JPS62267452A - Two-phase stainless steel excellent in corrosion resistance in weld zone - Google Patents

Two-phase stainless steel excellent in corrosion resistance in weld zone

Info

Publication number
JPS62267452A
JPS62267452A JP11137086A JP11137086A JPS62267452A JP S62267452 A JPS62267452 A JP S62267452A JP 11137086 A JP11137086 A JP 11137086A JP 11137086 A JP11137086 A JP 11137086A JP S62267452 A JPS62267452 A JP S62267452A
Authority
JP
Japan
Prior art keywords
corrosion resistance
equivalent
stainless steel
steel
weld zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11137086A
Other languages
Japanese (ja)
Inventor
Katsuhiko Fukumura
勝彦 福村
Keiji Osaki
大崎 慶治
Hiroshi Asada
博 朝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP11137086A priority Critical patent/JPS62267452A/en
Publication of JPS62267452A publication Critical patent/JPS62267452A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE:To improve corrosion resistance in a weld zone of a structure manufactured by the use of undermentioned steel, by specifying the relationship between Cr equivalent and Ni equivalent as well as the relationship between N% and Ni% in a two-phase stainless steel having a specific composition. CONSTITUTION:The structural two-phase stainless steel has a composition which consists of, by weight, <=0.03% C, <=1.5% Si, <=2.0% Mn, 18.0-30.0% Cr, 5.0-12.0% Ni, 1.5-5.0% Mo, 0.10-0.30% N, and the balance Fe with inevitable impurities and in which the relationship between N% and Ni% and the F value obtained by subtracting Ni equivalent (represented by equation III) from Cr equivalent (represented by equation II) are regulated to a range represented by inequality I and 12.0-16.0, respectively. By satisfying the above conditions, a weld zone excellent in pitting resistance, crevice corrosion resistance, and intergranular corrosion resistance can be obtained. If necessary, 0.1-1.0% Cu and 0.02-0.10% Sn are added to the above steel composition.

Description

【発明の詳細な説明】 〔産業上の111用分野〕 本発明は溶接部の耐食性に優れたフェライトとオーステ
ナイトの二相からなるステンレス鋼に関するものである
。より詳しくは、海水あるいは塩化物等の環境下におい
て優れた耐食性を示し、特に溶接構造物として溶接施工
を伴う場合の溶接金属および溶接熱影響部においても耐
食性の劣下が少ない溶接用二相ステンレス鋼に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field 111] The present invention relates to a stainless steel consisting of two phases of ferrite and austenite, which has excellent corrosion resistance in welded parts. More specifically, it is a duplex stainless steel for welding that exhibits excellent corrosion resistance in environments such as seawater or chlorides, and has little deterioration in corrosion resistance, especially in the weld metal and weld heat affected zone when welding is involved in welded structures. It's about steel.

〔従来の技術および問題点〕[Conventional technology and problems]

ステンレス鋼は、一般に耐食材料として広範囲に用いら
れているが、最近の新しい用途として、海水環境化学プ
ラント!装置における熱交換器のチューブ等、さらには
塩化物、硫化水素、炭酸ガス等の環境に曝される油井管
等への使用例が増加しつつある。このような厳しい腐食
環境に対し、オーステナイト系ステンレス鋼では、 2
0Cr−25N i−6Mofi等が、また、高Cr系
ステンレス鋼では。
Stainless steel is generally used extensively as a corrosion-resistant material, but recently a new application has been found in seawater environmental chemical plants! It is increasingly being used for tubes in heat exchangers in equipment, as well as for oil country tubular goods exposed to environments containing chlorides, hydrogen sulfide, carbon dioxide, and the like. In such a severe corrosive environment, austenitic stainless steel has 2
0Cr-25N i-6Mofi, etc., and high Cr stainless steels.

29Cr−4Mof4や28Cr−I Mom等が用い
られている。しかし、オーステナイト系ステンレス鋼は
耐応力腐食割れ性に問題がある。また、高Cr系では製
造性と溶接部の靭性の低下の問題がある。
29Cr-4Mof4, 28Cr-I Mom, etc. are used. However, austenitic stainless steel has problems with stress corrosion cracking resistance. Furthermore, high Cr systems have problems in terms of manufacturability and deterioration in the toughness of welded parts.

これに対し、オーステナイトとフェライトの二相Mt織
を有する二相ステンレス鋼は耐応力腐食割れ性に優れて
いると共に、製造性や機械的性質についても高Cr系ス
テンレス鋼に比べて優れた面をもっている。このような
ことから、既に22Cr−5,5N i−3Mo、 2
3〜28Cr−3〜6N i=1.5〜3.OM。
On the other hand, duplex stainless steel, which has a dual-phase Mt weave of austenite and ferrite, has excellent stress corrosion cracking resistance, as well as superior manufacturability and mechanical properties compared to high-Cr stainless steel. There is. For this reason, 22Cr-5,5N i-3Mo, 2
3-28Cr-3-6N i=1.5-3. OM.

系の二相ステンレス鋼が公表重版されている。The series of duplex stainless steels has been published and reprinted.

しかし、これらの二相ステンレス鋼は、構造物として溶
接施工を伴う場合、/8接金属および溶接熱影響部での
耐食性が劣り、その劣下の程度がオーステナイト系ステ
ンレス鋼より顕著であるという欠点を存している。この
原因は、フェライトとオーステナイトの二相組織からな
る母材が、溶接施工を受けることにより、溶接金属およ
び溶接熱影響部の一部が、フェライト単相となるために
耐食性が著しく劣下することに起因している。このよう
なことから5FI5329J1タイプの二相ステンレス
鋼を/8接構造材料として適用するについては耐食性の
観点から信頬が得られていないのが実情であり、特に濁
水あるいは塩化物等の環境下で使用される溶接構造材用
途向けには敬遠されていた。
However, these duplex stainless steels have the disadvantage that when welding is involved in construction, they have inferior corrosion resistance in /8 weld metals and weld heat-affected zones, and the extent of this deterioration is more pronounced than that of austenitic stainless steels. exists. The cause of this is that when the base metal, which has a two-phase structure of ferrite and austenite, undergoes welding, part of the weld metal and the weld heat affected zone becomes a single phase of ferrite, which significantly deteriorates the corrosion resistance. This is caused by For these reasons, the reality is that there is no confidence in the use of 5FI5329J1 type duplex stainless steel as a /8-contact structural material from the viewpoint of corrosion resistance, especially in environments with turbid water or chlorides. It has been avoided for use in welded structural materials.

本発明は、二相ステンレス鋼の前記の有利な特性を生か
しながらこの溶接部の耐食性の問題の解決を目的として
なされたものである。
The present invention was made with the aim of solving the problem of corrosion resistance of welded parts while taking advantage of the above-mentioned advantageous properties of duplex stainless steel.

c問題点を解決する手段] 本発明は、重〒%で、C:0.03%以下、  S i
:1.5%以下、  Mn:2.0%以下、  Cr:
18.0〜30.0%、  Ni:5.O〜12.0O
A、  Ma:1.5〜5.0%、  N :o、1o
 〜(1,30%。
Means for Solving Problems C] The present invention provides C: 0.03% or less in weight%, Si
: 1.5% or less, Mn: 2.0% or less, Cr:
18.0-30.0%, Ni:5. O~12.0O
A, Ma: 1.5-5.0%, N: o, 1o
~(1,30%.

残部:Fe及び不可避的不純物からなるステンレス鋼で
あって、且つ N(χ)≧(1/30)x (χN i)−(1/10
)および 12、0≦F値≦16,0 〔イ旦し、  Fl直−Cr当量−Ni当量であり。
The remainder: stainless steel consisting of Fe and unavoidable impurities, and N(χ)≧(1/30)x(χN i)−(1/10
) and 12,0≦F value≦16,0 [I, then, Fl direct - Cr equivalent - Ni equivalent.

Cr当量=%Cr+%Mo + 4 X%StN 菫 
当 l  =  1.5  × % Ni  +3Qx
  (XC+XN)  +0.5×%Mnである] の関係を満足する組成を有する溶接部の耐食性に優れた
二相ステンレス鋼を提供するものである。
Cr equivalent=%Cr+%Mo+4X%StN Violet
I = 1.5 x % Ni +3Qx
(XC+XN)+0.5×%Mn] A duplex stainless steel having a composition that satisfies the relationship: (XC+XN)+0.5×%Mn] and has excellent corrosion resistance at a welded part is provided.

更に本発明は、上記の綱に0.1〜1.0%のCuを追
撚してなる溶接部の耐食性に一層優れた二相ステンレス
鋼、そして、 Q、L〜L、0%のCuおよび0.02
〜0.10%のSnを複合添加してなる溶接部の耐食性
に一層優れた二相ステンレス鋼を提供するものである。
Furthermore, the present invention provides a duplex stainless steel with even better corrosion resistance at the welded part, which is made by adding 0.1 to 1.0% Cu to the above-mentioned steel, and Q, L to L, 0% Cu. and 0.02
The object of the present invention is to provide a duplex stainless steel with a composite addition of ~0.10% Sn and which has even better corrosion resistance in welded parts.

すなわち本発明者らは、二相ステンレス鋼溶接部のフェ
ライト・オーステナイト相比と耐食性並びに相比におよ
ぼす合金元素の影響について広範な研究を重ねた結果、
溶接部の耐食性の改善に必要なフェライト・オーステナ
イト相比並びに当該相比を得るために必要な合金組成を
見い出し、従来の5US329J1タイプの二相ステン
レス鋼に比べて著しく溶接部の耐食性に優れた二相ステ
ンレス鋼を得たものである。
In other words, the present inventors have conducted extensive research on the ferrite-austenite phase ratio and corrosion resistance of duplex stainless steel welds, as well as the influence of alloying elements on the phase ratio.
We discovered the ferrite-austenite phase ratio necessary to improve the corrosion resistance of welded parts and the alloy composition necessary to obtain this phase ratio, and developed a two-phase stainless steel with significantly superior corrosion resistance in welded parts compared to the conventional 5US329J1 type duplex stainless steel. Phase stainless steel is obtained.

本発明鋼における各成分の作用と含有量の限定の理由は
1次の通りである。
The reason for limiting the action and content of each component in the steel of the present invention is as follows.

CTCは耐食性や耐孔食性の観点から低い方が良いが、
Cの低減にあたっての製造性の問題を配慮する必要もあ
ることから、その上限を0.03%とした。
The lower the CTC, the better from the viewpoint of corrosion resistance and pitting resistance.
Since it is necessary to consider manufacturability issues when reducing C, the upper limit was set at 0.03%.

Si:Siは製鋼時の脱酸のために添加を必要とするが
、その量が多くなると溶接性および加工性が悪くなるこ
と、並びに高温域でフェライト相を安定化し、急冷組成
のオーステナイト相の析出を抑えるためにその上限を1
.5%とした。
Si: Si needs to be added for deoxidation during steel manufacturing, but if the amount is large, weldability and workability will deteriorate, and it will also stabilize the ferrite phase at high temperatures and reduce the austenite phase in the rapidly quenched composition. The upper limit is set to 1 to suppress precipitation.
.. It was set at 5%.

Mn: Mnは製鋼時の脱酸並びにオーステナイト安定
元素として添加を必要とするが、多すぎると耐食性を劣
下させるのでその上限を2.0%とした。
Mn: Mn needs to be added for deoxidation during steel manufacturing and as an austenite stabilizing element, but too much Mn deteriorates corrosion resistance, so the upper limit was set at 2.0%.

Cr:Crは二相ステンレス鋼中のフェライトMi織を
得るための重要な元素であると共に、ステンレス鋼の耐
食性及び耐孔食性を得るためには極めて重要である。良
好な耐孔食性を得るには18.0%以上のCrが必要で
あるが、 30.0%を越えると鋼の製造性及び加工性
を劣下させるために30.0%以下とした。
Cr: Cr is an important element for obtaining a ferrite Mi texture in duplex stainless steel, and is extremely important for obtaining corrosion resistance and pitting corrosion resistance of stainless steel. In order to obtain good pitting corrosion resistance, 18.0% or more of Cr is required, but if it exceeds 30.0%, the manufacturability and workability of the steel deteriorates, so the content is set to 30.0% or less.

N i : N iは二相ステンレス鋼中のオーステナ
イトMi 織を得るための重要な元素である。オーステ
ナイト相生成のために、5.0%以上の添加を必要とす
るが、多く添加すると製造コストの上昇並びに製造の際
にσ脆化を生じやすいので12.0%以下とした。
Ni: Ni is an important element for obtaining an austenitic Mi texture in duplex stainless steel. It is necessary to add 5.0% or more to generate the austenite phase, but adding too much increases manufacturing cost and tends to cause σ embrittlement during manufacturing, so it is set to 12.0% or less.

Mo:MoはCr、Ni、Nと共に本発明鋼における耐
食性、特に耐孔食性を高めるために有効に作用する。M
oが1.5%以下では充分な耐孔食性が得られず、一方
5.0%を越えると靭性の劣下及び製造コストが上昇す
るので、Moは1.5〜5.0%の範囲内とした。
Mo: Mo, together with Cr, Ni, and N, effectively acts to improve the corrosion resistance, particularly the pitting corrosion resistance, of the steel of the present invention. M
If o is less than 1.5%, sufficient pitting corrosion resistance cannot be obtained, while if it exceeds 5.0%, the toughness will deteriorate and the manufacturing cost will increase, so Mo should be in the range of 1.5 to 5.0%. It was inside.

SUNは本発明鋼の耐食性、特に耐孔食性を高めるのに
有効に作用する0本発明においては、耐食性を高めるこ
とができるがσ脆化をおこしやすいNiの増量を行う代
わりに、オーステナイト相をつくり得る元素であるNを
0.10%以上添加することが必要である。但し、Nが
0.30%を越えると製造時にブローホールが発生し易
いことから制限がある。したがってN含有量は0. t
0〜0゜30%の範囲内とし、Niとの関連量で下式(
11の条件を満足するN含有量とする。
SUN effectively acts to increase the corrosion resistance, especially the pitting corrosion resistance, of the steel of the present invention.In the present invention, instead of increasing the amount of Ni, which can increase the corrosion resistance but is likely to cause σ embrittlement, the austenite phase is increased. It is necessary to add 0.10% or more of N, which is an element that can be produced. However, if N exceeds 0.30%, blowholes are likely to occur during manufacturing, so there is a limit. Therefore, the N content is 0. t
It is within the range of 0 to 0°30%, and the related amount with Ni is expressed by the following formula (
The N content is set to satisfy condition 11.

N(χ)≧(1/30) x (χN i) −(1/
10)  ・・・(1)+11式の規制理由:(1)式
は本発明鋼の耐食性を確保するNの最低値を定めるもの
である。Ni当量はC、N 、 M n +およびNi
によって定まるが17容接部に析出したオーステナイト
相の耐食性の改善効果にはNとNiの配分が問題となる
。即ち、溶接部に析出したオーステナイト相もNの含有
量によって耐食性が著しく異なり1例えばNの含有量が
0.10%未満の場合は析出したオーステナイト相の耐
食性が劣るがNの増加と共にオーステナイト相の耐食性
は向上し=  Cr + M oが?怨縮されているフ
ェライト相との相乗効果で溶接部全体の耐食性が向上す
ることがわかった。したがって、溶接部の耐食性の改善
には、析出するオーステナイト相中のNの配分が極めて
重要であり、Ni量とのバランスを考慮してNの最低値
をこの(1)弐によって規制することが本発明の目的を
達成するうえで重要な要件となり、この点が本発明鋼の
一つの特攻である。
N(χ)≧(1/30) x (χN i) −(1/
10) Reason for regulating formula (1)+11: Formula (1) determines the minimum value of N that ensures the corrosion resistance of the steel of the present invention. Ni equivalent is C, N, M n + and Ni
However, the distribution of N and Ni is a problem in improving the corrosion resistance of the austenite phase precipitated in the 17-conductor joint. In other words, the corrosion resistance of the austenite phase precipitated in the weld zone varies significantly depending on the N content. For example, when the N content is less than 0.10%, the corrosion resistance of the precipitated austenite phase is poor, but as the N content increases, the corrosion resistance of the austenite phase decreases. Corrosion resistance improved = Cr + Mo? It was found that the corrosion resistance of the entire weld was improved due to the synergistic effect with the compressed ferrite phase. Therefore, in order to improve the corrosion resistance of welds, the distribution of N in the precipitated austenite phase is extremely important, and the minimum value of N should be regulated by (1) 2 in consideration of the balance with the amount of Ni. This is an important requirement for achieving the purpose of the present invention, and this point is one of the special strengths of the steel of the present invention.

Cu:Cuは本発明鋼において耐応力腐食割れ性、耐全
面腐食性及び耐隙間腐食性を向上させるが、その効果は
0.10%以上の添加において得られる。しかし、l、
0%を超えて添加すると熱間加工性を害するのでその上
限を1.0%とする。
Cu: Cu improves stress corrosion cracking resistance, general corrosion resistance, and crevice corrosion resistance in the steel of the present invention, but this effect is obtained when it is added in an amount of 0.10% or more. However, l,
Adding more than 0% impairs hot workability, so the upper limit is set at 1.0%.

Sn:SnはCuとの共存において耐隙間腐食性を向上
させる。その効果は0.02%以上の添加において得ら
れるが、 0.10%を越えると熱間加工性を害するの
でその上限を0.10%とする。
Sn: Sn improves crevice corrosion resistance when coexisting with Cu. This effect can be obtained by adding 0.02% or more, but if it exceeds 0.10%, hot workability is impaired, so the upper limit is set at 0.10%.

F値:F(iiに制限を設けた理由は2本発明の目的と
する溶接金匡の耐食性改善に必要なオーステナイト相の
fi保と製造性にもとず(。即ち、  Fl直を12.
0未満とした場合、常温におけるフエライト相の含有率
が40%以下となり、この場合には製造時における熱間
圧延で耳割れが発生し易く熱間加工性が劣下するととも
に、熱延板の冷却時にσ相が発生し、靭性が極めて低下
するなどの問題がある。一方、F(fiが16.0を超
えると、高温域でのフェライト相が増加するとともに安
定化し、溶接のような溶融後に君、冷される組織におい
て析出するオーステナイト量が5%以下となり、母材に
比べて溶接部の耐食性が著しく低下する。従うて1本発
明の目的とする溶接金属の耐食性を向上させるとともに
、良好なる製造性をも維持せんとするためにはF値を1
2.0以上16.0以下としなければならない。
F value: The reason for setting a limit on F (ii) is based on the fi maintenance and manufacturability of the austenite phase necessary for improving the corrosion resistance of welded metal boxes, which is the objective of the present invention (i.e., the F value is set at 12.
If it is less than 0, the content of the ferrite phase at room temperature will be 40% or less, and in this case, edge cracking is likely to occur during hot rolling during manufacturing, resulting in poor hot workability and poor quality of the hot rolled sheet. There are problems such as the generation of σ phase during cooling, which significantly reduces toughness. On the other hand, when F(fi) exceeds 16.0, the ferrite phase increases and stabilizes in the high temperature range, and the amount of austenite precipitated in the structure that is cooled after melting such as welding becomes 5% or less, and the Therefore, in order to improve the corrosion resistance of the weld metal, which is the object of the present invention, and maintain good manufacturability, the F value must be set to 1.
Must be between 2.0 and 16.0.

〔実施例〕〔Example〕

母材及び溶接部についての腐食試験に供した鋼の化学成
分値とフェライトtを表1に示した。
Table 1 shows the chemical composition values and ferrite t of the steel subjected to the corrosion test for the base metal and welded parts.

試料A〜1(は比較m<但し、A、B、Cは市販材)で
あり、試料1−Pは本発明鋼である。
Samples A to 1 (comparison m<However, A, B, and C are commercially available materials), and Sample 1-P is the steel of the present invention.

比較鋼のうち試料D−Hは本発明鋼に類領した鋼である
がF値が12.0〜16.0の範囲を外れたちのである
。市販材であるA−C以外の谷状fAD−Pについては
、 30kg真空溶解炉で溶製後、鍛造、熱間圧延及び
冷間圧延して板厚2ml1に仕上げ、 1050℃lo
分保持後空冷の仕上焼鈍を行った。表1中のフェライト
量は光学顕微鏡にて組織を観察し。
Among the comparative steels, samples D-H are similar to the steels of the present invention, but their F values are outside the range of 12.0 to 16.0. Regarding the valley-shaped fAD-P other than A-C, which is a commercially available material, it is melted in a 30 kg vacuum melting furnace, then forged, hot rolled, and cold rolled to a plate thickness of 2 ml, and then melted at 1050°C.
After holding for 30 minutes, final annealing with air cooling was performed. The amount of ferrite in Table 1 was determined by observing the structure using an optical microscope.

ポイントカウントによる面積率で示した。It is shown as an area percentage based on point count.

第1図に各試料について母材のF値とCr当量およびN
i当量の関係を、そして、第2図に溶接部におけるオー
ステナイトの析出量とF値の関係を示した。溶接部にお
けるオーステナイト相の析出量は、板厚211111の
板に電流12OA、電圧13v。
Figure 1 shows the F value, Cr equivalent, and N of the base material for each sample.
The relationship between the i equivalent and the F value and the amount of austenite precipitation in the weld zone are shown in FIG. The amount of austenite phase precipitated in the welded part was determined by applying a current of 12 OA and a voltage of 13 V to a plate with a thickness of 211111 mm.

溶接速度30cm/分でTTG?8接(ビードオンプレ
ート)を行い、光学顕微鏡にて組織を観察しポイントカ
ウント法によりオーステナイト量を求めたものである。
TTG at welding speed of 30cm/min? 8-contact (bead-on-plate) was performed, the structure was observed with an optical microscope, and the amount of austenite was determined by the point counting method.

第1図及び第2図から、溶接部のオーステナイト相の析
出を105以上とするためにはF(11!を16.O以
下にしなければならないことがわかる。即ち。
From FIG. 1 and FIG. 2, it can be seen that in order to make the precipitation of austenite phase in the weld zone 105 or more, F(11! must be made 16.O or less. That is, F(11!) must be made 16.O or less.

F値を16.0以下になるようにCr当量とNi当量を
バランスさせれば溶接部にオーステナイトを10%以上
析出させることができる。
By balancing the Cr equivalent and Ni equivalent so that the F value is 16.0 or less, 10% or more of austenite can be precipitated in the weld.

第3図はF値が異なる試料についての高温引張試験の結
果を示す。第3図に見られるように、F値が12.0よ
り低いと絞り率が著しく小さくなり。
FIG. 3 shows the results of high temperature tensile tests on samples with different F values. As seen in FIG. 3, when the F number is lower than 12.0, the aperture ratio becomes significantly small.

熱間圧延時に耳割れなどの欠陥が発生する。Defects such as edge cracks occur during hot rolling.

第4図に各試料の母材と溶接部の腐食試験の結果を総括
して示した。腐食試験は海水環境での使用を想定したも
のであり1本発明鋼及び比較鋼の母材及び溶接金属部を
(1/20)NのllCl水溶液に50g/lのFeC
1*を添加した50゛cの試験液中に48時間浸漬して
耐孔食性を試験した。腐食度の評価は毎時平方メートル
当たりの重1滅(g/m”・hr)として測定した。
Figure 4 summarizes the results of the corrosion tests on the base metal and welded parts of each sample. The corrosion test was conducted assuming use in a seawater environment, and the base metal and weld metal parts of the inventive steel and comparative steel were soaked in a (1/20)N llCl aqueous solution with 50 g/l FeC.
The pitting corrosion resistance was tested by immersing it in a 50°C test solution to which 1* was added for 48 hours. The evaluation of corrosion rate was measured as weight per square meter per hour (g/m"·hr).

第4図の結果に見られるように1本発明鋼はいずれも比
較鋼に比べて母材および溶接部とも耐孔食性が゛非常に
優れていることがわかる。
As can be seen from the results in FIG. 4, it can be seen that all of the steels of the present invention have extremely superior pitting corrosion resistance in both the base metal and the weld zone, compared to the comparative steels.

第5図は、試料C,F、I、Pについて母材および溶接
部の孔食電位を3.5%NaC1,50℃〜70 ’C
溶液中で動電位法で測定した結果を示したものである。
Figure 5 shows the pitting corrosion potential of the base metal and weld zone for samples C, F, I, and P using 3.5% NaCl, 50°C to 70'C.
This shows the results measured by potentiodynamic method in a solution.

第5図の結果から、何れの試料も温度が高くなるにつれ
て母材及び溶接部とも孔食電位は低くなるが1本発明鋼
である試料■及び試料Pの溶接部は比較鋼の試料C及び
試料Fの溶接部に比べて孔食電位の低下は少ないことが
認められる。特に本発明鋼である試料■と比較鋼の試料
Fとを対比すると、前者のMoの含有量が2.1%で、
後者のM0含有量が3.2%であるにもかかわらず、前
者の溶接部の孔食電位の低下は小さい。このことからも
本発明鋼の著しい改良が見られる。
From the results shown in Fig. 5, the pitting potential of both the base metal and the weld zone decreases as the temperature increases for each sample, but the weld zone of sample 2 and sample P, which are the invention steels, is lower than that of sample C and the weld zone, which are the comparative steels. It is observed that the pitting corrosion potential decreases less than that of the welded part of Sample F. In particular, when comparing Sample 1, which is the steel of the present invention, and Sample F, which is the comparative steel, the Mo content of the former is 2.1%,
Although the M0 content of the latter is 3.2%, the pitting corrosion potential of the welded part of the former has a small decrease. This also shows that the steel of the present invention is significantly improved.

次に、耐隙間腐食性を調べるために試料B、C,K、0
、Pについての母材及び溶接金属部を(1/20)Nの
11C!水?8液に50g/ 1のFeC1zを添加し
た試験液中に浸潤する試験を行った。試験条件を第2表
に示した。なお、隙間腐食性は隙間部に腐食が発生する
温度をその鋼の限界温度として判定した。
Next, in order to investigate crevice corrosion resistance, samples B, C, K, 0
, the base metal and weld metal part for P are (1/20) 11C of N! water? An infiltration test was carried out in a test solution in which 50 g/1 of FeC1z was added to solution 8. The test conditions are shown in Table 2. The crevice corrosion property was determined by using the temperature at which corrosion occurs in the crevices as the critical temperature of the steel.

第2表 この試験の結果を第6図に示した。Table 2 The results of this test are shown in FIG.

第6図の結果に見られるように1本発明鋼の試料に、O
,Pは、比較鋼の試料B、Cに比べて母材及び溶接部と
も隙間腐食が発生する限界温度が高く耐隙間腐食性が優
れていることがわかる。また2本発明鋼での試料に、O
,Pの鋼同士を比べると、 0.55%Cu添加の試料
0.0.48%Cuと0.05%Snを複合添加した試
料Pは無添加の試料Kに比べて母材及び溶接部とも孔食
発生の限界温度が高い。このことがらCu、Snの耐隙
間腐食性改善効果がわかる。したがって、耐隙間腐食性
が特に要求される場合はCuの添加さらにはCu−3n
の複合添加は有利である。
As seen in the results in Figure 6, O
, P have a higher limit temperature at which crevice corrosion occurs in both the base metal and the welded part than comparative steel samples B and C, indicating that they have excellent crevice corrosion resistance. In addition, O
, P, the sample P with 0.55% Cu addition and the composite addition of 0.0.48% Cu and 0.05% Sn has a lower resistance to the base metal and welded area than the sample K with no additives. Both have high critical temperatures for pitting corrosion to occur. This shows the effect of Cu and Sn on improving crevice corrosion resistance. Therefore, when crevice corrosion resistance is particularly required, addition of Cu or Cu-3n
The combined addition of is advantageous.

第7図は耐粒界腐食性試験の結果を示したものである。FIG. 7 shows the results of the intergranular corrosion resistance test.

試験はJIS G 0575法にもとすき溶接部を硫酸
−硫酸銅試験液で行い、同法に従って判定したものであ
る。
The test was conducted according to the JIS G 0575 method on the gap welded area using a sulfuric acid-copper sulfate test solution, and the results were evaluated according to the same method.

第7図の結果に見られるように、F値が12.0〜16
.0の範囲にある本発明鋼の溶接部(オーステナイトが
10%以上析出している)は、比較鋼の試料C,D、 
Eに比べて耐粒界腐食性が優れていることがわかる。
As seen in the results in Figure 7, the F value is 12.0 to 16.
.. The welded parts of the inventive steel (in which 10% or more of austenite is precipitated) in the range of 0 are the comparative steel samples C, D,
It can be seen that the intergranular corrosion resistance is superior to that of E.

以上のように2本発明の二相ステンレス鋼は耐孔食性、
耐隙間腐食性及び耐粒界腐食性に共に優れた溶接部を有
することができ、海水環境での用途1例えば化学プラン
ト発電用熱交換器のチューブ、コンデンサーなど溶接構
造を有する材料として非常に有益である。
As mentioned above, the duplex stainless steel of the present invention has pitting corrosion resistance,
It can have welded parts with excellent crevice corrosion resistance and intergranular corrosion resistance, and is extremely useful as a material with welded structures for applications in seawater environments, such as heat exchanger tubes and condensers for chemical plant power generation. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明鋼と比較鋼のCr当量とNi当量の関係
図1第2図は本発明鋼と比較鋼のF値と?8接部のオー
ステナイト析出量の関係図、第3図は本発明鋼と比較鋼
の高温引張試験での温度と絞り率の関係図、第4図は本
発明鋼と比較鋼の母材及び溶接部の50℃における耐孔
食性試験の結果を示す図、第5図は本発明鋼と比較鋼の
母材及び溶接部の3.5χN a Cl 78液中にお
ける温度と孔食電位の関係図、第6図は本発明鋼と比較
鋼の母材及び溶接部について1/20 NのMCI水溶
液中に50g/ fのFeCItを添加した溶液中での
耐隙間腐食性の結果を示す図、そして、第7図は本発明
鋼及び比較鋼の溶接部の粒界腐食試験の結果を示す図で
ある。
Figure 1 shows the relationship between the Cr equivalent and Ni equivalent of the inventive steel and the comparative steel. Figure 2 shows the F value of the inventive steel and the comparative steel. Figure 3 is a diagram showing the relationship between the amount of austenite precipitation at the 8-joint joint, Figure 3 is a diagram showing the relationship between temperature and reduction ratio in a high-temperature tensile test of the inventive steel and comparative steel, and Figure 4 is the base metal and welding ratio of the invention steel and comparative steel. Figure 5 is a diagram showing the relationship between temperature and pitting corrosion potential in a 3.5χN a Cl 78 solution of the base metal and welded part of the inventive steel and comparative steel. FIG. 6 is a diagram showing the results of crevice corrosion resistance in a solution in which 50 g/f FeCIt was added to a 1/20 N MCI aqueous solution for the base metal and welded parts of the inventive steel and comparative steel, and FIG. 7 is a diagram showing the results of intergranular corrosion tests of welded parts of the steel of the present invention and comparative steel.

Claims (1)

【特許請求の範囲】 (1)重量%で、C:0.03%以下、Si:1.5%
以下、Mn:2.0%以下、Cr:18.0〜30.0
%、Ni:5.0〜12.0%、Mo:1.5〜5.0
%、N:0.10〜0.30%、残部:Fe及び不可避
的不純物からなるステンレス鋼であって、且つ N(%)≧(1/30)×(%Ni)−(1/10)お
よび 12.0≦F値≦16.0 〔但し、F値=Cr当量−Ni当量であり、Cr当量=
%Cr+%Mo+4×%Si Ni当量=1.5×%Ni+30×(%C+%N)+0
.5×%Mnである〕 の関係を満足する組成を有する溶接部の耐食性に優れた
二相ステンレス鋼。 (2)重量%で、C:0.03%以下、Si:1.5%
以下、Mn:2.0%以下、Cr:18.0〜30.0
%、Ni:5.0〜12.0%、Mo:1.5〜5.0
%、N:0.10〜0.30%、Cu:0.1〜1.0
%、残部:Fe及び不可避的不純物からなるステンレス
鋼であって、且つ N(%)≧(1/30)×(%Ni)−(1/10)お
よび 12.0≦F値≦16.0 〔但し、F値=Cr当量−Ni当量であり、Cr当量=
%Cr+%Mo+4×%Si Ni当量=1.5×%Ni+30×(%C+%N)+0
.5×%Mnである〕 の関係を満足する組成を有する溶接部の耐食性に優れた
二相ステンレス鋼。 (3)重量%で、C:0.03%以下、Si:1.5%
以下、Mn:2.0%以下、Cr:18.0〜30.0
%、Ni:5.0〜12.0%、Mo:1.5〜5.0
%、N:0.10〜0.30%、Cu:0.1〜1.0
%、Sn:0.02〜0.10%、残部:Fe及び不可
避的不純物からなるステンレス鋼であって、且つ N(%)≧(1/30)×(%Ni)−(1/10)お
よび 12.0≦F値≦16.0 〔但し、F値=Cr当量−Ni当量であり、Cr当量=
%Cr+%Mo+4×%Si Ni当量=1.5×%Ni+30×(%C+%N)+0
.5×%Mnである〕 の関係を満足する組成を有する溶接部の耐食性に優れた
二相ステンレス鋼。
[Claims] (1) In weight%, C: 0.03% or less, Si: 1.5%
Below, Mn: 2.0% or less, Cr: 18.0 to 30.0
%, Ni: 5.0-12.0%, Mo: 1.5-5.0
%, N: 0.10 to 0.30%, balance: stainless steel consisting of Fe and inevitable impurities, and N (%) ≧ (1/30) × (%Ni) - (1/10) and 12.0≦F value≦16.0 [However, F value = Cr equivalent - Ni equivalent, Cr equivalent =
%Cr+%Mo+4×%Si Ni equivalent=1.5×%Ni+30×(%C+%N)+0
.. A duplex stainless steel having a composition that satisfies the following relationship: 5×%Mn and having excellent corrosion resistance in welded parts. (2) In weight%, C: 0.03% or less, Si: 1.5%
Below, Mn: 2.0% or less, Cr: 18.0 to 30.0
%, Ni: 5.0-12.0%, Mo: 1.5-5.0
%, N: 0.10-0.30%, Cu: 0.1-1.0
%, balance: stainless steel consisting of Fe and unavoidable impurities, and N (%) ≧ (1/30) × (% Ni) - (1/10) and 12.0≦F value≦16.0 [However, F value = Cr equivalent - Ni equivalent, Cr equivalent =
%Cr+%Mo+4×%Si Ni equivalent=1.5×%Ni+30×(%C+%N)+0
.. A duplex stainless steel having a composition that satisfies the following relationship: 5×%Mn and having excellent corrosion resistance in welded parts. (3) In weight%, C: 0.03% or less, Si: 1.5%
Below, Mn: 2.0% or less, Cr: 18.0 to 30.0
%, Ni: 5.0-12.0%, Mo: 1.5-5.0
%, N: 0.10-0.30%, Cu: 0.1-1.0
%, Sn: 0.02 to 0.10%, balance: stainless steel consisting of Fe and inevitable impurities, and N (%) ≧ (1/30) × (%Ni) - (1/10) and 12.0≦F value≦16.0 [However, F value = Cr equivalent - Ni equivalent, Cr equivalent =
%Cr+%Mo+4×%Si Ni equivalent=1.5×%Ni+30×(%C+%N)+0
.. A duplex stainless steel having a composition that satisfies the following relationship: 5×%Mn and having excellent corrosion resistance in welded parts.
JP11137086A 1986-05-15 1986-05-15 Two-phase stainless steel excellent in corrosion resistance in weld zone Pending JPS62267452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11137086A JPS62267452A (en) 1986-05-15 1986-05-15 Two-phase stainless steel excellent in corrosion resistance in weld zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11137086A JPS62267452A (en) 1986-05-15 1986-05-15 Two-phase stainless steel excellent in corrosion resistance in weld zone

Publications (1)

Publication Number Publication Date
JPS62267452A true JPS62267452A (en) 1987-11-20

Family

ID=14559471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11137086A Pending JPS62267452A (en) 1986-05-15 1986-05-15 Two-phase stainless steel excellent in corrosion resistance in weld zone

Country Status (1)

Country Link
JP (1) JPS62267452A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0757112A1 (en) * 1994-04-05 1997-02-05 Sumitomo Metal Industries, Ltd. Two-phase stainless steel
JP2011202247A (en) * 2010-03-26 2011-10-13 Nippon Steel & Sumikin Stainless Steel Corp Two-phase stainless steel material having excellent corrosion resistance
CN103397142A (en) * 2013-08-13 2013-11-20 北票电力铸钢有限公司 AOD (argon oxygen decarburization) refining and smelting process for preparing super duplex stainless steel pump valve
JP2013253315A (en) * 2012-05-07 2013-12-19 Kobe Steel Ltd Duplex stainless steel material and duplex stainless steel pipe
CN107988556A (en) * 2017-11-30 2018-05-04 振石集团东方特钢有限公司 A kind of new stanniferous two phase stainless steel
CN107988555A (en) * 2017-11-30 2018-05-04 振石集团东方特钢有限公司 A kind of resource-saving diphase stainless steel containing rare earth
WO2020203931A1 (en) * 2019-03-29 2020-10-08 日鉄ステンレス株式会社 Duplex stainless steel welded joint and method for manufacturing same
JP2021075771A (en) * 2019-11-12 2021-05-20 日鉄ステンレス株式会社 Duplex stainless steel and welded structure
KR20210069097A (en) 2018-12-28 2021-06-10 닛테츠 스테인레스 가부시키가이샤 Welded structure and its manufacturing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0757112A1 (en) * 1994-04-05 1997-02-05 Sumitomo Metal Industries, Ltd. Two-phase stainless steel
EP0757112A4 (en) * 1994-04-05 1997-06-18 Sumitomo Metal Ind Two-phase stainless steel
US5849111A (en) * 1994-04-05 1998-12-15 Sumitomo Metal Industries, Ltd. Duplex stainless steel
JP2011202247A (en) * 2010-03-26 2011-10-13 Nippon Steel & Sumikin Stainless Steel Corp Two-phase stainless steel material having excellent corrosion resistance
JP2013253315A (en) * 2012-05-07 2013-12-19 Kobe Steel Ltd Duplex stainless steel material and duplex stainless steel pipe
CN103397142A (en) * 2013-08-13 2013-11-20 北票电力铸钢有限公司 AOD (argon oxygen decarburization) refining and smelting process for preparing super duplex stainless steel pump valve
CN107988556A (en) * 2017-11-30 2018-05-04 振石集团东方特钢有限公司 A kind of new stanniferous two phase stainless steel
CN107988555A (en) * 2017-11-30 2018-05-04 振石集团东方特钢有限公司 A kind of resource-saving diphase stainless steel containing rare earth
KR20210069097A (en) 2018-12-28 2021-06-10 닛테츠 스테인레스 가부시키가이샤 Welded structure and its manufacturing method
WO2020203931A1 (en) * 2019-03-29 2020-10-08 日鉄ステンレス株式会社 Duplex stainless steel welded joint and method for manufacturing same
JPWO2020203931A1 (en) * 2019-03-29 2020-10-08
KR20210129161A (en) 2019-03-29 2021-10-27 닛테츠 스테인레스 가부시키가이샤 Two-phase stainless steel welded joint and manufacturing method thereof
JP2021075771A (en) * 2019-11-12 2021-05-20 日鉄ステンレス株式会社 Duplex stainless steel and welded structure

Similar Documents

Publication Publication Date Title
CA2165817C (en) Ferritic-austenitic stainless steel and use of the steel
EP0545753B1 (en) Duplex stainless steel having improved strength and corrosion resistance
US4119765A (en) Welded ferritic stainless steel articles
JP4234592B2 (en) Duplex steel
US3201233A (en) Crack resistant stainless steel alloys
JP4462005B2 (en) High strength stainless steel pipe for line pipe with excellent corrosion resistance and method for producing the same
US6749697B2 (en) Duplex stainless steel
US3556776A (en) Stainless steel
KR20090078813A (en) Duplex stainless steel alloy and use of this alloy
CA1336865C (en) Welded corrosion-resistant ferritic stainless steel tubing and a cathodically protected heat exchanger containing the same
US4933027A (en) Iron-based shape-memory alloy excellent in shape-memory property, corrosion resistance and high-temperature oxidation resistance
JPS58196192A (en) Welded austenitic structure for high temperature service
JPS62267452A (en) Two-phase stainless steel excellent in corrosion resistance in weld zone
JP4312408B2 (en) Corrosion resistant austenitic alloy
US4808371A (en) Exterior protective member made of austenitic stainless steel for a sheathing heater element
Dabalà et al. Corrosion behavior of a superduplex stainless steel in chloride aqueous solution
JP3845366B2 (en) Corrosion resistant steel with excellent weld heat affected zone toughness
JPH0114992B2 (en)
EP0179117A1 (en) High chromium duplex stainless steel
JPS59226151A (en) Austenitic high-alloy stainless steel with superior weldability and hot workability
JP2004107773A (en) Stainless steel pipe for line pipe having excellent corrosion resistance
JP4317517B2 (en) High corrosion resistance hot rolled steel sheet with excellent workability and weld heat affected zone toughness and its manufacturing method
JP2946992B2 (en) Method for producing duplex stainless steel excellent in strength, toughness and corrosion resistance
US4374666A (en) Stabilized ferritic stainless steel for preheater and reheater equipment applications
CA2355109C (en) Corrosion resistant austenitic stainless steel