製法である。 本発明にあつては、前述のように、表面近傍、
例えば表面下約1mm以内の組織を軟窒化特性のよ
いフエライト+パーライト組織とするものである
が、そのために本発明によれば熱間圧延または鍛
造等の適宜熱間加工後、あるいはA3点以上に加
熱して行なう焼ならし後の物品表面冷却速度を
800℃〜500℃の間で2℃/秒以下に制限する。そ
の特定化した鋼組成と相まつて、かくして得られ
た鋼組織によつて、本発明に係る方法で軟窒化さ
れる物品は優れた軟窒化特性を示す。 上述のような本発明の趣旨からも容易に理解さ
れるように、上記「加工素材」は一般の板鋼ある
いは棒鋼のみならず、最終形状に加工される素材
すべてを包含するものであり、また、「軟窒化物
品」は例えば歯車やベアリング等のみに制限され
ず、最終的に軟窒化して使用される鋼製品一般を
包含するものである。 次に、本発明に係る方法において使用する鋼の
組成を上述の範囲内に限定した理由について述べ
る。 C:Cは強度確保のための基本成分であり、芯
部強度確保のためには最低0.15%必要である。し
かし、0.35%を越えると芯部の延性、靭性が低下
し、切削性、冷間加工性、溶接性が低下すると共
に、軟窒化後の表面硬さ、硬化深さの減少も著し
くなる。したがつて、本発明におけるC量は下限
を0.15%、上限を0.35%とした。 Si:Siは通常脱酸剤として添加されるが、浸炭
を阻害する元素であるため、浸炭と窒化が同時に
進行する軟窒化においてもSiが少ないほど硬化特
性は向上し、より大きな硬化深さが得られる。特
に、Siが0.35%以下になると、その効果が大きく
なるので、本発明においては、Siの上限を0.35%
とした。また、Siは溶接性、溶接熱影響部の靭
性、冷間加工性に対しても有害な元素であり、特
に0.10%を越えると急激にこれらの特性が劣化し
始める。そのため、本発明ではSi量の上限は好ま
しくは0.10%である。 Mn:Mnは製鋼時の脱酸剤として不可欠である
と共に、芯部の強度・靭性の向上にも有効であつ
て、軟窒化処理品の性能確保のために最低0.60%
は必要である。しかし、1.30%を越えると切削性
が著しく低下し始めるので、下限を0.60%、上限
を1.30%とした。 Cr:Crは軟窒化による侵入Nと結合して表面
硬さを高め、且つ硬化深さを大きくする極めて有
効な元素である。その効果を十分に発揮せしめる
には0.70%を越える量のCr量が必要であるが、
1.50%を越えると通常の軟窒化処理条件での軟窒
化後に表面硬さがHv750以上になるため、上限を
1.50%とした。 V:Vは軟窒化による侵入Nおよび侵入Cと結
合して微細なバナジウム炭窒化物を析出すること
により、表面硬さおよび表面深さを向上させる。
特に、VはCrに比して、表面硬さの上昇に対す
る寄与が比較的小さいが、硬化深さの増加に対す
る寄与が大きい。また、Vは析出硬化によつて芯
部硬さを上昇させるため、硬化深さが深く、表面
から芯部への硬度勾配が緩やかな硬化曲線を得る
のに非常に有効な元素である。 その効果を十分に発揮せしめるには少なくとも
0.05%必要であるが、0.50%を越えるとその効果
が飽和するかむしろ低下し始めるので、下限を
0.05%、上限を0.50%とした。 sol.Al:AlもCrと同様に侵入Nと結合して表面
硬さを高めるが、硬化深さ向上にはあまり有効で
はない。特にVとの複合添加では、0.10%以上の
Alを添加すると硬化深さはむしろ低下する。し
かし表面硬さに対しては微量添加でも有効であ
り、Hv650以上を確保するには少なくとも0.02%
必要であるので、下限を0.02%、上限を0.10%と
した。 N:Nは結晶粒度を微細化させ、それにより芯
部の靭性を向上せしめると共に、Vと共存下にお
いてVとの化合物を生成することにより析出硬化
を生じ、芯部硬さの向上ももたらす。このような
析出硬化を生じさせるためには少なくとも0.006
%は必要である。しかし、0.020%を越えると、
過剰量の窒化物が生成するため冷間加工性および
芯部の靭性が急激に劣化するので、本発明におい
てはN量の下限を0.006%、上限を0.020%とし
た。 S,Pb,Ca:これらの成分は、軟窒化処理前
に切削を施す前の切削性向上に有効である。軟窒
化処理前に深穴穿孔、重切削、高速切削などが施
される場合には、切削性が要求される度合いに応
じて、これらの元素の1種又は2種以上を含有さ
せることができる。これらの成分は硬化特性に対
しては何ら影響を及ぼさない。 構造用鋼の切削性を高めるのに必要最少限の添
加量は、S:0.04%,Pb:0.03%,Ca:0.0010%
である。またSは0.13%、Pbは0.35%を越えると
強度・靭性の低下が甚しくなり、一方Caは溶製
上0.0100%以上添加するのは困難であるので、S
については下限を0.04%、上限を0.13%、Pbにつ
いては下限を0.03%、上限を0.35%、Caについて
は下限を0.0010%、上限を0.0100%とした。 かかる鋼組成を有する加工素材は、本発明によ
れば、A3点以上に加熱後、熱間鍛造、曲げ加工
などの適宜の熱間加工を行ない、または適宜加工
後A3点以上に加熱して焼ならしを行ない、そし
てその際、800℃〜500℃の間を2℃/秒以下の表
面冷却速度で冷却する調整冷却を行なう。本発明
において、前述のように特定する鋼組成では、上
記調整冷却によつて軟窒化処理に適するフエライ
ト+パーライト組織が表面近傍に形成される。上
記表面冷却速度が2℃/秒を越えて急速冷却され
る場合、マルテンサイト組織やベイナイト組織が
生じてしまい、これらは軟窒化によつて得られる
硬化深さが不十分であつて満足する疲労強度およ
び耐ピツチング性が得られないことから、本発明
にあつては上記表面冷却速度を2℃/秒以下に制
限する。 冷却に際しては表面近傍が最も冷却速度が早
く、したがつて、ベイナイトあるいはマルテンサ
イト組織が発生しやすい。また、形状確保・冷却
促進などから熱間加工あるいは熱処理後注水され
ることがあり一部表面にベイナイトが生成するこ
とがある。したがつて、このようなベイナイトま
たはマルテンサイトの生成を防止するために、本
発明にあつては、製品の表面冷却速度で熱間圧延
後の冷却をコントロールするのである。 なお、表面近傍がフエライト+パーライト組織
であることは、当然ながら、内部もまたフエライ
ト+パーライト組織ということであるが、本発明
にあつては、すでに述べたように、VおよびN添
加量の適正化を含めた合金組成の調整によつて所
要の芯部強度の確保を図つている。 かくして、本発明によれば、表面近傍に軟窒化
特性のすぐれたフエライト+パーライト組織が均
一に現出した、例えば、歯車等の軟窒化すべき製
品(物品)が得られる。このような製品は、その
後、必要によりさらに冷間加工(例、鍛造、引
抜、切削等)を加えて最終形状としてから軟窒化
を行なうが、その際の前組織は前記の熱間加工あ
るいは焼ならし後の調整冷却時の冷却速度によつ
て決定される。したがつて、本発明によつて、前
記鋼組成の加工素材を適宜最終形状までに加工し
てから軟窒化することにより、前述のような優れ
た軟窒化特性を示す軟窒化製品が得られるのであ
る。 なお、本発明において採用する軟窒化処理は特
に制限されず、通常実施されているものであれば
よいが、好ましくは、例えば、アンモニアガス+
RXガス(容積比1:1)の混合ガスを使い550〜
600℃で1〜6時間処理する方法である。 次に、本発明を実施例によつて更に説明する。 実施例 第1表に示す鋼組成をもつた各鋼種の100Kgf
鋼を1250℃に加熱し、熱間圧延により100mm角の
ビレツトを得た。これを加工素材として使用し
て、次の2種類の加工および調整冷却を行なつ
た。 (1) 本例は熱間鍛造ままの例を示すものであつ
て、上記加工素材を1250℃に加熱し、熱間鍛造
により直径25mmの丸棒に仕上げ温度1000℃で鍛
造した。この仕上げ温度からの冷却時に表面冷
却速度の調整を行ない、保温カバー内での冷
却、大気放冷、風冷、噴霧冷却をそれぞれ実施
して、800℃〜500℃の温度域を1.0〜5.0℃/秒
の表面冷却速度で冷却した。しかる後に、冷間
で直径24.5mmにまで機械切削した。 (2) 本例は熱間加工後焼ならしを行なう例を示す
もので、上記加工素材を1250℃に加熱し、熱間
鍛造により直径25mmの丸棒に仕上げ温度1000℃
で鍛造した。この仕上げ温度から室温まで大気
放冷した。次いで900℃に加熱して焼ならしを
行なつた。この焼ならし処理時、上記の焼なら
し温度からの冷却時に表面冷却速度の調整を行
ない、保温カバー内での冷却、大気放冷、風
冷、噴霧冷却をそれぞれ実施して、800℃〜500
℃の温度域を1.0〜5.0℃/秒の表面冷却速度で
冷却した。しかる後に、冷間で直径24.5mmにま
で機械切削した。 なお、第1表に示す鋼種のうち、鋼種No.1〜13
は本発明の範囲内の鋼組成を有し、一方、鋼種No.
14〜20は本発明の範囲外の鋼組成を有し、また鋼
種No.21および22はそれぞれJIS―SCM435、およ
びJIS―SACM645に相当する鋼である。 次いで、このようにして得た直径24.5mmの棒鋼
を2%ナイタール腐食液で腐食して棒鋼表面の金
属組織観察を行なうとともに、570℃×4hr、
NH3:RX=1:1の条件下で吸熱型変性ガス
(RXガス)によるガス軟窒化を施し、表面硬さ
(表面から25μmの深さの地点の微小ビツカース
硬さ)および有効硬化深さ(微小ビツカース硬さ
Hv500に対応する表面からの距離)を測定した。
それらの結果を第2表および第3表にまとめて示
す。
The present invention provides a soft-nitrided article, particularly a soft-nitrided article that has a large hardening depth and provides a hardening curve with a gentle hardness gradient from the surface to the core. Concerning the manufacturing method of articles. Soft-nitriding treatment is carried out at a temperature below the A1 transformation point, generally around 570°C, for example in a cyanide compound salt bath, RX
A type of surface hardening method in which the workpiece is treated with gas (endothermic modified gas) or N gas (exothermic modified gas), etc., and some carbon along with nitrogen penetrates into the steel to harden the surface layer. It is. Unlike the carburizing-quenching method, this method does not cause distortion in the workpiece, and unlike nitriding, it does not require a long time, so it is suitable for mass production of mechanical parts. The development of steel for nitrocarburizing as a steel suitable for nitrocarburizing has not been sufficiently developed, and so far no steel has been found that can obtain the desired properties with a short nitrocarburizing treatment. For example, conventionally, JIS
SCM435 (0.35C―0.75Mn―1.1Cr―0.2Mo)
SACM645 (0.45C-0.4Si-1.5Cr-0.2Mo) is often used, but in the case of SCM435 steel, the effective hardening depth (micro-Vickers hardness Hv
= distance from the surface corresponding to 500) is at most
It was about 0.10 mm, and the surface hardness (microscopic Vickers hardness at 25 μm below the surface) was not higher than Hv650, so it was not satisfactory in terms of fatigue strength and wear resistance. In addition, in the case of SACM645, which has a large amount of Al and Cr added to improve the nitriding properties by improving the nitriding properties, the soft nitriding treatment increases the surface hardness to Hv800-1100, which is very high, but it is not effective. Since the hardening depth is small at about 0.15 mm in height, the hardness gradient from the surface to the core becomes too steep. Therefore, products such as gears and bearings that are operated under high loads tend to peel off near the boundary between the hardened surface part and the core, resulting in poor pitting resistance or spalling resistance. According to the findings of the present inventors, fatigue strength and wear resistance can be improved by setting the surface hardness to Hv650 or more and the effective hardening depth to 0.2 mm or more under normal soft-nitriding treatment conditions. On the other hand, by simultaneously limiting the surface hardness to Hv750 or less and increasing the core hardness, the hardness gradient from the surface to the core can be made gentler, improving pitting resistance. and spalling resistance is significantly improved. In view of this situation, as a result of intensive research, the present inventors succeeded in obtaining a steel for soft nitriding that has excellent fatigue strength and wear resistance, as well as pitting resistance and spalling resistance. (Unexamined Japanese Patent Publication 1983-
71357, 58-71358, and 58-71359), and further research revealed that the optimal steel structure for soft nitriding is a ferrite + pearlite structure near the surface. They discovered this and completed the present invention. That is, in the present invention, in order to obtain the desired surface hardness, the amounts of Cr and Al added are adjusted, and in order to make the hardness gradient from the surface gentle, first of all, the hardening depth is increased. Add effective V to
At the same time, a steel article with a combination of a steel composition with a specified amount of N in the steel that is effective in improving the hardness of the core due to its coexistence with V and a ferrite + pearlite structure near the surface is treated with soft nitriding. The essential feature is to do the following. Here, the present invention includes C: 0.15 to 0.35%, Si:
0.35% or less, Mn: 0.60 to 1.30%, Cr: more than 0.70% and 1.50% or less, V: 0.05 to 0.50%, sol.Al: 0.02 to
0.10%, N: 0.006-0.020%, and if necessary, S: 0.04-0.13%, Pb: 0.03-0.35% and
A processing material containing one or more of 0.0010% to 0.0100%, with the balance consisting of Fe and unavoidable impurities, is heated to 800℃ after being processed at 3 or more hot temperatures and then cooled. and 500°C at a surface cooling rate of 2°C/second or less, followed by soft nitriding. When processing a workpiece material having a steel composition appropriately and then heating it to 3 points or more for normalizing, the surface cooling rate is 2 between 800℃ and 500℃.
This is a method for producing a soft-nitrided article with a large hardening depth, characterized by controlled cooling at a rate of 0.degree. C./second or less, followed by soft-nitriding. In the present invention, as described above, near the surface,
For example, the structure within about 1 mm below the surface is made into a ferrite + pearlite structure with good soft-nitriding properties, and for this purpose, according to the present invention, after appropriate hot working such as hot rolling or forging, or after A 3 points or more The cooling rate of the surface of an article after normalizing is heated to
Limit the temperature to 2°C/sec or less between 800°C and 500°C. Due to the steel structure thus obtained, together with the specified steel composition, the article soft-nitrided by the method according to the invention exhibits excellent soft-nitriding properties. As can be easily understood from the purpose of the present invention as described above, the above-mentioned "processed material" includes not only general plate steel or steel bars, but also all materials that are processed into the final shape. The term "soft-nitrided article" is not limited to gears, bearings, etc., but includes general steel products that are ultimately used after being soft-nitrided. Next, the reason why the composition of the steel used in the method according to the present invention was limited within the above range will be described. C: C is a basic component for ensuring strength, and a minimum of 0.15% is required to ensure core strength. However, if it exceeds 0.35%, the ductility and toughness of the core decrease, machinability, cold workability, and weldability decrease, and the surface hardness and hardening depth after nitrocarburizing also significantly decrease. Therefore, the lower limit of the amount of C in the present invention is set to 0.15% and the upper limit is set to 0.35%. Si: Si is usually added as a deoxidizing agent, but it is an element that inhibits carburization, so even in soft nitriding, where carburization and nitriding proceed simultaneously, the less Si there is, the better the hardening properties are, and the deeper the hardening depth. can get. In particular, the effect becomes greater when Si becomes 0.35% or less, so in the present invention, the upper limit of Si is set to 0.35%.
And so. Furthermore, Si is a harmful element to weldability, toughness of the weld heat affected zone, and cold workability, and in particular, when it exceeds 0.10%, these properties begin to deteriorate rapidly. Therefore, in the present invention, the upper limit of the amount of Si is preferably 0.10%. Mn: Mn is essential as a deoxidizing agent during steel manufacturing, and is also effective in improving the strength and toughness of the core, and must be present at a minimum of 0.60% to ensure the performance of soft-nitrided products.
is necessary. However, if it exceeds 1.30%, the machinability begins to deteriorate significantly, so the lower limit was set to 0.60% and the upper limit was set to 1.30%. Cr: Cr is an extremely effective element that increases the surface hardness and increases the hardening depth by combining with the N intruded by nitrocarburizing. In order to fully demonstrate its effect, a Cr content exceeding 0.70% is required.
If it exceeds 1.50%, the surface hardness will be Hv750 or higher after soft-nitriding under normal soft-nitriding treatment conditions, so the upper limit should be set.
It was set at 1.50%. V: V improves surface hardness and surface depth by combining with intruding N and intruding C by soft nitriding to precipitate fine vanadium carbonitrides.
In particular, compared to Cr, V has a relatively small contribution to increasing surface hardness, but has a large contribution to increasing hardening depth. Further, since V increases the hardness of the core through precipitation hardening, it is an extremely effective element for obtaining a hardening curve with a deep hardening depth and a gentle hardness gradient from the surface to the core. In order to fully demonstrate its effect, at least
0.05% is necessary, but if it exceeds 0.50%, the effect will be saturated or even begin to decline, so the lower limit should be set.
0.05%, with an upper limit of 0.50%. sol.Al: Like Cr, Al also combines with intruding N to increase surface hardness, but is not very effective in increasing hardening depth. Especially when combined with V, 0.10% or more
Addition of Al actually decreases the hardening depth. However, even a small amount of addition is effective for surface hardness, at least 0.02% to ensure Hv650 or higher.
Since it is necessary, the lower limit was set to 0.02% and the upper limit was set to 0.10%. N: N refines the grain size, thereby improving the toughness of the core, and also causes precipitation hardening by forming a compound with V in the coexistence with V, thereby improving the hardness of the core. At least 0.006 to produce such precipitation hardening.
% is required. However, if it exceeds 0.020%,
Since an excessive amount of nitride is generated, cold workability and core toughness are rapidly deteriorated, so in the present invention, the lower limit of the N amount is set to 0.006% and the upper limit is set to 0.020%. S, Pb, Ca: These components are effective in improving machinability before cutting before soft-nitriding treatment. When deep hole drilling, heavy cutting, high-speed cutting, etc. are performed before soft-nitriding treatment, one or more of these elements can be included depending on the degree of machinability required. . These components have no effect on the curing properties. The minimum addition amounts necessary to improve the machinability of structural steel are S: 0.04%, Pb: 0.03%, Ca: 0.0010%.
It is. In addition, if S exceeds 0.13% and Pb exceeds 0.35%, the strength and toughness will deteriorate significantly.On the other hand, it is difficult to add more than 0.0100% of Ca in melting process, so S
For Pb, the lower limit was 0.04% and the upper limit was 0.13%, for Pb the lower limit was 0.03% and the upper limit was 0.35%, and for Ca the lower limit was 0.0010% and the upper limit was 0.0100%. According to the present invention, a processed material having such a steel composition is heated to A 3 points or higher and then subjected to appropriate hot working such as hot forging or bending, or heated to A 3 points or higher after appropriate processing. Normalizing is carried out, and at that time, controlled cooling is carried out by cooling between 800° C. and 500° C. at a surface cooling rate of 2° C./sec or less. In the present invention, in the steel composition specified as described above, a ferrite+pearlite structure suitable for nitrocarburizing is formed near the surface by the controlled cooling. If the above-mentioned surface cooling rate exceeds 2°C/sec and the surface is rapidly cooled, a martensitic structure or a bainite structure will be formed, and the hardening depth obtained by soft nitriding is insufficient to achieve satisfactory fatigue. Since strength and pitting resistance cannot be obtained, the surface cooling rate is limited to 2° C./second or less in the present invention. During cooling, the cooling rate is fastest near the surface, and therefore bainite or martensitic structures are likely to occur. In addition, water may be poured after hot working or heat treatment to secure the shape and accelerate cooling, and bainite may be formed on some surfaces. Therefore, in order to prevent the formation of such bainite or martensite, in the present invention, cooling after hot rolling is controlled by the surface cooling rate of the product. Note that the fact that the vicinity of the surface has a ferrite + pearlite structure naturally means that the interior also has a ferrite + pearlite structure, but in the present invention, as mentioned above, the appropriate amount of V and N is added. We aim to ensure the required core strength by adjusting the alloy composition, including oxidation. Thus, according to the present invention, it is possible to obtain a product (article) to be soft-nitrided, such as a gear, in which a ferrite+pearlite structure with excellent soft-nitriding characteristics appears uniformly near the surface. Such products are then subjected to further cold working (e.g., forging, drawing, cutting, etc.) as necessary to achieve the final shape, and then nitrocarburizing, but the previous structure is not the same as the hot working or sintering. It is determined by the cooling rate during adjustment cooling after conditioning. Therefore, according to the present invention, by suitably processing the processed material of the steel composition to the final shape and then nitrocarburizing it, a nitrocarburizing product exhibiting the excellent nitrocarburizing properties as described above can be obtained. be. Note that the soft nitriding treatment employed in the present invention is not particularly limited, and may be any commonly performed treatment, but preferably, for example, ammonia gas +
550 ~ using a mixed gas of RX gas (volume ratio 1:1)
This method involves processing at 600°C for 1 to 6 hours. Next, the present invention will be further explained with reference to Examples. Example 100Kgf of each steel type with the steel composition shown in Table 1
The steel was heated to 1250°C and hot rolled to obtain a 100 mm square billet. Using this as a processed material, the following two types of processing and controlled cooling were performed. (1) This example shows an as-hot-forged example, in which the processed material was heated to 1250°C and hot-forged into a round bar with a diameter of 25 mm at a finishing temperature of 1000°C. When cooling from this finishing temperature, the surface cooling rate is adjusted, and cooling within the insulation cover, air cooling, wind cooling, and spray cooling are performed to reduce the temperature range from 800℃ to 500℃ to 1.0 to 5.0℃. Cooling was performed at a surface cooling rate of /sec. It was then cold machined to a diameter of 24.5 mm. (2) This example shows an example of normalizing after hot working, in which the above processed material is heated to 1250°C and hot forged into a round bar with a diameter of 25 mm at a finishing temperature of 1000°C.
Forged with. This finishing temperature was allowed to cool to room temperature in the atmosphere. Next, it was heated to 900°C for normalizing. During this normalizing process, the surface cooling rate is adjusted when cooling from the above normalizing temperature, and cooling within a heat insulation cover, air cooling, air cooling, and spray cooling are performed to 800℃~ 500
℃ temperature range was cooled at a surface cooling rate of 1.0 to 5.0℃/sec. It was then cold machined to a diameter of 24.5 mm. Furthermore, among the steel types shown in Table 1, steel types No. 1 to 13
has a steel composition within the scope of the present invention, while steel grade No.
Nos. 14 to 20 have steel compositions outside the scope of the present invention, and steel types No. 21 and 22 are steels corresponding to JIS-SCM435 and JIS-SACM645, respectively. Next, the steel bar with a diameter of 24.5 mm thus obtained was corroded with a 2% nital corrosive solution to observe the metallographic structure of the steel bar surface, and the steel bar was heated at 570°C for 4 hours.
Gas nitrocarburizing was performed using an endothermic modified gas (RX gas) under the condition of NH 3 :RX = 1:1, and the surface hardness (fine Vickers hardness at a depth of 25 μm from the surface) and effective hardening depth were evaluated. (Micro-Vickers hardness
The distance from the surface corresponding to Hv500) was measured.
The results are summarized in Tables 2 and 3.

【表】【table】

【表】【table】

【表】 第2表および第3表に示す結果からも明らかな
ように、本発明の範囲内の鋼組成を有し、かつ熱
間加工後または焼ならし後所定の表面冷却速度で
調整冷却された製品はいずれもフエライト+パー
ライト組織になつており、また軟窒化処理後の有
効硬化深さがいずれも0.2mm以上であり、表面硬
さもHv650〜750と安定した値を示している。芯
部硬さ(表面から1mmの深さの地点でのビツカー
ス硬さHv)は180〜300であり、実用上問題はな
かつた。 一方、本発明の範囲内の鋼組成を有する場合で
も、熱間加工後または焼ならし後の調整冷却時
に、20℃/秒を越える表面冷却速度で冷却した場
合には、ベイナイトやマルテンサイト組織が混入
してしまい、軟窒化後の有効硬化深さは急激に減
少して、すべて0.2mm以下になることが分かる。 また、比較例としての鋼種No.14〜22について
は、組織としてはたとえフエライト+パーライト
組織になつていても、いずれも、軟窒化処理によ
る有効硬化深さが0.2mm未満であるかあるいは表
面硬さがHv650〜750という適正範囲を外れてい
たりする。 かくして、本発明によつてはじめて、軟窒化後
の有効硬化深さ0.2mm以上、表面硬さHv650〜750
というすぐれた軟窒化特性を示す軟窒化処理製品
が得られる。
[Table] As is clear from the results shown in Tables 2 and 3, the steel has a composition within the range of the present invention and is cooled at a predetermined surface cooling rate after hot working or normalizing. All of the processed products have a ferrite + pearlite structure, and the effective hardening depth after soft-nitriding treatment is 0.2 mm or more, and the surface hardness shows a stable value of Hv650 to 750. The core hardness (Vickers hardness Hv at a depth of 1 mm from the surface) was 180 to 300, which caused no practical problems. On the other hand, even if the steel has a composition within the scope of the present invention, if the surface cooling rate exceeds 20°C/sec during controlled cooling after hot working or normalizing, bainite or martensitic structures may occur. It can be seen that the effective hardening depth after nitrocarburizing rapidly decreases and becomes less than 0.2 mm in all cases. In addition, regarding steel types No. 14 to 22 as comparative examples, even if the structure is a ferrite + pearlite structure, the effective hardening depth due to soft nitriding treatment is less than 0.2 mm or the surface hardness is less than 0.2 mm. The value may be outside the appropriate range of Hv650-750. Thus, with the present invention, for the first time, the effective hardening depth after nitrocarburizing is 0.2 mm or more, and the surface hardness is Hv650-750.
A soft-nitrided product exhibiting excellent soft-nitriding properties can be obtained.

Claims (1)

【特許請求の範囲】 1 C:0.15〜0.35%、 Si:0.35%以下、 Mn:0.60〜1.30%、 Cr:0.70%を越え1.50%
以下、 V:0.05〜0.50%、 N:0.006〜0.020%、
sol.Al:0.02〜0.10%、 残部Feと不可避的不純物 からなる組成を有する加工素材をA3点以上の熱
間で加工してから冷却するに際して800℃と500℃
との間を表面冷却速度2℃/秒以下で調整冷却
し、次いで軟窒化処理を行うことを特徴とする、
硬化深さの大きな軟窒化処理物品の製法。 2 C:0.15〜0.35%、 Si:0.35%以下、 Mn:0.60〜1.30%、 Cr:0.70%を越え、1.50
%以下、 V:0.05〜0.50%、 N:0.006〜0.020%、
sol.Al:0.02〜0.10%、 さらに、S:0.04〜0.13%、Pb:0.03〜0.35%
おびCa:0.0010〜0.0100%のうちの1種または2
種以上を含有し、 残部Feと不可避的不純物 からなる組成を有する加工素材をA3点以上の
熱間で加工してから冷却するに際して800℃と500
℃との間を表面冷却速度2℃/秒以下で調整冷却
し、次いで軟窒化処理を行うことを特徴とする、
硬化深さの大きな軟窒化処理物品の製法。 3 C:0.15〜0.35%、 Si:0.35%以下、 Mn:0.60〜1.30%、 Cr:0.70%を越え1.50%
以下、 V:0.05〜0.50%、 N:0.006〜0.020%、
sol.Al:0.02〜0.10%、 残部Feと不可避的不純物 からなる組成を有する加工素材を加工してから
A3点以上に加熱して焼きならしを行うに際し
て、800℃と500℃との間を表面冷却速度2℃/秒
以下で調整冷却し、次いで軟窒化処理を行うこと
を特徴とする、硬化深さの大きな軟窒化処理物品
の製法。 4 C:0.15〜0.35%、 Si:0.35%以下、 Mn:0.60〜1.30%、 Cr:0.70%を越え1.50%
以下、 V:0.05〜0.50%、 N:0.006〜0.020%、
sol.Al:0.02〜0.10%、 さらに、S:0.04〜0.13%、Pb:0.03〜0.35%
およびCa:0.0010〜0.0100%のうちの1種または
2種以上を含有し、 残部Feと不可避的不純物 からなる組成を有する加工素材を加工してから
A3点以上に加熱して焼きならしを行うに際し
て、800℃と500℃との間を表面冷却速度2℃/秒
以下で調整冷却し、次いで軟窒化処理を行うこと
を特徴とする、硬化深さの大きな軟窒化処理物品
の製法。
[Claims] 1 C: 0.15 to 0.35%, Si: 0.35% or less, Mn: 0.60 to 1.30%, Cr: more than 0.70% and 1.50%
Below, V: 0.05~0.50%, N: 0.006~0.020%,
sol.Al: 0.02 to 0.10%, the balance is Fe and unavoidable impurities when processing the processed material at 3 or more hot temperatures and cooling it at 800°C and 500°C.
and controlled cooling at a surface cooling rate of 2° C./sec or less, followed by soft nitriding treatment,
A method for manufacturing nitrocarburized articles with a large hardening depth. 2 C: 0.15-0.35%, Si: 0.35% or less, Mn: 0.60-1.30%, Cr: over 0.70%, 1.50
% or less, V: 0.05~0.50%, N: 0.006~0.020%,
sol.Al: 0.02-0.10%, S: 0.04-0.13%, Pb: 0.03-0.35%
Obi Ca: 1 or 2 of 0.0010-0.0100%
When processing a processed material with a composition consisting of A.
℃ at a surface cooling rate of 2℃/second or less, and then subjected to soft nitriding treatment,
A method for manufacturing nitrocarburized articles with a large hardening depth. 3 C: 0.15-0.35%, Si: 0.35% or less, Mn: 0.60-1.30%, Cr: over 0.70% and 1.50%
Below, V: 0.05~0.50%, N: 0.006~0.020%,
sol.Al: 0.02~0.10%, after processing the processed material with a composition consisting of Fe and unavoidable impurities.
A: When performing normalizing by heating to 3 or more points, hardening is characterized by adjusting cooling between 800°C and 500°C at a surface cooling rate of 2°C/sec or less, and then performing nitrocarburizing treatment. A method for producing nitrocarburized products with a large depth. 4 C: 0.15-0.35%, Si: 0.35% or less, Mn: 0.60-1.30%, Cr: over 0.70% and 1.50%
Below, V: 0.05~0.50%, N: 0.006~0.020%,
sol.Al: 0.02-0.10%, S: 0.04-0.13%, Pb: 0.03-0.35%
After processing a processed material containing one or more of 0.0010 to 0.0100% of Ca and 0.0010% to 0.0100% of the material, with the balance consisting of Fe and unavoidable impurities.
A: When performing normalizing by heating to 3 or more points, hardening is characterized by adjusting cooling between 800°C and 500°C at a surface cooling rate of 2°C/sec or less, and then performing nitrocarburizing treatment. A method for producing nitrocarburized products with a large depth.
JP1093282A 1982-01-28 1982-01-28 Manufacture of soft-nitrided article having large hardening depth Granted JPS58130269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1093282A JPS58130269A (en) 1982-01-28 1982-01-28 Manufacture of soft-nitrided article having large hardening depth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1093282A JPS58130269A (en) 1982-01-28 1982-01-28 Manufacture of soft-nitrided article having large hardening depth

Publications (2)

Publication Number Publication Date
JPS58130269A JPS58130269A (en) 1983-08-03
JPS6131184B2 true JPS6131184B2 (en) 1986-07-18

Family

ID=11763995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1093282A Granted JPS58130269A (en) 1982-01-28 1982-01-28 Manufacture of soft-nitrided article having large hardening depth

Country Status (1)

Country Link
JP (1) JPS58130269A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59140328A (en) * 1983-01-27 1984-08-11 Mazda Motor Corp Production of shaft member having excellent strength and wear resistance
JPH0426697Y2 (en) * 1985-02-20 1992-06-26
JPS63157816A (en) * 1986-12-22 1988-06-30 Kawasaki Steel Corp Manufacture of carburizing steel material
JP4507763B2 (en) * 2004-08-26 2010-07-21 大同特殊鋼株式会社 Manufacturing method of machine parts by cold forging-soft nitriding

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556456A (en) * 1978-06-29 1980-01-17 Daido Steel Co Ltd Blank for surface hardened material having less heat treatment strain

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556456A (en) * 1978-06-29 1980-01-17 Daido Steel Co Ltd Blank for surface hardened material having less heat treatment strain

Also Published As

Publication number Publication date
JPS58130269A (en) 1983-08-03

Similar Documents

Publication Publication Date Title
USRE44153E1 (en) Coated hot- and cold-rolled steel sheet comprising a very high resistance after thermal treatment
EP2444511B1 (en) Steel for nitriding and nitrided steel components
KR20130006461A (en) Method for producing workpieces from lightweight steel having material properties that can be adjusted over the wall thickness
KR101726251B1 (en) Steel for nitrocarburizing and nitrocarburized component, and methods for producing said steel for nitrocarburizing and said nitrocarburized component
KR20150133759A (en) Bainitic microalloy steel with enhanced nitriding characteristics
CN105102659B (en) Nitrogen treatment steel plate and its manufacture method
US4046601A (en) Method of nitride-strengthening low carbon steel articles
JP4737601B2 (en) High temperature nitriding steel
JP2003313637A (en) High-strength steel sheet having fine structure superior in formability, plating property and toughness, and manufacturing method therefor
JP2894184B2 (en) Steel for soft nitriding
JP4488228B2 (en) Induction hardening steel
JPS6131184B2 (en)
JPS5916949A (en) Soft-nitriding steel
US4853049A (en) Nitriding grade alloy steel article
JPS627243B2 (en)
JPH10226817A (en) Production of steel for soft-nitriding and soft-nitrided parts using this steel
JP2006009150A (en) Steel for carburizing and its production method
JPS5916948A (en) Soft-nitriding steel
JPH0447023B2 (en)
JP3546284B2 (en) Method for producing steel for nitriding and mechanical structural parts
JP5582296B2 (en) Iron-based material and manufacturing method thereof
JP2706940B2 (en) Manufacturing method of non-heat treated steel for nitriding
JPH0559432A (en) Production of carburized gear excellent in fatigue strength
JPH0227408B2 (en)
JPS60169517A (en) Production of high-strength steel having not less than 50kg per milimeter squared tensile strength and uniform hardness in wall thickness direction