JP2015189990A - Austenitic stainless steel for exhaust gas flow passage member excellent in corrosion resistance, particularly having improved sensitization property - Google Patents

Austenitic stainless steel for exhaust gas flow passage member excellent in corrosion resistance, particularly having improved sensitization property Download PDF

Info

Publication number
JP2015189990A
JP2015189990A JP2014066221A JP2014066221A JP2015189990A JP 2015189990 A JP2015189990 A JP 2015189990A JP 2014066221 A JP2014066221 A JP 2014066221A JP 2014066221 A JP2014066221 A JP 2014066221A JP 2015189990 A JP2015189990 A JP 2015189990A
Authority
JP
Japan
Prior art keywords
mass
exhaust gas
stainless steel
corrosion resistance
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014066221A
Other languages
Japanese (ja)
Other versions
JP6322454B2 (en
Inventor
善一 田井
Zenichi Tai
善一 田井
太一朗 溝口
Taichiro Mizoguchi
太一朗 溝口
森本 憲一
Kenichi Morimoto
憲一 森本
原田 和加大
Wakahiro Harada
和加大 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2014066221A priority Critical patent/JP6322454B2/en
Publication of JP2015189990A publication Critical patent/JP2015189990A/en
Application granted granted Critical
Publication of JP6322454B2 publication Critical patent/JP6322454B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an austenitic stainless steel having excellent corrosion resistance in environment in an exhaust gas flow passage using a fuel with high S concentration and exhaust gas at high temperature over 500°C.SOLUTION: The present invention provides an austenitic stainless steel material for an exhaust gas flow passage excellent in corrosion resistance having a chemical composition containing C:0.030 mass% or less, Si:0.10 to 0.70 mass%, Mn:0.10 to 2.00 mass%, Ni:10.00 to 40.00 mass%, Cr:17.00 to 30.00 mass%, P:0.005 to 0.40 mass%, S:0.0005 to 0.003 mass%, Cu:0.01 to 0.5 mass%, Mo:1.00 to 6.00 mass%, Al:0.1 mass% or less, N:0.005 to 0.050 mass%, Nb:2.00 mass% or less, further satisfying Nb/(C+N)≥20, and the balance Fe with inevitable impurities and having a solid solution C amount of 0.005 mass% or less and non-deposited laves phase. The present invention also provides a method of producing the austenitic stainless steel material.

Description

本発明は粗悪燃料が利用される排ガス部材など、主に耐食性、特に耐鋭敏化特性が必要とされる用途に使用されるステンレス鋼材であって、鋭敏化特性が改善されたNb含有オーステナイト系ステンレス鋼材およびその製造法に関する。   The present invention is a stainless steel material mainly used for applications that require corrosion resistance, in particular, sensitization resistance, such as exhaust gas members in which poor fuel is used, and is an Nb-containing austenitic stainless steel with improved sensitization characteristics The present invention relates to a steel material and a manufacturing method thereof.

自動車業界における環境規制がますます強くなり、排ガス中のNO低減、燃費向上が要求されている状況である。その対策として、EGR(Exhaust Gas Recirculation;排ガス再循環装置)や排熱回収装置の搭載が進んでいる。 Environmental regulations in the automotive industry becomes increasingly stronger, NO x reduction in exhaust gas, a situation where the fuel efficiency is required. As countermeasures, EGR (Exhaust Gas Recirculation) and exhaust heat recovery devices are being installed.

EGRクーラーや排熱回収装置に用いる材料には、融雪塩に対する耐食性、循環水として使用される溶液に対する耐食性および排ガスの結露によって生じる排ガス凝縮水に対する耐食性が要求される。   The materials used for the EGR cooler and the exhaust heat recovery device are required to have corrosion resistance against snow melting salt, corrosion resistance against a solution used as circulating water, and corrosion resistance against exhaust gas condensate generated by condensation of exhaust gas.

排ガス凝縮水は排気ガス中に含まれている塩分やSO、NOが排ガス流路部材内に結露した水分に溶け込み、HCl、HSO、HSO、HNO、ギ酸及び酢酸が含まれる酸環境を形成する。これらは系外へ全て排出されるわけではなく、次第に排ガス流路部材内で濃化する。また、排気ガスの凝縮と凝縮水の蒸発の繰り返しにともなって凝縮水のpHは低下し、腐食性イオンは濃化するため、腐食環境は厳しくなっていき、排ガス流路部材の腐食を促進する。 Exhaust gas condensate is dissolved in the moisture contained in the exhaust gas flow path member by the salt content, SO X , NO X contained in the exhaust gas, and HCl, H 2 SO 4 , H 2 SO 3 , HNO 3 , formic acid and acetic acid To form an acid environment. These are not all discharged out of the system, but gradually become concentrated in the exhaust gas flow path member. In addition, as the condensation of exhaust gas and evaporation of condensed water is repeated, the pH of the condensed water decreases and the corrosive ions are concentrated, so the corrosive environment becomes severe and promotes corrosion of the exhaust gas flow path member. .

上記の要求特性から、EGRクーラーの材料としては特許文献1に記載されるように、SUS304、SUS316に代表されるオーステナイト系ステンレス鋼、あるいは特許文献2に開示されるフェライト系ステンレス鋼が用いられている。また排熱回収装置にはSUS436L、SUS444などのフェライト系ステンレス鋼が用いられる。   From the above required characteristics, as described in Patent Document 1, austenitic stainless steel represented by SUS304 and SUS316, or ferritic stainless steel disclosed in Patent Document 2 is used as the material of the EGR cooler. Yes. Further, ferritic stainless steel such as SUS436L and SUS444 is used for the exhaust heat recovery device.

特開2007−46890号公報JP 2007-46890 A 特開2009−174040号公報JP 2009-174040 A 特開2003−166039号公報Japanese Patent Laid-Open No. 2003-166039

中国に代表される新興国では、精製が不十分で硫黄(S)濃度が高い燃料が用いられることも多い。S濃度が高い燃料を使用した際の排ガス凝縮水はpHが低く、排ガス流路内に厳しい腐食環境を形成するため、SUS444をはじめとするフェライト系ステンレス鋼は十分な耐食性を示さなかった。   In emerging countries represented by China, fuels that are poorly refined and have a high sulfur (S) concentration are often used. Since the exhaust gas condensate when using a fuel having a high S concentration has a low pH and forms a severe corrosive environment in the exhaust gas flow path, ferritic stainless steels such as SUS444 did not exhibit sufficient corrosion resistance.

また、EGRクーラーや排熱回収装置の性能を高めるためには高温の排ガスを利用することが好ましいが、排ガス温度が500℃を超えると、C量が0.010質量%のSUS316Lであっても鋭敏化による粒界腐食を生じた。   Moreover, in order to improve the performance of the EGR cooler and the exhaust heat recovery device, it is preferable to use high-temperature exhaust gas. However, if the exhaust gas temperature exceeds 500 ° C., even if the amount of C is SUS316L with 0.010% by mass, Intergranular corrosion due to sensitization occurred.

本発明は、上記の従来技術の問題点に鑑みて、S濃度が高い燃料を使用し、500℃を超える高温の排ガスを使用する排ガス流路内の環境において優れた耐食性を有するオーステナイト系ステンレス鋼を提供することを目的とする。   In view of the above-mentioned problems of the prior art, the present invention uses an austenitic stainless steel having excellent corrosion resistance in an environment in an exhaust gas flow path using a high S concentration fuel and using high temperature exhaust gas exceeding 500 ° C. The purpose is to provide.

本発明者らは、上記目的を達成するために、オーステナイト系ステンレス鋼材の鋭敏化による粒界腐食を防ぐために固溶C量を減らすことに着目した。そして、鋭意検討した結果、Nbを添加した鋼材に特定温度で溶体化処理し、その後、処理温度及び時間を厳正に制御した安定化熱処理を施すことで、laves(ラーベス)相の析出を抑え、効率的にNbCを析出させ、鋼材の固溶C量を減らすことが可能であることを見出した。特に、本発明で設定した製造方法で得られた鋼材は、固溶C量が0.005質量%以下に制御され、高温環境下での粒界腐食に優れた耐性を示すことが分かった。   In order to achieve the above object, the inventors of the present invention focused on reducing the amount of dissolved C in order to prevent intergranular corrosion due to sensitization of an austenitic stainless steel material. And as a result of diligent examination, solution treatment at a specific temperature was performed on the steel material to which Nb was added, and then subjected to stabilization heat treatment in which the treatment temperature and time were strictly controlled, thereby suppressing the precipitation of the laves phase. It has been found that it is possible to efficiently precipitate NbC and reduce the amount of solid solution C of the steel material. In particular, it was found that the steel material obtained by the production method set in the present invention has a solid solution C content controlled to 0.005% by mass or less and exhibits excellent resistance to intergranular corrosion under a high temperature environment.

具体的に、本発明は、C:0.030質量%以下、Si:0.10〜0.70質量%、Mn:0.10〜2.00質量%、Ni:10.00〜40.00質量%、Cr:17.00〜30.00質量%、P:0.005〜0.40質量%、S:0.0005〜0.003質量%,Cu:0.01〜0.5質量%、Mo:1.00〜6.00質量%、Al:0.10質量%以下、N:0.005〜0.050質量%、Nb:2.00質量%以下であり、さらにNb/(C+N)≧20を満たす、残部Feおよび不可避的不純物からなる化学組成を有し、固溶C量が0.005質量%以下であり、laves相が析出していない、耐食性に優れた排ガス流路部材用オーステナイト系ステンレス鋼材を提供する。
上記排ガス流路部材として、排気ガス再循環装置又は排熱回収装置の部材が好ましい。
Specifically, the present invention includes C: 0.030 mass% or less, Si: 0.10 to 0.70 mass%, Mn: 0.10 to 2.00 mass%, Ni: 10.00 to 40.00. Mass%, Cr: 17.00 to 30.00 mass%, P: 0.005 to 0.40 mass%, S: 0.0005 to 0.003 mass%, Cu: 0.01 to 0.5 mass% , Mo: 1.00 to 6.00 mass%, Al: 0.10 mass% or less, N: 0.005 to 0.050 mass%, Nb: 2.00 mass% or less, and Nb / (C + N) ) Exhaust gas flow path member having a chemical composition satisfying ≧ 20 and having a balance of Fe and inevitable impurities, having a solid solution C content of 0.005% by mass or less, and having no laves phase precipitated, having excellent corrosion resistance An austenitic stainless steel material is provided.
As the exhaust gas channel member, an exhaust gas recirculation device or a member of an exhaust heat recovery device is preferable.

さらには、C:0.030質量%以下、Si:0.10〜0.70、Mn:0.10〜2.00質量%、Ni:10.00〜40.00質量%、Cr:17.00〜30.00質量%、P:0.005〜0.40質量%、S:0.0005〜0.003質量%,Cu:0.01〜0.5質量%、Mo:1.00〜6.00質量%、Al:0.10質量%以下、N:0.005〜0.050質量%、Nb:2.00質量%以下であり、さらにNb/(C+N)≧20を満たす、残部Feおよび不可避的不純物からなる化学組成を有する鋼材を、1050〜1150℃で溶体化処理した後、800〜900℃で、10時間以上でかつ以下の式(1)を満たす時間の範囲で安定化処理することを含む、上記耐食性に優れた排ガス流路部材用オーステナイト系ステンレス鋼材の製造方法を提供する。   Furthermore, C: 0.030 mass% or less, Si: 0.10-0.70, Mn: 0.10-2.00 mass%, Ni: 10.00-40.00 mass%, Cr: 17. 00 to 30.00 mass%, P: 0.005 to 0.40 mass%, S: 0.0005 to 0.003 mass%, Cu: 0.01 to 0.5 mass%, Mo: 1.00 6.00% by mass, Al: 0.10% by mass or less, N: 0.005 to 0.050% by mass, Nb: 2.00% by mass or less, and further satisfies Nb / (C + N) ≧ 20 A steel material having a chemical composition composed of Fe and inevitable impurities is subjected to solution treatment at 1050 to 1150 ° C., and then stabilized at 800 to 900 ° C. for 10 hours or more and in the time range satisfying the following formula (1). Austenating for exhaust gas flow path member having excellent corrosion resistance, including treatment To provide a method of manufacturing site stainless steel.

Figure 2015189990
Figure 2015189990

本発明によるオーステナイト系鋼材は、S濃度が高い燃料を使用した際の排ガス凝縮水に対し良好な耐食性を有し、特に、500℃を越える高温環境で改善された鋭敏化特性を示す。
このように、優れた耐食性、及び改善された鋭敏化特性を有する本発明の鋼材は、排ガス流路部材として、特に排気ガス再循環装置又は排熱回収装置の部材として使用することができる。
The austenitic steel according to the present invention has good corrosion resistance against exhaust gas condensate when a fuel having a high S concentration is used, and particularly exhibits improved sensitization characteristics in a high temperature environment exceeding 500 ° C.
Thus, the steel material of the present invention having excellent corrosion resistance and improved sensitization characteristics can be used as an exhaust gas flow path member, particularly as an exhaust gas recirculation device or exhaust heat recovery device member.

表1に記載の化学組成を有する発明鋼を用いて、本発明の安定化熱処理における温度及び時間と、鋼材における固溶C量との関係を示した図である。黒丸は固溶C量が0.005質量%を超える濃度を有する鋼材を示し、白丸は固溶C量が0.005質量%以下の濃度を有する鋼材を示す。It is the figure which showed the relationship between the temperature and time in the stabilization heat processing of this invention, and the amount of solute C in steel materials using the invention steel which has the chemical composition of Table 1. A black circle indicates a steel material having a concentration in which the solid solution C amount exceeds 0.005 mass%, and a white circle indicates a steel material in which the solid solution C amount has a concentration of 0.005 mass% or less. 表1に記載の化学組成を有する発明鋼を800℃で100時間安定化熱処理した後の、鋼材表面のNbC析出状況を高分解能SEMで示した図である。It is the figure which showed the NbC precipitation condition on the steel material surface after carrying out the stabilization heat processing at 800 degreeC for 100 hours by the invention steel which has the chemical composition of Table 1 by high-resolution SEM. 表1の組成の化学組成を有する発明鋼を本発明の規定の範囲外の条件(900℃で100時間)で安定化熱処理した鋼材のlaves相の析出状況を電子顕微鏡で示した図である。It is the figure which showed the precipitation condition of the laves phase of the steel materials which stabilized and heat-processed the invention steel which has the chemical composition of the composition of Table 1 on the conditions (900 degreeC for 100 hours) outside the prescription | regulation range of this invention. 実施例における、精製が不十分な燃料を用いた際の排気ガスの凝縮環境を模して行った耐食性評価試験方法のフロー図である。In an Example, it is a flowchart of the corrosion-resistance evaluation test method performed imitating the condensation environment of the exhaust gas at the time of using the fuel with inadequate refinement | purification. 実施例における、耐食性評価試験後のサンプルの腐食発生箇所を光学顕微鏡で観察した写真である。(a)は本発明鋼1、(b)は比較鋼6を示す。It is the photograph which observed the corrosion generation | occurrence | production location of the sample after the corrosion-resistance evaluation test in an Example with the optical microscope. (A) shows the inventive steel 1 and (b) shows the comparative steel 6.

発明者らは、HSO濃度が高くpHが低い環境におけるステンレス鋼の耐食性及び高温環境でのステンレス鋼の組織及び耐食性を広く研究し、S濃度が高い燃料を使用する場合の排ガス流路を構成する部材(EGRクーラー、排熱回収装置等)の環境における腐食の抑制、さらに高温環境での鋭敏化特性を改善できることを見出し、本発明に至った。 The inventors have extensively studied the corrosion resistance of stainless steel in an environment with high H 2 SO 4 concentration and low pH, and the structure and corrosion resistance of stainless steel in a high temperature environment, and an exhaust gas flow path when using a fuel with high S concentration It was found that the corrosion of the members (EGR cooler, exhaust heat recovery device, etc.) constituting the material can be suppressed in the environment, and further the sensitization characteristics in the high temperature environment can be improved.

以下、本発明で対象とする鋼材の化学組成について説明する。
C:0.030質量%以下
Cはステンレス鋼中に不可避的に含まれる元素である。C含有量の低減は鋭敏化特性の改善に有効である。本発明鋼はNb添加および熱処理によって固溶C量を0.005質量%以下にまで低減させる。含有C量の増加はNb添加量の増大を招くことから、C含有量は0.030質量%を上限とする。
Hereinafter, the chemical composition of the steel material targeted by the present invention will be described.
C: 0.030 mass% or less C is an element inevitably contained in stainless steel. Reduction of the C content is effective in improving the sensitization characteristics. In the steel of the present invention, the amount of solute C is reduced to 0.005% by mass or less by adding Nb and heat treatment. Since an increase in the C content causes an increase in the Nb addition amount, the C content is 0.030% by mass.

Si:0.10〜0.70質量%
Siはステンレス鋼の脱酸材として含有される。しかし多量に含まれると、鋼を硬質化して加工性を低下させることから、Si含有量は0.10〜0.70質量%とする。
Si: 0.10 to 0.70 mass%
Si is contained as a deoxidizer for stainless steel. However, if contained in a large amount, the steel is hardened and the workability is lowered, so the Si content is set to 0.10 to 0.70 mass%.

Mn:0.10〜0.70質量%
Mnは脱酸剤あるいはオーステナイト安定化元素として必要であり、少なくとも0.10質量%以上含有させる。一方、ステンレス鋼に不純物として含まれているSと結合し、科学的に不安定な硫化物であるMnSを生成して耐食性を低下させるため、Mn含有量は0.10〜2.00質量%の範囲とした。
Mn: 0.10 to 0.70 mass%
Mn is necessary as a deoxidizer or an austenite stabilizing element, and is contained at least 0.10% by mass or more. On the other hand, Mn content is 0.10 to 2.00% by mass because it combines with S contained as an impurity in stainless steel to produce MnS which is a scientifically unstable sulfide and lowers the corrosion resistance. It was made the range.

Ni:10.00〜40.00質量%
Niはオーステナイト相を得るために必須であり、耐食性を高めるためにも有効である。従ってNi量は10.00質量%以上の含有が必要である。しかし、多量に含有するとコストの上昇を招くことから、Ni含有量は40.00質量%、好ましくは30.00質量%、さらに好ましくは25.00質量%を上限とする。
Ni: 10.00-40.00 mass%
Ni is indispensable for obtaining an austenite phase, and is also effective for enhancing corrosion resistance. Accordingly, the Ni content must be 10.00% by mass or more. However, the Ni content is 40.00% by mass, preferably 30.00% by mass, and more preferably 25.00% by mass because a large amount causes an increase in cost.

Cr:17.00〜30.00質量%
Crはステンレス鋼の表面に不働態皮膜を形成する主要な合金元素であり、耐孔食性、耐隙間腐食性および一般耐食性の向上をもたらす。発明者らの検討の結果、高S凝縮水環境で要求される耐食性を付与するには17質量%以上のCr含有量を確保すべきであることがわかった。しかし、Cr含有量が多くなると機械的性質や靭性を損ね、さらにコストを増大させる要因となる。したがって本発明では30.00質量%、好ましくは25.00質量%を上限とする。
Cr: 17.00 to 30.00 mass%
Cr is a main alloy element that forms a passive film on the surface of stainless steel, and improves pitting corrosion resistance, crevice corrosion resistance, and general corrosion resistance. As a result of investigations by the inventors, it was found that a Cr content of 17% by mass or more should be ensured in order to provide the corrosion resistance required in a high S condensed water environment. However, when the Cr content increases, the mechanical properties and toughness are impaired, which further increases the cost. Therefore, in the present invention, the upper limit is 30.00% by mass, preferably 25.00% by mass.

P:0.004〜0.040質量%
Pは鋼素地と腐食生成物との界面や母材中の粒界に偏析し、溶融塩による腐食や粒界腐食を促進させるのでその含有量は少ないほど好ましい。しかし、含有量の極端な低下はコストの増大を招く。したがって、P含有量は0.005〜0.040質量%の範囲とした。
P: 0.004 to 0.040 mass%
P is segregated at the interface between the steel substrate and the corrosion product and at the grain boundaries in the base metal, and promotes corrosion by the molten salt and intergranular corrosion. However, an extreme decrease in content causes an increase in cost. Therefore, the P content is in the range of 0.005 to 0.040 mass%.

S:0.0005〜0.003質量%
SはMnと硫化物を生成して孔食の起点となる。また、本発明のようなオーステナイト系ステンレス鋼ではSが粒界に偏析し、熱間加工性が低下する。したがって、S量は低いほど好ましい。ただし極度にS含有量を低下させることは製造コストの上昇を招くため、S含有量は0.0005〜0.003質量%の範囲とする。
S: 0.0005 to 0.003 mass%
S generates Mn and sulfide and becomes the starting point of pitting corrosion. Further, in the austenitic stainless steel as in the present invention, S is segregated at the grain boundary, and the hot workability is lowered. Therefore, the lower the amount of S, the better. However, extremely reducing the S content causes an increase in production cost, so the S content is in the range of 0.0005 to 0.003 mass%.

Cu:0.01〜0.5質量%
Cuは耐食性向上および母材の靭性改善に有効であるが、多量に含有すると溶接熱影響部の靭性低下を引き起こす。したがってCu含有量は0.0〜0.10質量%とした。
Cu: 0.01-0.5 mass%
Cu is effective in improving the corrosion resistance and improving the toughness of the base metal, but if contained in a large amount, it causes a reduction in the toughness of the heat affected zone. Therefore, the Cu content is set to 0.0 to 0.10% by mass.

Mo:1.00〜6.00質量%
MoはCrと同じく、安定した耐食性を確保するための基本成分である。含有量が1質量%以上で効果が得られ、含有量が多いほど耐食性は向上するが、6質量%を超えると熱間加工性を低下させる。したがって、Mo含有量は1.00〜6.00質量%の範囲とする。
Mo: 1.00 to 6.00 mass%
Mo, like Cr, is a basic component for ensuring stable corrosion resistance. The effect is obtained when the content is 1% by mass or more, and the corrosion resistance improves as the content increases. However, when the content exceeds 6% by mass, the hot workability decreases. Therefore, the Mo content is in the range of 1.00 to 6.00 mass%.

Al:0.10質量%以下
Alは脱酸剤として添加される。ただし過剰に添加すると、Al系介在物を生成し、加工性を低下させることから、Al含有量の上限は0.10質量%とする。
Al: 0.10% by mass or less Al is added as a deoxidizer. However, if added excessively, Al 2 O 3 inclusions are generated and the workability is lowered, so the upper limit of the Al content is 0.10% by mass.

N:0.005〜0.050質量%
Nはオーステナイト安定元素として有効であり、さらにCr、Ni、Moとともに、ステンレス鋼の耐食性、特に耐孔食性を向上させる。したがってNは0.005質量%以上の添加が必要である。一方、過剰に添加すると、製造性を低下させ、Nbの炭化物形成を妨げることから、N含有量は0.050質量%を上限とする。
N: 0.005 to 0.050 mass%
N is effective as an austenite stable element, and further improves the corrosion resistance of stainless steel, particularly pitting corrosion resistance, together with Cr, Ni, and Mo. Therefore, N needs to be added in an amount of 0.005% by mass or more. On the other hand, if added excessively, productivity is lowered and Nb carbide formation is prevented, so the N content is made 0.050% by mass as the upper limit.

Nb:2.00質量%以下
NbはCおよびNと親和力の強い元素であるため、添加すると炭窒化物を形成して固溶CおよびN量を低減させる効果のある元素である。そして、Nb添加による固溶C、Nの低減により、高温環境におけるCr炭化物の析出を抑制し、鋭敏化特性を高めることができる。本発明では、前記した通り熱処理によりNbC及びNbNを析出させるため、Nb/(C+N)が20以上となる必要がある。しかし、Nb添加量を多くしすぎると、固溶C、Nの低減効果が飽和し、Nb自身の影響によって冷間加工性、熱間加工性が低下する。さらに高温環境で耐食性の低いlaves相の析出を促進するため、上限を2.00質量%とした。
Nb: 2.00% by mass or less Since Nb is an element having a strong affinity with C and N, when added, it forms a carbonitride to reduce the amount of dissolved C and N. And reduction of the solid solution C and N by Nb addition can suppress precipitation of Cr carbide | carbonized_material in a high temperature environment, and can improve the sensitization characteristic. In the present invention, as described above, NbC and NbN are precipitated by heat treatment, so Nb / (C + N) needs to be 20 or more. However, if the amount of Nb added is too large, the effect of reducing the solid solution C and N is saturated, and cold workability and hot workability are deteriorated due to the influence of Nb itself. Furthermore, in order to promote precipitation of the laves phase having low corrosion resistance in a high temperature environment, the upper limit was made 2.00% by mass.

本発明において、ステンレス鋼の鋭敏化特性の改善及び耐粒界腐食性の向上を図るため固溶C量を0.005質量%以下にした。これを達成するには化学成分組成を上述のように規定するとともに、NbCを析出させるための最適な安定化熱処理が必要である。
本発明のステンレス鋼の製造方法は、上述の化学成分組成の鋼を溶製し、熱間圧延を行う工程までは、従来のステンレス鋼の製造方法を用いることができる。熱間圧延して得られた鋼材を必要に応じて、冷間圧延を行ってもよい。本発明では、さらに、1050〜1150℃で溶体化処理を5分〜15分行った後、800〜900℃で、10時間以上でかつ以下の式(1)を満たす時間の範囲で安定化処理することを特徴とする。
In the present invention, in order to improve the sensitization characteristics and the intergranular corrosion resistance of stainless steel, the amount of solute C is set to 0.005 mass% or less. In order to achieve this, the chemical component composition is specified as described above, and an optimum stabilization heat treatment for precipitating NbC is required.
The method for producing stainless steel of the present invention can use a conventional method for producing stainless steel until the step of melting the steel having the chemical composition described above and performing hot rolling. If necessary, the steel material obtained by hot rolling may be cold-rolled. In the present invention, the solution treatment is further performed at 1050 to 1150 ° C. for 5 to 15 minutes, and then the stabilization treatment is performed at 800 to 900 ° C. for 10 hours or more and in the time range satisfying the following formula (1). It is characterized by doing.

Figure 2015189990
Figure 2015189990

以下に、本発明のステンレス鋼材の製造条件の設定根拠について説明する。
・固溶C量調査方法
粒内へのNbCの析出状況から、加熱時にCr炭化物生成の要因となるオーステナイト相中の固溶C量を調査した。
以下の表1に示す化学組成及び不可避不純物からなる鋼を溶製し、熱間圧延によって板厚3.0mmの熱延板を製造した。この熱延板を焼鈍後、板厚1.0mmまで冷間圧延し、1150℃で5分間仕上焼鈍を施した。さらに図1にプロットされる時間及び温度条件で安定化熱処理を施し、酸洗した後、各鋼材の固溶C量を調査した。
Below, the basis for setting the manufacturing conditions for the stainless steel material of the present invention will be described.
-Method for investigating the amount of dissolved C From the state of precipitation of NbC in the grains, the amount of dissolved C in the austenite phase that causes Cr carbide formation during heating was investigated.
Steel having the chemical composition and inevitable impurities shown in Table 1 below was melted, and a hot rolled sheet having a thickness of 3.0 mm was manufactured by hot rolling. This hot-rolled sheet was annealed and then cold-rolled to a sheet thickness of 1.0 mm and subjected to finish annealing at 1150 ° C. for 5 minutes. Furthermore, after stabilizing heat treatment was performed under the time and temperature conditions plotted in FIG. 1 and pickling, the amount of solute C in each steel material was investigated.

NbCは高分解能SEMを用いて確認することが出来る。例として図2に表1の成分の発明鋼を800℃で100時間安定化熱処理後のNbC析出状況を示す。鋼板の断面を100nm間隔で交点が400になるようなメッシュ(例えば20×20)を用い、結晶粒内に析出したNbCと重なったメッシュの交点を数える。この作業を10視野以上について行い、NbCと重なった交点の数を全交点の数で除して、Nb炭化物の面積率を求めた。   NbC can be confirmed using a high resolution SEM. As an example, FIG. 2 shows the state of NbC precipitation after stabilization heat treatment at 800 ° C. for 100 hours for the inventive steels having the components shown in Table 1. A mesh (for example, 20 × 20) in which the cross-section of the steel sheet has an intersection of 400 at 100 nm intervals (for example, 20 × 20) is used, and the intersection of the mesh overlapping with NbC precipitated in the crystal grains is counted. This operation was performed for 10 or more fields of view, and the number of intersections overlapping NbC was divided by the number of all intersections to determine the area ratio of Nb carbide.

安定化C量(質量%)=NbC面積率×NbCの比重(7.78g/cm3)÷ステンレス鋼の比重(7.93g/cm3)×Cの原子量(12)÷NbCの分子量(92.9)×100=NbC面積率×12.7
そして以下の式(2)に基づいて固溶C量を導出した。
固溶C量(質量%)=含有C量(質量%)−NbC面積率×12.7 (2)
Stabilized C amount (% by mass) = NbC area ratio × NbC specific gravity (7.78 g / cm 3 ) ÷ Stainless steel specific gravity (7.93 g / cm 3 ) × C atomic weight (12) ÷ NbC molecular weight (92.9) × 100 = NbC area ratio x 12.7
And the amount of solid solution C was derived | led-out based on the following formula | equation (2).
Solid solution C amount (mass%) = Contained C amount (mass%) − NbC area ratio × 12.7 (2)

Figure 2015189990
Figure 2015189990

本発明のオーステナイト系ステンレス鋼材では、laves相が析出していない。ここで、「laves相が析出していない」とは、ステンレス鋼材中にlaves相が面積率0.1%以下、好ましくは0.01%以下を意味する。以下に、laves相析出の確認方法を説明する。面積率は、サンプルエッチング後、光学顕微鏡400倍にて視野中のlaves相の析出面積の割り合いを測定し、ランダムな50視野の平均より求める。
例として図3に表1の組成の発明鋼を900℃で100時間安定化熱処理したサンプルのlaves相析出状況を示す。
In the austenitic stainless steel material of the present invention, no laves phase is precipitated. Here, “the laves phase is not precipitated” means that the laves phase in the stainless steel material has an area ratio of 0.1% or less, preferably 0.01% or less. Below, the confirmation method of laves phase precipitation is demonstrated. The area ratio is obtained from the average of 50 random fields by measuring the ratio of the deposited area of the laves phase in the field with an optical microscope 400 times after the sample etching.
As an example, FIG. 3 shows the state of laves phase precipitation in a sample obtained by subjecting the inventive steel having the composition shown in Table 1 to heat treatment at 900 ° C. for 100 hours.

安定化熱処理温度:800℃〜900℃
オーステナイト相に固溶出来るC量は温度の上昇とともに増加する。そのため900℃よりも高い温度ではNbCを十分に析出させることが出来ず、十分な固溶C量の低減効果が得られないため、熱処理温度の上限を900℃とした。また、800℃より低い温度ではNbはFeと化合し、金属間化合物であるlaves相を形成しやすい。laves相が形成することでNbCの析出は阻害され、またlaves相自体の耐食性も低いことから、熱処理温度の下限を800℃とした。
Stabilization heat treatment temperature: 800 ° C to 900 ° C
The amount of C that can be dissolved in the austenite phase increases with increasing temperature. Therefore, NbC cannot be sufficiently precipitated at a temperature higher than 900 ° C., and a sufficient effect of reducing the amount of dissolved C cannot be obtained. Therefore, the upper limit of the heat treatment temperature is set to 900 ° C. Further, at a temperature lower than 800 ° C., Nb combines with Fe and easily forms a laves phase which is an intermetallic compound. The formation of the laves phase inhibits the precipitation of NbC and the corrosion resistance of the laves phase itself is low, so the lower limit of the heat treatment temperature was set to 800 ° C.

Figure 2015189990
Figure 2015189990

固溶炭素量低減のために十分な量のNbCを析出させるため、熱処理時間の下限は10時間とした。しかし、過度に長い時間の熱処理は800℃〜900℃の温度域においても粒内および粒界にlaves相の析出を招き、材料の耐食性が低下するため、熱処理時間の上限を   In order to precipitate a sufficient amount of NbC for reducing the amount of dissolved carbon, the lower limit of the heat treatment time was set to 10 hours. However, heat treatment for an excessively long time leads to precipitation of laves phase in the grains and at the grain boundaries even in the temperature range of 800 ° C. to 900 ° C., which reduces the corrosion resistance of the material.

Figure 2015189990
Figure 2015189990

時間とした。
各種安定化熱処理条件にて製造したサンプルについて、固溶C量およびlaves相析出状況を調査することで導出した適切な安定化熱処理条件の範囲は図1に示す。
It was time.
The range of appropriate stabilization heat treatment conditions derived by investigating the amount of dissolved C and the laves phase precipitation state for samples produced under various stabilization heat treatment conditions is shown in FIG.

以上で説明したオーステナイト系ステンレス鋼を素材として、EGRクーラー、排熱回収装置をはじめとする排ガス流路部材を製造する。装置の形状および構造は公知の製造方法が採用される。成形手段に制限はなく、プレス加工、Niろう付け、溶接等によって製造される。   Using the austenitic stainless steel described above as a raw material, exhaust gas flow path members such as EGR coolers and exhaust heat recovery devices are manufactured. A known manufacturing method is adopted for the shape and structure of the apparatus. There is no restriction | limiting in a shaping | molding means, It manufactures by press work, Ni brazing, welding, etc.

表2に示す化学成分を有するステンレス鋼を溶製し、熱間圧延によって板厚3.0mmの熱延板を製造した。この熱延板を板厚1.0mmまで冷間圧延し、1150℃で5分間仕上焼鈍を施し、さらに表2に記載の条件で安定化熱処理を施し、酸洗した後、試験に供した。   Stainless steel having chemical components shown in Table 2 was melted, and hot rolled sheets having a thickness of 3.0 mm were manufactured by hot rolling. This hot-rolled sheet was cold-rolled to a thickness of 1.0 mm, subjected to finish annealing at 1150 ° C. for 5 minutes, further subjected to stabilization heat treatment under the conditions shown in Table 2, pickled, and then subjected to the test.

Figure 2015189990
Figure 2015189990

・排ガス流路部材用オーステナイト系ステンレス鋼材用耐食性評価試験
排気ガスの凝縮と蒸発が繰り返される排ガス流路部材の内部環境を模擬するために、図4に示す試験方法によって耐食性を評価した。
板厚1.0mmの各ステンレス鋼から、50mm×50mmの試験片を切り出し大気環境において700℃で1000時間加熱後、表面のスケールは研磨によって除去した。
試験液はS濃度の高い燃料を使用している実車のEGRクーラーから採取した凝縮水の分析例を参考にして作成した。表3に試験液の組成を示す。なお、pHはアンモニア水を用いて調整した。排ガス流路部材用オーステナイト系ステンレス鋼材用耐食性評価試験では、試験片に試験液100mlを滴下し、恒温・恒湿度槽内で温度80℃、相対湿度40%の環境で30分乾燥させ、液を蒸発させた後、温度80℃、相対湿度85%の環境で3時間保持し、表面に試験液の35倍の凝縮水を形成した。このサイクルを50回繰り返した後、さびを除去し、腐食形態を観察した。
なお、laves相の析出は上記の方法により確認した。最大侵食深さは、光学顕微鏡を用いた焦点深度法によって求めた。
Corrosion resistance evaluation test for austenitic stainless steel material for exhaust gas flow path member In order to simulate the internal environment of the exhaust gas flow path member in which exhaust gas condensation and evaporation are repeated, the corrosion resistance was evaluated by the test method shown in FIG.
A test piece of 50 mm × 50 mm was cut out from each stainless steel plate having a thickness of 1.0 mm and heated at 700 ° C. for 1000 hours in an atmospheric environment, and the surface scale was removed by polishing.
The test solution was prepared with reference to an example of analysis of condensed water collected from an EGR cooler of an actual vehicle using a fuel having a high S concentration. Table 3 shows the composition of the test solution. The pH was adjusted using aqueous ammonia. In the corrosion resistance evaluation test for austenitic stainless steel materials for exhaust gas flow path members, 100 ml of the test solution is dropped onto the test piece and dried in an environment of 80 ° C. and 40% relative humidity in a constant temperature / humidity bath for 30 minutes. After evaporation, it was kept for 3 hours in an environment at a temperature of 80 ° C. and a relative humidity of 85% to form condensed water 35 times the test solution on the surface. After repeating this cycle 50 times, rust was removed and the corrosion morphology was observed.
In addition, precipitation of the laves phase was confirmed by the above method. The maximum erosion depth was determined by the depth of focus method using an optical microscope.

Figure 2015189990
Figure 2015189990

・耐食性評価試験の結果
図5は発明鋼1(a)及び比較鋼6(b)の試験後の腐食部の表面概観を表す。NbCが析出しておらず、固溶C量が0.015質量%の比較鋼6では粒界腐食が深く生じたが、NbCが生じ、固溶C量が0.004質量%の発明鋼1では浅い孔食が生じた。
また、表4に示す結果からわかるように、比較鋼5はNbCが析出しており、固溶C量は0.005質量%であるが、適正範囲外の長時間熱処理によりlaves相が析出しているため、粒界の耐食性が低下し、深い粒界腐食が発生した。比較鋼8はNbCが析出しているが、適正範囲外の高温熱処理により固溶C量が0.005質量%以下に低減されていないため深い粒界腐食が生じている。しかし、本発明鋼はNbCが析出し、固溶C量が0.005質量%であり、laves相が析出していない。これらは腐食形態が孔食であり、最大侵食深さがいずれも50μm以下であったことから、本発明鋼は500℃以上の環境で鋭敏化せず、高い耐粒界腐食性を有していることが確認された。
-Result of corrosion resistance evaluation test FIG. 5 shows the surface appearance of the corrosion part after the test of invention steel 1 (a) and comparative steel 6 (b). Intergranular corrosion occurred deeply in the comparative steel 6 in which NbC was not precipitated and the solute C content was 0.015 mass%, but the invention steel 1 in which NbC was generated and the solute C content was 0.004 mass%. Then shallow pitting occurred.
Further, as can be seen from the results shown in Table 4, NbC is precipitated in Comparative Steel 5, and the amount of solute C is 0.005% by mass, but the laves phase is precipitated by long-time heat treatment outside the proper range. As a result, the corrosion resistance of the grain boundaries decreased and deep grain boundary corrosion occurred. In comparative steel 8, NbC is precipitated, but deep intergranular corrosion occurs because the amount of dissolved C is not reduced to 0.005% by mass or less by high-temperature heat treatment outside the proper range. However, in the steel of the present invention, NbC is precipitated, the amount of dissolved C is 0.005% by mass, and the laves phase is not precipitated. Since these corrosion forms were pitting corrosion and the maximum erosion depth was 50 μm or less, the steel of the present invention was not sensitized in an environment of 500 ° C. or higher and had high intergranular corrosion resistance. It was confirmed that

Figure 2015189990
Figure 2015189990

本発明に係るオーステナイト系ステンレス鋼を用いれば、500℃以上の高温環境で長時間使用される場合にも良好な耐食性を有する排ガス流路部材、例えばEGRクーラーや排熱回収装置の部材等を得ることが出来る。   When the austenitic stainless steel according to the present invention is used, an exhaust gas passage member having good corrosion resistance even when used for a long time in a high temperature environment of 500 ° C. or higher, for example, an EGR cooler or a member of an exhaust heat recovery device is obtained. I can do it.

Claims (3)

C:0.030質量%以下、Si:0.10〜0.70質量%、Mn:0.10〜2.00質量%、Ni:10.00〜40.00質量%、Cr:17.00〜30.00質量%、P:0.005〜0.40質量%、S:0.0005〜0.003質量%,Cu:0.01〜0.5質量%、Mo:1.00〜6.00質量%、Al:0.10質量%以下、N:0.005〜0.050質量%、Nb:2.00質量%以下であり、さらにNb/(C+N)≧20を満たす、残部Feおよび不可避的不純物からなる化学組成を有し、固溶C量が0.005質量%以下であり、laves相が析出していない、耐食性に優れた排ガス流路部材用オーステナイト系ステンレス鋼材。   C: 0.030 mass% or less, Si: 0.10-0.70 mass%, Mn: 0.10-2.00 mass%, Ni: 10.00-40.00 mass%, Cr: 17.00 -30.00 mass%, P: 0.005-0.40 mass%, S: 0.0005-0.003 mass%, Cu: 0.01-0.5 mass%, Mo: 1.00-6 0.000% by mass, Al: 0.10% by mass or less, N: 0.005 to 0.050% by mass, Nb: 2.00% by mass or less, and further satisfies Nb / (C + N) ≧ 20. And an austenitic stainless steel material for exhaust gas passage members having a chemical composition comprising inevitable impurities, having a solid solution C content of 0.005% by mass or less, and having no laves phase precipitated, and having excellent corrosion resistance. 前記排ガス流路部材が、排気ガス再循環装置又は排熱回収装置の部材である、請求項1に記載の耐食性に優れた排ガス流路部材用オーステナイト系ステンレス鋼材。   The austenitic stainless steel material for an exhaust gas channel member excellent in corrosion resistance according to claim 1, wherein the exhaust gas channel member is a member of an exhaust gas recirculation device or an exhaust heat recovery device. C:0.030質量%以下、Si:0.10〜0.70質量%、Mn:0.10〜2.00質量%、Ni:10.00〜40.00質量%、Cr:17.00〜30.00質量%、P:0.005〜0.40質量%、S:0.0005〜0.003質量%、Cu:0.01〜0.5質量%、Mo:1.00〜6.00質量%、Al:0.10質量%以下、N:0.005〜0.050質量%、Nb:2.00質量%以下であり、さらにNb/(C+N)≧20を満たす、残部Feおよび不可避的不純物からなる化学組成を有する鋼材を、1050〜1150℃で溶体化処理した後、800〜900℃で、10時間以上でかつ以下の式(1)を満たす時間の範囲で安定化処理することを含む、請求項1又は2に記載の、耐食性に優れた排ガス流路部材用オーステナイト系ステンレス鋼材の製造方法。
Figure 2015189990
C: 0.030 mass% or less, Si: 0.10-0.70 mass%, Mn: 0.10-2.00 mass%, Ni: 10.00-40.00 mass%, Cr: 17.00 -30.00 mass%, P: 0.005-0.40 mass%, S: 0.0005-0.003 mass%, Cu: 0.01-0.5 mass%, Mo: 1.00-6 0.000% by mass, Al: 0.10% by mass or less, N: 0.005 to 0.050% by mass, Nb: 2.00% by mass or less, and further satisfies Nb / (C + N) ≧ 20. And a steel material having a chemical composition composed of unavoidable impurities is subjected to a solution treatment at 1050 to 1150 ° C., and then stabilized at 800 to 900 ° C. for 10 hours or more and in the time range satisfying the following formula (1). The exhaust gas flow having excellent corrosion resistance according to claim 1 or 2, Method of manufacturing a member for austenitic stainless steel.
Figure 2015189990
JP2014066221A 2014-03-27 2014-03-27 Austenitic stainless steel with excellent corrosion resistance, especially with improved sensitization characteristics, for exhaust gas flow path members Active JP6322454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014066221A JP6322454B2 (en) 2014-03-27 2014-03-27 Austenitic stainless steel with excellent corrosion resistance, especially with improved sensitization characteristics, for exhaust gas flow path members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014066221A JP6322454B2 (en) 2014-03-27 2014-03-27 Austenitic stainless steel with excellent corrosion resistance, especially with improved sensitization characteristics, for exhaust gas flow path members

Publications (2)

Publication Number Publication Date
JP2015189990A true JP2015189990A (en) 2015-11-02
JP6322454B2 JP6322454B2 (en) 2018-05-09

Family

ID=54424762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014066221A Active JP6322454B2 (en) 2014-03-27 2014-03-27 Austenitic stainless steel with excellent corrosion resistance, especially with improved sensitization characteristics, for exhaust gas flow path members

Country Status (1)

Country Link
JP (1) JP6322454B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109811270A (en) * 2017-11-20 2019-05-28 南京理工大学 A kind of preparation method of heterogeneous layer structure 304L stainless steel
CN109811271A (en) * 2017-11-20 2019-05-28 南京理工大学 A kind of preparation method of heterogeneous layer structure 316L stainless steel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004111285A1 (en) * 2003-06-10 2004-12-23 Sumitomo Metal Industries, Ltd. Austenitic stainless steel for hydrogen gas and method for production thereof
WO2005103314A1 (en) * 2004-04-19 2005-11-03 Hitachi Metals, Ltd. HIGH-Cr HIGH-Ni AUSTENITIC HEAT-RESISTANT CAST STEEL AND EXHAUST SYSTEM COMPONENT PRODUCED FROM SAME
JP2009041103A (en) * 2007-07-17 2009-02-26 Hitachi Metals Ltd Austenitic stainless steel for component of exhaust gas re-circulation system, and manufacturing method therefor
JP2013199663A (en) * 2012-03-23 2013-10-03 Nisshin Steel Co Ltd Austenitic stainless steel excellent in molten nitrate corrosion resistance, heat collection tube and heat accumulation system using molten nitrate as heat accumulation medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004111285A1 (en) * 2003-06-10 2004-12-23 Sumitomo Metal Industries, Ltd. Austenitic stainless steel for hydrogen gas and method for production thereof
WO2005103314A1 (en) * 2004-04-19 2005-11-03 Hitachi Metals, Ltd. HIGH-Cr HIGH-Ni AUSTENITIC HEAT-RESISTANT CAST STEEL AND EXHAUST SYSTEM COMPONENT PRODUCED FROM SAME
JP2009041103A (en) * 2007-07-17 2009-02-26 Hitachi Metals Ltd Austenitic stainless steel for component of exhaust gas re-circulation system, and manufacturing method therefor
JP2013199663A (en) * 2012-03-23 2013-10-03 Nisshin Steel Co Ltd Austenitic stainless steel excellent in molten nitrate corrosion resistance, heat collection tube and heat accumulation system using molten nitrate as heat accumulation medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109811270A (en) * 2017-11-20 2019-05-28 南京理工大学 A kind of preparation method of heterogeneous layer structure 304L stainless steel
CN109811271A (en) * 2017-11-20 2019-05-28 南京理工大学 A kind of preparation method of heterogeneous layer structure 316L stainless steel

Also Published As

Publication number Publication date
JP6322454B2 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
CN108495944B (en) Hot-rolled Nb-containing ferritic stainless steel sheet and method for producing same, and cold-rolled Nb-containing ferritic stainless steel sheet and method for producing same
JP6699670B2 (en) Ferritic stainless steel
JP3886933B2 (en) Ferritic stainless steel sheet excellent in press formability and secondary workability and manufacturing method thereof
JP6895787B2 (en) Austenitic stainless steel, brazed structures, brazed structural parts and exhaust gas heat exchange parts
CA3057967C (en) Ferrite-based stainless steel sheet having low specific gravity and production method therefor
CN111433382B (en) Ferritic stainless steel having excellent high-temperature oxidation resistance and method for producing same
JP6322454B2 (en) Austenitic stainless steel with excellent corrosion resistance, especially with improved sensitization characteristics, for exhaust gas flow path members
JP6793067B2 (en) Austenitic stainless steel sheets and gaskets
JP2019183193A (en) Austenite stainless steel
JP6327077B2 (en) Austenitic stainless steel
KR101593336B1 (en) Austenitic Stainless Steel Having Excellent Corrosion Resistant And High Temperature Properties
JP6296435B2 (en) Manufacturing method of heat-resistant austenitic stainless steel for metal gasket
JP2009256791A (en) Two-phase series stainless steel excellent in corrosion resistance, and its producing method
JP5239642B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties and oxidation resistance
US20190177808A1 (en) Austenitic Stainless Steel
CN109252088B (en) Ferritic stainless steel and heat-resistant member
JP6140474B2 (en) Austenitic stainless steel for exhaust gas flow path members
JP5239645B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties, oxidation resistance and high temperature salt corrosion resistance
JP5343446B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, oxidation resistance and high temperature salt corrosion resistance
JP5417764B2 (en) Ferritic stainless steel with excellent thermal fatigue properties and oxidation resistance
CN106435129B (en) Ferritic stainless steel with good toughness and corrosion resistance and manufacturing method thereof
JP2019035112A (en) Steel
JP2007113068A (en) Spring material made of high strength and high corrosion resistant stainless steel having excellent bendability
JP5239644B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties, oxidation resistance and toughness
KR101844577B1 (en) Ferritic stainless steel for automotive exhaust system with improved heat resistance and corrosion resistance for water condensation and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180409

R150 Certificate of patent or registration of utility model

Ref document number: 6322454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250