JP2013253315A - Duplex stainless steel material and duplex stainless steel pipe - Google Patents

Duplex stainless steel material and duplex stainless steel pipe Download PDF

Info

Publication number
JP2013253315A
JP2013253315A JP2013011282A JP2013011282A JP2013253315A JP 2013253315 A JP2013253315 A JP 2013253315A JP 2013011282 A JP2013011282 A JP 2013011282A JP 2013011282 A JP2013011282 A JP 2013011282A JP 2013253315 A JP2013253315 A JP 2013253315A
Authority
JP
Japan
Prior art keywords
mass
stainless steel
duplex stainless
steel material
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013011282A
Other languages
Japanese (ja)
Other versions
JP6405078B2 (en
Inventor
Shinji Sakashita
真司 阪下
Natsuki Nishizawa
夏来 西澤
Junichiro Kinugasa
潤一郎 衣笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49951068&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2013253315(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2013011282A priority Critical patent/JP6405078B2/en
Publication of JP2013253315A publication Critical patent/JP2013253315A/en
Application granted granted Critical
Publication of JP6405078B2 publication Critical patent/JP6405078B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a duplex stainless steel material and duplex stainless steel pipe which exhibit good corrosion resistance in an environment containing corrosive substances such as chlorides, hydrogen sulfides and carbon dioxide gas.SOLUTION: A duplex stainless steel material including a ferrite phase and an austenitic phase has a composition comprising 0.10 mass% or less of C, 0.1-2.0 mass% of Si, 0.1-2.0 mass% of Mn, 0.05 mass% or less of P, 0.03 mass% or less of S, 0.005-0.050 mass% of Al, 18.0-29.0 mass% of Cr, 1.0-10.0 mass% of Ni, 2.5-6.0 mass% of Mo, 0.001-0.30 mass% of Sn, 0.16-0.50 mass% of N, and the balance Fe with unavoidable impurities, while a mass ratio (N/Sn) between an amount of the N and an amount of the Sn is 1-400.

Description

本発明は、塩化物、硫化水素、炭酸ガスなどの腐食性物質を含有する環境(以下、腐食環境と称することがある)において使用される二相ステンレス鋼材および二相ステンレス鋼管に関するものである。   The present invention relates to a duplex stainless steel material and a duplex stainless steel pipe used in an environment containing a corrosive substance such as chloride, hydrogen sulfide, carbon dioxide (hereinafter sometimes referred to as a corrosive environment).

ステンレス鋼材は、腐食環境において不働態皮膜と呼ばれるCrの酸化物を主体とする安定な表面皮膜を自然に形成し、耐食性を発現する材料である。特に、フェライト相とオーステナイト相からなる二相ステンレス鋼材は、強度特性がオーステナイト系ステンレス鋼やフェライト系ステンレス鋼に対して優れ、耐孔食性と耐応力腐食割れ性が良好である。このような特徴のため、二相ステンレス鋼材は、アンビリカル、海水淡水化プラント、LNG気化器などの海水環境の構造材料を初めとして、油井管や各種化学プラントなどの腐食性が厳しい環境の構造材料として使用されている。   Stainless steel is a material that naturally forms a stable surface film mainly composed of a Cr oxide called a passive film in a corrosive environment and exhibits corrosion resistance. In particular, a duplex stainless steel material composed of a ferrite phase and an austenite phase is superior in strength characteristics to austenitic stainless steel and ferritic stainless steel, and has good pitting corrosion resistance and stress corrosion cracking resistance. Due to these characteristics, duplex stainless steel materials are used for structural materials in highly corrosive environments such as oil well pipes and various chemical plants, including structural materials for seawater environments such as umbilicals, seawater desalination plants, and LNG vaporizers. It is used as

しかしながら、使用環境に塩化物(塩化物イオン)などの腐食性物質が多量に含有される場合には、二相ステンレス鋼材中の介在物や不働態皮膜の欠陥などを起点として、二相ステンレス鋼材に局部腐食いわゆる孔食が発生する場合がある。また、二相ステンレス鋼材のすきま部分においては、すきま内部では塩化物イオンなどの腐食性物質が濃縮してより厳しい腐食環境となり、さらにすきま外部と内部との間で酸素濃淡電池を形成して、すきま内部の局部腐食がより促進され、いわゆるすきま腐食が発生する場合がある。さらに、孔食やすきま腐食などの局部腐食は、応力腐食割れの起点となる場合が多く、安全性の観点から耐食性、特に耐局部腐食特性のさらなる向上が求められている。   However, when a corrosive substance such as chloride (chloride ion) is contained in a large amount in the usage environment, the duplex stainless steel material starts from inclusions in the duplex stainless steel material or defects in the passive film. In some cases, so-called pitting corrosion may occur. In addition, in the gap part of duplex stainless steel material, corrosive substances such as chloride ions are concentrated inside the gap, resulting in a more severe corrosive environment, and an oxygen concentration cell is formed between the outside and inside of the gap, Local corrosion inside the crevice is further promoted, and so-called crevice corrosion may occur. Further, local corrosion such as pitting corrosion and crevice corrosion often becomes the starting point of stress corrosion cracking, and further improvement in corrosion resistance, particularly local corrosion resistance, is required from the viewpoint of safety.

特に、油井管材料においては、より深層の油井やガス井の開発が進められており、従来よりも高温で、かつ、硫化水素、炭酸ガス、塩化物などの腐食性物質を多量に含む環境に曝される場合が多くなっているため、従来よりもさらに優れた耐食性が要求されている。   In particular, for oil well pipe materials, deeper oil wells and gas wells are being developed, and the temperature is higher than before and the environment contains a large amount of corrosive substances such as hydrogen sulfide, carbon dioxide, and chloride. Since exposure is increasing, corrosion resistance superior to conventional ones is required.

ステンレス鋼の耐孔食性は、Cr量を[Cr]、Mo量を[Mo]、N量を[N]とした際、[Cr]+3.3[Mo]+16[N]で計算される孔食指数PRE(Pitting Resistance Equivalent)で表され、Cr、Mo、Nの含有量を多くすれば優れた耐孔食性が得られることが知られている。また、Cr、Mo、Nの含有量の増加は、耐すきま腐食性の向上にも寄与することが知られている。しかしながら、Cr、Mo、Nの含有量の増加は、鋳造性や圧延性などを低下させるため素材製造面で問題が生じる可能性が大きいことに加えて、溶接性や加工性も低下させるため施工面でも問題が生じる場合が多い。二相ステンレス鋼材において、実用上十分な耐食性を得るための技術としては、特許文献1にCr、Mo、N以外にCu、Ni、V、などの化学成分を調整することが提案され、特許文献2にCr、Mo,N以外にミッシュメタルおよび/またはYを活用することが提案されている。   The pitting corrosion resistance of stainless steel is calculated by [Cr] +3.3 [Mo] +16 [N] when the Cr amount is [Cr], the Mo amount is [Mo], and the N amount is [N]. It is expressed by the corrosion index PRE (Pitting Resistance Equivalent), and it is known that if the content of Cr, Mo, and N is increased, excellent pitting corrosion resistance can be obtained. Further, it is known that an increase in the content of Cr, Mo, and N contributes to an improvement in crevice corrosion resistance. However, the increase in Cr, Mo, N content reduces castability and rollability, so there is a high possibility that problems will occur in terms of material production, as well as weldability and workability. There are many cases where problems occur. As a technique for obtaining practically sufficient corrosion resistance in a duplex stainless steel material, it is proposed in Patent Document 1 to adjust chemical components such as Cu, Ni and V in addition to Cr, Mo and N. 2 proposes to use misch metal and / or Y in addition to Cr, Mo, and N.

国際公開第2009/119895号パンフレットInternational Publication No. 2009/119895 Pamphlet 特開2011−174183号公報JP 2011-174183 A

しかしながら、二相ステンレス鋼材は強度特性に優れる反面、圧延や引抜などの加工が通常の単相ステンレス鋼材よりも難しい場合が多い。また、σ相析出を助長するNi、Mo、Si、Mnなどの元素の含有量の増量はσ脆化を促進して靭性を劣化させる懸念があり、実用が困難である場合が多い。また、二相ステンレス鋼材の耐食性向上に対しては、特許文献1、2では必ずしも十分であるとは言えず、特に塩化物腐食環境において発生する局部腐食に関して問題があり、さらに効果的な耐食性向上の要望がある。   However, duplex stainless steel materials are excellent in strength characteristics, but processing such as rolling and drawing is often more difficult than ordinary single-phase stainless steel materials. Further, increasing the content of elements such as Ni, Mo, Si, Mn and the like that promotes σ phase precipitation may promote σ embrittlement and deteriorate toughness, and is often difficult to put into practical use. Further, Patent Documents 1 and 2 are not necessarily sufficient for improving the corrosion resistance of duplex stainless steel materials, and there is a problem with local corrosion occurring particularly in a chloride corrosive environment, and further effective corrosion resistance improvement. There is a request.

本発明は、このような状況に鑑みてなされたものであり、その課題は塩化物、硫化水素、炭酸ガスなどの腐食性物質を含有する環境において良好な耐食性を発現する二相ステンレス鋼材および二相ステンレス鋼管を提供することにある。   The present invention has been made in view of such a situation, and the problem is that the duplex stainless steel material and the duplex stainless steel material exhibiting good corrosion resistance in an environment containing corrosive substances such as chloride, hydrogen sulfide, and carbon dioxide. It is to provide a phase stainless steel pipe.

前記のようにステンレス鋼材は、Crの酸化物を主体とする不働態皮膜により耐食性を発現する材料である。二相ステンレス鋼材では、フェライト相とオーステナイト相の異相界面で不連続性を有しており、フェライト相とオーステナイト相との界面においては不働態皮膜が不安定になる傾向が強いため、塩化物イオンの不働態皮膜破壊作用を受けやすく、局部腐食が発生しやすくなる。本発明者らは、前記課題を解決するために製造面や諸特性を害さない範囲において、二相ステンレス鋼材の不働態皮膜の安定性および保護性を強化することに着目し、耐食性を向上させる技術検討を行った。   As described above, a stainless steel material is a material that exhibits corrosion resistance by a passive film mainly composed of Cr oxide. In duplex stainless steel materials, there is a discontinuity at the heterogeneous interface between the ferrite phase and the austenite phase, and the passive film tends to become unstable at the interface between the ferrite phase and the austenite phase. It is easy to be affected by the passive film destruction action, and local corrosion is likely to occur. In order to solve the above-mentioned problems, the inventors pay attention to enhancing the stability and protective property of the passive film of the duplex stainless steel material within a range that does not impair the manufacturing surface and various characteristics, and improve the corrosion resistance. Technical study was conducted.

本発明に係る二相ステンレス鋼材は、フェライト相とオーステナイト相とからなる二相ステンレス鋼材であって、前記二相ステンレス鋼材の成分組成は、C:0.10質量%以下、Si:0.1〜2.0質量%、Mn:0.1〜2.0質量%、P:0.05質量%以下、S:0.03質量%以下、Al:0.005〜0.050質量%、Cr:18.0〜29.0質量%、Ni:1.0〜10.0質量%、Mo:2.5〜6.0質量%、Sn:0.001〜0.30質量%、N:0.16〜0.50質量%、かつ、前記N量と前記Sn量との質量比(N/Sn)が1〜400であって、残部がFeおよび不可避的不純物からなることを特徴とする。   The duplex stainless steel material according to the present invention is a duplex stainless steel material composed of a ferrite phase and an austenite phase, and the component composition of the duplex stainless steel material is C: 0.10% by mass or less, Si: 0.1 -2.0 mass%, Mn: 0.1-2.0 mass%, P: 0.05 mass% or less, S: 0.03 mass% or less, Al: 0.005-0.050 mass%, Cr : 18.0 to 29.0 mass%, Ni: 1.0 to 10.0 mass%, Mo: 2.5 to 6.0 mass%, Sn: 0.001 to 0.30 mass%, N: 0 .16 to 0.50 mass%, and the mass ratio (N / Sn) of the N content to the Sn content is 1 to 400, and the balance is made of Fe and inevitable impurities.

前記のように、二相ステンレス鋼材は、所定量のSnを含有すると共に、所定範囲のN/Snを満足し、このSnが固溶することによって、Feの溶解反応が促進されて、Crの酸化物皮膜が形成されやすくなる。その結果、フェライト相とオーステナイト相との界面においても不働態皮膜が形成しやすくなり、しかもその安定性が高まるため、局部腐食を大幅に抑制できる。また、二相ステンレス鋼材は、不働態皮膜が局所的に破壊された場合にも、固溶Snの作用により不働態皮膜が再生されやすく、結果として不働態皮膜の安定性が高まる。   As described above, the duplex stainless steel material contains a predetermined amount of Sn and satisfies a predetermined range of N / Sn. When this Sn is dissolved, the dissolution reaction of Fe is promoted, and Cr An oxide film is easily formed. As a result, it becomes easy to form a passive film even at the interface between the ferrite phase and the austenite phase, and the stability is increased, so that local corrosion can be greatly suppressed. Further, in the duplex stainless steel material, even when the passive film is locally broken, the passive film is easily regenerated by the action of the solute Sn, and as a result, the stability of the passive film is increased.

そして、二相ステンレス鋼材において、Nは、溶解時に溶液中のHと反応してNH4を形成することにより、溶液中のH濃度を低下させる、すなわちpHを上昇させる作用がある。このようなNの作用により、腐食起点のpH低下(酸性化)によって発生・加速される孔食やすきま腐食などの局部腐食が抑制される。所定量のSn含有は、このようなNの溶解性も促進するため、NとHとの反応を促進して、pH緩和作用を極大化する。なお、前記のような所定量のSnの作用は、二相ステンレス鋼材にSnを固溶させた場合に得られるものであり、Snが他の合金元素と化合物を形成した場合には、FeやNの溶解反応に影響を及ぼさなくなるため、前記効果は得られにくくなる。したがって、Snは固溶させることが好ましい。 In the duplex stainless steel material, N reacts with H + in the solution to form NH 4 + at the time of dissolution, thereby reducing the H + concentration in the solution, that is, increasing the pH. By such an action of N, local corrosion such as pitting corrosion and crevice corrosion that is generated and accelerated by pH reduction (acidification) at the corrosion starting point is suppressed. The inclusion of a predetermined amount of Sn also promotes such solubility of N, and therefore promotes the reaction between N and H + to maximize the pH relaxation action. The action of the predetermined amount of Sn as described above is obtained when Sn is dissolved in a duplex stainless steel material. When Sn forms a compound with another alloy element, Fe or Since the N dissolution reaction is not affected, the above effect is hardly obtained. Therefore, Sn is preferably dissolved.

また、二相ステンレス鋼材は、所定量のMn、P、S、Al、Moを含有することによって、前記のSnの作用効果が向上し、所定量のC、Si、Niを含有することによって、二相組織が得られ、構造材料として必要な加工性、低温靭性などの諸特性が得られる。   In addition, the duplex stainless steel material contains a predetermined amount of Mn, P, S, Al, Mo, thereby improving the effect of the Sn, and by containing a predetermined amount of C, Si, Ni, A two-phase structure is obtained, and various properties such as workability and low-temperature toughness required as a structural material are obtained.

また、本発明に係る二相ステンレス鋼材は、前記成分組成が、さらに、Cu:0.1〜2.0質量%、Co:0.1〜2.0質量%、W:0.1〜6.0質量%の1種または2種以上を含有することが好ましい。また、前記成分組成が、さらに、Mg:0.0005〜0.020質量%、Ca:0.0005〜0.020質量%の1種または2種を含有することが好ましい。また、前記成分組成が、さらに、Ti:0.01〜0.50質量%、Zr:0.01〜0.50質量%、V:0.01〜0.50質量%、Nb:0.01〜0.50質量%、B:0.0005〜0.010質量%よりなる群から選ばれる1種以上を含有することが好ましい。   In the duplex stainless steel material according to the present invention, the component composition further includes Cu: 0.1 to 2.0% by mass, Co: 0.1 to 2.0% by mass, and W: 0.1 to 6 It is preferable to contain 0.0 mass% of one kind or two or more kinds. Moreover, it is preferable that the said component composition contains 1 type or 2 types of Mg: 0.0005-0.020 mass% and Ca: 0.0005-0.020 mass% further. Moreover, the said component composition is further Ti: 0.01-0.50 mass%, Zr: 0.01-0.50 mass%, V: 0.01-0.50 mass%, Nb: 0.01 It is preferable to contain 1 or more types chosen from the group which consists of -0.50 mass% and B: 0.0005-0.010 mass%.

前記のように、二相ステンレス鋼材は、Cu、Co、Wの1種または2種以上をさらに含有すること、Mg、Caの1種または2種をさらに含有すること、Ti、Zr、V、Nb、Bよりなる群からから選ばれる1種以上を含有することによって、不働態皮膜の安定性がより一層高まるため、局部腐食をより一層大幅に抑制できる。   As described above, the duplex stainless steel material further contains one or more of Cu, Co, and W, further contains one or two of Mg and Ca, Ti, Zr, V, By containing one or more selected from the group consisting of Nb and B, the stability of the passive film is further increased, and therefore local corrosion can be further greatly suppressed.

さらに、本発明に係る二相ステンレス鋼管は、前記の二相ステンレス鋼材からなることを特徴とする。
前記のように、二相ステンレス鋼管は、鋼管を二相ステンレス鋼材で構成することによって、鋼管表面に形成される不働態皮膜の安定性が高まるため、局部腐食を大幅に抑制できる。
Furthermore, the duplex stainless steel pipe according to the present invention is characterized by comprising the duplex stainless steel material described above.
As described above, since the duplex stainless steel pipe is made of a duplex stainless steel material, the stability of the passive film formed on the surface of the steel pipe is increased, so that local corrosion can be significantly suppressed.

本発明の二相ステンレス鋼材および二相ステンレス鋼管によれば、塩化物、硫化水素、炭酸ガスなどの腐食性物質を含有する環境において良好な耐食性を発現する。その結果、アンビリカル、海水淡水化プラント、LNG気化器などの海水環境の構造材料を初めとして、油井管や各種化学プラントなどの腐食性が厳しい環境の構造材料への使用が可能となる。   The duplex stainless steel material and duplex stainless steel pipe of the present invention exhibit good corrosion resistance in an environment containing corrosive substances such as chloride, hydrogen sulfide, and carbon dioxide. As a result, it can be used not only for structural materials in seawater environments such as umbilicals, seawater desalination plants, and LNG vaporizers, but also for structural materials in highly corrosive environments such as oil well pipes and various chemical plants.

PRE値と孔食電位(Epit)との関係を示す図である。It is a figure which shows the relationship between PRE value and a pitting potential (Epit). PRE値と腐食すきま再不働態化電位(Ercrev)との関係を示す図である。It is a figure which shows the relationship between PRE value and a corrosion clearance repassivation potential (Ercrev).

<二相ステンレス鋼材>
本発明に係る二相ステンレス鋼材の実施形態について詳細に説明する。
本発明の二相ステンレス鋼材は、フェライト相とオーステナイト相とからなる二相ステンレス鋼材であって、前記二相ステンレス鋼材の成分組成は、C、Si、Mn、P、S、Al、Cr、Ni、Mo、Sn、Nを所定量含有し、かつ、前記N量と前記Sn量との質量比(N/Sn)が所定範囲であって、残部がFeおよび不可避的不純物からなる。以下、各構成について説明する。
<Duplex stainless steel>
An embodiment of the duplex stainless steel material according to the present invention will be described in detail.
The duplex stainless steel material of the present invention is a duplex stainless steel material composed of a ferrite phase and an austenite phase, and the component composition of the duplex stainless steel material is C, Si, Mn, P, S, Al, Cr, Ni , Mo, Sn, and N are contained in a predetermined amount, and a mass ratio (N / Sn) between the N amount and the Sn amount is in a predetermined range, with the balance being Fe and inevitable impurities. Each configuration will be described below.

(鋼材組織)
本発明の二相ステンレス鋼材は、フェライト相とオーステナイト相の二相からなるものである。フェライト相とオーステナイト相からなる二相ステンレス鋼材においては、CrやMoなどのフェライト相安定化元素はフェライト相に濃縮し、NiやNなどのオーステナイト相安定化元素はオーステナイト相に濃縮する傾向にある。このとき、フェライト相のオーステナイト相に対する面積率が30%未満または70%を超える場合には、Cr、Mo、Ni、Nなどの耐食性に寄与する元素のフェライト相とオーステナイト相における濃度差異が大きくなりすぎて、フェライト相とオーステナイト相のいずれか耐食性に劣る側が選択腐食されて耐食性が劣化する傾向が大きくなる。したがって、フェライト相とオーステナイト相との面積率も最適化することが推奨され、フェライト相の面積率は、耐食性の観点から30〜70%が好ましく、40〜60%がさらに好ましい。このようなフェライト相とオーステナイト相の面積率は、フェライト相安定化元素とオーステナイト相安定化元素の含有量を調整することによって適正化することが可能である。
(Steel structure)
The duplex stainless steel material of the present invention is composed of two phases of a ferrite phase and an austenite phase. In a duplex stainless steel material composed of a ferrite phase and an austenite phase, ferrite phase stabilizing elements such as Cr and Mo tend to concentrate in the ferrite phase, and austenite phase stabilizing elements such as Ni and N tend to concentrate in the austenite phase. . At this time, when the area ratio of the ferrite phase to the austenite phase is less than 30% or more than 70%, the concentration difference between the ferrite phase and the austenite phase of elements contributing to the corrosion resistance such as Cr, Mo, Ni, and N becomes large. Too much, either the ferrite phase or the austenite phase, which is inferior in corrosion resistance, is selectively corroded, and the tendency of the corrosion resistance to deteriorate increases. Therefore, it is recommended that the area ratio of the ferrite phase and the austenite phase is also optimized, and the area ratio of the ferrite phase is preferably 30 to 70% and more preferably 40 to 60% from the viewpoint of corrosion resistance. Such an area ratio of the ferrite phase and the austenite phase can be optimized by adjusting the contents of the ferrite phase stabilizing element and the austenite phase stabilizing element.

また、本発明の二相ステンレス鋼材は、フェライト相とオーステナイト相以外にσ相やCrの炭窒化物などの異相も耐食性や機械特性などの諸特性を害さない程度に許容できる。フェライト相とオーステナイト相との面積率の合計は、95%以上とすることが好ましく、97%以上とすることがさらに好ましい。   In addition, the duplex stainless steel material of the present invention can tolerate other phases such as σ phase and Cr carbonitride in addition to the ferrite phase and austenite phase to such an extent that they do not impair various properties such as corrosion resistance and mechanical properties. The total area ratio of the ferrite phase and the austenite phase is preferably 95% or more, and more preferably 97% or more.

二相ステンレス鋼材の成分組成の数値範囲の限定理由について説明する。
(C:0.10質量%以下)
Cは、鋼材中でCrなどとの炭化物を形成して耐食性を低下させるため、有害な元素である。Cの含有量はできる限り少なくする必要があり、C含有量の上限値は0.10質量%である。C含有量の好ましい上限値は0.08質量%であり、より好ましくは0.06質量%以下とするのが良い。なお、Cは、鋼材中に含有されていない、すなわち、0質量%であっても良い。
The reason for limiting the numerical range of the component composition of the duplex stainless steel material will be described.
(C: 0.10 mass% or less)
C is a harmful element because it forms a carbide with Cr or the like in the steel material to lower the corrosion resistance. It is necessary to reduce the C content as much as possible, and the upper limit of the C content is 0.10% by mass. The upper limit with preferable C content is 0.08 mass%, More preferably, it is good to set it as 0.06 mass% or less. Note that C may not be contained in the steel material, that is, 0% by mass.

(Si:0.1〜2.0質量%)
Siは、脱酸とフェライト相の安定化のために必要な元素である。このような効果を得るためには、Siは0.1質量%以上含有させることが必要である。しかし、過剰にSiを含有させると加工性が劣化することからSi含有量は2.0質量%以下とすることが必要である。Si含有量の好ましい下限値は0.15質量%であり、さらに好ましい下限値は0.2質量%である。また、Si含有量の好ましい上限値は1.9質量%であり、さらに好ましい上限値は1.8質量%である。
(Si: 0.1 to 2.0% by mass)
Si is an element necessary for deoxidation and stabilization of the ferrite phase. In order to acquire such an effect, it is necessary to contain Si 0.1 mass% or more. However, if Si is excessively contained, the workability deteriorates, so the Si content must be 2.0% by mass or less. A preferable lower limit of the Si content is 0.15% by mass, and a more preferable lower limit is 0.2% by mass. Moreover, the upper limit with preferable Si content is 1.9 mass%, and a more preferable upper limit is 1.8 mass%.

(Mn:0.1〜2.0質量%)
Mnは、Siと同様に脱酸効果があり、さらに強度確保のために必要な元素である。このような効果を得るためには、Mnは0.1質量%以上含有させることが必要である。しかし、過剰にMnを含有させると粗大なMnSを形成して耐食性が劣化することからMn含有量は2.0質量%以下とすることが必要である。Mn含有量の好ましい下限値は0.15質量%であり、さらに好ましい下限値は0.2質量%である。また、Mn含有量の好ましい上限値は1.9質量%であり、さらに好ましい上限値は1.8質量%である。
(Mn: 0.1 to 2.0% by mass)
Mn has a deoxidizing effect like Si, and is an element necessary for ensuring strength. In order to acquire such an effect, it is necessary to contain Mn 0.1 mass% or more. However, if Mn is excessively contained, coarse MnS is formed and the corrosion resistance deteriorates, so the Mn content needs to be 2.0% by mass or less. A preferable lower limit of the Mn content is 0.15% by mass, and a more preferable lower limit is 0.2% by mass. Moreover, the upper limit with preferable Mn content is 1.9 mass%, and a more preferable upper limit is 1.8 mass%.

(P:0.05質量%以下)
Pは、耐食性に有害な元素であり、溶接性や加工性も劣化させる元素であり、Pの許容される含有量は0.05質量%までである。P含有量はできる限り少ない方が好ましく、好ましい上限値は0.04質量%であり、さらに好ましくは0.03質量%以下とするのが良い。なお、Pは、鋼材中に含有されていない、すなわち、0質量%であって良い。
(P: 0.05% by mass or less)
P is an element harmful to corrosion resistance and is an element that deteriorates weldability and workability. The allowable content of P is up to 0.05% by mass. The P content is preferably as small as possible, and the preferable upper limit is 0.04% by mass, and more preferably 0.03% by mass or less. Note that P may not be contained in the steel material, that is, 0% by mass.

(S:0.03質量%以下)
Sは、MnSを形成して耐食性を低下させるため、有害な元素である。また、Sが過剰に含有されると加工性も劣化する。よって、許容されるS含有量は0.03質量%までである。S含有量はできる限り少ない方が好ましく、好ましい上限値は0.025質量%であり、さらに好ましくは0.02質量%以下とするのが良い。なお、Sは、鋼材中に含有されていない、すなわち、0質量%であっても良い。
(S: 0.03 mass% or less)
S is a harmful element because it forms MnS and lowers the corrosion resistance. Further, if S is contained excessively, the workability is also deteriorated. Therefore, the allowable S content is up to 0.03% by mass. The S content is preferably as low as possible, and the preferable upper limit is 0.025% by mass, and more preferably 0.02% by mass or less. S may not be contained in the steel material, that is, 0% by mass.

(Al:0.005〜0.050質量%)
Alは、Si、Mnと同様に脱酸の効果がある元素である。このような効果を得るためには、Alは0.005質量%以上含有することが必要である。しかし、過剰にAlを含有させるとSnの耐食効果を害することに加えて、靭性も低下させることからAl含有量は0.050質量%以下とすることが必要である。Al含有量の好ましい下限値は0.006質量%であり、さらに好ましい下限値は0.007質量%である。また、Al含有量の好ましい上限値は0.045質量%であり、さらに好ましい上限値は0.040質量%である。
(Al: 0.005 to 0.050 mass%)
Al is an element having an effect of deoxidation like Si and Mn. In order to acquire such an effect, it is necessary to contain Al 0.005 mass% or more. However, if Al is contained excessively, the corrosion resistance effect of Sn is impaired, and the toughness is also lowered. Therefore, the Al content must be 0.050% by mass or less. A preferable lower limit of the Al content is 0.006% by mass, and a more preferable lower limit is 0.007% by mass. Moreover, the preferable upper limit of Al content is 0.045 mass%, and a more preferable upper limit is 0.040 mass%.

(Cr:18.0〜29.0質量%)
Crは、不働態皮膜の主要成分であり、ステンレス鋼材の耐食性発現の基本元素である。このような耐食性を得るためには、Crは18.0質量%以上含有することが必要である。しかし、過剰にCrを含有させると加工性を劣化させることからCr含有量は29.0質量%以下とすることが必要である。Cr含有量の好ましい下限値は18.5質量%であり、さらに好ましい下限値は19.0質量%である。また、Cr含有量の好ましい上限値は28.5質量%であり、さらに好ましい上限値は28.0質量%である。
(Cr: 18.0 to 29.0 mass%)
Cr is a main component of the passive film, and is a basic element for developing the corrosion resistance of the stainless steel material. In order to obtain such corrosion resistance, it is necessary to contain 18.0% by mass or more of Cr. However, if Cr is excessively contained, the workability deteriorates, so the Cr content needs to be 29.0% by mass or less. A preferable lower limit of the Cr content is 18.5% by mass, and a more preferable lower limit is 19.0% by mass. Moreover, the upper limit with preferable Cr content is 28.5 mass%, and a more preferable upper limit is 28.0 mass%.

(Ni:1.0〜10.0質量%)
Niは、耐食性向上に必要な元素であり、特に、塩化物環境における局部腐食抑制に効果が大きい。また、Niは低温靱性を向上させるのにも有効であり、オーステナイト相を安定化させるためにも必要な元素である。こうした効果を得るためには、Niは1.0質量%以上含有させることが必要である。しかし、過剰にNiを含有させるとオーステナイト相が多くなりすぎて、強度が低下することからNi含有量は10.0質量%以下とすることが必要である。Ni含有量の好ましい下限値は1.2質量%であり、さらに好ましい下限値は1.5質量%である。また、Ni含有量の好ましい上限値は9.5質量%であり、さらに好ましい上限値は9.0質量%である。
(Ni: 1.0-10.0 mass%)
Ni is an element necessary for improving corrosion resistance, and is particularly effective for suppressing local corrosion in a chloride environment. Ni is also effective in improving low temperature toughness and is an element necessary for stabilizing the austenite phase. In order to acquire such an effect, it is necessary to contain Ni by 1.0 mass% or more. However, if Ni is excessively contained, the austenite phase increases too much and the strength decreases, so the Ni content must be 10.0% by mass or less. A preferable lower limit of the Ni content is 1.2% by mass, and a more preferable lower limit is 1.5% by mass. Moreover, the preferable upper limit of Ni content is 9.5 mass%, and a more preferable upper limit is 9.0 mass%.

(Mo:2.5〜6.0質量%)
Moは、溶解時にモリブデン酸を生成して、インヒビター作用により耐局部腐食性を向上させる効果を発揮し、耐食性を向上させる元素である。本発明の所定量のSnの効果はこのようなモリブデン酸生成時に得られるため、Moは、本発明に必要な元素である。また、Moはフェライト相を安定化させるためにも必要な元素である。このような効果を得るためには、Moは2.5質量%以上含有させることが必要である。しかし、過剰にMoを含有させると加工性を劣化させることからMo含有量は6.0質量%以下とすることが必要である。Mo含有量の好ましい下限値は2.6質量%であり、さらに好ましい下限値は2.7質量%である。また、Mo含有量の好ましい上限値は5.9質量%であり、さらに好ましい上限値は5.8質量%である。
(Mo: 2.5-6.0% by mass)
Mo is an element that generates molybdic acid at the time of dissolution and exhibits an effect of improving local corrosion resistance by an inhibitor action, thereby improving the corrosion resistance. Since the effect of the predetermined amount of Sn according to the present invention is obtained during the generation of such molybdic acid, Mo is an element necessary for the present invention. Mo is an element necessary for stabilizing the ferrite phase. In order to acquire such an effect, it is necessary to contain Mo 2.5 mass% or more. However, if Mo is excessively contained, the workability deteriorates, so the Mo content needs to be 6.0% by mass or less. A preferable lower limit of the Mo content is 2.6% by mass, and a more preferable lower limit is 2.7% by mass. Moreover, the upper limit with preferable Mo content is 5.9 mass%, and a more preferable upper limit is 5.8 mass%.

(Sn:0.001〜0.30質量%)
Snは、所定量含有させることにより、塩化物環境における不働態皮膜を強化・安定化し、NのpH緩和作用を極大化させて、耐食性を向上させる効果を有する。このような効果を得るためには、Snは0.001質量%以上含有させることが必要である。しかし、過剰にSnを含有させると熱間加工性が劣化することからSn含有量は0.30質量%以下とする必要がある。Snの含有量の好ましい下限値は0.010質量%であり、さらに好ましい下限値は0.015質量%である。また、Snの含有量の好ましい上限値は0.28質量%であり、さらに好ましい上限値は0.25質量%である。
(Sn: 0.001 to 0.30 mass%)
When Sn is contained in a predetermined amount, Sn has the effect of strengthening and stabilizing the passive film in the chloride environment, maximizing the pH relaxation action of N, and improving the corrosion resistance. In order to acquire such an effect, it is necessary to contain Sn 0.001 mass% or more. However, if Sn is excessively contained, hot workability deteriorates, so the Sn content needs to be 0.30% by mass or less. A preferable lower limit of the Sn content is 0.010% by mass, and a more preferable lower limit is 0.015% by mass. Moreover, the upper limit with a preferable content of Sn is 0.28 mass%, and a more preferable upper limit is 0.25 mass%.

(N:0.16〜0.50質量%)
Nは、塩化物環境におけるpH緩和作用による耐局部腐食性を向上させる効果を発揮し、オーステナイト相を安定化させるために必要な元素である。このような効果を得るためには、Nは0.16質量%以上含有させることが必要である。しかし、過剰にNを含有させると加工性を劣化させることからN含有量は0.50質量%以下とする必要がある。N含有量の好ましい下限値は0.17質量%であり、さらに好ましい下限値は0.18質量%である。また、N含有量の好ましい上限値は0.49質量%であり、さらに好ましい上限値は0.48質量%である。
(N: 0.16-0.50 mass%)
N is an element necessary for stabilizing the austenite phase by exhibiting the effect of improving the local corrosion resistance by the pH relaxation action in a chloride environment. In order to acquire such an effect, it is necessary to contain N 0.16 mass% or more. However, if N is excessively contained, the workability deteriorates, so the N content needs to be 0.50% by mass or less. A preferable lower limit of the N content is 0.17% by mass, and a more preferable lower limit is 0.18% by mass. Moreover, the upper limit with preferable N content is 0.49 mass%, and a more preferable upper limit is 0.48 mass%.

(N/Sn:1〜400)
N/Snは、本発明の二相ステンレス鋼材の耐食性を発現させるのに重要な比である。N/Snが1に満たない場合には、Snが過剰となるためにNの溶解が促進されすぎて、二相ステンレス鋼材中のNが早期に消費され、NのpH緩和効果が持続しないため、効果的な耐食性向上が得られない。また、N/Snが400を超える場合には、Snが不足するためにNの溶解が促進されず、H消費作用は向上しないため、pH緩和効果が向上しない。このような理由から、N/Snは1〜400に調整する必要がある。N/Snの好ましい下限値は20であり、さらに好ましい下限値は25である。また、N/Snの好ましい上限値は380であり、さらに好ましい上限値は350である。
(N / Sn: 1 to 400)
N / Sn is an important ratio for developing the corrosion resistance of the duplex stainless steel material of the present invention. When N / Sn is less than 1, since Sn becomes excessive, dissolution of N is promoted too much, and N in the duplex stainless steel material is consumed at an early stage, and the pH relaxation effect of N is not sustained. Effective corrosion resistance improvement cannot be obtained. Moreover, when N / Sn exceeds 400, since Sn is insufficient, dissolution of N is not promoted, and the H + consumption effect is not improved, so that the pH relaxation effect is not improved. For this reason, N / Sn needs to be adjusted to 1 to 400. A preferable lower limit value of N / Sn is 20, and a more preferable lower limit value is 25. Moreover, the preferable upper limit of N / Sn is 380, and a more preferable upper limit is 350.

(不可避的不純物)
不可避的不純物は、二相ステンレス鋼材の諸特性を害さない程度に含有することができ、その含有量は合計で0.1質量%以下であり、好ましくは0.09質量%以下におさえることによって、本発明の耐食性発現効果を極大化することができる。
(Inevitable impurities)
Inevitable impurities can be contained to such an extent that they do not impair the properties of the duplex stainless steel material, and the total content is 0.1% by mass or less, preferably 0.09% by mass or less. Thus, the corrosion resistance expression effect of the present invention can be maximized.

また、本発明の二相ステンレス鋼材は、前記成分組成が、さらに、所定量のCu、Co、Wの1種または2種以上を含有することが好ましい。   In the duplex stainless steel material of the present invention, it is preferable that the component composition further contains one or more of a predetermined amount of Cu, Co, and W.

(Cu:0.1〜2.0質量%、Co:0.1〜2.0質量%、W:0.1〜6.0質量%)
Cu、Co、Wは、いずれも本発明の二相ステンレス鋼材において耐食性を向上させる元素である。また、CuおよびCoはオーステナイト相を安定化させ、Wはフェライト相を安定化させる作用もあり、強度および靭性の向上に有効である。しかし、Cu、Co、Wは過剰に含有させると熱間加工性を劣化させる元素であり、必要に応じて適量含有させることが好ましい。
(Cu: 0.1-2.0 mass%, Co: 0.1-2.0 mass%, W: 0.1-6.0 mass%)
Cu, Co, and W are all elements that improve the corrosion resistance in the duplex stainless steel material of the present invention. Further, Cu and Co stabilize the austenite phase, and W also stabilizes the ferrite phase, which is effective in improving strength and toughness. However, Cu, Co, and W are elements that deteriorate the hot workability when contained excessively, and are preferably contained in appropriate amounts as necessary.

CuとCoを含有させる場合の好ましい範囲はそれぞれ0.1〜2.0質量%である。Wを含有させる場合の好ましい範囲は0.1〜6.0質量%である。Cu、CoおよびWの含有量のより好ましい下限値はそれぞれ0.12質量%であり、さらに好ましい下限値はそれぞれ0.15質量%である。また、CuとCoの含有量のより好ましい上限値はそれぞれ1.95質量%であり、さらに好ましい上限値はそれぞれ1.90質量%である。W含有量のより好ましい上限値は5.95質量%であり、さらに好ましい上限値は5.90質量%である。   A preferable range in the case of containing Cu and Co is 0.1 to 2.0% by mass, respectively. A preferable range in the case of containing W is 0.1 to 6.0% by mass. More preferable lower limit values of the contents of Cu, Co and W are each 0.12% by mass, and further preferable lower limit values are 0.15% by mass. Moreover, the more preferable upper limit of content of Cu and Co is 1.95 mass%, respectively, and a more preferable upper limit is 1.90 mass%, respectively. A more preferable upper limit value of the W content is 5.95% by mass, and a more preferable upper limit value is 5.90% by mass.

また、本発明の二相ステンレス鋼材は、前記成分組成が、さらに、所定量のMg、Caの1種または2種を含有することが好ましい。   Moreover, as for the duplex stainless steel material of this invention, it is preferable that the said component composition contains 1 type or 2 types of Mg and Ca of a predetermined amount further.

(Mg:0.0005〜0.020質量%、Ca:0.0005〜0.020質量%)
MgおよびCaは、局部腐食の起点となりやすいMnSの形成を抑制して、耐局部腐食性を向上させる元素である。また、これらの元素は、腐食溶解時に表面近傍のpHを上昇させて環境の腐食性を緩和する作用があるため、耐食性向上に有効な元素である。しかし、MgおよびCaは過剰に含有させると加工性や靭性を劣化させる元素であり、適量含有することが好ましい。
(Mg: 0.0005-0.020 mass%, Ca: 0.0005-0.020 mass%)
Mg and Ca are elements that suppress the formation of MnS that tends to be a starting point of local corrosion and improve local corrosion resistance. In addition, these elements are effective elements for improving corrosion resistance because they have the action of increasing the pH in the vicinity of the surface during corrosion and dissolution to alleviate the corrosiveness of the environment. However, Mg and Ca are elements that deteriorate workability and toughness when contained in excess, and are preferably contained in appropriate amounts.

MgとCaを含有させる場合の好ましい範囲は、それぞれ0.0005〜0.020質量%である。MgとCaを含有させる場合のより好ましい下限値は、それぞれ0.0008質量%であり、さらに好ましい下限値は、それぞれ0.0010質量%である。また、MgとCaを含有させる場合のより好ましい上限値は、それぞれ0.019質量%であり、さらに好ましい上限値は、それぞれ0.018質量%である。   The preferable range in the case of containing Mg and Ca is 0.0005 to 0.020 mass%, respectively. More preferable lower limit values in the case of containing Mg and Ca are 0.0008% by mass, respectively, and further preferable lower limit values are 0.0010% by mass. Moreover, the more preferable upper limit in the case of containing Mg and Ca is 0.019 mass%, respectively, and a more preferable upper limit is 0.018 mass%, respectively.

また、本発明の二相ステンレス鋼材は、前記成分組成が、さらに、所定量のTi、Zr、V、Nb、Bよりなる群から選ばれる1種以上を含有することが好ましい。   In the duplex stainless steel material of the present invention, the component composition preferably further contains at least one selected from the group consisting of a predetermined amount of Ti, Zr, V, Nb, and B.

(Ti:0.01〜0.50質量%、Zr:0.01〜0.50質量%、V:0.01〜0.50質量%、Nb:0.01〜0.50質量%、B:0.0005〜0.010質量%)
Ti、Zr、V、NbおよびBは、耐食性を初め、強度特性や加工性を向上させるのに有効な元素である。しかし、Ti、Zr、V、NbおよびBは過剰に含有させると粗大な炭化物もしくは窒化物などの介在物を形成して靭性を低下させる元素であり、適量含有することが好ましい。
(Ti: 0.01 to 0.50 mass%, Zr: 0.01 to 0.50 mass%, V: 0.01 to 0.50 mass%, Nb: 0.01 to 0.50 mass%, B : 0.0005 to 0.010 mass%)
Ti, Zr, V, Nb and B are effective elements for improving the strength characteristics and workability as well as corrosion resistance. However, Ti, Zr, V, Nb, and B are elements that, when contained in excess, form inclusions such as coarse carbides or nitrides and reduce toughness, and are preferably contained in appropriate amounts.

Ti、Zr、V、Nbを含有させる場合の好ましい範囲は、それぞれ0.01〜0.50質量%である。Ti、Zr、V、Nbを含有させる場合のより好ましい下限値はそれぞれ0.012質量%であり、さらに好ましい下限値はそれぞれ0.015質量%である。また、Nb、Ti、Zr、Vを含有させる場合のより好ましい上限値はそれぞれ0.48質量%であり、さらに好ましい上限値はそれぞれ0.45質量%である。Bを含有させる場合の好ましい範囲は0.0005〜0.010質量%以下である。Bを含有させる場合のより好ましい下限値は0.0006質量%であり、さらに好ましい下限値は0.0008質量%である。Bを含有させる場合のより好ましい上限値は0.0095質量%であり、さらに好ましい上限値は0.0090質量%である。   The preferable range in the case of containing Ti, Zr, V, and Nb is 0.01 to 0.50 mass%, respectively. The more preferable lower limit in the case of containing Ti, Zr, V, and Nb is 0.012% by mass, respectively, and the more preferable lower limit is 0.015% by mass. Moreover, the more preferable upper limit in the case of containing Nb, Ti, Zr, and V is 0.48 mass%, respectively, and a more preferable upper limit is 0.45 mass%. A preferable range in the case of containing B is 0.0005 to 0.010 mass% or less. A more preferable lower limit in the case of containing B is 0.0006% by mass, and a more preferable lower limit is 0.0008% by mass. A more preferable upper limit in the case of containing B is 0.0095% by mass, and a more preferable upper limit is 0.0090% by mass.

(二相ステンレス鋼材の製造方法)
本発明の二相ステンレス鋼材は、通常のステンレス鋼材の量産に用いられている製造設備および製造方法によって製造することができる。例えば、転炉あるいは電気炉にて溶解した溶鋼に対して、AOD法やVOD法などによる精錬を行って成分調整した後、連続鋳造法や造塊法などの鋳造方法で鋼塊とする。得られた鋼塊を1100℃〜1300℃程度の温度域にて熱間加工を行い、次いで冷間加工を行って所望の寸法形状にすることができる。
(Method for producing duplex stainless steel)
The duplex stainless steel material of the present invention can be produced by a production facility and a production method used for mass production of ordinary stainless steel materials. For example, a molten steel melted in a converter or an electric furnace is refined by an AOD method, a VOD method, or the like to adjust the components, and then formed into a steel ingot by a casting method such as a continuous casting method or an ingot-making method. The obtained steel ingot can be hot-worked in a temperature range of about 1100 ° C. to 1300 ° C., and then cold-worked to obtain a desired dimensional shape.

本発明においては、所定量のSnの作用効果を得るためには、二相ステンレス鋼材にSnを固溶させることが好ましい。熱間加工後の冷却時などにSnが他の合金元素と化合物として析出した場合などには耐食効果が得られにくくなる。このため、熱間加工工程以降に固溶化熱処理を施して急冷することが好ましい。固溶化熱処理の温度は、950℃〜1050℃が好ましく、保持時間は10分から30分が好ましく、急冷は10℃/秒以上の冷却速度で冷却することが好ましい。また、必要に応じてスケール除去などの表面調整のための酸洗を行うことができる。   In the present invention, in order to obtain the effect of a predetermined amount of Sn, it is preferable to dissolve Sn in a duplex stainless steel material. When Sn is precipitated as another alloy element and compound during cooling after hot working or the like, it is difficult to obtain a corrosion resistance effect. For this reason, it is preferable to quench by applying a solution heat treatment after the hot working step. The temperature of the solution heat treatment is preferably 950 ° C. to 1050 ° C., the holding time is preferably 10 minutes to 30 minutes, and the rapid cooling is preferably performed at a cooling rate of 10 ° C./second or more. Moreover, the pickling for surface adjustments, such as scale removal, can be performed as needed.

<二相ステンレス鋼管>
本発明に係る二相ステンレス鋼管の実施形態について説明する。
本発明の二相ステンレス鋼管は、前記二相ステンレス鋼材からなるもので、通常のステンレス鋼管の量産に用いられる製造設備および製造方法によって製造することができる。例えば、丸棒を素材とした押出製管やマンネスマン製管、板材を素材として成形後に継ぎ目を溶接する溶接製管などによって、所望の寸法にすることができる。また、二相ステンレス鋼管の寸法は、鋼管が使用されるアンビリカル、海水淡水化プラント、LNG気化器、油井管、各種化学プラントなどに応じて適宜設定することができる。
<Duplex stainless steel pipe>
An embodiment of a duplex stainless steel pipe according to the present invention will be described.
The duplex stainless steel pipe of the present invention is made of the duplex stainless steel material and can be produced by a production facility and a production method used for mass production of ordinary stainless steel pipes. For example, the desired dimensions can be obtained by an extruded pipe or Mannesmann pipe made of a round bar, or a weld pipe made by welding a seam after forming a plate material. The dimensions of the duplex stainless steel pipe can be appropriately set according to the umbilical, seawater desalination plant, LNG vaporizer, oil well pipe, various chemical plants, etc. in which the steel pipe is used.

本発明に係る二相ステンレス鋼材の実施例について、以下に説明する。
<第1の実施例>
[供試材の作製]
25Cr系二相ステンレス鋼材を溶製して、塩化物腐食環境における耐食性の評価を行った。表1および表2に示す種々の成分組成のステンレス鋼材を約50kg真空溶解炉により溶解し、鋳造により鋳塊とした。得られた鋳塊を熱間鍛造により、断面が50×120mm(長さ適宜)のステンレス鋼塊を得た。次いで、1150℃に加熱した後、熱間圧延を行って、板厚6mmのステンレス鋼素材とした。次いで、1050℃に加熱し、30分保持後に水冷する条件の固溶化熱処理を行った。
Examples of the duplex stainless steel material according to the present invention will be described below.
<First embodiment>
[Production of test materials]
A 25Cr duplex stainless steel material was melted and evaluated for corrosion resistance in a chloride corrosive environment. Stainless steel materials having various component compositions shown in Tables 1 and 2 were melted in an about 50 kg vacuum melting furnace and cast into ingots. The obtained ingot was subjected to hot forging to obtain a stainless steel ingot having a cross section of 50 × 120 mm (appropriate length). Subsequently, after heating to 1150 degreeC, it hot-rolled and it was set as the stainless steel raw material of plate | board thickness 6mm. Next, a solution heat treatment was performed under the condition of heating to 1050 ° C. and holding for 30 minutes followed by water cooling.

Figure 2013253315
Figure 2013253315

Figure 2013253315
Figure 2013253315

作製したステンレス鋼素材より以下の電気化学試験およびSCC(応力腐食割れ)試験に用いるテストピースを切り出した。電気化学試験に用いたテストピースは、大きさが50×20×2(mm)であり、測定面は湿式回転研磨機によるSiC#600まで研磨仕上げとした。SCC試験に用いたテストピースは、大きさが75×10×2(mm)であり、全面を湿式回転研磨機によるSiC#600まで研磨仕上げとした。すべてのテストピースは、水洗およびアセトン洗浄をしてから下記試験方法に従って試験に供試した。また、電気化学試験およびSCC試験の結果に基づいて、耐食性について総合評価を行った。その結果を表3、表4に示す。なお、総合評価は、耐食性が不良(×)、良好(○)、やや優れている(○〜◎)、優れている(◎)の4段階で評価した。   Test pieces used for the following electrochemical test and SCC (stress corrosion cracking) test were cut out from the produced stainless steel material. The test piece used for the electrochemical test had a size of 50 × 20 × 2 (mm), and the measurement surface was polished to SiC # 600 by a wet rotary polishing machine. The test piece used for the SCC test had a size of 75 × 10 × 2 (mm), and the entire surface was polished to SiC # 600 using a wet rotary polishing machine. All test pieces were washed with water and acetone and then subjected to the test according to the following test method. Moreover, based on the result of the electrochemical test and the SCC test, comprehensive evaluation was performed about corrosion resistance. The results are shown in Tables 3 and 4. In addition, comprehensive evaluation evaluated in four steps, corrosion resistance is bad (x), favorable ((circle)), a little excellent ((circle)-(double-circle)), and excellent ((circle)).

また、作製したステンレス鋼素材を圧延方向と平行な断面を埋込み鏡面研磨し、シュウ酸水溶液中で電解エッチングを行った後、倍率100倍で光学顕微鏡観察を行い、画像解析により着色されたフェライト相の面積率(α面積率)を求めた。α面積率は10視野の平均値とした。その結果を、ステンレス鋼材の耐孔食性を表す指標であるPRE値([Cr]+3.3[Mo]+16[N])と共に、表3、表4に示す。   In addition, the fabricated stainless steel material is embedded in a cross section parallel to the rolling direction and mirror-polished, electrolytically etched in an oxalic acid aqueous solution, then observed with an optical microscope at a magnification of 100 times, and a colored ferrite phase by image analysis The area ratio (α area ratio) was determined. The α area ratio was an average value of 10 fields of view. The results are shown in Tables 3 and 4 together with the PRE value ([Cr] +3.3 [Mo] +16 [N]) which is an index representing the pitting corrosion resistance of the stainless steel material.

[電気化学試験方法]
塩化物環境における耐食性評価試験として、80℃の20%塩化ナトリウム水溶液中での孔食電位(Epit)および腐食すきま再不働態化電位(Ercrev)の電気化学測定を実施した。これらの特性値はそれぞれ、孔食およびすきま腐食発生の臨界電位と考えられ、ステンレス鋼材の耐食性を示す指標である。
[Electrochemical test method]
As a corrosion resistance evaluation test in a chloride environment, electrochemical measurement of pitting corrosion potential (Epit) and corrosion gap repassivation potential (Ercrev) in a 20% sodium chloride aqueous solution at 80 ° C. was performed. These characteristic values are considered to be critical potentials for occurrence of pitting corrosion and crevice corrosion, and are indicators of the corrosion resistance of stainless steel materials.

Epitは、JISG0577(1981)に規定された測定手順に準じて電流密度が1000μA/cmとなるまでアノード分極曲線を測定し、電流密度が100μA/cmに相当する最も貴な電位(V vs.SCE:飽和カロメル電極基準の電位)とした。なお、アノード分極曲線においては、0.9V(vs.SCE)付近から水の分解の酸素発生反応による電流上昇が起こるため、Epitが0.9V(vs.SCE)を大きく超える材料については本手法ではEpitを測定できない。そこで、上記方法により孔食電位が0.9V(vs.SCE)と測定されたものについては、アノード分極曲線測定後のテストピースを50倍の光学顕微鏡にて孔食の発生状況を観察した。孔食が発生していないものについては、電流上昇は酸素発生によるものとし、Epitは0.9V(vs.SCE)を超えるものとした。Ercrevは、JISG0592(2002)の規定に準じて測定した電位(V vs.SCE)とした。ただし、すきま形成材はPTFE製のマルチクレビスとして、すきま腐食成長過程は電流値500μA、時間3hの定電流電解とした。
なお、本実施例においては、耐孔食性についてはEpitが0.400V(vs.SCE)以上である場合を良好と判断し、耐すきま腐食性についてはErcrevが−0.300V(vs.SCE)以上である場合を良好と判断した。
Epi measured the anodic polarization curve until the current density reached 1000 μA / cm 2 in accordance with the measurement procedure defined in JISG0577 (1981), and the most noble potential (V vs. current equivalent to 100 μA / cm 2). SCE: potential of saturated calomel electrode reference). In addition, in the anodic polarization curve, current rise occurs due to the oxygen generation reaction of water decomposition from around 0.9 V (vs. SCE), so this method is used for materials whose Epit greatly exceeds 0.9 V (vs. SCE). Then, it is not possible to measure Epit. Therefore, for the case where the pitting potential was measured as 0.9 V (vs. SCE) by the above method, the occurrence of pitting corrosion was observed on the test piece after measurement of the anodic polarization curve with a 50 × optical microscope. In the case where no pitting corrosion occurred, the current increase was due to oxygen generation, and the Epit exceeded 0.9 V (vs. SCE). Ercrev was the potential (V vs. SCE) measured according to JISG0592 (2002). The crevice forming material was PTFE multi-clevis, and the crevice corrosion growth process was constant current electrolysis with a current value of 500 μA and a time of 3 h.
In this example, the pitting corrosion resistance is judged to be good when the Epit is 0.400 V (vs. SCE) or more, and the crevice corrosion resistance is Ercrev is −0.300 V (vs. SCE). The case where it was more than that was judged favorable.

[SCC試験方法]
応力負荷したテストピースを腐食環境に暴露し、HSおよびCOを含有する塩化物環境における応力腐食割れ(SCC)の有無を調査した。75×10×2(mm)のテストピースには、各材料の降伏応力と等しい応力を4点曲げによって負荷した。応力負荷したテストピースを、HS+COガスを封入したオートクレーブ中に20%NaCl水溶液中に14日間浸漬した。このとき、HS分圧は0.1MPa、CO分圧は0.9MPaとして、温度は200℃とした。14日間浸漬後に目視によりテストピースの割れ発生の有無を観察し、割れが認められないテストピースについては長手方向の断面を100倍の光学顕微鏡により割れ発生の有無を観察した。
[SCC test method]
The stress-loaded test piece was exposed to a corrosive environment and investigated for the presence of stress corrosion cracking (SCC) in a chloride environment containing H 2 S and CO 2 . A test piece of 75 × 10 × 2 (mm) was loaded with a stress equal to the yield stress of each material by four-point bending. The stress-loaded test piece was immersed in a 20% NaCl aqueous solution for 14 days in an autoclave filled with H 2 S + CO 2 gas. At this time, the H 2 S partial pressure was 0.1 MPa, the CO 2 partial pressure was 0.9 MPa, and the temperature was 200 ° C. After immersion for 14 days, the presence or absence of cracking of the test piece was visually observed, and for the test piece where cracking was not observed, the presence or absence of cracking was observed with a 100-fold optical microscope for the cross section in the longitudinal direction.

本試験では、目視観察で割れ発生が認められたか、または光学顕微鏡により深さ50μm以上の割れ発生が認められた場合を「SCC有り」、光学顕微鏡により深さ50μm未満の微小な割れの発生が認められた場合を「SCC無し(微小割れ)」、光学顕微鏡により割れが全く認められなかった場合を「SCC無し(割れ無し)」と判定した。   In this test, when the occurrence of cracks was observed by visual observation or when the occurrence of cracks with a depth of 50 μm or more was observed with an optical microscope, “with SCC”, the occurrence of minute cracks with a depth of less than 50 μm with an optical microscope. The case where it was recognized was judged as “no SCC (micro crack)”, and the case where no crack was found by an optical microscope was judged as “no SCC (no crack)”.

Figure 2013253315
Figure 2013253315

Figure 2013253315
Figure 2013253315

表3および表4の結果から、本発明の特許請求の範囲を満足しないNo.1〜9、63、64(比較例)は、後記するNo.10〜47、58〜62(実施例)に比べてEpitおよびErcrevが卑となり、SCC(応力腐食割れ)も発生したため、耐食性が不良(×)であった。なお、No.1〜8、63(比較例)のそれぞれは、Mn、P、S、Al、Mo、SnおよびNが特許請求の範囲を満足しないため、耐食性向上効果が得られない。また、No.7、9、64(比較例)のそれぞれは、N/Snが特許請求の範囲を満足しないため耐食性向上効果が得られない。   From the results of Tables 3 and 4, No. 1 does not satisfy the claims of the present invention. 1-9, 63 and 64 (comparative examples) are No. described later. Compared with 10-47 and 58-62 (Example), Epit and Ercrev became base and SCC (stress corrosion cracking) was also generated, so the corrosion resistance was poor (x). In addition, No. In each of 1 to 8 and 63 (comparative examples), Mn, P, S, Al, Mo, Sn, and N do not satisfy the scope of the claims, and therefore the effect of improving corrosion resistance cannot be obtained. No. In each of 7, 9, and 64 (comparative example), N / Sn does not satisfy the scope of the claims, and thus the effect of improving corrosion resistance cannot be obtained.

これらに対して、本発明の特許請求の範囲を満足するNo.10〜47、58〜62(実施例)は、いずれもEpitが0.400V(vs.SCE)以上となっており、No.1〜9、63、64(比較例)に比べて孔食が発生しにくい。また、Ercrevもいずれもが−0.300V(vs.SCE)以上となっており、No.1〜9、63、64(比較例)に比べてすきま腐食も発生しにくい。さらに、SCCも発生しない。したがって、No.10〜47、58〜62(実施例)は、耐食性が、良好(○)、やや優れている(○〜◎)、優れている(◎)であった。   On the other hand, No. 1 satisfying the claims of the present invention. No. 10 to 47 and 58 to 62 (Examples) have an Epi of 0.400 V (vs. SCE) or higher. Pitting corrosion is less likely to occur as compared with 1-9, 63, 64 (comparative example). In addition, each of Ercrev is −0.300 V (vs. SCE) or more. As compared with 1-9, 63, 64 (comparative example), crevice corrosion hardly occurs. Further, no SCC is generated. Therefore, no. 10 to 47 and 58 to 62 (Examples) were good (◯), somewhat excellent (◯ to ◎), and excellent (◎) in corrosion resistance.

次に、作製したステンレス鋼素材より以下の耐すきま腐食性試験に用いるテストピースを切り出した。耐すきま腐食性試験に用いたテストピースは、大きさが30×20×2(mm)であり、全面を湿式回転研磨機によるSiC#600まで研磨仕上げとした。テストピースは、水洗およびアセトン洗浄をしてから下記試験方法に従って試験に供試した。また、耐すきま腐食性試験の結果に基づいて、耐食性の総合評価を再度行った。その結果を、PRE値と共に、表5に示す。   Next, a test piece used for the following crevice corrosion resistance test was cut out from the produced stainless steel material. The test piece used for the crevice corrosion resistance test was 30 × 20 × 2 (mm) in size, and the entire surface was polished to SiC # 600 by a wet rotary polishing machine. The test piece was subjected to the test according to the following test method after washing with water and acetone. Further, based on the results of the crevice corrosion resistance test, the comprehensive evaluation of the corrosion resistance was performed again. The results are shown in Table 5 together with the PRE value.

[耐すきま腐食性評価法]
すきまを付与したテストピースを塩化鉄(FeCl)の溶液に浸漬し、すきま腐食発生確率を調査した。30×20×2(mm)のテストピースをPTFE製のマルチクレビスではさんで固定し、JISG0578(1981)に規定された測定手順に準じて0.05NHCl+6質量%FeCl水溶液に24時間浸漬した。この時温度は60℃とした。浸漬後、テストピースを目視で観察し腐食が発生したすきまの数から腐食発生確率を算出した。
[Crevice corrosion resistance evaluation method]
The test piece provided with a gap was immersed in a solution of iron chloride (FeCl 3 ) to investigate the probability of occurrence of crevice corrosion. A 30 × 20 × 2 (mm) test piece was fixed with PTFE multi-clevis and immersed in a 0.05N HCl + 6 mass% FeCl 3 aqueous solution for 24 hours according to the measurement procedure defined in JISG0578 (1981). At this time, the temperature was 60 ° C. After immersion, the test piece was visually observed, and the probability of occurrence of corrosion was calculated from the number of gaps where corrosion occurred.

Figure 2013253315
Figure 2013253315

表5の結果から、No.1、63、64(比較例)は、Sn、N/Sn比が本発明の特許請求の範囲を満足しないため、腐食発生確率が高かった。これらに対して、本発明の特許請求の範囲を満足するNo.10、58〜62(実施例)は、いずれも腐食発生確率がNo.1、63、64(比較例)の半分以下であった。したがって、No.10、58〜62(実施例)は、耐食性が良好(○)、優れている(◎)であった。   From the results of Table 5, Nos. 1, 63 and 64 (comparative examples) had a high probability of corrosion since the Sn and N / Sn ratios did not satisfy the claims of the present invention. On the other hand, No. 1 satisfying the claims of the present invention. Nos. 10, 58 to 62 (Examples) all have a corrosion occurrence probability of No. 10. It was less than half of 1,63,64 (comparative example). Therefore, no. 10, 58 to 62 (Examples) were good (◯) and excellent (◎) in corrosion resistance.

<第2の実施例>
[供試材の作製および試験方法]
18〜30Cr系二相ステンレス鋼材を溶製して、塩化物腐食環境における耐食性の評価を行った。用いたステンレス鋼材の成分組成は表6に示す通りであり、溶製方法は第1の実施例と同様である。第1の実施例と同様のテストピースを用いて、第1の実施例と同様の電気化学試験およびSCC試験を行い、これらのステンレス鋼材の耐食性評価を行った。また、PRE値、α面積率についても第1の実施例1と同様にして測定した。その結果を表7に示す。
<Second embodiment>
[Production and test method of test material]
An 18-30Cr duplex stainless steel material was melted and evaluated for corrosion resistance in a chloride corrosive environment. The component composition of the used stainless steel material is as shown in Table 6, and the melting method is the same as in the first example. The same electrochemical test and SCC test as in the first example were performed using the same test pieces as in the first example, and the corrosion resistance of these stainless steel materials was evaluated. The PRE value and α area ratio were also measured in the same manner as in the first example. The results are shown in Table 7.

Figure 2013253315
Figure 2013253315

Figure 2013253315
Figure 2013253315

表6、表7、図1、図2の結果から、本発明の特許請求の範囲を満足するNo.53〜56(実施例)はいずれもEpitが0.400V(vs.SCE)以上、Ercrevが−0.300V(vs.SCE)以上と、本発明の特許請求の範囲を満足しないNo.48〜51(比較例)に比べて、EpitおよびErcrevの双方が貴化しており、耐食性向上効果が得られることがわかる。なお、Cr含有量を30質量%とした材料で比較すると、Sn添加のNo.57(比較例)はSnを添加しないNo.52(比較例)よりもErcrevの貴化は認められるものの、No.52(比較例)とNo.57(比較例)は双方とも、Crを過剰に含有するため、加工性が低下し、実用的ではない。   From the results of Tables 6 and 7 and FIGS. 1 and 2, No. 1 satisfying the claims of the present invention is obtained. Nos. 53 to 56 (Examples) each had an Epit of 0.400 V (vs. SCE) or more and an Ercrev of -0.300 V (vs. SCE) or more, which does not satisfy the claims of the present invention. Compared with 48-51 (comparative example), both Epit and Ercrev have become noble, and it turns out that the corrosion-resistance improvement effect is acquired. In addition, when compared with materials having a Cr content of 30% by mass, the Sn addition No. No. 57 (comparative example) No. with no Sn added. Although the nobleness of Ercrev is recognized as compared with No. 52 (comparative example), no. 52 (comparative example) and no. Both of 57 (comparative examples) contain Cr excessively, so that workability is lowered and is not practical.

以上のように、本発明の二相ステンレス鋼材および二相ステンレス鋼管について説明したが、本発明はもとより前記の実施形態および実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含されるものである。   As described above, the duplex stainless steel material and duplex stainless steel pipe of the present invention have been described. However, the present invention is not limited by the above-described embodiments and examples, and can be applied to the scope of the present invention. The present invention can be carried out with appropriate modifications, and these are all included in the technical scope of the present invention.

Claims (5)

フェライト相とオーステナイト相とからなる二相ステンレス鋼材であって、前記二相ステンレス鋼材の成分組成は、
C :0.10質量%以下、
Si:0.1〜2.0質量%、
Mn:0.1〜2.0質量%、
P :0.05質量%以下、
S :0.03質量%以下、
Al:0.005〜0.050質量%、
Cr:18.0〜29.0質量%、
Ni:1.0〜10.0質量%、
Mo:2.5〜6.0質量%、
Sn:0.001〜0.30質量%、
N :0.16〜0.50質量%、かつ、
前記N量と前記Sn量との質量比(N/Sn)が1〜400であって、残部がFeおよび不可避的不純物からなることを特徴とする二相ステンレス鋼材。
It is a duplex stainless steel material composed of a ferrite phase and an austenite phase, and the component composition of the duplex stainless steel material is:
C: 0.10% by mass or less,
Si: 0.1 to 2.0% by mass,
Mn: 0.1 to 2.0% by mass,
P: 0.05 mass% or less,
S: 0.03 mass% or less,
Al: 0.005 to 0.050 mass%,
Cr: 18.0 to 29.0 mass%,
Ni: 1.0-10.0 mass%,
Mo: 2.5-6.0 mass%,
Sn: 0.001 to 0.30 mass%,
N: 0.16-0.50 mass%, and
A duplex stainless steel material, wherein a mass ratio (N / Sn) between the N amount and the Sn amount is 1 to 400, and the balance is Fe and inevitable impurities.
前記成分組成は、さらに、
Cu:0.1〜2.0質量%、
Co:0.1〜2.0質量%、
W :0.1〜6.0質量%
の1種または2種以上を含有することを特徴とする請求項1に記載の二相ステンレス鋼材。
The component composition further includes:
Cu: 0.1 to 2.0% by mass,
Co: 0.1 to 2.0% by mass,
W: 0.1-6.0 mass%
1 type or 2 types or more of these are contained, The duplex stainless steel material of Claim 1 characterized by the above-mentioned.
前記成分組成は、さらに、
Mg:0.0005〜0.020質量%、
Ca:0.0005〜0.020質量%
の1種または2種を含有することを特徴とする請求項1または請求項2に記載の二相ステンレス鋼材。
The component composition further includes:
Mg: 0.0005 to 0.020 mass%,
Ca: 0.0005 to 0.020 mass%
One type or two types of these are contained, The duplex stainless steel material of Claim 1 or Claim 2 characterized by the above-mentioned.
前記成分組成は、さらに、
Ti:0.01〜0.50質量%、
Zr:0.01〜0.50質量%、
V :0.01〜0.50質量%、
Nb:0.01〜0.50質量%、
B :0.0005〜0.010質量%
よりなる群から選ばれる1種以上を含有することを特徴とする請求項1ないし請求項3のいずれか一項に記載の二相ステンレス鋼材。
The component composition further includes:
Ti: 0.01 to 0.50 mass%,
Zr: 0.01 to 0.50 mass%,
V: 0.01 to 0.50 mass%
Nb: 0.01-0.50 mass%,
B: 0.0005 to 0.010 mass%
The duplex stainless steel material according to any one of claims 1 to 3, comprising at least one selected from the group consisting of:
請求項1ないし請求項4のいずれか一項に記載の二相ステンレス鋼材からなることを特徴とする二相ステンレス鋼管。   A duplex stainless steel pipe comprising the duplex stainless steel material according to any one of claims 1 to 4.
JP2013011282A 2012-05-07 2013-01-24 Duplex stainless steel and duplex stainless steel pipe Expired - Fee Related JP6405078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013011282A JP6405078B2 (en) 2012-05-07 2013-01-24 Duplex stainless steel and duplex stainless steel pipe

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012106188 2012-05-07
JP2012106188 2012-05-07
JP2013011282A JP6405078B2 (en) 2012-05-07 2013-01-24 Duplex stainless steel and duplex stainless steel pipe

Publications (2)

Publication Number Publication Date
JP2013253315A true JP2013253315A (en) 2013-12-19
JP6405078B2 JP6405078B2 (en) 2018-10-17

Family

ID=49951068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013011282A Expired - Fee Related JP6405078B2 (en) 2012-05-07 2013-01-24 Duplex stainless steel and duplex stainless steel pipe

Country Status (1)

Country Link
JP (1) JP6405078B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015114222A1 (en) * 2014-02-03 2015-08-06 Outokumpu Oyj Duplex stainless steel
WO2017086169A1 (en) * 2015-11-17 2017-05-26 株式会社神戸製鋼所 Duplex stainless steel material and duplex stainless steel tube
JP2018197377A (en) * 2017-05-24 2018-12-13 Jfeスチール株式会社 Two-phase stainless steel having excellent corrosion resistance and hydrogen brittleness resistance
WO2019098233A1 (en) * 2017-11-15 2019-05-23 日本製鉄株式会社 Two-phase stainless steel and method for manufacturing two-phase stainless steel
WO2022085262A1 (en) 2020-10-23 2022-04-28 日本製鉄株式会社 Two-phase stainless steel welded joint
JP7239085B1 (en) * 2021-10-04 2023-03-14 日本製鉄株式会社 duplex stainless steel
WO2023058631A1 (en) * 2021-10-04 2023-04-13 日本製鉄株式会社 Duplex stainless steel material
US11932926B2 (en) 2014-06-17 2024-03-19 Outokumpu Oyj Duplex ferritic austenitic stainless steel composition

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62267452A (en) * 1986-05-15 1987-11-20 Nisshin Steel Co Ltd Two-phase stainless steel excellent in corrosion resistance in weld zone
JPH05302150A (en) * 1991-04-16 1993-11-16 Nippon Steel Corp Duplex stainless steel excellent in hydrogen sulfide corrosion resistance
JPH07252607A (en) * 1994-03-17 1995-10-03 Nippon Steel Corp Production of stainless steel material for ultrahigh vacuum equipment, excellent in vacuum characteristic and hot workability, and ultrahigh vacuum vessel
JP2004360035A (en) * 2003-06-06 2004-12-24 Sanyo Special Steel Co Ltd Duplex stainless steel excellent in stress corrosion cracking resistance
JP2005520934A (en) * 2002-03-25 2005-07-14 パク,ヨン−ソ Super duplex stainless steel with excellent corrosion resistance, embrittlement resistance, castability and hot workability with suppressed formation of intermetallic phases
JP2007146202A (en) * 2005-11-25 2007-06-14 Sumitomo Metal Ind Ltd Two-phase stainless steel for urea production plant, welding material and urea production plant
JP2007301601A (en) * 2006-05-11 2007-11-22 Sumitomo Metal Ind Ltd METHOD FOR CASTING Cr-CONTAINING STEEL
JP2008214713A (en) * 2007-03-06 2008-09-18 Sumitomo Metal Ind Ltd Billet for seamless steel tube, and seamless steel tube
WO2008117680A1 (en) * 2007-03-26 2008-10-02 Sumitomo Metal Industries, Ltd. Oil well pipe for expansion in well and two-phase stainless steel for use as oil well pipe for expansion
WO2009044796A1 (en) * 2007-10-03 2009-04-09 Sumitomo Metal Industries, Ltd. Austenitic stainless steel
WO2009119895A1 (en) * 2008-03-26 2009-10-01 新日鐵住金ステンレス株式会社 Low-alloy duplex stainless steel wherein weld heat-affected zones have good corrosion resistance and toughness
WO2010082395A1 (en) * 2009-01-19 2010-07-22 住友金属工業株式会社 Process for production of duplex stainless steel pipe
JP2010215995A (en) * 2009-03-19 2010-09-30 Nippon Steel & Sumikin Stainless Steel Corp Martensitic stainless steel having excellent corrosion resistance

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62267452A (en) * 1986-05-15 1987-11-20 Nisshin Steel Co Ltd Two-phase stainless steel excellent in corrosion resistance in weld zone
JPH05302150A (en) * 1991-04-16 1993-11-16 Nippon Steel Corp Duplex stainless steel excellent in hydrogen sulfide corrosion resistance
JPH07252607A (en) * 1994-03-17 1995-10-03 Nippon Steel Corp Production of stainless steel material for ultrahigh vacuum equipment, excellent in vacuum characteristic and hot workability, and ultrahigh vacuum vessel
JP2011174183A (en) * 2002-03-25 2011-09-08 Yong-Soo Park High-grade duplex stainless steel with much suppressed formation of intermetallic phases and having excellent corrosion resistance, embrittlement resistance, castability and hot workability
JP2005520934A (en) * 2002-03-25 2005-07-14 パク,ヨン−ソ Super duplex stainless steel with excellent corrosion resistance, embrittlement resistance, castability and hot workability with suppressed formation of intermetallic phases
JP2004360035A (en) * 2003-06-06 2004-12-24 Sanyo Special Steel Co Ltd Duplex stainless steel excellent in stress corrosion cracking resistance
JP2007146202A (en) * 2005-11-25 2007-06-14 Sumitomo Metal Ind Ltd Two-phase stainless steel for urea production plant, welding material and urea production plant
JP2007301601A (en) * 2006-05-11 2007-11-22 Sumitomo Metal Ind Ltd METHOD FOR CASTING Cr-CONTAINING STEEL
JP2008214713A (en) * 2007-03-06 2008-09-18 Sumitomo Metal Ind Ltd Billet for seamless steel tube, and seamless steel tube
WO2008117680A1 (en) * 2007-03-26 2008-10-02 Sumitomo Metal Industries, Ltd. Oil well pipe for expansion in well and two-phase stainless steel for use as oil well pipe for expansion
WO2009044796A1 (en) * 2007-10-03 2009-04-09 Sumitomo Metal Industries, Ltd. Austenitic stainless steel
WO2009119895A1 (en) * 2008-03-26 2009-10-01 新日鐵住金ステンレス株式会社 Low-alloy duplex stainless steel wherein weld heat-affected zones have good corrosion resistance and toughness
WO2010082395A1 (en) * 2009-01-19 2010-07-22 住友金属工業株式会社 Process for production of duplex stainless steel pipe
JP2010215995A (en) * 2009-03-19 2010-09-30 Nippon Steel & Sumikin Stainless Steel Corp Martensitic stainless steel having excellent corrosion resistance

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
田口整司: "鉄鋼材料のリサイクル", 軽金属, vol. 第46巻第11号, JPN6016012795, 1996, JP, pages 533 - 536, ISSN: 0003599974 *
鉄鋼リサイクル白書 〜地球環境と共存する鉄鋼〜, JPN6016012798, 25 March 1994 (1994-03-25), pages 59 - 62, ISSN: 0003599973 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015114222A1 (en) * 2014-02-03 2015-08-06 Outokumpu Oyj Duplex stainless steel
CN105980592A (en) * 2014-02-03 2016-09-28 奥托库姆普有限公司 Duplex stainless steel
EA033710B1 (en) * 2014-02-03 2019-11-19 Outokumpu Oy Duplex stainless steel
US11692253B2 (en) 2014-02-03 2023-07-04 Outokumpu Oyj Duplex stainless steel
US11932926B2 (en) 2014-06-17 2024-03-19 Outokumpu Oyj Duplex ferritic austenitic stainless steel composition
WO2017086169A1 (en) * 2015-11-17 2017-05-26 株式会社神戸製鋼所 Duplex stainless steel material and duplex stainless steel tube
JP2018197377A (en) * 2017-05-24 2018-12-13 Jfeスチール株式会社 Two-phase stainless steel having excellent corrosion resistance and hydrogen brittleness resistance
WO2019098233A1 (en) * 2017-11-15 2019-05-23 日本製鉄株式会社 Two-phase stainless steel and method for manufacturing two-phase stainless steel
JPWO2019098233A1 (en) * 2017-11-15 2020-11-19 日本製鉄株式会社 Duplex Stainless Steel and Duplex Stainless Steel Manufacturing Methods
WO2022085262A1 (en) 2020-10-23 2022-04-28 日本製鉄株式会社 Two-phase stainless steel welded joint
JP7239085B1 (en) * 2021-10-04 2023-03-14 日本製鉄株式会社 duplex stainless steel
WO2023058631A1 (en) * 2021-10-04 2023-04-13 日本製鉄株式会社 Duplex stainless steel material

Also Published As

Publication number Publication date
JP6405078B2 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
JP6405078B2 (en) Duplex stainless steel and duplex stainless steel pipe
KR101702252B1 (en) Duplex stainless steel material and duplex stainless steel pipe
JP4367412B2 (en) Martensitic stainless steel
JP4577457B2 (en) Stainless steel used for oil well pipes
JP5875933B2 (en) Duplex stainless steel and duplex stainless steel pipe
JP2010242163A (en) Method for manufacturing martensitic stainless steel seamless steel tube for oil well pipe
KR20050044557A (en) Super-austenitic stainless steel
JP2016216816A (en) Two-phase stainless steel material, two-phase stainless steel pipe and surface treatment method for two-phase stainless steel material
CA2875644C (en) Duplex stainless steel
JP6237873B2 (en) High strength stainless steel seamless steel pipe for oil well
JP6513495B2 (en) Duplex stainless steel and duplex stainless steel pipe
JP5890330B2 (en) Duplex stainless steel and duplex stainless steel pipe
JP5842769B2 (en) Duplex stainless steel and manufacturing method thereof
JP5324149B2 (en) Corrosion resistant austenitic stainless steel
JP2009084668A (en) HIGH STRENGTH Cr-Ni ALLOY MATERIAL, AND SEAMLESS STEEL PIPE FOR OIL WELL USING THE SAME
KR102379904B1 (en) Austenitic stainless steel and manufacturing method thereof
JP6782660B2 (en) Duplex Stainless Steel Welded Structure for Oxidizing Fluid Environment
JP4450701B2 (en) High strength stainless steel strip excellent in delayed fracture resistance and method for producing the same
JP6302793B2 (en) Duplex stainless steel and duplex stainless steel pipe
JP6200851B2 (en) Duplex stainless steel and duplex stainless steel pipe
JP2016084522A (en) Two-phase stainless steel material and two-phase stainless steel tube
JP7207557B2 (en) Stainless seamless steel pipe for oil country tubular goods and manufacturing method thereof
JP5883761B2 (en) Duplex stainless steel and duplex stainless steel pipe
JP5890342B2 (en) Duplex stainless steel and duplex stainless steel pipe
JP6247194B2 (en) Duplex stainless steel and duplex stainless steel pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180914

R150 Certificate of patent or registration of utility model

Ref document number: 6405078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

LAPS Cancellation because of no payment of annual fees