JPH101755A - Martensitic stainless steel excellent in corrosion resistance and sulfide stress corrosion cracking resistance and its production - Google Patents

Martensitic stainless steel excellent in corrosion resistance and sulfide stress corrosion cracking resistance and its production

Info

Publication number
JPH101755A
JPH101755A JP33617396A JP33617396A JPH101755A JP H101755 A JPH101755 A JP H101755A JP 33617396 A JP33617396 A JP 33617396A JP 33617396 A JP33617396 A JP 33617396A JP H101755 A JPH101755 A JP H101755A
Authority
JP
Japan
Prior art keywords
temperature
steel
resistance
corrosion
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33617396A
Other languages
Japanese (ja)
Inventor
Takuya Hara
卓也 原
Hitoshi Asahi
均 朝日
Satoru Kawakami
哲 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP33617396A priority Critical patent/JPH101755A/en
Publication of JPH101755A publication Critical patent/JPH101755A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a martensit stainless steel excellent in CO2 corrosion resistance and sulfide stress corrosion cracking resistance. SOLUTION: This steel is the one having a compsn. contg., by weight, 0.005 to 0.05% C, 0.05 to 0.5% Si, 0.1 to 1% Mn, 10 to 15% Cr, 4.0 to 9.0% Ni, 0.5 to 3% Cu, 1 to 3% Mo, 0.005 to 0.2% Al, 0.005 to 0.1% N, <=0.025% P, <=0.015% S, and the balance Fe with inevitable impurities and satisfying 40C+34N+Ni+0.3Cu-1.1Cr-1.8Mo>=-10 and having a structure composed of tempered martensitic phases, martensitic phases and residual austenitic phases, in which the fractional ratio of the total of the tempered martensitic phases and martensitic phases is regulated to 60 to 90%, and the balance residual austenitic phases.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐CO2 腐食性及
び耐硫化物応力腐食割れ性に優れた油井管及びラインパ
イプ用マルテンサイトステンレス鋼及びその製造方法に
関するものである。さらに詳しくは、油井或いはガス井
における湿潤炭酸ガスや湿潤硫化水素を含む環境中で高
い腐食抵抗を有するマルテンサイト系ステンレス鋼に係
るものである。
The present invention relates to a martensitic stainless steel for oil country tubular goods and line pipes having excellent resistance to CO 2 corrosion and sulfide stress corrosion cracking, and a method for producing the same. More specifically, the present invention relates to a martensitic stainless steel having high corrosion resistance in an environment containing wet carbon dioxide gas and wet hydrogen sulfide in an oil or gas well.

【0002】[0002]

【従来の技術】石油または天然ガスを採取するための井
戸の環境は近年ますます過酷なものとなっており、採掘
深さの増大に加えて湿潤な炭酸ガス(CO2 )や硫化水
素(H2 S)、塩素イオン(Cl- )などの腐食性の成
分を含む井戸も多くなっている。こうした環境下では、
従来、腐食抑制剤を使用することがなされてきた。しか
しながら、腐食抑制剤は、高温(150℃以上)におい
てその効果を喪失することが多い。また、腐食抑制剤の
点か・回収処理には多大なコストを必要とする。従っ
て、腐食抑制剤を適用する必要のない、耐食性材料の供
給が望まれていた。
BACKGROUND OF THE INVENTION In recent years, the environment of wells for extracting oil or natural gas has become more and more harsh. In addition to the increase in mining depth, wet carbon dioxide (CO 2 ) and hydrogen sulfide (H 2 S), chlorine ions (Cl -) has many well containing corrosive components such. Under these circumstances,
Conventionally, the use of corrosion inhibitors has been attempted. However, corrosion inhibitors often lose their effect at high temperatures (> 150 ° C.). In addition, in terms of the corrosion inhibitor, a large cost is required for the recovery process. Therefore, it has been desired to provide a corrosion-resistant material that does not require the use of a corrosion inhibitor.

【0003】炭酸ガスを多く含む油井環境では合金鋼と
しては比較的コストの安い鋼としてAISI420鋼と
いったC量を0.2%含有し12〜13%のCrを含有
するマルテンサイト系ステンレス鋼が広く使用されてい
る。しかし120℃以上の温度になると420鋼も腐食
してしまう。従って120℃以上のCO2 環境下ではC
rを22〜25%含有する2相ステンレス鋼が使用され
ている。しかし2相ステンレス鋼ではCO2 環境中だけ
に使用されるには高価な材料である。
In an oil well environment containing a large amount of carbon dioxide gas, martensitic stainless steel containing 0.2% of C and 12 to 13% of Cr, such as AISI420 steel, is widely used as a relatively inexpensive alloy steel. It is used. However, at temperatures above 120 ° C., 420 steel will also corrode. Therefore, in a CO 2 environment of 120 ° C or more, C
Duplex stainless steel containing 22-25% r is used. However, duplex stainless steel is an expensive material to be used only in a CO 2 environment.

【0004】油井・ガス井環境では上述したように湿潤
な炭酸ガスばかりでなく湿潤な硫化水素も存在する。湿
潤な硫化水素が存在すると鋼は硫化物応力腐食割れを起
こす可能性がある。従って、湿潤な硫化水素が存在し、
120℃以上の高温環境中では先ほどと同様、Crを2
2〜25%含有する2相ステンレス鋼が使用されてい
る。そこで420鋼と2相ステンレス鋼の中間の使用性
能(200℃以下の高温CO2 環境中に耐え、なおかつ
硫化水素が存在しうる環境中でも使用可能な鋼)と価格
を有するグレードの開発が望まれている。
[0004] In an oil well / gas well environment, not only wet carbon dioxide gas but also wet hydrogen sulfide exists as described above. The presence of wet hydrogen sulfide can cause the steel to undergo sulfide stress corrosion cracking. Therefore, there is wet hydrogen sulfide,
In a high-temperature environment of 120 ° C. or more,
Duplex stainless steel containing 2 to 25% is used. Therefore, it is desired to develop a grade having a middle use performance between 420 steel and duplex stainless steel (a steel that can withstand a high temperature CO 2 environment of 200 ° C. or less and can be used even in an environment where hydrogen sulfide can exist) and a price. ing.

【0005】[0005]

【発明が解決しようとする課題】本発明は120℃〜2
00℃の炭酸ガスを多く含む環境中で、なおかつ分圧が
0.05MPa以下の硫化水素が存在する環境中での油
井管或いはラインパイプとして使用される、耐食性及び
耐硫化物応力腐食割れに優れ、かつその用途に対して最
適な強度を有するたマルテンサイト系ステンレス鋼を提
供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention relates to a method in which a temperature of 120.degree.
Excellent in corrosion resistance and sulfide stress corrosion cracking, used as oil country tubular goods or line pipes in an environment containing a large amount of carbon dioxide gas at 00 ° C and in which hydrogen sulfide with a partial pressure of 0.05 MPa or less is present. Another object of the present invention is to provide a martensitic stainless steel having an optimum strength for its use.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明は、 重量%で、 C :0.005〜0.05%、 Si:0.05〜0.5%以下、 Mn:0.1〜1.0%、 P :0.025%以下、 S :0.015%以下、 Cr:10〜15%、 Ni:4.0〜9.0%、 Cu:0.5〜3%、 Mo:1.0〜3.0%、 Al:0.005〜0.2%、 N :0.005%〜0.1% を含有し、必要に応じてCa,Mg,REMの1種或い
は2種以上を夫々0.001〜0.3%含有し、残部が
Feおよび不可避的不純物からなり、 40C+34N+Ni+0.3Cu−1.1Cr−1.
8Mo≧−10 を満足し、かつ焼戻しマルテンサイト相、マルテンサイ
ト相、残留オーステナイト相からなり、焼戻しマルテン
サイト相とマルテンサイト相との合計の分率が60%以
上90%以下、残りが残留オーステナイト相からなるこ
とを特徴とする耐食性、耐硫化物応力腐食割れに優れた
マルテンサイトステンレス鋼である。 前項に記載
の鋼に対して、まず最初に熱膨張測定を行って、オース
テナイト分率と温度の関係を求め、前記成分組成の鋼を
熱間加工し、室温まで自然放冷した後に、Ac1 点以
上、かつ前記のオーステナイト分率と温度の関係より求
めた曲線上でオーステナイト分率が80%になる温度以
下で熱処理を施し、さらにオーステナイト分率が60%
になる温度以下で熱処理を行うことを特徴とする耐食
性、耐硫化物応力腐食割れ性に優れたマルテンサイトス
テンレス鋼の製造方法にある。
In order to achieve the above-mentioned object, the present invention relates to a method of the present invention, wherein: C: 0.005 to 0.05%; Si: 0.05 to 0.5% or less; 0.1 to 1.0%, P: 0.025% or less, S: 0.015% or less, Cr: 10 to 15%, Ni: 4.0 to 9.0%, Cu: 0.5 to 3% , Mo: 1.0-3.0%, Al: 0.005-0.2%, N: 0.005% -0.1%, and if necessary, one of Ca, Mg, and REM Alternatively, 0.001 to 0.3% of each of two or more kinds is contained, and the balance is composed of Fe and inevitable impurities, and 40C + 34N + Ni + 0.3Cu-1.1Cr-1.
8Mo ≧ −10, and is composed of a tempered martensite phase, a martensite phase, and a retained austenite phase, and the total fraction of the tempered martensite phase and the martensite phase is 60% or more and 90% or less, and the remainder is retained austenite. This is a martensitic stainless steel characterized by being composed of a phase and having excellent corrosion resistance and sulfide stress corrosion cracking resistance. First, a thermal expansion measurement was performed on the steel described in the preceding section to determine the relationship between the austenite fraction and the temperature. The steel having the above-described composition was hot-worked, allowed to cool naturally to room temperature, and then subjected to Ac 1 The heat treatment is performed at a temperature not lower than the point and not higher than the temperature at which the austenite fraction is 80% on the curve obtained from the relationship between the austenite fraction and the temperature.
A method for producing a martensitic stainless steel having excellent corrosion resistance and sulfide stress corrosion cracking resistance, characterized by performing heat treatment at a temperature not higher than.

【0007】[0007]

【発明の実施の形態】以下、本発明を詳細に説明する。
以下の説明で%とあるのは、重量%を意味する。発明者
等は、上記従来技術における問題を解決すべくマルテン
サイト系ステンレス鋼の成分系について種々検討を加え
た結果、以下の知見を得るに至った。即ち、10〜15
%のCrを含有する鋼について、Cを0.05%未満に
低減するとともにNiを4%以上、Cuを0.5〜3%
複合添加すると炭酸ガス含有食塩中における耐食性が著
しく改善されることを発明者等は見いだした。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
In the following description, “%” means “% by weight”. The present inventors have made various studies on the component system of martensitic stainless steel in order to solve the above-mentioned problems in the conventional technology, and as a result, have obtained the following knowledge. That is, 10 to 15
% Of steel containing less than 0.05% C and less than 4% Ni and 0.5-3% Cu.
The present inventors have found that the addition of the composite significantly improves the corrosion resistance in the carbon dioxide-containing salt.

【0008】さらに10〜15%のCrを含有する鋼に
ついて、Cを0.05%未満に低減し、Niを4.0%
以上、Cuを0.5〜3%添加した鋼にMoを1.0%
〜3%添加すると対硫化物応力腐食割れ性が著しく改善
されることを、発明者等は見いだした。また製造上のプ
ロセスでは熱間加工性を良好にするにはNi当量=40
C+34N+Ni+0.3Cu−1.1Cr−1.8M
oが−10よりも大きくすることが必要であることも発
明者等は見いだした。
Further, for steel containing 10 to 15% of Cr, C is reduced to less than 0.05% and Ni is reduced to 4.0%.
As described above, Mo was added to steel containing 0.5 to 3% of Cu by 1.0%.
The inventors have found that the addition of 〜3% significantly improves sulfide stress corrosion cracking resistance. In a manufacturing process, Ni equivalent = 40 to improve hot workability.
C + 34N + Ni + 0.3Cu-1.1Cr-1.8M
The inventors have also found that it is necessary for o to be greater than -10.

【0009】さらに油井管としての強度を満足するため
には油井管の規格で降伏応力が80ksi(551MP
a)から110ksi(861MPa)の範囲に調質す
る必要がある。そこで本発明者らが熱膨張測定を用いた
熱膨張曲線による各温度でのオーステナイト、フェライ
ト分率を測定した結果、以下のことがかわった。すなわ
ちAc1 点以上、かつ熱膨張曲線上でオーステナイト分
率が80%になる温度以下の温度で熱処理を行った後
に、続いて熱膨張曲線でオーステナイト分率が60%に
なる温度以下で熱処理を行うと降伏応力が551MPa
から861MPaの範囲に入ることがわかった。
Further, in order to satisfy the strength as an oil country tubular good, the yield stress is 80 ksi (551MP) according to the standard of the oil country tubular goods.
It is necessary to refine in the range from a) to 110 ksi (861 MPa). Then, the present inventors measured the austenite and ferrite fractions at each temperature by the thermal expansion curve using the thermal expansion measurement, and as a result, the following changed. That Ac 1 point or more, and after the austenite fraction on the thermal expansion curve was subjected to heat treatment at a temperature below the temperature at which 80%, followed by the austenite fraction in the thermal expansion curve is a heat treatment below a temperature at which 60% When done, yield stress is 551MPa
From 861 MPa.

【0010】その時の熱膨張測定を用いた熱膨張曲線に
よる各温度でのオーステナイト分率のグラフを図1に示
す。用いた鋼材は0.02C−13Cr−6Ni−2M
o−1.5Cu−0.02N鋼である。その時の組織は
焼戻しマルテンサイト相、マルテンサイト相、残留オー
ステナイト相からなり、焼戻しマルテンサイト相とマル
テンサイト相の合計の分率が60%以上90%以下にな
り、残りが残留オーステナイト相になっていることがわ
かった。
FIG. 1 is a graph showing the austenite fraction at each temperature based on the thermal expansion curve obtained by measuring the thermal expansion at that time. The steel used was 0.02C-13Cr-6Ni-2M.
o-1.5Cu-0.02N steel. The structure at that time is composed of a tempered martensite phase, a martensite phase, and a retained austenite phase. The total fraction of the tempered martensite phase and the martensite phase is 60% or more and 90% or less, and the remainder is a retained austenite phase. I knew it was there.

【0011】本発明は従来の耐食性、耐硫化物応力腐食
割れ性に優れたマルテンサイトステンレス鋼の強度を油
井管・ラインパイプに適したものにするためにそれに適
した組織配分を決定し、これを基礎として完成したもの
である。
[0011] The present invention is to determine the appropriate structure distribution of conventional martensitic stainless steel having excellent corrosion resistance and sulfide stress corrosion cracking resistance to make it suitable for oil country tubular goods and line pipes. It was completed on the basis of.

【0012】10〜15%のCrを含有する鋼について
Cを0.05%未満に低減するとともにNiを4.0%
以上、Cuを0.5〜3%添加すると炭酸ガス(C
2 )含有食塩水中における耐食性が著しく改善される
理由について、発明者等は以下のように推測している。
一般に、合金の耐炭酸ガス腐食性は、母材中のCr量に
比例して良好となることが知られている。現在、120
℃未満の炭酸ガスを多く含む環境中では0.2%C−1
3%Cr鋼が使用されている。さらにマトリクス中のC
r量をさらに多くするためにC量を低減してCr炭化物
を減少せしめると、合金の耐炭酸ガス腐食性は益々良好
となる。炭酸ガスを多く含む環境の温度が150℃とな
るまでは、この傾向は続き、腐食速度も0.1mm/y以下
となるけれども、150℃を超えるとC量を低減してC
r量を増加させるだけではかなりのCr量(20%程
度)を添加しないと腐食温度が0.1mm/y以下にならな
くなる。さらに低CにかなりのCr量を添加するとフェ
ライト相が観察される。フェライト相が存在すると強度
が低下し、しかも熱間加工性を著しく低下させるため、
製造上困難になる。
For steels containing 10 to 15% Cr, the C is reduced to less than 0.05% and the Ni is reduced to 4.0%.
As described above, when Cu is added in an amount of 0.5 to 3%, carbon dioxide (C
The inventors presume as follows about the reason why the corrosion resistance in the O 2 ) -containing saline solution is remarkably improved.
In general, it is known that the carbon dioxide corrosion resistance of an alloy is improved in proportion to the amount of Cr in a base material. Currently 120
0.2% C-1 in an environment containing a large amount of carbon dioxide below ℃
3% Cr steel is used. Furthermore, C in the matrix
When the amount of C is reduced to further increase the amount of r and the amount of Cr carbide is reduced, the carbon dioxide corrosion resistance of the alloy is further improved. This tendency continues until the temperature of the environment containing a large amount of carbon dioxide gas reaches 150 ° C., and the corrosion rate also becomes 0.1 mm / y or less.
The corrosion temperature does not fall below 0.1 mm / y unless a significant amount of Cr (about 20%) is added only by increasing the amount of r. Further, when a considerable amount of Cr is added to low C, a ferrite phase is observed. The presence of a ferrite phase lowers the strength and significantly reduces hot workability.
It becomes difficult in manufacturing.

【0013】そこで、低Cにし、母材のCrを高めた鋼
にCuとNiを同時に添加すると150℃以上の温度で
も腐食速度が0.1mm/y以下になることわかった。この
低Cにした10〜15%Cr鋼にCuとNiを複合添加
すると炭酸ガス腐食性が向上した理由について発明者ら
は以下のように推測している。低Cにした10〜15%
Cr鋼にCuを添加するとアノード分極曲線において腐
食皮膜があたかも不動態を呈するような挙動を示す。そ
の鋼にさらにNiとCuを複合添加するとアノード分極
曲線の不動態を呈している電流密度が1オーダー低下
し、その腐食皮膜がますます安定になることがわかっ
た。この腐食皮膜を分析するとCuとNiを複合添加し
たときの腐食皮膜は微細な粒子からなる相で、電子顕微
鏡観察を行った時の回折パターンはリング状になり、非
晶質の様な回折パターンになる。Niだけを添加したと
きの電子顕微鏡の回折パターンは結晶質の回折パターン
が観察され、腐食が進行していることがわかる。またC
uだけを添加したときも電子顕微鏡の回折パターンは非
晶質と結晶質の回折パターンであり、これもNiほどで
はないが腐食が進行していることがわかる。すなわちN
i,Cuを複合添加すると腐食皮膜が結晶化せず、腐食
が進行しないために、非常に緻密な腐食皮膜で覆われて
おり、耐CO2 腐食性が向上したものと考えられる。
Therefore, it has been found that when Cu and Ni are simultaneously added to steel having a low C and a high Cr base material, the corrosion rate becomes 0.1 mm / y or less even at a temperature of 150 ° C. or more. The present inventors speculate as follows as to why the carbon dioxide gas corrosiveness was improved by adding Cu and Ni to the low C 10-15% Cr steel in combination. 10-15% with low C
When Cu is added to Cr steel, the corrosion film shows a behavior as if it shows a passivity in the anodic polarization curve. It was found that when Ni and Cu were further added to the steel in combination, the current density exhibiting the passivity of the anodic polarization curve decreased by one order, and the corrosion film became more and more stable. When this corrosion film is analyzed, the corrosion film when Cu and Ni are added in combination is a phase composed of fine particles, and when observed by an electron microscope, the diffraction pattern becomes ring-shaped, and the diffraction pattern becomes amorphous. become. When only Ni was added, the diffraction pattern of the electron microscope was observed as a crystalline diffraction pattern, indicating that the corrosion was progressing. Also C
Even when only u was added, the diffraction pattern of the electron microscope was an amorphous and crystalline diffraction pattern. It can be seen that the corrosion was progressing, though not so much as Ni. That is, N
When i and Cu are added in combination, the corrosion film does not crystallize, and the corrosion does not progress. Therefore, the corrosion film is covered with a very dense corrosion film, and it is considered that the CO 2 corrosion resistance is improved.

【0014】この低Cにし、CuとNiを複合添加した
10〜15%Cr鋼にさらにMoを1%以上添加すると
耐硫化物応力腐食割れ抵抗性が著しく高くなることがわ
かった。この低Cにし、CuとNiを複合添加した10
〜15%Cr鋼にMoを添加すると耐硫化物応力腐食割
れ抵抗性が向上した理由について発明者らは以下のよう
に推測している。一般にステンレス鋼の硫化物応力腐食
割れの起点はClイオンが不動態皮膜を破って侵入し、
その場所から水素が侵入し、割れが進展していくことが
知られている。一般にMoは耐孔食性を向上させること
が知られている。Moはイオンとして溶解し、鋼表面に
付着し、皮膜抵抗性を高めている。Moを添加すること
により、鋼表面に付着するイオンの数が数十倍多くなる
のでH2 S環境中での不動態皮膜抵抗性が飛躍的に向上
し、硫化物応力腐食割れ抵抗性がすこぶる向上したもの
と推測される。
It has been found that when Mo is further added by 1% or more to 10-15% Cr steel to which Cu and Ni are added in combination at a low C, sulfide stress corrosion cracking resistance is remarkably increased. This low C was added with a composite addition of Cu and Ni.
The inventors speculate as follows about the reason why the addition of Mo to 15% Cr steel improved the resistance to sulfide stress corrosion cracking. In general, the starting point of sulfide stress corrosion cracking of stainless steel is that Cl ions break through the passive film and enter.
It is known that hydrogen penetrates from that location and cracks develop. In general, Mo is known to improve pitting resistance. Mo dissolves as ions and adheres to the steel surface, increasing the film resistance. By adding Mo, the number of ions adhering to the steel surface is increased by several tens of times, so that the resistance of the passive film in the H 2 S environment is remarkably improved, and the resistance to sulfide stress corrosion cracking is greatly improved. It is presumed to have improved.

【0015】製造上のプロセスで熱間加工性を良好にす
る、すなわちキズを発生させないようにするには加熱、
圧延領域での組織がオーステナイト単相でなければなら
ない。そこで鋼を高温に加熱した時のオーステナイト相
になる指標であるNi当量=40C+34N+Ni+
0.3Cu−1.1Cr−1.8Moが−10よりも大
きいと圧延領域でフェライトが抑制されてオーステナイ
ト単相になることがわかった。
In order to improve hot workability in the manufacturing process, that is, to prevent scratches, heating,
The structure in the rolling region must be an austenitic single phase. Therefore, Ni equivalent = 40C + 34N + Ni + which is an index to become an austenite phase when the steel is heated to a high temperature.
When 0.3Cu-1.1Cr-1.8Mo was larger than -10, it was found that ferrite was suppressed in the rolled region and became an austenite single phase.

【0016】油井管としての強度を満足するためには、
Ac1 点以上、かつ熱膨張曲線上でオーステナイト分率
が80%になる温度以下で加熱した温度で熱処理を行っ
た後に、続いて熱膨張曲線でオーステナイト分率が60
%になる温度以下で熱処理を行うと降伏応力が551M
Paから861MPaの範囲に入ることがわかった。こ
の理由を本発明者らは以下のように推測している。これ
らの組織を光学顕微鏡観察、電子顕微鏡観察を行うこと
によって同定した。その結果、組織は焼戻しマルテンサ
イト相、マルテンサイト相、残留オーステナイト相から
なり、焼戻しマルテンサイト相とマルテンサイト相の合
計の分率が60%以上90%以下になり、残りが残留オ
ーステナイト相になっていることがわかった。従って焼
戻しマルテンサイト相、マルテンサイト相、残留オース
テナイト相の組織分率を以上のように規定すると油井管
としての強度を満足することがわかった。
In order to satisfy the strength as an oil country tubular good,
After performing heat treatment at a temperature of not less than one point Ac and a temperature not higher than the temperature at which the austenite fraction is 80% on the thermal expansion curve, the austenite fraction is then 60% in the thermal expansion curve.
% Yield stress is 551M
It turned out to be in the range from Pa to 861 MPa. The present inventors presume the reason for this as follows. These tissues were identified by optical microscopic observation and electron microscopic observation. As a result, the structure is composed of a tempered martensite phase, a martensite phase, and a retained austenite phase, and the total fraction of the tempered martensite phase and the martensite phase becomes 60% or more and 90% or less, and the remainder becomes a retained austenite phase. I understood that. Therefore, it was found that when the structure fractions of the tempered martensite phase, martensite phase, and retained austenite phase were defined as described above, the strength as an oil country tubular good was satisfied.

【0017】次に成分の限定範囲について以下に説明す
る。 C:マルテンサイト系ステンレス鋼を製造するのに必要
な元素であって0.005%未満では組織をマルテンサ
イト単相にするのが困難になり0.05%を超えるとC
r炭化物が多く存在し、耐CO2 腐食性が劣化するの
で、含有量範囲を0.005〜0.05%とした。
Next, the limited ranges of the components will be described below. C: An element necessary for producing martensitic stainless steel. If it is less than 0.005%, it becomes difficult to make the structure into a martensitic single phase, and if it exceeds 0.05%, C becomes an element.
Since a large amount of r carbides is present and the CO 2 corrosion resistance deteriorates, the content range is set to 0.005 to 0.05%.

【0018】Si:脱酸のため必要な元素であるが、
0.05%未満ではその効果が十分でなく0.5%を超
えて添加すると衝撃靭性を低下させることから、含有量
範囲を0.05〜0.5%とする。 Mn:脱酸及び強度確保のために有効な元素であるが、
0.1%未満ではその効果が十分でなく1%を超えて添
加してもその効果は飽和するので、含有量範囲を0.1
〜1%とする。
Si: an element necessary for deoxidation,
If the content is less than 0.05%, the effect is not sufficient, and if the content exceeds 0.5%, the impact toughness is reduced, so the content range is set to 0.05 to 0.5%. Mn: an element effective for deoxidation and securing strength,
If the content is less than 0.1%, the effect is not sufficient, and even if added over 1%, the effect is saturated.
To 1%.

【0019】Cr:Crはマルテンサイト系ステンレス
鋼を構成する最も基本的かつ必須の元素であって、耐C
2 食性を付与するために必要な元素であるが、含有量
が10%未満では耐蝕性が十分でなく、一方15%を超
えて添加するとマルテンサイト単相にし難くなるので上
限含有量は15%とすべきである。マルテンサイト単相
にするのに10%以上14%以下にすることが望まし
い。
Cr: Cr is the most basic and indispensable element constituting martensitic stainless steel.
Although it is an element necessary for imparting O 2 corrosion, if the content is less than 10%, the corrosion resistance is not sufficient. On the other hand, if the content exceeds 15%, it becomes difficult to form a martensite single phase, so the upper limit content is 15%. Should be%. It is desirable that the content be 10% or more and 14% or less in order to obtain a martensite single phase.

【0020】Al:脱酸のために必要な元素であって含
有量が0.005%未満ではその効果が十分でなく、
0.2%を超えて添加すると粗大な酸化物系介在物が鋼
中に残留して靭性を低下させるので、含有量範囲は0.
005〜0.2%とした。 N:Nはオーステナイト形成元素であるので必須である
が0.005%未満では室温でマルテンサイト単相にし
にくくなり、0.1%を超えて存在すると母材の衝撃靭
性を低下させるので、含有量範囲を0.005〜0.1
%とすべきである。
Al: An element necessary for deoxidation, and if its content is less than 0.005%, its effect is not sufficient,
If added in excess of 0.2%, coarse oxide-based inclusions remain in the steel and lower the toughness, so the content range is 0.
005 to 0.2%. N: N is essential since it is an austenite-forming element, but if it is less than 0.005%, it becomes difficult to form a martensite single phase at room temperature, and if it exceeds 0.1%, the impact toughness of the base material is reduced. 0.005 to 0.1
Should be%.

【0021】P:靭性を低下させる元素であるので上限
含有量を0.025%にした。 S:SはPと同様靭性を低下させる元素であるので上限
含有量を0.015%とした。
P: Since the element lowers the toughness, the upper limit content is set to 0.025%. S: Since S is an element that lowers toughness like P, the upper limit content is set to 0.015%.

【0022】Ni:オーステナイト形成元素でマルテン
サイト相を安定させる。またCuとの複合添加により、
耐CO2 食性を向上させるが、4.0%未満ではその効
果が十分でなく、9%超添加するとAc1 変態点が低く
成りすぎて、安定した強度を得るのが困難になるので含
有量範囲を4〜9%とした。望ましくは4%〜6%が適
当である。 Cu:CuもNiと同様オーステナイト形成元素でかつ
Niとの複合添加により耐CO2 腐食性を向上させるの
が0.5%未満ではその効果が十分でなく3%超えると
製造上のプロセスが製造困難になるので含有量範囲を
0.5〜3%とした。望ましくは0.5〜2%がよい。
Ni: Stabilizes the martensite phase with an austenite-forming element. Also, by adding complex with Cu,
Although the CO 2 corrosion resistance is improved, the effect is not sufficient if it is less than 4.0%, and if it exceeds 9%, the Ac 1 transformation point becomes too low, and it becomes difficult to obtain a stable strength. The range was 4-9%. Desirably, 4% to 6% is appropriate. Cu: Cu is also an austenite-forming element like Ni, and the effect of improving CO 2 corrosion resistance by adding Ni in combination with Ni is less than 0.5%, the effect is not sufficient. Since it becomes difficult, the content range is set to 0.5 to 3%. Desirably, it is 0.5 to 2%.

【0023】Mo:Moは耐CO2 腐食性あるいは耐S
SC性を向上させるのに有効な元素であるが、十分なS
SC性を得るには1%未満ではその効果は十分でなく、
3%を超えるとフェライトが生成しやすくなり、熱間加
工性が低下するので含有量範囲を1〜3%とした。
Mo: Mo is resistant to CO 2 corrosion or S
An effective element for improving the SC property, but sufficient S
If it is less than 1%, the effect is not enough to obtain SC property,
If it exceeds 3%, ferrite is likely to be formed, and hot workability is reduced. Therefore, the content range is set to 1 to 3%.

【0024】Ca,Mg,REM:これらはいずれもS
による熱間加工性の低下を抑制するものであり、0.0
01%未満ではその効果が十分でなく0.3%を超えて
添加するとその効果が飽和するので0.001〜0.3
%とした。
Ca, Mg, REM: These are all S
To suppress the reduction in hot workability due to
If it is less than 01%, its effect is not sufficient, and if it exceeds 0.3%, its effect is saturated.
%.

【0025】熱間加工性を良好にする観点から、Ni当
量=40C+34N+Ni+0.3Cu−1.1Cr−
1.8Moが−10よりも小さいと加熱・圧延域でフェ
ライトが生成されるのでNi当量が−10以上とした。
From the viewpoint of improving hot workability, Ni equivalent = 40C + 34N + Ni + 0.3Cu-1.1Cr-
If 1.8 Mo is smaller than -10, ferrite is generated in the heating / rolling region, so the Ni equivalent was set to -10 or more.

【0026】さらに金属組織の限定理由について述べ
る。焼戻しマルテンサイト相及びマルテンサイト相の合
計の分率が60%未満の場合は降伏応力が80ksi
(556MPa)に到達せず強度を満足することができ
ない。これに対して焼戻しマルテンサイト相及びマルテ
ンサイト相の分率の合計が90%を超えると降伏応力が
110ksiの上限を超えるので60%以上90%以下
とした。
Further, the reasons for limiting the metallographic structure will be described. When the total fraction of the tempered martensite phase and the martensite phase is less than 60%, the yield stress is 80 ksi.
(556 MPa), and the strength cannot be satisfied. On the other hand, when the sum of the tempered martensite phase and the fraction of the martensite phase exceeds 90%, the yield stress exceeds the upper limit of 110 ksi, so that it is set to 60% or more and 90% or less.

【0027】また熱処理の限定理由についても述べる。
1回目の熱処理をAc1 点未満の温度で熱処理を行うと
焼戻しマルテンサイト相が十分に回復されず、またCu
の析出効果も作用して強度が110ksiの上限(86
1MPa)を超える。また事前に熱膨張測定を行って、
オーステナイト分率と温度の関係を求めた曲線上でオー
ステナイト量が80%になる温度を超えて熱処理を行う
と新たにマルテンサイト相が析出し、これも強度が11
0ksiの上限を超える。従って1回目の熱処理の温度
をAc1 以上かつ、熱膨張曲線上でオーステナイト量が
80%になる温度以下とした。
The reasons for limiting the heat treatment will also be described.
If the first heat treatment is performed at a temperature lower than the Ac 1 point, the tempered martensite phase is not sufficiently recovered, and Cu
The upper limit of the strength of 110 ksi (86
Exceeds 1 MPa). Also, measure the thermal expansion in advance,
When the heat treatment is performed at a temperature exceeding the temperature at which the amount of austenite becomes 80% on the curve obtained from the relationship between the austenite fraction and the temperature, a new martensite phase is precipitated, which also has a strength of 11%.
Exceeds the upper limit of 0 ksi. Therefore, the temperature of the first heat treatment was set to be equal to or higher than Ac 1 and equal to or lower than the temperature at which the austenite amount becomes 80% on the thermal expansion curve.

【0028】2回目の熱処理温度が前記したオーステナ
イト分率と温度の関係を求めた曲線上でオーステナイト
相が80%になる温度を超えて熱処理を行うと新たにマ
ルテンサイト相が再析出し、降伏応力が110ksiの
上限を超えるのでオーステナイト相が60%になる温度
以下とした。
When the second heat treatment temperature exceeds the temperature at which the austenite phase becomes 80% on the above-mentioned curve obtained from the relationship between the austenite fraction and the temperature, the martensite phase is newly precipitated and yielded. Since the stress exceeds the upper limit of 110 ksi, the temperature was set to be equal to or lower than the temperature at which the austenite phase becomes 60%.

【0029】[0029]

【実施例】表1(本発明鋼)及び表2(比較鋼)に示す
化学組成のステンレス鋼を溶製し、熱間圧延によって厚
さ12mmの鋼板とした後、同表に示した熱処理を施し
た。この鋼板から採取した試験片にて鋼板の機械的性質
(降伏応力、引張応力)、さらにこの鋼の電子顕微鏡観
察による組織同定及び組織分率の測定、熱膨張試験、湿
潤炭酸ガス環境における腐食試験、湿潤硫化水素環境下
におけるSSC試験を行った。
EXAMPLE A stainless steel having a chemical composition shown in Table 1 (inventive steel) and Table 2 (comparative steel) was melted and hot-rolled to form a steel sheet having a thickness of 12 mm. gave. Using a specimen taken from this steel sheet, the mechanical properties (yield stress, tensile stress) of the steel sheet, the structure identification and measurement of the structure fraction of the steel by electron microscopy, thermal expansion test, corrosion test in a wet carbon dioxide gas environment SSC test was performed in a wet hydrogen sulfide environment.

【0030】機械的性質(降伏応力、引張応力)を測定
する試験片は平行部6.0mm、平行部長さ24mmであ
る。また電子顕微鏡観察を行うには50μmまで機械研
磨、化学研磨した薄膜試料を4mmφの円形に打ち出し、
電解研磨により円形の中心部に穴をあけ電子顕微鏡観察
を行った。
The test piece for measuring mechanical properties (yield stress, tensile stress) has a parallel portion of 6.0 mm and a parallel portion length of 24 mm. In order to observe with an electron microscope, a thin film sample mechanically polished and chemically polished to 50 μm is punched out into a 4 mmφ circular shape.
A hole was made in the center of the circle by electrolytic polishing, and observation was made with an electron microscope.

【0031】熱膨張測定(試験片3mmφ×長さ10mm)
は加熱速度2.5℃/minとい非常に遅い速度でAc1
らAc3 までの熱膨張曲線を作製し、各温度でのオース
テナイト、フェライト分率の測定を行った。
Measurement of thermal expansion (test piece 3 mmφ × length 10 mm)
Prepared a thermal expansion curve from Ac 1 to Ac 3 at a very low heating rate of 2.5 ° C./min, and measured the austenite and ferrite fractions at each temperature.

【0032】湿潤炭酸ガス環境における腐食試験として
は、厚さ3mm、幅15mm、長さ20mmの試験片を採取し
て、200℃のオートクレープ中で炭酸ガス分圧4MP
aの条件で人工海水中に4日間浸漬して、試験前後の重
量変化から腐食速度を算出した。腐食速度の単位はmm/y
で表示したが、一般的には0.1mm/y以下の場合、耐食
性が良好であると言える。
As a corrosion test in a wet carbon dioxide gas environment, a test piece having a thickness of 3 mm, a width of 15 mm and a length of 20 mm was sampled and placed in a 200 ° C. autoclave at a carbon dioxide partial pressure of 4 MPa.
It was immersed in artificial seawater for 4 days under the condition of a, and the corrosion rate was calculated from the change in weight before and after the test. The unit of the corrosion rate is mm / y
In general, when it is 0.1 mm / y or less, it can be said that the corrosion resistance is good.

【0033】湿潤硫化水素環境中におけるSSC試験も
行った。SSC試験としては平滑丸棒引張り試験片(平
行部6.4mm、平行部長さ25mm)を採取し、5%Na
Cl溶液で1Mの酢酸と1Mの酢酸ナトリウムを混合し
てpH:3.5に調整した液に0.5気圧のH2 Sガス
を飽和させた液中で定荷重試験を行った。応力は90%
降伏応力を負荷させた。
An SSC test in a wet hydrogen sulfide environment was also performed. For the SSC test, a smooth round bar tensile test piece (parallel part 6.4 mm, parallel part length 25 mm) was collected and 5% Na
A constant load test was carried out in a solution prepared by mixing 1 M acetic acid and 1 M sodium acetate with a Cl solution to adjust the pH to 3.5, and then saturating 0.5 atm H 2 S gas with the solution. 90% stress
A yield stress was applied.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 [Table 4]

【0038】No.1〜19鋼は本発明鋼であり、N
o.20〜29は比較候である。No.1〜19のいず
れの鋼種においても200℃のCO2 環境中での腐食速
度は0.1mm/y以下で耐CO2 腐食性が良好であり、降
伏応力が551MPa〜861MPaの範囲にはいって
いることがわかる。なおなつNo.1〜19のいずれか
の鋼種においても0.5気圧の硫化水素分圧で破断しな
かった。
No. 1 to 19 steels are steels of the present invention,
o. 20 to 29 are comparative climates. No. In any of the steel types 1 to 19, the corrosion rate in a CO 2 environment at 200 ° C. is 0.1 mm / y or less, the CO 2 corrosion resistance is good, and the yield stress falls within the range of 551 MPa to 861 MPa. You can see that. Naatsu No. None of the steel types 1 to 19 did not break at a hydrogen sulfide partial pressure of 0.5 atm.

【0039】これに対してNo.22,23,24,2
6鋼はCO2 環境中200℃での腐食速度は0.1mm/y
以上と非常に耐食性が悪いことがわかる。No.22,
25鋼は0.5気圧H2 S分圧、pH3.5中で耐SS
C性が悪いことがわかる。
On the other hand, no. 22,23,24,2
6 steel has a corrosion rate of 0.1mm / y at 200 ℃ in CO 2 environment.
From the above, it can be seen that the corrosion resistance is very poor. No. 22,
25 steel is SS resistant at 0.5 atm H 2 S partial pressure, pH 3.5
It turns out that C property is bad.

【0040】No.20は2回目の熱処理温度が熱膨張
測定でもとめたオーステナイト分率と温度の関係でオー
ステナイト分率が60%を超えており、焼戻しマルテン
サイト相とマルテンサイト相の合計の分率が90%を超
えているので、降伏応力が861MPaを超えている。
No.21は1回目の熱処理温度がAc1 以下であるた
めに焼戻しマルテンサイト相とマルテンサイト相の合計
の分率が90%を超えており、降伏応力が861MPa
を超えている。
No. In the case of No. 20, the austenite fraction exceeds 60% due to the relationship between the austenite fraction and the temperature determined by the thermal expansion measurement in the second heat treatment temperature, and the total fraction of the tempered martensite phase and the martensite phase is 90%. Therefore, the yield stress exceeds 861 MPa.
No. 21 first heat treatment temperature tempered martensite phase because it is Ac 1 or less and the fraction of total martensite phase is above 90%, the yield stress is 861MPa
Is over.

【0041】以上のことから本発明鋼はCO2 腐食性が
既存のAISI420鋼よりもはるかに良好であり、な
おかつ硫化水素が存在する環境中でも耐硫化物応力腐食
割れ性が向上したことがわかる。また強度を油井管・ラ
インパイプに適したものにすることができた。この結
果、供試材成分鋼は良好な耐CO2 腐食性及び耐硫化物
応力腐食割れ性を有し、さらに油井管・ラインパイプと
しての最適強度を有することがわかった。
From the above, it can be seen that the steel of the present invention has much better CO 2 corrosivity than the existing AISI420 steel, and has improved sulfide stress corrosion cracking resistance even in an environment where hydrogen sulfide is present. Also, the strength could be made suitable for oil country tubular goods and line pipes. As a result, it was found that the test component steel had good resistance to CO 2 corrosion and resistance to sulfide stress corrosion cracking, and furthermore had optimum strength for oil country tubular goods and line pipes.

【0042】[0042]

【発明の効果】本発明は以上説明したように構成されて
いるので、以下に記載されるような効果を奏する。湿潤
炭酸ガス環境及び湿潤硫化水素環境における優れた耐蝕
性と耐硫化物応力腐食割れ性を有し、かつ油井管・ライ
ンパイプとしての強度を有する油井管・ラインパイプ用
高Cr鋼として提供することを可能にした。
Since the present invention is configured as described above, it has the following effects. To be provided as a high Cr steel for oil country tubular goods and line pipes that has excellent corrosion resistance and sulfide stress corrosion cracking resistance in wet carbon dioxide gas environment and wet hydrogen sulfide environment and has strength as oil country tubular goods and line pipes. Enabled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱膨張測定を用いた熱膨張曲線による各温度で
のオーステナイト分率の関係を示す図。
FIG. 1 is a diagram showing a relationship between austenite fractions at respective temperatures according to a thermal expansion curve using thermal expansion measurement.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.005〜0.05%、 Si:0.05〜0.5%、 Mn:0.1〜1.0%、 P :0.025%以下、 S :0.015%以下、 Cr:10〜15%、 Ni:4.0〜9.0%、 Cu:0.5〜3%、 Mo:1.0〜3%、 Al:0.005〜0.2%、 N :0.005%〜0.1% を含有し、残部がFeおよび不可避的不純物からなり、 40C+34N+Ni+0.3Cu−1.1Cr−1.
8Mo≧−10 を満足するとともに焼戻しマルテンサイト相、マルテン
サイト相、残留オーステナイト相からなり、焼戻しマル
テンサイト相とマルテンサイト相の合計の分率が60%
以上90%以下、残りが残留オーステナイト相であるこ
とを特徴とする耐食性、耐硫化物応力腐食割れ性に優れ
たマルテンサイトステンレス鋼。
C: 0.005 to 0.05%; Si: 0.05 to 0.5%; Mn: 0.1 to 1.0%; P: 0.025% or less; S: 0.015% or less, Cr: 10 to 15%, Ni: 4.0 to 9.0%, Cu: 0.5 to 3%, Mo: 1.0 to 3%, Al: 0.005 to 0.2%, N: 0.005% to 0.1%, the balance being Fe and inevitable impurities, 40C + 34N + Ni + 0.3Cu-1.1Cr-1.
8Mo ≧ −10 and a tempered martensite phase, a martensite phase and a retained austenite phase, and the total fraction of the tempered martensite phase and the martensite phase is 60%.
A martensitic stainless steel excellent in corrosion resistance and sulfide stress corrosion cracking resistance characterized in that at least 90% or less and the remainder is a retained austenite phase.
【請求項2】 請求項1に記載の鋼に更に、重量%で、 Ca,Mg,REMの1種或いは2種以上を夫々0.0
01〜0.3%含有することを特徴とする耐食性、耐硫
化物応力腐食割れ性に優れたマルテンサイトステンレス
鋼。
2. The steel according to claim 1, further comprising at least one of Ca, Mg, and REM in an amount of 0.0% by weight.
A martensitic stainless steel excellent in corrosion resistance and sulfide stress corrosion cracking resistance characterized by containing 01 to 0.3%.
【請求項3】 請求項1記載の成分を含有する鋼に対し
て、まず最初に熱膨張測定を行って、オーステナイト分
率と温度の関係を求めた後、前記成分組成の鋼を熱間加
工し、室温まで自然放冷した後に、Ac1 点以上、かつ
前記のオーステナイト分率と温度の関係より求めた曲線
上でオーステナイト分率が80%になる温度以下で熱処
理を施し、さらにオーステナイト分率が60%になる温
度以下で熱処理を行うことを特徴とする耐食性、耐硫化
物応力腐食割れ性に優れたマルテンサイトステンレス鋼
の製造方法。
3. A steel containing the component described in claim 1 is first subjected to thermal expansion measurement to determine the relationship between the austenite fraction and the temperature, and then hot-worked the steel having the component composition. Then, after natural cooling to room temperature, heat treatment is performed at one point or more of Ac and below a temperature at which the austenite fraction becomes 80% on the curve obtained from the relationship between the austenite fraction and the temperature. A martensitic stainless steel excellent in corrosion resistance and sulfide stress corrosion cracking resistance, wherein the heat treatment is performed at a temperature not higher than 60%.
【請求項4】 請求項2に記載の成分を含有する鋼に対
して、まず最初に熱膨張測定を行って、オーステナイト
分率と温度の関係を求め、前記成分組成の鋼を熱間加工
し、室温まで自然放冷した後に、Ac1 点以上、かつ前
記のオーステナイト分率と温度の関係より求めた曲線上
でオーステナイト分率が80%になる温度以下で熱処理
を施し、さらにオーステナイト分率が60%になる温度
以下で熱処理を行うことを特徴とする耐食性、耐硫化物
応力腐食割れ性に優れたマルテンサイトステンレス鋼の
製造方法。
4. A steel containing the component according to claim 2 is first subjected to a thermal expansion measurement to determine a relationship between an austenite fraction and a temperature, and hot-worked the steel having the component composition. After natural cooling to room temperature, heat treatment is performed at a temperature of not less than one point Ac and not more than a temperature at which the austenite fraction becomes 80% on a curve obtained from the relationship between the austenite fraction and the temperature, and further, the austenite fraction is reduced. A method for producing a martensitic stainless steel having excellent corrosion resistance and sulfide stress corrosion cracking resistance, wherein heat treatment is performed at a temperature of 60% or less.
JP33617396A 1996-04-15 1996-12-16 Martensitic stainless steel excellent in corrosion resistance and sulfide stress corrosion cracking resistance and its production Pending JPH101755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33617396A JPH101755A (en) 1996-04-15 1996-12-16 Martensitic stainless steel excellent in corrosion resistance and sulfide stress corrosion cracking resistance and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9277496 1996-04-15
JP8-92774 1996-04-15
JP33617396A JPH101755A (en) 1996-04-15 1996-12-16 Martensitic stainless steel excellent in corrosion resistance and sulfide stress corrosion cracking resistance and its production

Publications (1)

Publication Number Publication Date
JPH101755A true JPH101755A (en) 1998-01-06

Family

ID=26434150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33617396A Pending JPH101755A (en) 1996-04-15 1996-12-16 Martensitic stainless steel excellent in corrosion resistance and sulfide stress corrosion cracking resistance and its production

Country Status (1)

Country Link
JP (1) JPH101755A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7767037B2 (en) 2003-08-19 2010-08-03 Jfe Steel Corporation High strength stainless steel pipe for use in oil well having superior corrosion resistance and manufacturing method thereof
US7842141B2 (en) 2002-06-19 2010-11-30 Jfe Steel Corporation Stainless-steel pipe for oil well and process for producing the same
WO2013190834A1 (en) 2012-06-21 2013-12-27 Jfeスチール株式会社 High-strength stainless steel seamless pipe having excellent corrosion resistance for oil well, and method for manufacturing same
WO2014097628A1 (en) 2012-12-21 2014-06-26 Jfeスチール株式会社 High-strength stainless steel seamless pipe for oil wells and method for producing same
WO2014112353A1 (en) 2013-01-16 2014-07-24 Jfeスチール株式会社 Stainless steel seamless tube for use in oil well and manufacturing process therefor
WO2015059871A1 (en) 2013-10-21 2015-04-30 Jfeスチール株式会社 Device array for producing thick steel material, and method for producing thick steel material
WO2015064006A1 (en) 2013-10-29 2015-05-07 Jfeスチール株式会社 Device array for manufacturing seamless steel pipes, and method for manufacturing high-strength stainless seamless steel pipe for oil wells using same
WO2018020886A1 (en) 2016-07-27 2018-02-01 Jfeスチール株式会社 High strength seamless stainless steel pipe for oil wells and production method therefor
WO2018155041A1 (en) 2017-02-24 2018-08-30 Jfeスチール株式会社 High strength seamless stainless steel pipe for oil well and production method therefor
WO2018181404A1 (en) 2017-03-28 2018-10-04 新日鐵住金株式会社 Martensitic stainless steel material
US10329633B2 (en) 2014-05-21 2019-06-25 Jfe Steel Corporation High-strength seamless stainless steel pipe for oil country tubular goods and method for manufacturing the same
WO2020067247A1 (en) 2018-09-27 2020-04-02 日本製鉄株式会社 Martensitic stainless steel material
WO2020071348A1 (en) 2018-10-02 2020-04-09 日本製鉄株式会社 Martensite-based stainless steel seamless pipe
WO2020071344A1 (en) 2018-10-02 2020-04-09 日本製鉄株式会社 Martensite-based stainless steel seamless pipe
WO2021206080A1 (en) 2020-04-07 2021-10-14 日本製鉄株式会社 Martensitic stainless seamless steel pipe
WO2022075406A1 (en) 2020-10-08 2022-04-14 日本製鉄株式会社 Martensitic stainless steel material
US11414719B2 (en) 2016-03-29 2022-08-16 Jfe Steel Corporation High strength stainless steel seamless pipe for oil country tubular goods

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7842141B2 (en) 2002-06-19 2010-11-30 Jfe Steel Corporation Stainless-steel pipe for oil well and process for producing the same
US7767037B2 (en) 2003-08-19 2010-08-03 Jfe Steel Corporation High strength stainless steel pipe for use in oil well having superior corrosion resistance and manufacturing method thereof
WO2013190834A1 (en) 2012-06-21 2013-12-27 Jfeスチール株式会社 High-strength stainless steel seamless pipe having excellent corrosion resistance for oil well, and method for manufacturing same
US9758850B2 (en) 2012-06-21 2017-09-12 Jfe Steel Corporation High strength stainless steel seamless pipe with excellent corrosion resistance for oil well and method of manufacturing the same
US10151011B2 (en) 2012-12-21 2018-12-11 Jfe Steel Corporation High-strength stainless steel seamless tube or pipe for oil country tubular goods, and method of manufacturing the same
WO2014097628A1 (en) 2012-12-21 2014-06-26 Jfeスチール株式会社 High-strength stainless steel seamless pipe for oil wells and method for producing same
WO2014112353A1 (en) 2013-01-16 2014-07-24 Jfeスチール株式会社 Stainless steel seamless tube for use in oil well and manufacturing process therefor
US10240221B2 (en) 2013-01-16 2019-03-26 Jfe Steel Corporation Stainless steel seamless pipe for oil well use and method for manufacturing the same
WO2015059871A1 (en) 2013-10-21 2015-04-30 Jfeスチール株式会社 Device array for producing thick steel material, and method for producing thick steel material
US10562085B2 (en) 2013-10-21 2020-02-18 Jfe Steel Corporation Equipment line for manufacturing heavy-walled steel products
WO2015064006A1 (en) 2013-10-29 2015-05-07 Jfeスチール株式会社 Device array for manufacturing seamless steel pipes, and method for manufacturing high-strength stainless seamless steel pipe for oil wells using same
US10570471B2 (en) 2013-10-29 2020-02-25 Jfe Steel Corporation Equipment line for manufacturing seamless steel tube or pipe and method of manufacturing high-strength stainless steel seamless tube or pipe for oil wells using the equipment line
US10329633B2 (en) 2014-05-21 2019-06-25 Jfe Steel Corporation High-strength seamless stainless steel pipe for oil country tubular goods and method for manufacturing the same
US11414719B2 (en) 2016-03-29 2022-08-16 Jfe Steel Corporation High strength stainless steel seamless pipe for oil country tubular goods
WO2018020886A1 (en) 2016-07-27 2018-02-01 Jfeスチール株式会社 High strength seamless stainless steel pipe for oil wells and production method therefor
US11072835B2 (en) 2016-07-27 2021-07-27 Jfe Steel Corporation High-strength seamless stainless steel pipe for oil country tubular goods, and method for producing the same
US11306369B2 (en) 2017-02-24 2022-04-19 Jfe Steel Corporation High-strength stainless steel seamless pipe for oil country tubular goods, and method for producing same
WO2018155041A1 (en) 2017-02-24 2018-08-30 Jfeスチール株式会社 High strength seamless stainless steel pipe for oil well and production method therefor
WO2018181404A1 (en) 2017-03-28 2018-10-04 新日鐵住金株式会社 Martensitic stainless steel material
WO2020067247A1 (en) 2018-09-27 2020-04-02 日本製鉄株式会社 Martensitic stainless steel material
US11834725B2 (en) 2018-09-27 2023-12-05 Nippon Steel Corporation Martensitic stainless steel material
WO2020071348A1 (en) 2018-10-02 2020-04-09 日本製鉄株式会社 Martensite-based stainless steel seamless pipe
WO2020071344A1 (en) 2018-10-02 2020-04-09 日本製鉄株式会社 Martensite-based stainless steel seamless pipe
WO2021206080A1 (en) 2020-04-07 2021-10-14 日本製鉄株式会社 Martensitic stainless seamless steel pipe
WO2022075406A1 (en) 2020-10-08 2022-04-14 日本製鉄株式会社 Martensitic stainless steel material

Similar Documents

Publication Publication Date Title
RU2307876C2 (en) High-strength martensite stainless steel with high corrosionproofness against gaseous carbon dioxide and high resistance against corrosion cracking under stress in hydrogen sulfide atmosphere
JP4367412B2 (en) Martensitic stainless steel
JPH101755A (en) Martensitic stainless steel excellent in corrosion resistance and sulfide stress corrosion cracking resistance and its production
JP4577457B2 (en) Stainless steel used for oil well pipes
JPWO2018181404A1 (en) Martensitic stainless steel
WO2014112353A1 (en) Stainless steel seamless tube for use in oil well and manufacturing process therefor
JP6372070B2 (en) Ferritic / martensitic duplex steel and oil well steel pipe
WO2015107608A1 (en) Martensite-based chromium-containing steel, and steel pipe for oil well
JP2003525354A (en) Duplex stainless steel
JP3444008B2 (en) Martensitic stainless steel with excellent carbon dioxide corrosion resistance and sulfide stress corrosion cracking resistance
JP2013253315A (en) Duplex stainless steel material and duplex stainless steel pipe
JP5875933B2 (en) Duplex stainless steel and duplex stainless steel pipe
CN115349024A (en) Stainless steel seamless steel pipe and method for manufacturing stainless steel seamless steel pipe
JP2001279392A (en) Martensitic stainless steel and its production method
JP2791804B2 (en) Martensitic stainless steel with high strength and excellent corrosion resistance
JP2742948B2 (en) Martensitic stainless steel excellent in corrosion resistance and method for producing the same
JP2620809B2 (en) High-strength martensitic stainless steel excellent in high-temperature high-chloride-ion-concentration wet high-pressure carbon dioxide gas environment corrosion resistance and stress corrosion cracking resistance, and method for producing the same
JP7111253B2 (en) Seamless stainless steel pipe and manufacturing method thereof
JP2602319B2 (en) High-strength, high-temperature, high-chloride-ion-concentration, wet carbon dioxide gas-corrosion-resistant, martensitic stainless steel excellent in stress corrosion cracking resistance and method for producing the same
JP2742949B2 (en) Martensitic stainless steel excellent in corrosion resistance and method for producing the same
CA3086462C (en) Cr-ni alloy and seamless steel pipe made of cr-ni alloy
JP2018123419A (en) Nickel-containing steel material for low temperatures and tank for low temperatures therewith
JP2017014543A (en) Stainless steel for oil well and stainless steel pipe for oil well
JP7409569B1 (en) Stainless steel seamless pipe and its manufacturing method
JP7226571B2 (en) Seamless stainless steel pipe and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20040317

A02 Decision of refusal

Effective date: 20040817

Free format text: JAPANESE INTERMEDIATE CODE: A02