JP5661001B2 - High strength austenitic heat resistant steel with excellent post-aging toughness - Google Patents

High strength austenitic heat resistant steel with excellent post-aging toughness Download PDF

Info

Publication number
JP5661001B2
JP5661001B2 JP2011182019A JP2011182019A JP5661001B2 JP 5661001 B2 JP5661001 B2 JP 5661001B2 JP 2011182019 A JP2011182019 A JP 2011182019A JP 2011182019 A JP2011182019 A JP 2011182019A JP 5661001 B2 JP5661001 B2 JP 5661001B2
Authority
JP
Japan
Prior art keywords
less
aging
toughness
strength
resistant steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011182019A
Other languages
Japanese (ja)
Other versions
JP2013044013A (en
Inventor
篤史 庄
篤史 庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2011182019A priority Critical patent/JP5661001B2/en
Publication of JP2013044013A publication Critical patent/JP2013044013A/en
Application granted granted Critical
Publication of JP5661001B2 publication Critical patent/JP5661001B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本願発明は、超々臨界圧石炭火力発電や石炭ガス化複合発電などに用いられる高強度ボイラ用鋼管などに適用される高強度オーステナイト系耐熱鋼に関し、特に時効後靱性に優れた高強度オーステナイト系耐熱鋼に関する。   The present invention relates to a high-strength austenitic heat-resistant steel applied to steel pipes for high-strength boilers used for ultra-supercritical coal-fired power generation and coal gasification combined power generation, and in particular, high-strength austenitic heat-resistant steel with excellent post-aging toughness. Related to steel.

近年、地球温暖化対策として二酸化炭素の排出量の削減が求められている。石炭火力発電システムは、経済性と安全性が高いことから、世界中で主要な電力源として多く採用されている。しかし、最も二酸化炭素を排出する発電方式であるため、発電の高効率化が強く求められている。   In recent years, reduction of carbon dioxide emissions has been demanded as a measure against global warming. Coal-fired power generation systems are widely used as a major power source all over the world because of their high economic efficiency and safety. However, since it is the power generation method that emits the most carbon dioxide, there is a strong demand for higher efficiency in power generation.

これまでに実用化されている高強度オーステナイト系耐熱鋼は、主に18%Cr−8%Ni系と(22〜25%)Cr−(15〜20%)Ni系があり、設計応力や腐食環境に応じて使い分けられている。「社団法人火力原子力発電技術協会 発電用火力設備の技術基準」によると、18%Cr−8%Ni系の材料には、火SUS304J1HTB鋼や火SUS347J1TB鋼などがあり、(22〜25%)Cr−(15〜20%)Ni系の材料には火SUS310J1TB鋼や火SUS310J2TB鋼などがある。これらの耐熱鋼は、700℃でいずれも、良好な時効後靭性を有しているものの、10万時間時点のクリープ破断強度は100MPaを下回る。   The high-strength austenitic heat-resistant steels that have been put into practical use are mainly 18% Cr-8% Ni and (22-25%) Cr- (15-20%) Ni. It is used properly according to the environment. According to the “Technical Standards for Thermal Power Facilities for Thermal Power Generation”, 18% Cr-8% Ni materials include fire SUS304J1HTB steel and fire SUS347J1TB steel (22-25%) Cr -(15-20%) Ni-based materials include fire SUS310J1TB steel and fire SUS310J2TB steel. Although these heat resistant steels all have good post-aging toughness at 700 ° C., the creep rupture strength at 100,000 hours is less than 100 MPa.

先行技術として、主にC、Mo、W、Nb、TiおよびBの複合添加により、700℃−10万時間時点のクリープ破断強度が100MPaを超える組成の耐熱鋼が提案されている(例えば、特許文献1参照。)。しかし、MoとWを非常に多く含む組成のため、σ相やLaves相が多く析出し、優れた時効後靭性が得られない問題があった。   As a prior art, a heat resistant steel having a composition in which a creep rupture strength at 700 ° C. to 100,000 hours exceeds 100 MPa is proposed mainly by a combined addition of C, Mo, W, Nb, Ti and B (for example, patents) Reference 1). However, since the composition contains a large amount of Mo and W, a large amount of σ phase and Laves phase are precipitated, and there is a problem that excellent post-aging toughness cannot be obtained.

さらに、Cを極低化し、Mo、W、Nb、TiおよびNを適正に配合することで、溶接性に優れ、耐高温腐食特性が良好な高強度オーステナイト系耐熱鋼が提案されている(例えば、特許文献2参照。)。この中でも、優れたクリープ破断強度を示す事例が提示されているものの、強度の高いものはMoやW量が多いため、優れた時効後靭性を得られない問題があった。   Furthermore, high strength austenitic heat resistant steels having excellent weldability and good high temperature corrosion resistance have been proposed by extremely reducing C and appropriately mixing Mo, W, Nb, Ti and N (for example, , See Patent Document 2). Among these, although examples showing excellent creep rupture strength have been presented, those having high strength have a problem that they cannot obtain excellent post-aging toughness because they have a large amount of Mo and W.

また、さらに、N含有鋼にCu、BおよびMgを添加することでクリープ破断強度を一層向上させ、SiとAl量の低減により強度低下と靭性低下を抑制し、さらにNb、MoあるいはWを単独または複合で添加することで、高温強度と組織安定性に優れるオーステナイト系耐熱鋼を提案している(例えば、特許文献3参照。)。しかし、この発明では、MoとWを添加した場合の組織安定性が詳細に検討されていないため、時効後靭性が著しく劣化するケースが多く、改善の余地が残されていた。   Furthermore, the addition of Cu, B and Mg to the N-containing steel further improves the creep rupture strength, suppresses the decrease in strength and toughness by reducing the amount of Si and Al, and further uses Nb, Mo or W alone. Or it has proposed the austenitic heat-resistant steel which is excellent in high temperature strength and structure | tissue stability by adding in composite (for example, refer patent document 3). However, in this invention, since the structural stability when Mo and W are added has not been studied in detail, there are many cases in which the post-aging toughness is significantly deteriorated, leaving room for improvement.

さらに、N含有鋼にCu、BおよびMgを添加し、かつSiおよびAl含有量を減少させ、さらにMn含有量を抑制することで、高温強度が良好なオーステナイト系耐熱鋼が提案されている(例えば、特許文献4参照。)。しかし、この発明でも、MoとWを添加した場合の組織安定性が詳細に検討されていないため、時効後靭性が著しく低下するケースが多く、改善の余地が残されていた。   Furthermore, an austenitic heat-resistant steel with good high-temperature strength has been proposed by adding Cu, B and Mg to N-containing steel, reducing the Si and Al contents, and further suppressing the Mn content ( For example, see Patent Document 4.) However, even in this invention, since the structural stability when Mo and W are added has not been studied in detail, there are many cases where the post-aging toughness is remarkably lowered, and there remains room for improvement.

ところで、近年の石炭火力発電プラントは、最高600℃の主蒸気温度で運転されている。主蒸気を加熱する過熱器管や、蒸気タービンを通過した主蒸気を再加熱する再熱器管には、高強度オーステナイト系耐熱鋼が用いられている。発電の高効率化のためには、従来の材料よりもさらに高強度化された耐熱鋼が必要となってくる。これには、700℃−10万時間時点のクリープ破断強度が100MPa以上の高温強度が求められる。同時に高温で長時間時効した後の衝撃値(以後、この特性を「時効後靭性」という。)が良好な値を維持していることが求められる。これまで、強度を満足する耐熱鋼はいくつか見出されているものの、良好な時効後靭性をも兼備する耐熱鋼は未だ見出されていない。   By the way, recent coal-fired power plants are operated at a maximum main steam temperature of 600 ° C. High-strength austenitic heat-resistant steel is used for superheater tubes that heat main steam and reheater tubes that reheat main steam that has passed through a steam turbine. In order to increase the efficiency of power generation, heat-resistant steel having higher strength than conventional materials is required. This requires a high temperature strength with a creep rupture strength at 700 ° C. to 100,000 hours of 100 MPa or more. At the same time, it is required that the impact value after aging at a high temperature for a long time (hereinafter, this property is referred to as “post-age toughness”) maintains a good value. So far, several heat-resistant steels satisfying the strength have been found, but no heat-resistant steel having good post-aging toughness has been found yet.

特開昭63−183155号公報JP 63-183155 A 特開平6−322488号公報JP-A-6-322488 特開昭62−133048号公報JP-A-62-133048 特開平8−13102号公報JP-A-8-13102

本発明が解決しようとする課題は、Nを含有するMoおよびW添加型のオーステナイト系耐熱鋼の化学成分を最適化することで、700℃−10万時間時点のクリープ破断強度が100MPa以上の高温強度を有するとともに、優れた時効後靭性を兼備するオーステナイト系耐熱鋼を提供することである。   The problem to be solved by the present invention is to optimize the chemical composition of the Mo and W-added austenitic heat-resisting steels containing N, so that the creep rupture strength at 700 ° C to 100,000 hours is 100 MPa or higher. It is to provide an austenitic heat resistant steel having strength and excellent post-aging toughness.

オーステナイト鋼に優れた高温強度と時効後靭性を兼備させるために、化学成分内のNとMoの含有量の範囲を同時に狭い範囲に制限することと、さらに、σ相の粒界析出による時効後靭性の低下を抑制するために、オーステナイトバランスを規定する式の値を高い値に規定することを発明者は見出し本願の発明を得たものである。
その原理を説明すると、オーステナイト系耐熱鋼におけるNは、一般に、オーステナイト組織を安定化させると同時に、固溶強化と炭窒化物の析出強化により高温強度を向上させる元素として、広く利用されている。しかし、Nを、WあるいはMoと同時に添加した場合、Nは、結晶粒界にラーヴェス(Laves)相の析出促進に働き、時効後靱性を早期に著しく低下させる要因となり、中でもMoは、Wよりもラーヴェス相の生成と成長を著しく促進させるので、さらに時効後靱性を著しく低下させる要因となることを発明者は見出し、この原理を利用して本願発明の耐熱鋼を得たものである。
In order to combine the high temperature strength and post-aging toughness of austenitic steel, the content range of N and Mo in the chemical composition is limited to a narrow range at the same time, and after aging by grain boundary precipitation of σ phase In order to suppress the decrease in toughness, the inventor found out that the value of the formula that defines the austenite balance is defined as a high value, and obtained the invention of the present application.
To explain the principle, N in the austenitic heat-resisting steel is generally widely used as an element that stabilizes the austenite structure and at the same time improves the high-temperature strength by solid solution strengthening and carbonitride precipitation strengthening. However, when N is added at the same time as W or Mo, N acts to promote the precipitation of the Laves phase at the grain boundary and causes the early deterioration of toughness after aging. The present inventors have found that the formation and growth of the Laves phase is remarkably promoted, which further reduces the toughness after aging, and the heat-resistant steel of the present invention is obtained by utilizing this principle.

そこで、上記の課題を解決するための本発明の手段は、請求項1の発明では、質量%で、C:0.02〜0.08%、Si:0.3超〜0.8%、Mn:0.6〜2.0%、P:0.04%以下、S:0.010%以下、Ni:15超〜26%、Cr:18〜23%、W:1.8〜4.2%、Mo:0.5%以下、Nb:0.2〜0.5%、Al:0.001〜0.040%、N:0.07〜0.13%を含有し、残部Feおよび不可避不純物からなり、下記の(1)式および(2)式を満足する、時効後靭性に優れた高強度オーステナイト系耐熱鋼である。
ここに、
W+2Mo=2.8〜4.25%……(1)
Ni+27C+23N+0.2Mn+0.3Cu−1.2(Cr+Mo+0.5W)−0.5Si−0.3Nb+10≧9.5%……(2)
である。
Therefore, the means of the present invention for solving the above-mentioned problem is that, in the invention of claim 1, in mass%, C: 0.02 to 0.08%, Si: more than 0.3 to 0.8%, Mn: 0.6 to 2.0%, P: 0.04% or less, S: 0.010% or less, Ni: more than 15 to 26%, Cr: 18 to 23%, W: 1.8 to 4. 2%, Mo: 0.5% or less, Nb: 0.2-0.5%, Al: 0.001-0.040%, N: 0.07-0.13%, the balance Fe and It is a high-strength austenitic heat-resistant steel made of inevitable impurities and satisfying the following formulas (1) and (2) and excellent in post-aging toughness.
here,
W + 2Mo = 2.8 to 4.25% (1)
Ni + 27C + 23N + 0.2Mn + 0.3Cu-1.2 (Cr + Mo + 0.5W) -0.5Si-0.3Nb + 10 ≧ 9.5% (2)
It is.

請求項2の発明では、質量%で、C:0.02〜0.08%、Si:0.3超〜0.8%、Mn:0.6〜2.0%、P:0.04%以下、S:0.010%以下、Ni:15超〜26%、Cr:18〜23%、W:1.8〜4.2%、Mo:0.5%以下、Nb:0.2〜0.5%、Al:0.001〜0.040%、N:0.07〜0.13%を含有し、さらにCu:2.0〜3.2%を含有し、残部Feおよび不可避不純物からなり、下記(1)式および(2)式を満足する、時効後靭性に優れた高強度オーステナイト系耐熱鋼である。
ここに、
W+2Mo=2.8〜4.25%……(1)
Ni+27C+23N+0.2Mn+0.3Cu−1.2(Cr+Mo+0.5W)−0.5Si−0.3Nb+10≧9.5%……(2)
である。
In the invention of claim 2, by mass, C: 0.02 to 0.08%, Si: more than 0.3 to 0.8%, Mn: 0.6 to 2.0%, P: 0.04 %: S: 0.010% or less, Ni: more than 15 to 26%, Cr: 18-23%, W: 1.8-4.2%, Mo: 0.5% or less, Nb: 0.2 -0.5%, Al: 0.001-0.040%, N: 0.07-0.13%, further Cu: 2.0-3.2%, the remainder Fe and unavoidable It is a high-strength austenitic heat-resistant steel made of impurities and satisfying the following formulas (1) and (2) and excellent in post-aging toughness.
here,
W + 2Mo = 2.8 to 4.25% (1)
Ni + 27C + 23N + 0.2Mn + 0.3Cu-1.2 (Cr + Mo + 0.5W) -0.5Si-0.3Nb + 10 ≧ 9.5% (2)
It is.

請求項3の発明では、質量%で、C:0.02〜0.08%、Si:0.3超〜0.8%、Mn:0.6〜2.0%、P:0.04%以下、S:0.010%以下、Ni:15超〜26%、Cr:18〜23%、W:1.8〜4.2%、Mo:0.5%以下、Nb:0.2〜0.5%、Al:0.001〜0.040%、N:0.07〜0.13%、Cu:2.0〜3.2%を含有し、さらに、B:0.001〜0.004%、Ca:0.001〜0.007のいずれか一種又は2種を含有し、残部Feおよび不可避不純物からなり、下記(1)式および(2)式を満足する、時効後靭性に優れた高強度オーステナイト系耐熱鋼である。
ここに、
W+2Mo=2.8〜4.25%……(1)
Ni+27C+23N+0.2Mn+0.3Cu−1.2(Cr+Mo+0.5W)−0.5Si−0.3Nb+10≧9.5%……(2)
である。
In the invention of claim 3, by mass, C: 0.02 to 0.08%, Si: more than 0.3 to 0.8%, Mn: 0.6 to 2.0%, P: 0.04 %: S: 0.010% or less, Ni: more than 15 to 26%, Cr: 18-23%, W: 1.8-4.2%, Mo: 0.5% or less, Nb: 0.2 -0.5%, Al: 0.001-0.040%, N: 0.07-0.13%, Cu: 2.0-3.2%, and further B: 0.001- 0.004%, Ca: containing any one or two of 0.001 to 0.007, consisting of remaining Fe and inevitable impurities, satisfying the following formulas (1) and (2), post-aging toughness It is a high-strength austenitic heat-resistant steel with excellent resistance.
here,
W + 2Mo = 2.8 to 4.25% (1)
Ni + 27C + 23N + 0.2Mn + 0.3Cu-1.2 (Cr + Mo + 0.5W) -0.5Si-0.3Nb + 10 ≧ 9.5% (2)
It is.

本発明の上記手段における高強度オーステナイト系耐熱鋼の化学成分の限定理由並びに(1)式および(2)式の限定理由について説明する。なお、%は、質量%を示す。   The reasons for limiting the chemical components of the high-strength austenitic heat-resistant steel in the above means of the present invention and the reasons for limiting the formulas (1) and (2) will be described. In addition,% shows the mass%.

C:0.02〜0.08%
Cは、高温強度の向上に必要な元素で、Cは0.02%以上添加する。しかし、Cが0.08%を超えると、M236型炭化物が多量に析出し、時効後靱性を低下させる。そこで、Cは0.02〜0.08%とする。
C: 0.02 to 0.08%
C is an element necessary for improving high-temperature strength, and C is added by 0.02% or more. However, if C exceeds 0.08%, a large amount of M 23 C 6 type carbide precipitates and the toughness after aging is lowered. Therefore, C is set to 0.02 to 0.08%.

Si:0.3%超〜0.8%
Siは、脱酸のために0.3%を超えて添加する必要がある。しかし、Siはσ相を粒界に析出し易くし、時効後靱性を低下させる。そこで、Siは0.3%超〜0.8%とし、望ましくは0.3%超〜0.6%とする。
Si: more than 0.3% to 0.8%
Si needs to be added in excess of 0.3% for deoxidation. However, Si makes it easy to precipitate the σ phase at the grain boundaries and lowers the toughness after aging. Therefore, Si is more than 0.3% to 0.8%, preferably more than 0.3% to 0.6%.

Mn:0.6〜2.0%
Mnは、脱酸のために添加する。しかし、Mnを過剰に添加すると高コストとなる。そこで、Mnは0.6〜2.0%とする。
Mn: 0.6 to 2.0%
Mn is added for deoxidation. However, if Mn is added excessively, the cost becomes high. Therefore, Mn is set to 0.6 to 2.0%.

P:0.040%以下
Pは、不可避不純物として含有されるが、Pが0.040%を超えると溶接性が悪化する。そこでPは0.040%以下とする。
P: 0.040% or less P is contained as an unavoidable impurity, but when P exceeds 0.040%, weldability deteriorates. Therefore, P is set to 0.040% or less.

S:0.010%以下
Sは、不可避的不純物として含有されるが、Sが0.010%を超えると熱間加工性が悪化する。そこでSは0.010%以下とする。
S: 0.010% or less S is contained as an unavoidable impurity, but when S exceeds 0.010%, hot workability deteriorates. Therefore, S is set to 0.010% or less.

Ni:15%超〜26%
Niは、オーステナイト組織安定化のために15%を超えて含有させる必要がある。しかし、多量のNi添加は高コストとなるために上限を26%とする。
Ni: Over 15% to 26%
Ni needs to be contained more than 15% in order to stabilize the austenite structure. However, since a large amount of Ni is expensive, the upper limit is made 26%.

Cr:18〜23%
Crは、耐高温腐食性と耐水蒸気酸化性の向上のために18%以上添加する必要がある。しかし、Crを過剰に添加するとσ相が粒界に析出して、時効後靭性を著しく低下させる。そこで、Crは18〜23%とし、望ましくは19〜22%とする。
Cr: 18-23%
Cr needs to be added in an amount of 18% or more in order to improve high temperature corrosion resistance and steam oxidation resistance. However, when an excessive amount of Cr is added, the σ phase is precipitated at the grain boundaries, and the toughness after aging is significantly reduced. Therefore, Cr is 18 to 23%, preferably 19 to 22%.

W:1.8〜4.2%
Wは、高温強度向上のために1.8%以上添加する必要がある。しかし、4.2%を超えて添加すると、Laves相が粒界に多量に析出し、時効後靭性を著しく低下させる。そこで、Wは1.8〜4.2%とする。
W: 1.8-4.2%
W needs to be added by 1.8% or more in order to improve the high temperature strength. However, if added over 4.2%, a large amount of the Laves phase precipitates at the grain boundary, and the toughness after aging is significantly reduced. Therefore, W is set to 1.8 to 4.2%.

Mo:0.5%以下
Moは、高温強度向上のため適宜必要に応じて添加されるが、Moが0.5%を超えて添加されると時効後靭性が著しく低下する。そこで、Moは0.5%以下とし、望ましくは0.3%以下とする。
Mo: 0.5% or less Mo is appropriately added as necessary for improving the high-temperature strength. However, if Mo is added in excess of 0.5%, the post-aging toughness is remarkably lowered. Therefore, Mo is 0.5% or less, preferably 0.3% or less.

Nb:0.2〜0.5%
Nbは、高温強度向上のために0.2%添加する必要がある。しかし、Nbが0.5%を超えて添加されると溶接性が悪化する。そこで、Nbは0.2〜0.5%とする。
Nb: 0.2-0.5%
Nb needs to be added in an amount of 0.2% in order to improve the high temperature strength. However, if Nb is added in excess of 0.5%, weldability deteriorates. Therefore, Nb is set to 0.2 to 0.5%.

Al:0.001〜0.040%
Alは、脱酸のために0.001%以上添加する必要がある。しかし、0.040%を超えて含有されると、粒界にAlNが生じて時効後靭性が悪化する。そこで、Alは0.001〜0.040%とする。
Al: 0.001 to 0.040%
Al needs to be added in an amount of 0.001% or more for deoxidation. However, if the content exceeds 0.040%, AlN is generated at the grain boundary and the post-aging toughness is deteriorated. Therefore, Al is made 0.001 to 0.040%.

N:0.07〜0.13%
Nは、高温強度を向上させるために0.07%以上添加する必要がある。しかし、Nが0.13%を超えると、粒界にLaves相が生じて時効後靭性が悪化する。そこで、Nは0.07〜0.13%とする。
N: 0.07 to 0.13%
N needs to be added by 0.07% or more in order to improve the high temperature strength. However, if N exceeds 0.13%, a Laves phase is generated at the grain boundary, and the post-aging toughness is deteriorated. Therefore, N is set to 0.07 to 0.13%.

Cu:2.0〜3.2%
Cuは、請求項1の鋼に比してさらに高温強度の向上を図った請求項2の鋼とするために2.0%以上を添加する。しかし、Cuが3.2%を超えると時効後靭性が低下する。そこで、Cuは2.0〜3.2%とする。
Cu: 2.0 to 3.2%
Cu is added in an amount of 2.0% or more in order to obtain the steel of claim 2 which is further improved in high-temperature strength as compared with the steel of claim 1. However, if Cu exceeds 3.2%, the post-aging toughness decreases. Therefore, Cu is set to 2.0 to 3.2%.

B:0.001〜0.004%、Ca:0.001〜0.007%のいずれか1種または2種
BまたはCaはいずれも熱間加工性を改善する元素であり、Bは0.001%以上で粒界強化により熱間延性を改善するが、0.004%を超えると逆に熱間加工性を悪化させる。Caは0.001%以上でSを固定して熱間延性を改善するが、0.007%を超えると効果は飽和し高コストとなる。そこで、B0.001〜0.004%、Caは0.001〜0.007%のいずれか1種または2種とする。
Any one or two of B: 0.001 to 0.004% and Ca: 0.001 to 0.007% B or Ca is an element that improves hot workability. If it is 001% or more, the hot ductility is improved by grain boundary strengthening, but if it exceeds 0.004%, the hot workability is deteriorated. Ca fixes S at 0.001% or more to improve hot ductility, but if it exceeds 0.007%, the effect is saturated and the cost becomes high. Therefore, B is 0.001 to 0.004%, and Ca is any one or two of 0.001 to 0.007%.

W+2Mo=2.8〜4.25%……(1)
(1)式の下限値を2.8%とする理由は、本発明の鋼の高温強度を向上させるためである。(1)式の上限値を4.25%とする理由は、ラーヴェス相が粒界に析出するようになり、時効後靭性を低下させるためである。そこで、(1)式のW+2Moの値を2.8〜4.25%とする
W + 2Mo = 2.8 to 4.25% (1)
The reason why the lower limit of the formula (1) is 2.8% is to improve the high temperature strength of the steel of the present invention. The reason why the upper limit value of the formula (1) is 4.25% is that the Laves phase is precipitated at the grain boundary, and the post-aging toughness is lowered. Therefore, the value of W + 2Mo in the formula (1) is set to 2.8 to 4.25%.

Ni+27C+23N+0.2Mn+0.3Cu−1.2(Cr+Mo+0.5W)−0.5Si−0.3Nb+10≧9.5%……(2)
(2)式はNiバランスの式であり、(2)の値の下限値を9.5%とする理由は、σ相の析出を抑制し、時効後靭性の低下を抑制するためである。そこで、(2)式のNi+27C+23N+0.2Mn+0.3Cu−1.2(Cr+Mo+0.5W)−0.5Si−0.3Nb+10の値を9.5%以上とする。
Ni + 27C + 23N + 0.2Mn + 0.3Cu-1.2 (Cr + Mo + 0.5W) -0.5Si-0.3Nb + 10 ≧ 9.5% (2)
The formula (2) is a Ni balance formula, and the reason why the lower limit of the value of (2) is set to 9.5% is to suppress the precipitation of the σ phase and the decrease in post-aging toughness. Therefore, the value of Ni + 27C + 23N + 0.2Mn + 0.3Cu-1.2 (Cr + Mo + 0.5W) -0.5Si-0.3Nb + 10 in the formula (2) is set to 9.5% or more.

本願発明は、上記の手段の化学成分からなり、かつ(1)式および(2)式を満足することで、700℃における時効後靭性に優れた高強度オーステナイト耐熱鋼であり、超々臨界圧石炭火力発電や石炭ガス化複合発電などに用いられる高強度ボイラ用鋼管などに適用可能な効果を奏する。   The present invention is a high-strength austenitic heat-resistant steel having excellent post-aging toughness at 700 ° C., comprising the chemical components of the above means and satisfying the formulas (1) and (2). It has an effect applicable to steel pipes for high-strength boilers used for thermal power generation and coal gasification combined power generation.

表1に示す化学成分を含有する発明例のNo.1〜18および比較例のNo.19〜32の鋼種について、それぞれ真空溶解炉にて100kgの鋼塊に溶製した。この鋼塊を熱間鍛造して径20mmの棒鋼とした。さらに、この棒鋼を1170〜1230℃で固溶化熱処理して、実験素材とした。なお、発明例のNo.1〜11は請求項1の実施例、発明例のNo.12およびNo.13は請求項2の実施例、発明例のNo.14〜18は請求項3の実施例である。   No. of the invention example containing the chemical component shown in Table 1. 1-18 and Comparative Example No. Each of 19 to 32 steel types was melted into a 100 kg steel ingot in a vacuum melting furnace. This steel ingot was hot forged into a steel bar having a diameter of 20 mm. Furthermore, this steel bar was subjected to a solution heat treatment at 1170-1230 ° C. to obtain an experimental material. In addition, No. of invention example. Nos. 1 to 11 are Nos. 12 and no. No. 13 is an embodiment of claim 2 and No. 14 to 18 are embodiments of claim 3.

Figure 0005661001
網掛けは本発明の範囲を外れることを示す。
Figure 0005661001
Shading indicates that it is outside the scope of the present invention.

上記の発明例および比較例のそれぞれの実験素材から、機械加工にて平行部直径6mm、標点距離30mmのクリープ破断試験片を作製し、700℃、750℃および800℃の各温度で、クリープ破断試験を行った。クリープ破断試験の結果をLarson−Millerパラメーターで整理して、700℃、10万時間の時点の推定クリープ破断強度を求めた。破断強度が100MPa以上の材料は「○」とし、未満の材料は「×」としてそれぞれ評価して表1に示した。   Creep rupture test pieces having a parallel part diameter of 6 mm and a gauge distance of 30 mm were prepared from the experimental materials of the above invention examples and comparative examples, and creeped at temperatures of 700 ° C., 750 ° C., and 800 ° C. A break test was performed. The result of the creep rupture test was arranged with the Larson-Miller parameter, and the estimated creep rupture strength at 700 ° C. and 100,000 hours was obtained. A material having a breaking strength of 100 MPa or more was evaluated as “◯”, and a material having a breaking strength as “×” was evaluated as shown in Table 1.

さらに、上記の実験素材を700℃、750℃および800℃の各温度で最長1万時間の時効熱処理を行ったのち、幅10mm、2mm−Vノッチのシャルピー衝撃試験片に加工し、室温にてシャルピー衝撃試験を行った。この衝撃試験の結果をOrr−Sherby−Dornパラメーターで整理して、700℃、10万時間の時点の推定シャルピー衝撃値を求めた。衝撃値が30J/cm2以上の材料は「○」とし、30J/cm2未満の材料は「×」としてそれぞれ評価して同じく表1に示した。 Further, the above experimental materials were subjected to aging heat treatment at temperatures of 700 ° C., 750 ° C. and 800 ° C. for a maximum of 10,000 hours, and then processed into Charpy impact test pieces having a width of 10 mm and a 2 mm-V notch at room temperature. A Charpy impact test was performed. The result of this impact test was arranged with the Orr-Sherby-Dorn parameter, and the estimated Charpy impact value at 700 ° C. and 100,000 hours was obtained. A material having an impact value of 30 J / cm 2 or more was evaluated as “◯”, and a material having an impact value of less than 30 J / cm 2 was evaluated as “x”.

No.1〜18の本発明の実施例は、700℃、10万時間におけるクリープ破断強度が100MPa以上で、同じく700℃、10万時間におけるシャルピー衝撃値が30J/cm2以上であった。したがって、これらの実施例は、700℃において優れたクリープ破断強度特性と時効後靭性を兼備したオーステナイト系耐熱鋼である。 No. In Examples 1 to 18, the creep rupture strength at 700 ° C. and 100,000 hours was 100 MPa or more, and the Charpy impact value at 700 ° C. and 100,000 hours was 30 J / cm 2 or more. Therefore, these examples are austenitic heat-resisting steels having excellent creep rupture strength characteristics and post-aging toughness at 700 ° C.

これに対して、No.19〜28の本発明の比較例は、No.29およびNo.30を除いて、鋼の化学成分のいずれかが本願発明の範囲から外れており、一方、No.29およびNo.30は鋼の化学成分が本願発明の範囲であるが、(1)式または(2)式の値が本願発明の範囲から外れている。その結果、本発明の比較例のNo.19〜28は、700℃、10万時間におけるクリープ破断強度が100万MPa未満であるか、あるいは700℃、10万時間の時点におけるシャルピー衝撃値が30J/cm2未満のいずれかで本願発明を満足しないものであった。 In contrast, no. Comparative Examples 19 to 28 of the present invention are No. 29 and No. With the exception of No. 30, any of the chemical components of steel is out of the scope of the present invention. 29 and No. Although the chemical composition of steel 30 is within the scope of the present invention, the value of formula (1) or (2) is out of the scope of the present invention. As a result, No. of the comparative example of the present invention. 19 to 28, the creep rupture strength at 700 ° C. and 100,000 hours is less than 1 million MPa, or the Charpy impact value at 700 ° C. and 100,000 hours is less than 30 J / cm 2. I was not satisfied.

Claims (3)

質量%で、C:0.02〜0.08%、Si:0.3超〜0.8%、Mn:0.6〜2.0%、P:0.04%以下、S:0.010%以下、Ni:15超〜26%、Cr:18〜23%、W:1.8〜4.2%、Mo:0.5%以下、Nb:0.2〜0.5%、Al:0.001〜0.040%、N:0.07〜0.13%を含有し、残部Feおよび不可避不純物からなり、下記(1)式および(2)式を満足すること特徴とする時効後靱性に優れた高強度オーステナイト系耐熱鋼。
W+2Mo=2.8〜4.2%……(1)
Ni+27C+23N+0.2Mn+0.3Cu−1.2(Cr+Mo+0.5W)−0.5Si−0.3Nb+10≧9.5%……(2)
By mass%, C: 0.02 to 0.08%, Si: more than 0.3 to 0.8%, Mn: 0.6 to 2.0%, P: 0.04% or less, S: 0.0. 010% or less, Ni: more than 15 to 26%, Cr: 18 to 23%, W: 1.8 to 4.2%, Mo: 0.5% or less, Nb: 0.2 to 0.5%, Al : 0.001-0.040%, N: 0.07-0.13%, balance Fe and inevitable impurities, satisfying the following formulas (1) and (2) High strength austenitic heat resistant steel with excellent aftertoughness.
W + 2Mo = 2.8-4.2% (1)
Ni + 27C + 23N + 0.2Mn + 0.3Cu-1.2 (Cr + Mo + 0.5W) -0.5Si-0.3Nb + 10 ≧ 9.5% (2)
質量%で、C:0.02〜0.08%、Si:0.3超〜0.8%、Mn:0.6〜2.0%、P:0.04%以下、S:0.010%以下、Ni:15超〜26%、Cr:18〜23%、W:1.8〜4.2%、Mo:0.5%以下、Nb:0.2〜0.5%、Al:0.001〜0.040%、N:0.07〜0.13%を含有し、さらにCu:2.0〜3.2%を含有し、残部Feおよび不可避不純物からなり、下記(1)式および(2)式を満足すること特徴とする時効後靱性に優れた高強度オーステナイト系耐熱鋼。
W+2Mo=2.8〜4.2%……(1)
Ni+27C+23N+0.2Mn+0.3Cu−1.2(Cr+Mo+0.5W)−0.5Si−0.3Nb+10≧9.5%……(2)
By mass%, C: 0.02 to 0.08%, Si: more than 0.3 to 0.8%, Mn: 0.6 to 2.0%, P: 0.04% or less, S: 0.0. 010% or less, Ni: more than 15 to 26%, Cr: 18 to 23%, W: 1.8 to 4.2%, Mo: 0.5% or less, Nb: 0.2 to 0.5%, Al : 0.001 to 0.040%, N: 0.07 to 0.13%, further Cu: 2.0 to 3.2%, balance Fe and unavoidable impurities, the following (1 ) And high-strength austenitic heat-resistant steel excellent in post-aging toughness characterized by satisfying the formula (2).
W + 2Mo = 2.8-4.2% (1)
Ni + 27C + 23N + 0.2Mn + 0.3Cu-1.2 (Cr + Mo + 0.5W) -0.5Si-0.3Nb + 10 ≧ 9.5% (2)
質量%で、C:0.02〜0.08%、Si:0.3超〜0.8%、Mn:0.6〜2.0%、P:0.04%以下、S:0.010%以下、Ni:15超〜26%、Cr:18〜23%、W:1.8〜4.2%、Mo:0.5%以下、Nb:0.2〜0.5%、Al:0.001〜0.040%、N:0.07〜0.13%、Cu:2.0〜3.2%を含有し、さらに、B:0.001〜0.004%、Ca:0.001〜0.007のいずれか一種又は2種を含有し、残部Feおよび不可避不純物からなり、下記(1)式および(2)式を満足すること特徴とする時効後靱性に優れた高強度オーステナイト系耐熱鋼。
W+2Mo=2.8〜4.2%……(1)
Ni+27C+23N+0.2Mn+0.3Cu−1.2(Cr+Mo+0.5W)−0.5Si−0.3Nb+10≧9.5%……(2)
By mass%, C: 0.02 to 0.08%, Si: more than 0.3 to 0.8%, Mn: 0.6 to 2.0%, P: 0.04% or less, S: 0.0. 010% or less, Ni: more than 15 to 26%, Cr: 18 to 23%, W: 1.8 to 4.2%, Mo: 0.5% or less, Nb: 0.2 to 0.5%, Al : 0.001 to 0.040%, N: 0.07 to 0.13%, Cu: 2.0 to 3.2%, B: 0.001 to 0.004%, Ca: High in excellent post-aging toughness characterized by containing any one or two of 0.001 to 0.007, consisting of the balance Fe and inevitable impurities and satisfying the following formulas (1) and (2) High strength austenitic heat resistant steel.
W + 2Mo = 2.8-4.2% (1)
Ni + 27C + 23N + 0.2Mn + 0.3Cu-1.2 (Cr + Mo + 0.5W) -0.5Si-0.3Nb + 10 ≧ 9.5% (2)
JP2011182019A 2011-08-23 2011-08-23 High strength austenitic heat resistant steel with excellent post-aging toughness Expired - Fee Related JP5661001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011182019A JP5661001B2 (en) 2011-08-23 2011-08-23 High strength austenitic heat resistant steel with excellent post-aging toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011182019A JP5661001B2 (en) 2011-08-23 2011-08-23 High strength austenitic heat resistant steel with excellent post-aging toughness

Publications (2)

Publication Number Publication Date
JP2013044013A JP2013044013A (en) 2013-03-04
JP5661001B2 true JP5661001B2 (en) 2015-01-28

Family

ID=48008155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011182019A Expired - Fee Related JP5661001B2 (en) 2011-08-23 2011-08-23 High strength austenitic heat resistant steel with excellent post-aging toughness

Country Status (1)

Country Link
JP (1) JP5661001B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190073614A (en) 2015-06-15 2019-06-26 닛폰세이테츠 가부시키가이샤 HIGH-Cr AUSTENITIC STAINLESS STEEL

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5930635B2 (en) * 2011-09-26 2016-06-08 山陽特殊製鋼株式会社 Austenitic heat resistant steel having excellent high temperature strength and method for producing the same
JP6364992B2 (en) * 2014-06-19 2018-08-01 新日鐵住金株式会社 Fin tube
CN107709595B (en) * 2015-07-01 2019-07-23 日本制铁株式会社 Austenitic heat-resistant alloy and welding structural element
CN107709596B (en) * 2015-07-01 2019-07-23 日本制铁株式会社 Austenitic heat-resistant alloy and welding structural element
KR102255016B1 (en) 2017-10-03 2021-05-24 닛폰세이테츠 가부시키가이샤 Welding materials for austenitic heat-resistant steel, weld metals and welded structures, and methods of manufacturing welded metals and welded structures

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322488A (en) * 1993-05-13 1994-11-22 Nippon Steel Corp High-strength austenitic heat resistant steel excellent in weldability and satisfactory in high temperature corrosion resistance
JP3388998B2 (en) * 1995-12-20 2003-03-24 新日本製鐵株式会社 High strength austenitic heat-resistant steel with excellent weldability
JP2000129403A (en) * 1998-10-26 2000-05-09 Hitachi Ltd Austenitic heat resistant alloy excellent in high temperature strength and corrosion resistance and its use
SE516137C2 (en) * 1999-02-16 2001-11-19 Sandvik Ab Heat-resistant austenitic steel
JP3838216B2 (en) * 2003-04-25 2006-10-25 住友金属工業株式会社 Austenitic stainless steel
JP2005023353A (en) * 2003-06-30 2005-01-27 Sumitomo Metal Ind Ltd Austenitic stainless steel for high temperature water environment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190073614A (en) 2015-06-15 2019-06-26 닛폰세이테츠 가부시키가이샤 HIGH-Cr AUSTENITIC STAINLESS STEEL
US10519533B2 (en) 2015-06-15 2019-12-31 Nippon Steel Corporation High Cr-based austenitic stainless steel

Also Published As

Publication number Publication date
JP2013044013A (en) 2013-03-04

Similar Documents

Publication Publication Date Title
JP5670103B2 (en) High strength austenitic heat resistant steel
JP4697357B1 (en) Austenitic heat-resistant alloy
ES2788648T3 (en) Austenitic stainless steel based on high Cr content
JP4484093B2 (en) Ni-base heat-resistant alloy
JP5236651B2 (en) Low thermal expansion Ni-base superalloy for boiler excellent in high temperature strength, boiler component using the same, and method for manufacturing boiler component
JP5661001B2 (en) High strength austenitic heat resistant steel with excellent post-aging toughness
JP6398277B2 (en) Manufacturing method of Ni-base heat-resistant alloy welded joint
JP5838933B2 (en) Austenitic heat resistant steel
JP5206676B2 (en) Ferritic heat resistant steel
JP5846076B2 (en) Austenitic heat-resistant alloy
JP2016196685A (en) METHOD FOR MANUFACTURING Ni-BASED HEAT-RESISTANT ALLOY WELD JOINT AND WELD JOINT OBTAINED USING THE SAME
WO2014069467A1 (en) Austenitic stainless steel
JP6955322B2 (en) Austenitic heat-resistant steel with excellent workability, high-temperature strength and toughness after aging
JP2015506415A (en) Austenitic alloy
JP5880836B2 (en) Precipitation strengthened heat resistant steel and processing method thereof
JP5791640B2 (en) Nickel / chromium / cobalt / molybdenum alloy
JP5857894B2 (en) Austenitic heat-resistant alloy
WO2021039266A1 (en) Austenitic heat-resistant steel
JP7295418B2 (en) welding material
JP6201731B2 (en) Austenitic heat-resistant casting alloy
JP5930635B2 (en) Austenitic heat resistant steel having excellent high temperature strength and method for producing the same
JP5547789B2 (en) Austenitic stainless steel
JP2010084167A (en) Nickel-based alloy and high-temperature member for turbine using the same
JP5547825B1 (en) Austenitic stainless steel
JP2019026911A (en) Austenitic heat resistant alloy member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141202

R150 Certificate of patent or registration of utility model

Ref document number: 5661001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees