WO2021039266A1 - Austenitic heat-resistant steel - Google Patents

Austenitic heat-resistant steel Download PDF

Info

Publication number
WO2021039266A1
WO2021039266A1 PCT/JP2020/029240 JP2020029240W WO2021039266A1 WO 2021039266 A1 WO2021039266 A1 WO 2021039266A1 JP 2020029240 W JP2020029240 W JP 2020029240W WO 2021039266 A1 WO2021039266 A1 WO 2021039266A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
less
resistant steel
contained
austenitic heat
Prior art date
Application number
PCT/JP2020/029240
Other languages
French (fr)
Japanese (ja)
Other versions
WO2021039266A9 (en
Inventor
平田 弘征
吉澤 満
淳一 樋口
克樹 田中
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to US17/635,312 priority Critical patent/US20220325394A1/en
Priority to KR1020227005208A priority patent/KR20220034226A/en
Priority to JP2021542661A priority patent/JP7265203B2/en
Priority to CN202080060833.0A priority patent/CN114341381A/en
Priority to EP20856550.7A priority patent/EP4023776A4/en
Publication of WO2021039266A1 publication Critical patent/WO2021039266A1/en
Publication of WO2021039266A9 publication Critical patent/WO2021039266A9/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to austenitic heat resistant steel.
  • the present application claims priority based on Japanese Patent Application No. 2019-156592 filed in Japan on August 29, 2019, the contents of which are incorporated herein by reference.
  • Patent Document 1 contains 20% to 27% of Cr, 22.5% to 32% of Ni, and 0.1% to 0.3% of N to provide high temperature strength, steam oxidation resistance, and resistance to steam oxidation.
  • Heat-resistant austenitic stainless steel with enhanced fireside corrosiveness and tissue stability has been proposed.
  • Patent Document 2 contains austenitic stainless steel having excellent high-temperature strength and creep ductility containing Cr of more than 22% to less than 30%, Ni of more than 18% to less than 25%, and N of 0.1% to 0.35%. Steel has been proposed.
  • Patent Document 3 contains Cr of more than 22% to less than 30%, Ni of more than 18% to less than 25%, N of 0.1% to 0.35%, and the amount of impurity elements such as Sn and Sb.
  • Patent Document 4 contains 15% to 30% Cr, 6% to 30% Ni, 0.03% to 0.35% N, and reduces impurity elements such as P, S, and Sn. , Austenitic stainless steels having excellent high temperature strength and embrittlement cracking resistance of welded parts during long-term use have been proposed.
  • the above-mentioned austenitic stainless steels and heat-resistant steels have excellent high-temperature strength, and although they have excellent performance for the problems to be solved by each, when the weldability is not sufficient and / or, It was found that when the temperature drops after long-term use at high temperature, sufficient toughness may not be stably obtained.
  • An object of the present invention is to provide an austenitic heat-resistant steel having excellent weldability, excellent creep strength, and stable toughness after being held at a high temperature for a long time.
  • the present inventors have Cr as 20.0% to 25.0%, Ni as 22.0% to 28.0%, and Co as 0.90% in terms of creep strength. It contains ⁇ 2.40%, N is 0.16% ⁇ 0.30%, and from the viewpoint of weldability (ability to form back beads at the time of first layer welding), S: 0.0001% ⁇ 0.
  • a detailed investigation was carried out on the toughness of austenitic heat-resistant steels essentially containing 0020% and Sn: 0.0005% to 0.0230% after holding (heating) at high temperature for a long time. As a result, the following findings were clarified.
  • the austenite-based heat-resistant steel according to one aspect of the present invention has a chemical composition of mass%, C: 0.04% to 0.12%, Si: 0.10% to 0.30%, Mn: 0.20% to 0.80%, P: 0% to 0.030%, S: 0.0001% to 0.0020%, Sn: 0.0005% to 0.0230%, Cu: 2.3% ⁇ 3.8%, Co: 0.90% ⁇ 2.40%, Ni: 22.0% ⁇ 28.0%, Cr: 20.0% ⁇ 25.0%, Mo: 0.01% ⁇ 0 .40%, W: 2.8% to 4.2%, Nb: 0.20% to 0.80%, B: 0.0010% to 0.0050%, N: 0.16% to 0.30 %, Al: 0% to 0.030%, O: 0% to 0.030%, V: 0% to 0.08%, Ti: 0% to 0.08%,
  • Austenite heat-resistant steel 0.0012% ⁇ [% S] + [% Sn] ⁇ 2.5 x [% B] + 0.0125% (i)
  • [% S], [% Sn], and [% B] in the formula (i) indicate the contents of S, Sn, and B in mass%, respectively.
  • the austenitic heat-resistant steel according to (1) above has a chemical composition of V: 0.01% to 0.08%, Ti: 0.01% to 0.08%, Ta: 0.01. One or more selected from% to 0.08%, Ca: 0.001% to 0.010%, Mg: 0.001% to 0.010%, REM: 0.0005% to 0.080%. May be contained.
  • an austenitic stainless steel having excellent weldability and having both stable toughness after holding at a high temperature for a long time (for example, 500 hours or more at 450 to 800 ° C.) and excellent creep strength.
  • Heat resistant steel can be provided.
  • the austenite-based heat-resistant steel according to the above aspect of the present invention can be used for a long time at high temperature, for example, in a boiler pipe of a coal-fired power plant, an oil-fired power plant, a waste incineration power plant, a biomass power plant, or a decomposition pipe in a petrochemical plant. Suitable for the equipment used.
  • the austenitic heat-resistant steel according to the embodiment of the present invention (austenitic heat-resistant steel according to the present embodiment) will be described.
  • the austenitic heat-resistant steel according to the present embodiment is, for example, a steel compatible with the austenitic stainless steel and the austenitic heat-resistant steel described in JIS G0203: 2009.
  • the austenitic heat-resistant steel according to this embodiment has a predetermined chemical composition.
  • the reasons for limiting its chemical composition are as follows.
  • the "%" indication of the content of each element means “mass%”.
  • the numerical range represented by using “-” means a range including the numerical values before and after "-" as the lower limit value and the upper limit value unless otherwise specified.
  • C 0.04% to 0.12% C is an element that stabilizes the austenite structure and combines with Cr to form carbides, improving the creep strength at high temperatures. In order to obtain this effect sufficiently, the C content needs to be 0.04% or more.
  • the C content is preferably 0.05% or more, more preferably 0.06% or more.
  • the C content is set to 0.12% or less.
  • the C content is preferably 0.11% or less, more preferably 0.10% or less.
  • Si 0.10% to 0.30%
  • Si has a deoxidizing effect and is an element necessary for ensuring corrosion resistance and oxidation resistance at high temperatures.
  • the Si content needs to be 0.10% or more.
  • the Si content is preferably 0.12% or more, more preferably 0.15% or more.
  • the Si content is set to 0.30% or less.
  • the Si content is preferably 0.28% or less, more preferably 0.25% or less.
  • Mn 0.20% to 0.80% Like Si, Mn is an element having a deoxidizing effect. It is also an element that stabilizes the austenite structure and contributes to the improvement of creep strength. In order to obtain these effects, the Mn content needs to be 0.20% or more. The Mn content is preferably 0.25% or more, more preferably 0.30% or more. On the other hand, when the Mn content becomes excessive, the creep ductility decreases. Therefore, the Mn content is set to 0.80% or less. The Mn content is preferably 0.75% or less, more preferably 0.70% or less.
  • P 0% to 0.030%
  • P is contained as an impurity and is an element that enhances the susceptibility to liquefaction cracking during welding. Further, when P is contained in a large amount, the creep ductility also decreases. Therefore, an upper limit is set for the P content so that the P content is 0.030% or less.
  • the P content is preferably 0.028% or less, more preferably 0.025% or less.
  • the P content is preferably reduced as much as possible, that is, the content may be 0%.
  • the preferable lower limit of the P content is 0.001%, and the more preferable lower limit is 0.002%.
  • S 0.0001% to 0.0020%
  • S is an element that segregates at the austenite grain boundaries during retention at high temperatures and weakens its binding force. Therefore, if the S content is high, the toughness of the heat-resistant steel after being held at a high temperature for a long time decreases.
  • the S content in order to prevent a decrease in toughness, the S content must be 0.0020% or less, and the Sn content and B content. It is necessary to satisfy the relationship between the quantity and the following.
  • the S content is preferably 0.0018% or less, more preferably 0.0015% or less. From the viewpoint of toughness, the S content is preferably reduced as much as possible.
  • S is also an element that affects the flow of hot water in the molten pool during welding, increases the penetration depth, and enhances welding workability, particularly back wave forming ability during first layer welding. Therefore, it is necessary to set the S content to 0.0001% or more and satisfy the relationship with Sn, which will be described later.
  • the S content is preferably 0.0002% or more, more preferably 0.0003% or more.
  • Sn 0.0005% -0.0230%
  • Sn is an element that evaporates from the molten pool during welding and contributes to the formation of an energizing path for the arc, and also has the effect of improving the weldability by increasing the penetration depth.
  • the Sn content is 0.0005% or more in the content range of other elements in the austenitic heat-resistant steel according to the present embodiment, and the relationship with the S content described later is satisfied. There is a need to.
  • the Sn content is preferably 0.0010% or more, more preferably 0.0015% or more.
  • Sn segregates at the austenite grain boundaries during holding at a high temperature, weakening the binding force of the grain boundaries.
  • the Sn content is preferably 0.0220% or less, more preferably 0.0200% or less.
  • Cu 2.3% to 3.8% Cu is an element that enhances the stability of the austenite structure and finely precipitates during holding at high temperatures, contributing to the improvement of creep strength. In order to obtain this effect sufficiently, it is necessary to set the Cu content to 2.3% or more.
  • the Cu content is preferably 2.5% or more, more preferably 2.7% or more.
  • the Cu content is set to 3.8% or less.
  • the Cu content is preferably 3.5% or less, more preferably 3.3% or less.
  • Co 0.90% to 2.40%
  • Co is also an element that enhances the stability of the austenite structure and contributes to the improvement of creep strength. In order to obtain the effect sufficiently, the Co content needs to be 0.90% or more.
  • the Co content is preferably 1.00% or more, more preferably 1.20% or more, and even more preferably 1.40% or more.
  • the Co content is set to 2.40% or less.
  • the Co content is preferably 2.20% or less, more preferably 2.00% or less.
  • Ni 22.0% to 28.0%
  • Ni is an element that enhances the stability of the austenite structure and contributes to the improvement of creep strength. In order to obtain the effect sufficiently, the Ni content needs to be 22.0% or more.
  • the Ni content is preferably 22.2% or more, more preferably 22.5% or more.
  • Ni is set to 28.0% or less.
  • the Ni content is preferably 27.8% or less, more preferably 27.5% or less.
  • Cr 20.0% to 25.0%
  • Cr is an element effective for ensuring oxidation resistance and corrosion resistance at high temperatures.
  • Cr is an element that forms fine carbides and contributes to the improvement of creep strength.
  • the Cr content is preferably 20.5% or more, more preferably 21.0% or more.
  • the Cr content is set to 25.0% or less.
  • the Cr content is preferably 24.5% or less, more preferably 24.0% or less.
  • Mo 0.01% to 0.40%
  • Mo is an element that dissolves in steel and contributes to the improvement of creep strength and tensile strength at high temperatures. In order to obtain the effect sufficiently, the Mo content needs to be 0.01% or more.
  • the Mo content is preferably 0.02% or more, more preferably 0.03% or more.
  • Mo content is set to 0.40% or less.
  • the Mo content is preferably 0.38% or less, more preferably 0.35% or less.
  • W 2.8% to 4.2% W is an element that dissolves in steel and contributes to the improvement of creep strength and tensile strength at high temperatures. In order to obtain the effect sufficiently, the W content needs to be 2.8% or more.
  • the W content is preferably 3.0% or more, more preferably 3.2% or more.
  • the W content is set to 4.2% or less.
  • the W content is preferably 4.0% or less, more preferably 3.8% or less.
  • Nb 0.20% to 0.80%
  • Nb is an element that precipitates in the grains of austenite as fine carbides and nitrides and contributes to the improvement of creep strength and tensile strength at high temperatures.
  • the Nb content needs to be 0.20% or more.
  • the Nb content is preferably 0.25% or more, more preferably 0.30% or more.
  • the Nb content is set to 0.80% or less.
  • the Nb content is preferably 0.75% or less, more preferably 0.70% or less.
  • B 0.0010% to 0.0050% B improves the creep strength by finely dispersing the grain boundary carbides, and segregates at the grain boundaries during holding at high temperature to suppress the segregation of S and Sn at the grain boundaries after holding at high temperature. It is an element that contributes to improving the toughness of steel. In order to sufficiently obtain these effects, it is necessary to set the B content to 0.0010% or more and satisfy the relationship between the S content and the Sn content described later.
  • the B content is preferably 0.0012% or more, more preferably 0.0015% or more.
  • the B content is set to 0.0050% or less.
  • the B content is preferably 0.0048% or less, more preferably 0.0045% or less.
  • N 0.16% to 0.30%
  • N is an element that stabilizes the austenite structure and dissolves in steel or precipitates as a nitride, which contributes to the improvement of high-temperature strength.
  • the N content needs to be 0.16% or more.
  • the N content is preferably 0.18% or more, more preferably 0.20% or more.
  • the N content is set to 0.30% or less.
  • the N content is preferably 0.28% or less, and more preferably 0.26% or less.
  • Al 0% to 0.030%
  • Al is an element added as an antacid.
  • the Al content needs to be 0.030% or less.
  • the Al content is preferably 0.025% or less, more preferably 0.020% or less.
  • the lower limit does not need to be set in particular, that is, the Al content may be 0%.
  • the Al content is preferably 0.001% or more, more preferably 0.002% or more.
  • O 0% to 0.030%
  • O (oxygen) is an element contained as an impurity.
  • the O content is preferably 0.025% or less, more preferably 0.020% or less.
  • the lower limit does not need to be set in particular, that is, the O content may be 0%.
  • the O content is preferably 0.001% or more, more preferably 0.002% or more.
  • B has a high diffusion rate and segregates at the austenite grain boundaries faster than S and Sn, and suppresses a decrease in toughness due to segregation of S and Sn at the grain boundaries. ..
  • the lower the content of S and Sn the more advantageous it is to improve the toughness after holding at high temperature, but they affect the convection and arc phenomenon of the molten pool during welding, respectively.
  • the total amount of S and Sn needs to be 0.0012% or more in order to obtain the effect.
  • the total content of preferred S and Sn is 0.0015% or more, and a more preferable total content is 0.0018% or more.
  • the austenitic heat-resistant steel according to the present embodiment basically contains the above elements and the balance is Fe and impurities.
  • the following group is used instead of a part of Fe as an alloy component. It may contain at least one element in the above. However, since these elements do not necessarily have to be contained, the lower limit is 0%. The reasons for the limitation are described below.
  • V 0 to 0.08%
  • V is an element that combines with carbon (C) or nitrogen (N) to form fine carbides or carbonitrides and contributes to the improvement of creep strength. Therefore, it may be contained as needed.
  • the V content is preferably 0.01% or more, more preferably 0.02% or more.
  • the V content is preferably 0.07% or less, more preferably 0.06% or less. Even more preferably, it is 0.04% or less.
  • Ti 0 to 0.08% Like V, Ti is an element that combines with carbon or nitrogen to form fine carbides or carbonitrides and contributes to the improvement of creep strength. Therefore, it may be contained as needed. When this effect is obtained, the Ti content is preferably 0.01% or more, more preferably 0.02% or more. However, when Ti is excessively contained, a large amount of carbonitride is precipitated and the creep ductility is lowered. Therefore, even when it is contained, the Ti content needs to be 0.08% or less. The Ti content is preferably 0.07% or less, more preferably 0.06% or less.
  • Ta 0-0.08% Like V and Ti, Ta is an element that combines with carbon or nitrogen to form fine carbides or carbonitrides and contributes to the improvement of creep strength. Therefore, it may be contained as needed. When this effect is obtained, the Ta content is preferably 0.01% or more, more preferably 0.02% or more. However, when Ta is excessively contained, a large amount of carbonitride is precipitated and the creep ductility is lowered. Therefore, even when it is contained, the Ta content needs to be 0.08% or less. The Ta content is preferably 0.07% or less, more preferably 0.06% or less.
  • Ca 0 to 0.010%
  • Ca is an element having an effect of improving hot workability during production. Therefore, it may be contained as needed.
  • the Ca content is preferably 0.001% or more, more preferably 0.002% or more.
  • O oxygen
  • the Ca content is 0.010% or less.
  • the Ca content is preferably 0.008% or less, more preferably 0.006% or less.
  • Mg 0 to 0.010%
  • Mg is an element that has the effect of improving hot workability during manufacturing. Therefore, it may be contained as needed.
  • the Mg content is preferably 0.001% or more, more preferably 0.002% or more.
  • O oxygen
  • the cleanliness is remarkably lowered, and the hot workability is deteriorated. Therefore, even when it is contained, the Mg content is 0.010% or less.
  • the Mg content is preferably 0.008% or less, more preferably 0.006% or less.
  • REM 0 to 0.080% Like Ca and Mg, REM is an element having an effect of improving hot workability during production. Therefore, it may be contained as needed. When this effect is obtained, the REM content is preferably 0.0005% or more, more preferably 0.001% or more. However, when REM is excessively contained, it is combined with oxygen, the cleanliness is remarkably lowered, and the hot workability is deteriorated. Therefore, even when it is contained, the REM content is 0.080% or less. The REM content is preferably 0.060% or less, more preferably 0.050% or less. "REM" is a general term for a total of 17 elements of Sc, Y and lanthanoid, and the content of REM refers to the total content of one or more elements of REM. Further, REM is generally contained in misch metal. Therefore, for example, it may be added in the form of misch metal so that the REM content is within the above range.
  • the austenitic heat-resistant steel according to the present embodiment is made into a slab by casting, for example, molten steel having the above-mentioned predetermined chemical composition, and the slab is hot-forged, then hot-worked and, if necessary, hot-worked. It is obtained by performing cold working, forming into a predetermined shape, and then performing a solution heat treatment (solution heat treatment) in which the product is held at 1050 to 1280 ° C. for 2 to 60 minutes and then cooled with water.
  • the processing conditions such as hot forging, hot working, and cold working are not particularly limited and may be appropriately determined according to the shape.
  • the austenitic heat-resistant steel according to this embodiment is used for equipment used at high temperatures, such as a boiler for power generation.
  • equipment used at high temperatures include boiler pipes for coal-fired power plants, oil-fired power plants, waste incineration power plants and biomass power plants, and decomposition pipes for petrochemical plants.
  • "use at high temperature” includes, for example, an embodiment of use in an environment of 450 ° C. or higher and 800 ° C. or lower (further, 500 ° C. or higher and 750 ° C. or lower).
  • Hot forging and hot rolling were performed on the ingots in which the materials of reference numerals A to N having the chemical compositions shown in Tables 1A and 1B (the balance is Fe and impurities: the unit is mass%) were melted and cast. It was formed into a plate shape with a thickness of 18 mm. This plate-shaped material was heated to 1180 ° C., held at that temperature for 30 minutes, and then water-cooled to obtain austenitic heat-resistant steels (Nos. 1 to 14).
  • the Charpy impact test was conducted in accordance with JISZ2242: 2005. The test was carried out at 20 ° C., and those having an average absorbed energy value of 27 J or more for the three test pieces were regarded as "passed", and among them, the individual values of the absorbed energy of the three test pieces were all 27 J or more. The ones that become "excellent” and the others are “acceptable”. On the other hand, those in which the average value of absorbed energy of the three test pieces was less than 27 J were regarded as "failed".
  • No. 1 produced using the symbols A to E, M, and N satisfying the conditions specified in the present invention. It can be seen that Nos. 1 to 5, 13 and 14 stably obtain excellent toughness after being held at a high temperature for a long time, and also have weldability and creep strength.
  • an austenitic heat-resistant steel having excellent weldability, stable toughness after being held at a high temperature for a long time, and excellent creep strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

This austenitic heat-resistant steel has a chemical composition containing, in mass%, 0.04-0.12% of C, 0.10-0.30% of Si, 0.20-0.80% of Mn, 0-0.030% of P, 0.0001-0.0020% of S, 0.0005-0.0230% of Sn, 2.3-3.8% of Cu, 0.90-2.40% of Co, 22.0-28.0% of Ni, 20.0-25.0% of Cr, 0.01-0.40% of Mo, 2.8-4.2% of W, 0.20-0.80% of Nb, 0.0010-0.0050% of B, and 0.16-0.30% of N, and also optionally containing at least one among Al, O, V, Ti, Ta, C, Mg, and an REM, with the remainder comprising Fe and impurities, wherein 0.0012%≤[%S]+[%Sn]≤2.5X[%B]+0.0125% is satisfied.

Description

オーステナイト系耐熱鋼Austenitic heat resistant steel
 本発明は、オーステナイト系耐熱鋼に関する。
 本願は、2019年08月29日に、日本に出願された特願2019-156592号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to austenitic heat resistant steel.
The present application claims priority based on Japanese Patent Application No. 2019-156592 filed in Japan on August 29, 2019, the contents of which are incorporated herein by reference.
 近年、環境負荷軽減の観点から、発電用ボイラでは運転条件の高温化および高圧化が世界的規模で進められており、その過熱器管や再熱器管に使用される材料には、より優れた高温強度や耐食性を有することが求められている。
 このような要求を満たす材料として、高温強度を高めるために多量のNならびにNiを含有させるとともに、高温での耐食性および耐水蒸気酸化特性を高めるために、20%を超えてCrを含有させた、種々のオーステナイト系耐熱鋼が開示されている。
In recent years, from the viewpoint of reducing the environmental load, the operating conditions of boilers for power generation have been increasing in temperature and pressure on a global scale, and the materials used for superheater tubes and reheater tubes are superior. It is required to have high temperature strength and corrosion resistance.
As a material satisfying such a requirement, a large amount of N and Ni are contained in order to increase the high temperature strength, and more than 20% of Cr is contained in order to enhance the corrosion resistance and the steam oxidation resistance at high temperature. Various austenitic heat resistant steels are disclosed.
 例えば、特許文献1にはCrを20%~27%、Niを22.5%~32%、Nを0.1%~0.3%含有させることにより、高温強度、耐蒸気酸化性、耐炉辺腐食性および組織安定性を高めた耐熱オーステナイトステンレス鋼が提案されている。
 特許文献2にはCrを22%超~30%未満、Niを18%超~25%未満、Nを0.1%~0.35%含有させた高温強度とクリープ延性とに優れるオーステナイト系ステンレス鋼が提案されている。
 特許文献3にはCrを22%超~30%未満、Niを18%超~25%未満、Nを0.1%~0.35%含有させるとともに、Sn、Sbなどの不純物元素の量を低減することで、高温強度と長期使用後の加工性とに優れるオーステナイト系耐熱鋼が提案されている。
 特許文献4にはCrを15%~30%、Niを6%~30%、Nを0.03%~0.35%含有させるとともに、P、SやSnなどの不純物元素を低減することで、高温強度と長時間使用中の溶接部の耐脆化割れ性とに優れるオーステナイト系ステンレス鋼が提案されている。
For example, Patent Document 1 contains 20% to 27% of Cr, 22.5% to 32% of Ni, and 0.1% to 0.3% of N to provide high temperature strength, steam oxidation resistance, and resistance to steam oxidation. Heat-resistant austenitic stainless steel with enhanced fireside corrosiveness and tissue stability has been proposed.
Patent Document 2 contains austenitic stainless steel having excellent high-temperature strength and creep ductility containing Cr of more than 22% to less than 30%, Ni of more than 18% to less than 25%, and N of 0.1% to 0.35%. Steel has been proposed.
Patent Document 3 contains Cr of more than 22% to less than 30%, Ni of more than 18% to less than 25%, N of 0.1% to 0.35%, and the amount of impurity elements such as Sn and Sb. Austenitic heat-resistant steels that are excellent in high-temperature strength and workability after long-term use by reducing the amount have been proposed.
Patent Document 4 contains 15% to 30% Cr, 6% to 30% Ni, 0.03% to 0.35% N, and reduces impurity elements such as P, S, and Sn. , Austenitic stainless steels having excellent high temperature strength and embrittlement cracking resistance of welded parts during long-term use have been proposed.
 ところで、発電用ボイラは、定期的に停機して健全性を確認する必要があり、その際、使用されている配管などの部材の温度が下がることになる。前記のオーステナイト系ステンレス鋼ならびに耐熱鋼は、優れた高温強度を有し、それぞれが解決しようとする課題に対しては、優れた性能を有するものの、溶接施工性が十分でない場合、及び/または、高温で長時間使用した後に温度が下がると、十分な靭性が安定して得られない場合があることがわかった。 By the way, it is necessary to periodically stop the boiler for power generation to check its soundness, and at that time, the temperature of the members such as the pipes used will drop. The above-mentioned austenitic stainless steels and heat-resistant steels have excellent high-temperature strength, and although they have excellent performance for the problems to be solved by each, when the weldability is not sufficient and / or, It was found that when the temperature drops after long-term use at high temperature, sufficient toughness may not be stably obtained.
日本国特表2002-537486号公報Japan Special Table 2002-537486 日本国特開2004-250783号公報Japanese Patent Application Laid-Open No. 2004-250783 日本国特開2009-84606号公報Japanese Patent Application Laid-Open No. 2009-84606 国際公開第2009/044796号International Publication No. 2009/044796
 本発明は、上記現状に鑑みてなされた。本発明は、溶接施工性に優れ、かつ、優れたクリープ強度と、高温で長時間保持された後の安定した靭性と、が両立できる、オーステナイト系耐熱鋼を提供することを目的とする。 The present invention has been made in view of the above situation. An object of the present invention is to provide an austenitic heat-resistant steel having excellent weldability, excellent creep strength, and stable toughness after being held at a high temperature for a long time.
 本発明者らは、前記した課題を解決するために、クリープ強度の点からCrを20.0%~25.0%、Niを22.0%~28.0%、Coを0.90%~2.40%、Nを0.16%~0.30%、を含むとともに、溶接施工性(初層溶接時の裏ビードの形成能)の観点から、S:0.0001%~0.0020%、Sn:0.0005%~0.0230%を必須で含有するオーステナイト系耐熱鋼について、高温かつ長時間保持(加熱)後の靱性について詳細な調査を行った。その結果、以下に述べる知見が明らかになった。
(a)高温で長時間保持した鋼の靱性は、SおよびSnの含有量の増加に伴い、顕著に低下する。衝撃試験後の破面観察の結果、SおよびSnの含有量が多くなると、オーステナイト粒界で破壊した領域の割合が大きくなるとともに、破面上からSおよびSnが検出された。この結果より、SおよびSnを含有する鋼において、高温で長時間保持後の靭性が低下する理由は、高温で長時間保持時に鋼中に含まれるSおよびSnがオーステナイト粒界に偏析し、これらの元素が粒界の結合力を低下させるためであると推察される。
(b)一方で、本発明者らの検討の結果、高温長時間保持後の靭性を確保するには、SおよびSnを溶接施工性が阻害されない範囲で極力低減するとともに、その合計含有量に応じてBを適正な範囲で含有させることが有効であることが分かった。この理由としては、鋼中に含まれるBは拡散速度が速く、高温で長時間保持時にSおよびSnより早くオーステナイト粒界に偏析し、その結果、BがSおよびSnによる粒界結合力の低下を抑制し、靭性の低下を軽減するためと考えられる。
In order to solve the above-mentioned problems, the present inventors have Cr as 20.0% to 25.0%, Ni as 22.0% to 28.0%, and Co as 0.90% in terms of creep strength. It contains ~ 2.40%, N is 0.16% ~ 0.30%, and from the viewpoint of weldability (ability to form back beads at the time of first layer welding), S: 0.0001% ~ 0. A detailed investigation was carried out on the toughness of austenitic heat-resistant steels essentially containing 0020% and Sn: 0.0005% to 0.0230% after holding (heating) at high temperature for a long time. As a result, the following findings were clarified.
(A) The toughness of steel held at high temperature for a long time decreases remarkably as the contents of S and Sn increase. As a result of observing the fracture surface after the impact test, as the content of S and Sn increased, the proportion of the region broken at the austenite grain boundary increased, and S and Sn were detected on the fracture surface. From this result, the reason why the toughness of the steel containing S and Sn decreases after long-term holding at high temperature is that S and Sn contained in the steel segregate at the austenite grain boundaries during long-term holding at high temperature. It is presumed that this element reduces the binding force of the grain boundaries.
(B) On the other hand, as a result of the studies by the present inventors, in order to secure the toughness after holding at a high temperature for a long time, S and Sn should be reduced as much as possible within the range where the weldability is not hindered, and the total content thereof should be increased. Therefore, it was found that it is effective to contain B in an appropriate range. The reason for this is that B contained in the steel has a high diffusion rate and segregates into the austenite grain boundaries faster than S and Sn when held at high temperature for a long time, and as a result, B has a decrease in grain boundary bonding force due to S and Sn. It is considered that this is to suppress the decrease in toughness and reduce the decrease in toughness.
 本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記に示すオーステナイト系耐熱鋼にある。
(1)本発明の一態様に係るオーステナイト系耐熱鋼は、化学組成が、質量%で、C:0.04%~0.12%、Si:0.10%~0.30%、Mn:0.20%~0.80%、P:0%~0.030%、S:0.0001%~0.0020%、Sn:0.0005%~0.0230%、Cu:2.3%~3.8%、Co:0.90%~2.40%、Ni:22.0%~28.0%、Cr:20.0%~25.0%、Mo:0.01%~0.40%、W:2.8%~4.2%、Nb:0.20%~0.80%、B:0.0010%~0.0050%、N:0.16%~0.30%、Al:0%~0.030%、O:0%~0.030%、V:0%~0.08%、Ti:0%~0.08%、Ta:0%~0.08%、Ca:0%~0.010%、Mg:0%~0.010%、REM:0%~0.080%、を含み、残部がFe及び不純物からなり、かつ(i)式を満足する、オーステナイト系耐熱鋼。
0.0012%≦[%S]+[%Sn]≦2.5×[%B]+0.0125% (i)
ただし、前記式(i)中の[%S]、[%Sn]、[%B]はそれぞれ、S、Sn、Bの質量%での含有量を示す。
(2)上記(1)に記載のオーステナイト系耐熱鋼は、前記化学組成が、V:0.01%~0.08%、Ti:0.01%~0.08%、Ta:0.01%~0.08%、Ca:0.001%~0.010%、Mg:0.001%~0.010%、REM:0.0005%~0.080%、から選択される1種以上を含有してもよい。
The present invention has been completed based on the above findings, and the gist thereof is in the austenitic heat-resistant steel shown below.
(1) The austenite-based heat-resistant steel according to one aspect of the present invention has a chemical composition of mass%, C: 0.04% to 0.12%, Si: 0.10% to 0.30%, Mn: 0.20% to 0.80%, P: 0% to 0.030%, S: 0.0001% to 0.0020%, Sn: 0.0005% to 0.0230%, Cu: 2.3% ~ 3.8%, Co: 0.90% ~ 2.40%, Ni: 22.0% ~ 28.0%, Cr: 20.0% ~ 25.0%, Mo: 0.01% ~ 0 .40%, W: 2.8% to 4.2%, Nb: 0.20% to 0.80%, B: 0.0010% to 0.0050%, N: 0.16% to 0.30 %, Al: 0% to 0.030%, O: 0% to 0.030%, V: 0% to 0.08%, Ti: 0% to 0.08%, Ta: 0% to 0.08 %, Ca: 0% to 0.010%, Mg: 0% to 0.010%, REM: 0% to 0.080%, the balance is composed of Fe and impurities, and the formula (i) is satisfied. Austenite heat-resistant steel.
0.0012% ≤ [% S] + [% Sn] ≤ 2.5 x [% B] + 0.0125% (i)
However, [% S], [% Sn], and [% B] in the formula (i) indicate the contents of S, Sn, and B in mass%, respectively.
(2) The austenitic heat-resistant steel according to (1) above has a chemical composition of V: 0.01% to 0.08%, Ti: 0.01% to 0.08%, Ta: 0.01. One or more selected from% to 0.08%, Ca: 0.001% to 0.010%, Mg: 0.001% to 0.010%, REM: 0.0005% to 0.080%. May be contained.
 本発明の上記態様によれば、溶接施工性に優れ、かつ、高温で長時間(例えば、450~800℃で500時間以上)保持後の安定した靭性と優れたクリープ強度とが両立できるオーステナイト系耐熱鋼を提供することができる。本発明の上記態様に係るオーステナイト系耐熱鋼は、例えば石炭火力発電プラント、石油火力発電プラント、ごみ焼却発電プラントおよびバイオマス発電プラント等のボイラ用配管、石油化学プラントにおける分解管等、高温で長時間使用される機器に好適である。 According to the above aspect of the present invention, an austenitic stainless steel having excellent weldability and having both stable toughness after holding at a high temperature for a long time (for example, 500 hours or more at 450 to 800 ° C.) and excellent creep strength. Heat resistant steel can be provided. The austenite-based heat-resistant steel according to the above aspect of the present invention can be used for a long time at high temperature, for example, in a boiler pipe of a coal-fired power plant, an oil-fired power plant, a waste incineration power plant, a biomass power plant, or a decomposition pipe in a petrochemical plant. Suitable for the equipment used.
溶接試験時の開先形状を示す図である。It is a figure which shows the groove shape at the time of a welding test.
 以下、本発明の一実施形態に係るオーステナイト系耐熱鋼(本実施形態に係るオーステナイト系耐熱鋼)について説明する。本実施形態に係るオーステナイト系耐熱鋼は、例えば、JISG0203:2009に記載された、オーステナイト系ステンレス鋼やオーステナイト系耐熱鋼に適合する鋼である。 Hereinafter, the austenitic heat-resistant steel according to the embodiment of the present invention (austenitic heat-resistant steel according to the present embodiment) will be described. The austenitic heat-resistant steel according to the present embodiment is, for example, a steel compatible with the austenitic stainless steel and the austenitic heat-resistant steel described in JIS G0203: 2009.
<化学組成>
 本実施形態に係るオーステナイト系耐熱鋼は所定の化学組成を有している。その化学組成を限定する理由は次の通りである。
 以下の説明において、各元素の含有量の「%」表示は「質量%」を意味する。また、本明細書中において、「~」を用いて表される数値範囲は、特に断りの無い限り、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
<Chemical composition>
The austenitic heat-resistant steel according to this embodiment has a predetermined chemical composition. The reasons for limiting its chemical composition are as follows.
In the following description, the "%" indication of the content of each element means "mass%". Further, in the present specification, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value unless otherwise specified.
C:0.04%~0.12%
 Cはオーステナイト組織を安定にするとともにCrと結合して炭化物を形成し、高温でのクリープ強度を向上させる元素である。この効果を十分に得るためにはC含有量を0.04%以上とする必要がある。C含有量は、好ましくは0.05%以上、さらに好ましくは0.06%以上である。
 一方で、Cが過剰に含有された場合、炭化物が多量に析出し、靭性が低下する。そのため、C含有量は0.12%以下とする。C含有量は、好ましくは0.11%以下、さらに好ましくは0.10%以下である。
C: 0.04% to 0.12%
C is an element that stabilizes the austenite structure and combines with Cr to form carbides, improving the creep strength at high temperatures. In order to obtain this effect sufficiently, the C content needs to be 0.04% or more. The C content is preferably 0.05% or more, more preferably 0.06% or more.
On the other hand, when C is excessively contained, a large amount of carbide is precipitated and the toughness is lowered. Therefore, the C content is set to 0.12% or less. The C content is preferably 0.11% or less, more preferably 0.10% or less.
Si:0.10%~0.30%
 Siは脱酸作用を有するとともに、高温での耐食性および耐酸化性の確保に必要な元素である。その効果を得るためには、Si含有量を0.10%以上とする必要がある。Si含有量は、好ましくは0.12%以上、さらに好ましくは0.15%以上である。
 一方で、Siが過剰に含有された場合には、オーステナイト組織の安定性が低下し、クリープ強度が低下する。そのためSi含有量は0.30%以下とする。Si含有量は、好ましくは0.28%以下、さらに好ましくは0.25%以下である。
Si: 0.10% to 0.30%
Si has a deoxidizing effect and is an element necessary for ensuring corrosion resistance and oxidation resistance at high temperatures. In order to obtain the effect, the Si content needs to be 0.10% or more. The Si content is preferably 0.12% or more, more preferably 0.15% or more.
On the other hand, when Si is excessively contained, the stability of the austenite structure is lowered and the creep strength is lowered. Therefore, the Si content is set to 0.30% or less. The Si content is preferably 0.28% or less, more preferably 0.25% or less.
Mn:0.20%~0.80%
 MnはSiと同様、脱酸作用を有する元素である。また、オーステナイト組織を安定にして、クリープ強度の向上に寄与する元素である。これらの効果を得るためには、Mn含有量を0.20%以上とする必要がある。Mn含有量は、好ましくは0.25%以上、さらに好ましくは0.30%以上である。
 一方で、Mn含有量が過剰になると、クリープ延性が低下する。そのためMn含有量は0.80%以下とする。Mn含有量は、好ましくは0.75%以下、さらに好ましくは0.70%以下である。
Mn: 0.20% to 0.80%
Like Si, Mn is an element having a deoxidizing effect. It is also an element that stabilizes the austenite structure and contributes to the improvement of creep strength. In order to obtain these effects, the Mn content needs to be 0.20% or more. The Mn content is preferably 0.25% or more, more preferably 0.30% or more.
On the other hand, when the Mn content becomes excessive, the creep ductility decreases. Therefore, the Mn content is set to 0.80% or less. The Mn content is preferably 0.75% or less, more preferably 0.70% or less.
P:0%~0.030%
 Pは不純物として含まれ、溶接中の液化割れ感受性を高める元素である。さらに、Pが多量に含有されるとクリープ延性も低下する。そのため、P含有量に上限を設けて、P含有量を0.030%以下とする。P含有量は、好ましくは0.028%以下、さらに好ましくは0.025%以下である。P含有量は可能な限り低減することが好ましく、つまり、含有量が0%であってもよい。しかしながら、P含有量の極度の低減は製鋼コストの増大を招く。そのため、P含有量の好ましい下限は0.001%、さらに好ましい下限は0.002%である。
P: 0% to 0.030%
P is contained as an impurity and is an element that enhances the susceptibility to liquefaction cracking during welding. Further, when P is contained in a large amount, the creep ductility also decreases. Therefore, an upper limit is set for the P content so that the P content is 0.030% or less. The P content is preferably 0.028% or less, more preferably 0.025% or less. The P content is preferably reduced as much as possible, that is, the content may be 0%. However, an extreme reduction in P content leads to an increase in steelmaking costs. Therefore, the preferable lower limit of the P content is 0.001%, and the more preferable lower limit is 0.002%.
S:0.0001%~0.0020%
 Sは高温での保持中にオーステナイト粒界に偏析して、その結合力を弱める元素である。そのため、S含有量が多いと、高温で長時間保持された後の耐熱鋼の靭性が低下する。本実施形態に係るオーステナイト系耐熱鋼における他の元素の含有範囲において、靭性の低下を防止するためには、S含有量は0.0020%以下とする必要があるとともに、Sn含有量およびB含有量と、後述の関係を満足する必要がある。S含有量は、好ましくは0.0018%以下、さらに好ましくは0.0015%以下である。S含有量は靭性の観点からは可能な限り低減することが好ましい。しかしながら、Sは、溶接中の溶融池の湯流れに影響し、溶け込み深さを大きくし、溶接施工性、特に初層溶接時の裏波形成能を高める元素でもある。そのため、S含有量は、0.0001%以上とするとともに、後述のSnとの関係を満足する必要がある。S含有量は、好ましくは0.0002%以上、さらに好ましくは0.0003%以上である。
S: 0.0001% to 0.0020%
S is an element that segregates at the austenite grain boundaries during retention at high temperatures and weakens its binding force. Therefore, if the S content is high, the toughness of the heat-resistant steel after being held at a high temperature for a long time decreases. In the content range of other elements in the austenitic heat-resistant steel according to the present embodiment, in order to prevent a decrease in toughness, the S content must be 0.0020% or less, and the Sn content and B content. It is necessary to satisfy the relationship between the quantity and the following. The S content is preferably 0.0018% or less, more preferably 0.0015% or less. From the viewpoint of toughness, the S content is preferably reduced as much as possible. However, S is also an element that affects the flow of hot water in the molten pool during welding, increases the penetration depth, and enhances welding workability, particularly back wave forming ability during first layer welding. Therefore, it is necessary to set the S content to 0.0001% or more and satisfy the relationship with Sn, which will be described later. The S content is preferably 0.0002% or more, more preferably 0.0003% or more.
Sn:0.0005%~0.0230%
 Snは溶接時に溶融池から蒸発してアークの通電経路の形成に寄与するとともに、溶け込み深さを増大させることで、溶接施工性を高める効果を有する元素である。この効果を得るためには、本実施形態に係るオーステナイト系耐熱鋼における他の元素の含有範囲において、Sn含有量が、0.0005%以上であるとともに、後述のS含有量との関係を満足する必要がある。Sn含有量は、好ましくは0.0010%以上、さらに好ましくは0.0015%以上である。
 一方で、Snが過剰に含有された場合、Snは、高温での保持中にオーステナイト粒界に偏析して、粒界の結合力を弱める。その結果、高温で長時間保持後の鋼の靭性が低下する。そのため、本実施形態に係るオーステナイト系耐熱鋼における他の元素の含有範囲において、Sn含有量は、0.0230%以下とするとともに、S含有量およびB含有量と後述の関係を満足する必要がある。Sn含有量は、好ましくは0.0220%以下、さらに好ましくは0.0200%以下である。
Sn: 0.0005% -0.0230%
Sn is an element that evaporates from the molten pool during welding and contributes to the formation of an energizing path for the arc, and also has the effect of improving the weldability by increasing the penetration depth. In order to obtain this effect, the Sn content is 0.0005% or more in the content range of other elements in the austenitic heat-resistant steel according to the present embodiment, and the relationship with the S content described later is satisfied. There is a need to. The Sn content is preferably 0.0010% or more, more preferably 0.0015% or more.
On the other hand, when Sn is excessively contained, Sn segregates at the austenite grain boundaries during holding at a high temperature, weakening the binding force of the grain boundaries. As a result, the toughness of steel after being held at high temperature for a long time is reduced. Therefore, in the content range of other elements in the austenitic heat-resistant steel according to the present embodiment, it is necessary to set the Sn content to 0.0230% or less and to satisfy the relationship between the S content and the B content described later. is there. The Sn content is preferably 0.0220% or less, more preferably 0.0200% or less.
Cu:2.3%~3.8%
 Cuはオーステナイト組織の安定性を高めるとともに、高温での保持中に微細に析出して、クリープ強度の向上に寄与する元素である。この効果を十分に得るためには、Cu含有量を2.3%以上とする必要がある。Cu含有量は、好ましくは2.5%以上、さらに好ましくは2.7%以上である。
 一方で、Cuが過剰に含有された場合、熱間加工性が低下する。そのためCu含有量は3.8%以下とする。Cu含有量は、好ましくは3.5%以下、さらに好ましくは3.3%以下である。
Cu: 2.3% to 3.8%
Cu is an element that enhances the stability of the austenite structure and finely precipitates during holding at high temperatures, contributing to the improvement of creep strength. In order to obtain this effect sufficiently, it is necessary to set the Cu content to 2.3% or more. The Cu content is preferably 2.5% or more, more preferably 2.7% or more.
On the other hand, if Cu is excessively contained, the hot workability is lowered. Therefore, the Cu content is set to 3.8% or less. The Cu content is preferably 3.5% or less, more preferably 3.3% or less.
Co:0.90%~2.40%
 Coもオーステナイト組織の安定性を高めて、クリープ強度の向上に寄与する元素である。その効果を十分に得るには、Co含有量を0.90%以上とする必要がある。Co含有量は、好ましくは1.00%以上、さらに好ましくは1.20%以上、より一層好ましくは1.40%以上である。
 一方で、Coが過剰に含有された場合、その効果が飽和するだけでなく、Coは非常に高価な元素であるため、コスト増を招く。そのためCo含有量は2.40%以下とする。Co含有量は、好ましくは2.20%以下、さらに好ましくは2.00%以下である。
Co: 0.90% to 2.40%
Co is also an element that enhances the stability of the austenite structure and contributes to the improvement of creep strength. In order to obtain the effect sufficiently, the Co content needs to be 0.90% or more. The Co content is preferably 1.00% or more, more preferably 1.20% or more, and even more preferably 1.40% or more.
On the other hand, when Co is excessively contained, not only the effect is saturated, but also Co is a very expensive element, which causes an increase in cost. Therefore, the Co content is set to 2.40% or less. The Co content is preferably 2.20% or less, more preferably 2.00% or less.
Ni:22.0%~28.0%
 Niはオーステナイト組織の安定性を高めて、クリープ強度の向上に寄与する元素である。その効果を十分に得るには、Ni含有量を22.0%以上とする必要がある。Ni含有量は、好ましく22.2%以上、さらに好ましくは22.5%以上である。
 一方で、Niは非常に高価な元素であるので、Niが過剰に含有された場合、効果が飽和するだけでなく、コスト増を招く。そのためNiは28.0%以下とする。Ni含有量は好ましくは27.8%以下、さらに好ましくは27.5%以下である。
Ni: 22.0% to 28.0%
Ni is an element that enhances the stability of the austenite structure and contributes to the improvement of creep strength. In order to obtain the effect sufficiently, the Ni content needs to be 22.0% or more. The Ni content is preferably 22.2% or more, more preferably 22.5% or more.
On the other hand, since Ni is a very expensive element, if Ni is excessively contained, not only the effect is saturated but also the cost is increased. Therefore, Ni is set to 28.0% or less. The Ni content is preferably 27.8% or less, more preferably 27.5% or less.
Cr:20.0%~25.0%
 Crは高温での耐酸化性および耐食性の確保に有効な元素である。また、Crは微細な炭化物を形成してクリープ強度の向上にも寄与する元素である。それらの効果を十分に得るためには、Cr含有量を20.0%以上とする必要がある。Cr含有量は、好ましくは20.5%以上、さらに好ましくは21.0%以上である。
 一方で、Crが過剰に含有された場合、オーステナイト組織の安定性が低下し、クリープ強度が低下する。そのためCr含有量は25.0%以下とする。Cr含有量は、好ましくは24.5%以下、さらに好ましくは24.0%以下である。
Cr: 20.0% to 25.0%
Cr is an element effective for ensuring oxidation resistance and corrosion resistance at high temperatures. In addition, Cr is an element that forms fine carbides and contributes to the improvement of creep strength. In order to obtain these effects sufficiently, it is necessary to set the Cr content to 20.0% or more. The Cr content is preferably 20.5% or more, more preferably 21.0% or more.
On the other hand, when Cr is excessively contained, the stability of the austenite structure is lowered and the creep strength is lowered. Therefore, the Cr content is set to 25.0% or less. The Cr content is preferably 24.5% or less, more preferably 24.0% or less.
Mo:0.01%~0.40%
 Moは鋼に固溶して高温でのクリープ強度や引張強さの向上に寄与する元素である。その効果を十分に得るためには、Mo含有量を0.01%以上とする必要がある。Mo含有量は、好ましくは0.02%以上、さらに好ましくは0.03%以上である。
 一方で、Moが過剰に含有された場合、オーステナイト組織の安定性が顕著に低下し、クリープ強度が低下する。さらに、Moは高価な元素であるので、過剰の含有はコストの増大を招く。そのため、Mo含有量は0.40%以下とする。Mo含有量は、好ましくは0.38%以下、さらに好ましくは0.35%以下である。
Mo: 0.01% to 0.40%
Mo is an element that dissolves in steel and contributes to the improvement of creep strength and tensile strength at high temperatures. In order to obtain the effect sufficiently, the Mo content needs to be 0.01% or more. The Mo content is preferably 0.02% or more, more preferably 0.03% or more.
On the other hand, when Mo is excessively contained, the stability of the austenite structure is remarkably lowered, and the creep strength is lowered. Furthermore, since Mo is an expensive element, excessive content leads to an increase in cost. Therefore, the Mo content is set to 0.40% or less. The Mo content is preferably 0.38% or less, more preferably 0.35% or less.
W:2.8%~4.2%
 Wは鋼に固溶して高温でのクリープ強度や引張強さの向上に寄与する元素である。その効果を十分に得るためには、W含有量を2.8%以上とする必要がある。W含有量は、好ましくは3.0%以上、さらに好ましくは3.2%以上である。
 一方で、Wが過剰に含有された場合、オーステナイト組織の安定性が低下し、かえってクリープ強度が低下する。そのため、W含有量は4.2%以下とする。W含有量は、好ましくは4.0%以下、さらに好ましくは3.8%以下である。
W: 2.8% to 4.2%
W is an element that dissolves in steel and contributes to the improvement of creep strength and tensile strength at high temperatures. In order to obtain the effect sufficiently, the W content needs to be 2.8% or more. The W content is preferably 3.0% or more, more preferably 3.2% or more.
On the other hand, when W is excessively contained, the stability of the austenite structure is lowered, and the creep strength is rather lowered. Therefore, the W content is set to 4.2% or less. The W content is preferably 4.0% or less, more preferably 3.8% or less.
Nb:0.20%~0.80%
 Nbは微細な炭化物や窒化物としてオーステナイトの粒内に析出し、高温でのクリープ強度や引張強さの向上に寄与する元素である。その効果を十分に得るためには、Nb含有量を0.20%以上とする必要がある。Nb含有量は、好ましくは0.25%以上、さらに好ましくは0.30%以上である。
 一方、Nbが過剰に含有された場合、炭窒化物が多量に析出し、クリープ延性が低下する。そのため、Nb含有量は0.80%以下とする。Nb含有量は、好ましくは0.75%以下、さらに好ましくは0.70%以下である。
Nb: 0.20% to 0.80%
Nb is an element that precipitates in the grains of austenite as fine carbides and nitrides and contributes to the improvement of creep strength and tensile strength at high temperatures. In order to obtain the effect sufficiently, the Nb content needs to be 0.20% or more. The Nb content is preferably 0.25% or more, more preferably 0.30% or more.
On the other hand, when Nb is excessively contained, a large amount of carbonitride is precipitated and the creep ductility is lowered. Therefore, the Nb content is set to 0.80% or less. The Nb content is preferably 0.75% or less, more preferably 0.70% or less.
B:0.0010%~0.0050%
 Bは粒界炭化物を微細に分散させることによりクリープ強度を向上させるとともに、高温での保持中に粒界に偏析してSおよびSnの粒界偏析を抑制することで、高温での保持後の鋼の靭性向上に寄与する元素である。これらの効果を十分に得るためには、B含有量は、0.0010%以上とするとともに、後述のS含有量およびSn含有量との関係を満足する必要がある。B含有量は、好ましくは0.0012%以上、さらに好ましくは0.0015%以上である。
 一方で、Bが過剰に含有された場合、溶接時の熱影響部の割れ感受性が高まる。そのため、B含有量を0.0050%以下とする。B含有量は、好ましくは0.0048%以下、さらに好ましくは0.0045%以下である。
B: 0.0010% to 0.0050%
B improves the creep strength by finely dispersing the grain boundary carbides, and segregates at the grain boundaries during holding at high temperature to suppress the segregation of S and Sn at the grain boundaries after holding at high temperature. It is an element that contributes to improving the toughness of steel. In order to sufficiently obtain these effects, it is necessary to set the B content to 0.0010% or more and satisfy the relationship between the S content and the Sn content described later. The B content is preferably 0.0012% or more, more preferably 0.0015% or more.
On the other hand, when B is excessively contained, the crack sensitivity of the heat-affected zone during welding increases. Therefore, the B content is set to 0.0050% or less. The B content is preferably 0.0048% or less, more preferably 0.0045% or less.
N:0.16%~0.30%
 Nはオーステナイト組織を安定にするとともに、鋼に固溶して、または窒化物として析出して、高温強度の向上に寄与する元素である。その効果を十分に得るためには、N含有量を0.16%以上とする必要がある。N含有量は、好ましくは0.18%以上、さらに好ましくは0.20%以上である。
 一方で、Nが過剰に含有された場合、延性が低下する。そのため、N含有量は0.30%以下とする。N含有量は、好ましくは0.28%以下であり、さらに好ましくは0.26%以下である。
N: 0.16% to 0.30%
N is an element that stabilizes the austenite structure and dissolves in steel or precipitates as a nitride, which contributes to the improvement of high-temperature strength. In order to obtain the effect sufficiently, the N content needs to be 0.16% or more. The N content is preferably 0.18% or more, more preferably 0.20% or more.
On the other hand, if N is excessively contained, the ductility is lowered. Therefore, the N content is set to 0.30% or less. The N content is preferably 0.28% or less, and more preferably 0.26% or less.
Al:0%~0.030%
 Alは、脱酸剤として添加される元素である。しかしながら、Alが過剰に含有された場合、鋼の清浄性が劣化し、熱間加工性が低下する。そのため、Al含有量を0.030%以下とする必要がある。Al含有量は、好ましくは0.025%以下、さらに好ましくは0.020%以下である。下限は特に設ける必要はなく、つまり、Al含有量が0%であってもよい。しかしながら、Al含有量の極端な低減は製造コストの増大を招く。そのため、Al含有量は、好ましくは0.001%以上、さらに好ましくは0.002%以上である。
Al: 0% to 0.030%
Al is an element added as an antacid. However, when Al is excessively contained, the cleanliness of the steel deteriorates and the hot workability deteriorates. Therefore, the Al content needs to be 0.030% or less. The Al content is preferably 0.025% or less, more preferably 0.020% or less. The lower limit does not need to be set in particular, that is, the Al content may be 0%. However, an extreme reduction in Al content leads to an increase in manufacturing cost. Therefore, the Al content is preferably 0.001% or more, more preferably 0.002% or more.
O:0%~0.030%
 O(酸素)は不純物として含まれる元素である。Oが過剰に含有された場合、熱間加工性が低下するとともに、延性が劣化する。そのため、O含有量を0.030%以下とする必要がある。O含有量は、好ましくは0.025%以下、さらに好ましくは0.020%以下である。下限は特に設ける必要はなく、つまり、O含有量が0%であってもよい。しかしながら、O含有量の極端な低減は製造コストの増大を招く。そのため、O含有量は、好ましくは0.001%以上、さらに好ましくは0.002%以上である。
O: 0% to 0.030%
O (oxygen) is an element contained as an impurity. When O is excessively contained, the hot workability is lowered and the ductility is deteriorated. Therefore, the O content needs to be 0.030% or less. The O content is preferably 0.025% or less, more preferably 0.020% or less. The lower limit does not need to be set in particular, that is, the O content may be 0%. However, an extreme reduction in O content leads to an increase in manufacturing cost. Therefore, the O content is preferably 0.001% or more, more preferably 0.002% or more.
0.0012%≦[%S]+[%Sn]≦2.5×[%B]+0.0125% (1)
 本実施形態に係るオーステナイト系耐熱鋼は、上述の通り各元素の含有量を制御した上で、さらに、S含有量、Sn含有量、B含有量が上記の式(1)を満足する必要がある。
 ここで、前記式(1)中の[%S]、[%Sn]、[%B]はそれぞれ、S、Sn、Bの質量%での含有量を示す。
 SおよびSnは高温での保持中にオーステナイト粒界に偏析して、その結合力を弱める元素である。そのため、一般に、SおよびSnを含有する鋼は、高温で長時間保持後の靭性が低下する。しかしながら、本発明者らが知見したように、Bは、拡散速度が速く、SおよびSnより早くオーステナイト粒界に偏析して、S及びSnが粒界に偏析することによる靭性の低下を抑制する。その効果を十分に得るためには、Bの含有量に対して、SとSnとの合計含有量を、2.5×[%B]+0.0125%以下にする必要がある。
 一方で、SとSnとは、それぞれ含有量が低ければ低いほど、高温での保持後の靱性の向上には有利であるものの、それぞれ、溶接中の溶融池の対流、およびアーク現象に影響して溶け込み深さを増大させ、溶接施工性(特に、初層溶接時の裏波形成能)を向上させる効果を有する。本実施形態に係るオーステナイト系耐熱鋼では、その効果を得るために、SとSnとの合計量を0.0012%以上とする必要がある。好ましいSとSnとの合計含有量は0.0015%以上、さらに好ましい合計含有量は0.0018%以上である。
0.0012% ≤ [% S] + [% Sn] ≤ 2.5 x [% B] + 0.0125% (1)
In the austenitic heat-resistant steel according to the present embodiment, it is necessary to control the content of each element as described above, and further, the S content, the Sn content, and the B content need to satisfy the above formula (1). is there.
Here, [% S], [% Sn], and [% B] in the formula (1) indicate the contents of S, Sn, and B in mass%, respectively.
S and Sn are elements that segregate at the austenite grain boundaries during holding at high temperatures and weaken their binding force. Therefore, in general, steel containing S and Sn has a reduced toughness after being held at a high temperature for a long time. However, as the present inventors have found, B has a high diffusion rate and segregates at the austenite grain boundaries faster than S and Sn, and suppresses a decrease in toughness due to segregation of S and Sn at the grain boundaries. .. In order to obtain the effect sufficiently, it is necessary to make the total content of S and Sn equal to or less than 2.5 × [% B] + 0.0125% with respect to the content of B.
On the other hand, the lower the content of S and Sn, the more advantageous it is to improve the toughness after holding at high temperature, but they affect the convection and arc phenomenon of the molten pool during welding, respectively. It has the effect of increasing the penetration depth and improving the weldability (particularly, the back wave forming ability at the time of initial layer welding). In the austenitic heat-resistant steel according to the present embodiment, the total amount of S and Sn needs to be 0.0012% or more in order to obtain the effect. The total content of preferred S and Sn is 0.0015% or more, and a more preferable total content is 0.0018% or more.
 本実施形態に係るオーステナイト系耐熱鋼は、上記の元素を含み、残部がFe及び不純物であることを基本とするが、上記に加え、合金成分としてのFeの一部に代えて、下記の群の中の少なくとも1種の元素を含有してもよい。ただし、これらの元素は必ずしも含有する必要がないので、下限はいずれも0%である。以下に限定理由を述べる。 The austenitic heat-resistant steel according to the present embodiment basically contains the above elements and the balance is Fe and impurities. In addition to the above, the following group is used instead of a part of Fe as an alloy component. It may contain at least one element in the above. However, since these elements do not necessarily have to be contained, the lower limit is 0%. The reasons for the limitation are described below.
V:0~0.08%
 Vは炭素(C)もしくは窒素(N)と結合して微細な炭化物または炭窒化物を形成し、クリープ強度の向上に寄与する元素である。そのため必要に応じて含有させてもよい。この効果を得る場合、V含有量は、好ましくは0.01%以上、さらに好ましくは0.02%以上である。
 しかしながら、Vが過剰に含有された場合、炭窒化物が多量に析出し、クリープ延性が低下する。そのため、含有させる場合でも、V含有量は0.08%以下とする必要がある。V含有量は、好ましくは0.07%以下、さらに好ましくは0.06%以下である。より一層好ましくは0.04%以下である。
V: 0 to 0.08%
V is an element that combines with carbon (C) or nitrogen (N) to form fine carbides or carbonitrides and contributes to the improvement of creep strength. Therefore, it may be contained as needed. When this effect is obtained, the V content is preferably 0.01% or more, more preferably 0.02% or more.
However, when V is excessively contained, a large amount of carbonitride is precipitated and the creep ductility is lowered. Therefore, even when it is contained, the V content needs to be 0.08% or less. The V content is preferably 0.07% or less, more preferably 0.06% or less. Even more preferably, it is 0.04% or less.
Ti:0~0.08%
 TiはVと同様、炭素もしくは窒素と結合して微細な炭化物または炭窒化物を形成し、クリープ強度の向上に寄与する元素である。そのため必要に応じて含有させてもよい。この効果を得る場合、Ti含有量は、好ましくは0.01%以上、さらに好ましくは0.02%以上である。
 しかしながら、Tiが過剰に含有された場合、炭窒化物が多量に析出し、クリープ延性が低下する。そのため、含有させる場合でも、Ti含有量は0.08%以下とする必要がある。Ti含有量は、好ましくは0.07%以下、さらに好ましくは0.06%以下である。
Ti: 0 to 0.08%
Like V, Ti is an element that combines with carbon or nitrogen to form fine carbides or carbonitrides and contributes to the improvement of creep strength. Therefore, it may be contained as needed. When this effect is obtained, the Ti content is preferably 0.01% or more, more preferably 0.02% or more.
However, when Ti is excessively contained, a large amount of carbonitride is precipitated and the creep ductility is lowered. Therefore, even when it is contained, the Ti content needs to be 0.08% or less. The Ti content is preferably 0.07% or less, more preferably 0.06% or less.
Ta:0~0.08%
 Taは、VおよびTiと同様、炭素もしくは窒素と結合して微細な炭化物または炭窒化物を形成し、クリープ強度の向上に寄与する元素である。そのため必要に応じて含有させてもよい。この効果を得る場合、Ta含有量は、好ましくは0.01%以上、さらに好ましくは0.02%以上である。
 しかしながら、Taが過剰に含有された場合、炭窒化物が多量に析出し、クリープ延性が低下する。そのため、含有させる場合でも、Ta含有量は0.08%以下とする必要がある。Ta含有量は、好ましくは0.07%以下、さらに好ましくは0.06%以下である。
Ta: 0-0.08%
Like V and Ti, Ta is an element that combines with carbon or nitrogen to form fine carbides or carbonitrides and contributes to the improvement of creep strength. Therefore, it may be contained as needed. When this effect is obtained, the Ta content is preferably 0.01% or more, more preferably 0.02% or more.
However, when Ta is excessively contained, a large amount of carbonitride is precipitated and the creep ductility is lowered. Therefore, even when it is contained, the Ta content needs to be 0.08% or less. The Ta content is preferably 0.07% or less, more preferably 0.06% or less.
Ca:0~0.010%
 Caは製造時の熱間加工性を改善する効果を有する元素である。そのため、必要に応じて含有させてもよい。この効果を得る場合、Ca含有量は、好ましくは0.001%以上、さらに好ましくは0.002%以上である。
 しかしながら、Caが過剰に含有された場合、酸素(O)と結合し、清浄性が著しく低下することで、却って熱間加工性が劣化する。そのため、含有させる場合でも、Ca含有量は0.010%以下とする。Ca含有量は、好ましくは0.008%以下、さらに好ましくは0.006%以下である。
Ca: 0 to 0.010%
Ca is an element having an effect of improving hot workability during production. Therefore, it may be contained as needed. When this effect is obtained, the Ca content is preferably 0.001% or more, more preferably 0.002% or more.
However, when Ca is excessively contained, it combines with oxygen (O) and the cleanliness is remarkably lowered, so that the hot workability is deteriorated. Therefore, even when it is contained, the Ca content is 0.010% or less. The Ca content is preferably 0.008% or less, more preferably 0.006% or less.
Mg:0~0.010%
 MgはCaと同様、製造時の熱間加工性を改善する効果を有する元素である。そのため、必要に応じて含有させてもよい。この効果を得る場合、Mg含有量は、好ましくは0.001%以上、さらに好ましくは0.002%以上である。
 しかしながら、Mgが過剰に含有された場合、酸素(O)と結合し、清浄性が著しく低下して、却って熱間加工性が劣化する。そのため、含有させる場合でも、Mg含有量は0.010%以下とする。Mg含有量は、好ましくは0.008%以下、さらに好ましくは0.006%以下である。
Mg: 0 to 0.010%
Like Ca, Mg is an element that has the effect of improving hot workability during manufacturing. Therefore, it may be contained as needed. When this effect is obtained, the Mg content is preferably 0.001% or more, more preferably 0.002% or more.
However, when Mg is excessively contained, it is combined with oxygen (O), the cleanliness is remarkably lowered, and the hot workability is deteriorated. Therefore, even when it is contained, the Mg content is 0.010% or less. The Mg content is preferably 0.008% or less, more preferably 0.006% or less.
REM:0~0.080%
 REMは、CaやMgと同様、製造時の熱間加工性を改善する効果を有する元素である。そのため、必要に応じて含有させてもよい。この効果を得る場合、REM含有量は、好ましくは0.0005%以上、さらに好ましくは0.001%以上である。
 しかしながら、REMが過剰に含有された場合、酸素と結合し、清浄性が著しく低下して、却って熱間加工性が劣化する。そのため、含有させる場合でも、REM含有量は0.080%以下とする。REM含有量は、好ましくは0.060%以下、更に好ましくは0.050%以下である。
 「REM」とはSc、Yおよびランタノイドの合計17元素の総称であり、REMの含有量はREMのうちの1種または2種以上の元素の合計含有量を指す。また、REMについては一般的にミッシュメタルに含有される。このため、例えば、ミッシュメタルの形で添加して、REM含有量が上記の範囲となるようにしてもよい。
REM: 0 to 0.080%
Like Ca and Mg, REM is an element having an effect of improving hot workability during production. Therefore, it may be contained as needed. When this effect is obtained, the REM content is preferably 0.0005% or more, more preferably 0.001% or more.
However, when REM is excessively contained, it is combined with oxygen, the cleanliness is remarkably lowered, and the hot workability is deteriorated. Therefore, even when it is contained, the REM content is 0.080% or less. The REM content is preferably 0.060% or less, more preferably 0.050% or less.
"REM" is a general term for a total of 17 elements of Sc, Y and lanthanoid, and the content of REM refers to the total content of one or more elements of REM. Further, REM is generally contained in misch metal. Therefore, for example, it may be added in the form of misch metal so that the REM content is within the above range.
[製造方法]
 本実施形態に係るオーステナイト系耐熱鋼は、例えば上述した所定の化学組成を有する溶鋼を鋳込んで鋳片とし、この鋳片に対して、熱間鍛造の後、熱間加工および必要に応じて冷間加工を行って、所定の形状に成形し、その後、1050~1280℃で2~60分保持後に水冷する溶体化処理(溶体化熱処理)を行うことで得られる。熱間鍛造、熱間加工、冷間加工等の加工条件は、特に限定されず、形状に応じて適宜決定すればよい。
[Production method]
The austenitic heat-resistant steel according to the present embodiment is made into a slab by casting, for example, molten steel having the above-mentioned predetermined chemical composition, and the slab is hot-forged, then hot-worked and, if necessary, hot-worked. It is obtained by performing cold working, forming into a predetermined shape, and then performing a solution heat treatment (solution heat treatment) in which the product is held at 1050 to 1280 ° C. for 2 to 60 minutes and then cooled with water. The processing conditions such as hot forging, hot working, and cold working are not particularly limited and may be appropriately determined according to the shape.
 本実施形態に係るオーステナイト系耐熱鋼は、例えば発電用ボイラ等、高温で使用される機器に用いられる。高温で使用される機器の例としては、例えば石炭火力発電プラント、石油火力発電プラント、ごみ焼却発電プラントおよびバイオマス発電プラント等のボイラ用配管、石油化学プラントにおける分解管等が挙げられる。
 ここで、「高温で使用」とは、例えば450℃以上800℃以下(さらには500℃以上750℃以下)の環境で使用される態様が挙げられる。
The austenitic heat-resistant steel according to this embodiment is used for equipment used at high temperatures, such as a boiler for power generation. Examples of equipment used at high temperatures include boiler pipes for coal-fired power plants, oil-fired power plants, waste incineration power plants and biomass power plants, and decomposition pipes for petrochemical plants.
Here, "use at high temperature" includes, for example, an embodiment of use in an environment of 450 ° C. or higher and 800 ° C. or lower (further, 500 ° C. or higher and 750 ° C. or lower).
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
 表1A、表1Bに示す化学組成(残部はFe及び不純物:単位は質量%)を有する符号A~Nの材料を溶解して鋳込んだインゴットに対し、熱間鍛造および熱間圧延を行い、厚さ18mmの板形状に成形した。
 この板形状の素材を1180℃に加熱し、その温度で30分保持後に水冷する溶体化処理を行ってオーステナイト系耐熱鋼(No.1~14)を得た。
Hot forging and hot rolling were performed on the ingots in which the materials of reference numerals A to N having the chemical compositions shown in Tables 1A and 1B (the balance is Fe and impurities: the unit is mass%) were melted and cast. It was formed into a plate shape with a thickness of 18 mm.
This plate-shaped material was heated to 1180 ° C., held at that temperature for 30 minutes, and then water-cooled to obtain austenitic heat-resistant steels (Nos. 1 to 14).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[シャルピー衝撃試験/靭性の評価]
 溶体化処理後のオーステナイト系耐熱鋼から、機械加工により表裏面を研削し、板厚15mm、幅150mm、長さ150mmの板材(衝撃試験用母材)を複数採取した。また、その衝撃試験用母材の一部に対し、700℃で1000時間の時効熱処理を施した。
 その後、時効熱処理を行わなかった衝撃試験用母材および時効熱処理を行った衝撃試験用母材について、それぞれの板厚方向中央部から、ノッチを加工した2mmVノッチフルサイズシャルピー衝撃試験片を3本ずつ採取し、シャルピー衝撃試験に供した。
 シャルピー衝撃試験は、JISZ2242:2005に準拠して行った。試験は、20℃にて実施し、3本の試験片の吸収エネルギーの平均値が27J以上となるものを「合格」とし、中でも3本の試験片の吸収エネルギーの個値が全て27J以上となるものを「優」、それ以外を「可」とした。一方、3本の試験片の吸収エネルギーの平均値が27Jを下回るものを「不合格」とした。
[Charpy impact test / evaluation of toughness]
From the austenitic heat-resistant steel after the solution treatment, the front and back surfaces were ground by machining, and a plurality of plate materials (base material for impact test) having a plate thickness of 15 mm, a width of 150 mm, and a length of 150 mm were collected. Further, a part of the impact test base material was subjected to an aging heat treatment at 700 ° C. for 1000 hours.
After that, for the impact test base material that was not subjected to aging heat treatment and the impact test base material that was subjected to aging heat treatment, three 2 mm V notch full-size Charpy impact test pieces with notches were processed from the central part in the thickness direction of each plate. They were collected one by one and subjected to a Charpy impact test.
The Charpy impact test was conducted in accordance with JISZ2242: 2005. The test was carried out at 20 ° C., and those having an average absorbed energy value of 27 J or more for the three test pieces were regarded as "passed", and among them, the individual values of the absorbed energy of the three test pieces were all 27 J or more. The ones that become "excellent" and the others are "acceptable". On the other hand, those in which the average value of absorbed energy of the three test pieces was less than 27 J were regarded as "failed".
[溶接試験/溶接施工性の評価]
 また、溶体化処理後のオーステナイト系耐熱鋼から、機械加工により表裏面を研削し、板厚15mm、幅50mm、長さ100mmの板材(溶接試験用母材)を採取した。この溶接試験用母材の長手方向に、図1に示す開先加工を施した後、突き合わせ、シールドガスをArとした自動ガスタングステンアーク溶接により、「溶加材なし」、および「溶加材あり」の条件で初層溶接した。
 溶接に際しては、溶加材なしの場合、入熱を6kJ/cm、溶加材ありの場合、溶加材として外径1.2mmのJIS-Z3334(2011)SNi6617を用い、入熱を9kJ/cmとして、突き合わせ溶接を行った。
 得られた溶接継手の溶接線全長にわたり、裏ビードが形成されたものを溶接施工性が「合格」とし、中でも、溶接線全長にわたり裏ビードの幅が2mm以上となるものを「優」、幅は2mmを下回るが、1mm以上の幅の裏ビードが形成されたものを「可」とし、2継手のうち一部でも裏ビードが形成されない、もしくは一部でもビード幅が1mmを下回る部分があったものを溶接施工性が「不合格」と判定した。
[Welding test / Evaluation of weldability]
Further, from the austenitic heat-resistant steel after the solution treatment, the front and back surfaces were ground by machining, and a plate material (base material for welding test) having a plate thickness of 15 mm, a width of 50 mm and a length of 100 mm was collected. After performing the groove processing shown in FIG. 1 in the longitudinal direction of the base metal for welding test, butt welding is performed by automatic gas tungsten arc welding with Ar as the shield gas, and "no filler metal" and "welded filler material". The first layer was welded under the condition of "Yes".
For welding, if there is no filler metal, the heat input is 6 kJ / cm, and if there is a filler metal, JIS-Z3334 (2011) SNi6617 with an outer diameter of 1.2 mm is used as the filler material, and the heat input is 9 kJ / cm. Butt welding was performed as cm.
Welding workability is "passed" when the back bead is formed over the entire length of the weld line of the obtained welded joint, and among them, "excellent" is when the width of the back bead is 2 mm or more over the entire length of the weld line. Is less than 2 mm, but the one with a back bead with a width of 1 mm or more is regarded as "OK", and there is a part of the two joints where the back bead is not formed or the bead width is less than 1 mm. Welding workability was judged to be "failed".
[クリープ破断試験/クリープ強度の評価]
 加えて、前記の衝撃試験および溶接試験に合格したオーステナイト系耐熱鋼について、時効熱処理を施さなかった衝撃試験用母材から、丸棒クリープ試験片を採取し、クリープ破断試験をおこなった。その際、母材の目標破断時間が、1000時間となる700℃×167MPaの条件でクリープ破断試験を行った。クリープ破断試験は、JISZ2271:2010に準拠して行った。
 破断時間が目標破断時間(1000時間)を超えるものを「合格」とし、それを下回るものを「不合格」とした。
[Creep rupture test / evaluation of creep strength]
In addition, for the austenitic heat-resistant steel that passed the impact test and the welding test, a round bar creep test piece was collected from the impact test base material that had not been subjected to the aging heat treatment, and a creep rupture test was performed. At that time, a creep rupture test was conducted under the condition that the target rupture time of the base metal was 1000 hours at 700 ° C. × 167 MPa. The creep rupture test was performed in accordance with JISZ2271: 2010.
Those having a breaking time exceeding the target breaking time (1000 hours) were regarded as "pass", and those shorter than that were regarded as "failed".
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2から、本発明で規定する条件を満足する符号A~E、M、Nを用いて製造されたNo.1~5、13、14は、高温で長時間保持後に安定して優れた靭性が得られるとともに、溶接施工性及びクリープ強度も併せて具備することがわかる。 From Table 2, No. 1 produced using the symbols A to E, M, and N satisfying the conditions specified in the present invention. It can be seen that Nos. 1 to 5, 13 and 14 stably obtain excellent toughness after being held at a high temperature for a long time, and also have weldability and creep strength.
 一方、符号F~Hを用いたNo.6~8は、SとSnとの合計含有量が本発明で規定するB含有量との関係式の範囲を超えた。そのため、BによるSとSnの粒界偏析に伴う、粒界結合力低下の抑制効果が十分得られなかった。その結果、時効熱処理(高温長時間保持)後の靭性が目標を満足しなかった。
 符号IおよびJを用いたNo.9および10は、それぞれSおよびSnの含有量が上限を超えたため、これら元素の粒界偏析に伴う、粒界結合力低下が著しくなった。その結果、時効熱処理(高温長時間保持)後の靱性が目標を満足しなかった。
 また、符号Kを用いたNo.11は、SとSnとの合計含有量が本発明で規定する範囲を下回ったことで、これらの元素による裏波形成能向上の効果が得られず、溶接施工性に劣っていた。
 符号Lを用いたNo.12は、Co含有量が本発明で規定する範囲を下回った。その結果、十分なクリープ強度向上効果が得られなかった。
On the other hand, No. 1 using the symbols F to H. In 6 to 8, the total content of S and Sn exceeded the range of the relational expression with the B content specified in the present invention. Therefore, the effect of suppressing the decrease in grain boundary binding force due to the segregation of S and Sn grain boundaries by B could not be sufficiently obtained. As a result, the toughness after aging heat treatment (holding at high temperature for a long time) did not satisfy the target.
No. using the symbols I and J. In 9 and 10, since the contents of S and Sn exceeded the upper limit, respectively, the decrease in grain boundary binding force due to the segregation of these elements at the grain boundary became remarkable. As a result, the toughness after aging heat treatment (holding at high temperature for a long time) did not satisfy the target.
In addition, No. In No. 11, since the total content of S and Sn was less than the range specified in the present invention, the effect of improving the back wave forming ability by these elements could not be obtained, and the welding workability was inferior.
No. using the symbol L. In No. 12, the Co content was below the range specified in the present invention. As a result, a sufficient creep strength improving effect could not be obtained.
 以上のように本発明の要件を満足する場合のみ、溶接施工性を阻害することなく、長時間保持後に安定して優れた靭性が得られるとともに、十分なクリープ強度も得られることがわかる。 It can be seen that only when the requirements of the present invention are satisfied as described above, stable and excellent toughness can be obtained after long-term holding without impairing weldability, and sufficient creep strength can also be obtained.
 本発明によれば、溶接施工性に優れ、かつ、高温で長時間保持後の安定した靭性、優れたクリープ強度が両立できるオーステナイト系耐熱鋼を提供することができる。 According to the present invention, it is possible to provide an austenitic heat-resistant steel having excellent weldability, stable toughness after being held at a high temperature for a long time, and excellent creep strength.

Claims (2)

  1.  化学組成が、質量%で、
    C:0.04%~0.12%、
    Si:0.10%~0.30%、
    Mn:0.20%~0.80%、
    P:0%~0.030%、
    S:0.0001%~0.0020%、
    Sn:0.0005%~0.0230%、
    Cu:2.3%~3.8%、
    Co:0.90%~2.40%、
    Ni:22.0%~28.0%、
    Cr:20.0%~25.0%、
    Mo:0.01%~0.40%、
    W:2.8%~4.2%、
    Nb:0.20%~0.80%、
    B:0.0010%~0.0050%、
    N:0.16%~0.30%、
    Al:0%~0.030%、
    O:0%~0.030%、
    V:0%~0.08%、
    Ti:0%~0.08%、
    Ta:0%~0.08%、
    Ca:0%~0.010%、
    Mg:0%~0.010%、
    REM:0%~0.080%、
    を含み、残部がFe及び不純物からなり、
    かつ(1)式を満足する、
    ことを特徴とする、オーステナイト系耐熱鋼。
    0.0012%≦[%S]+[%Sn]≦2.5×[%B]+0.0125% (1)
    ただし、前記式(1)中の[%S]、[%Sn]、[%B]はそれぞれ、S、Sn、Bの質量%での含有量を示す。
    The chemical composition is mass%,
    C: 0.04% to 0.12%,
    Si: 0.10% to 0.30%,
    Mn: 0.20% to 0.80%,
    P: 0% to 0.030%,
    S: 0.0001% to 0.0020%,
    Sn: 0.0005% -0.0230%,
    Cu: 2.3% to 3.8%,
    Co: 0.90% to 2.40%,
    Ni: 22.0% to 28.0%,
    Cr: 20.0% to 25.0%,
    Mo: 0.01% to 0.40%,
    W: 2.8% to 4.2%,
    Nb: 0.20% to 0.80%,
    B: 0.0010% to 0.0050%,
    N: 0.16% to 0.30%,
    Al: 0% to 0.030%,
    O: 0% to 0.030%,
    V: 0% to 0.08%,
    Ti: 0% to 0.08%,
    Ta: 0% to 0.08%,
    Ca: 0% to 0.010%,
    Mg: 0% to 0.010%,
    REM: 0% to 0.080%,
    The balance consists of Fe and impurities.
    And satisfy equation (1),
    Austenitic heat-resistant steel characterized by this.
    0.0012% ≤ [% S] + [% Sn] ≤ 2.5 x [% B] + 0.0125% (1)
    However, [% S], [% Sn], and [% B] in the formula (1) indicate the contents of S, Sn, and B in mass%, respectively.
  2.  前記化学組成が、
    V:0.01%~0.08%、
    Ti:0.01%~0.08%、
    Ta:0.01%~0.08%、
    Ca:0.001%~0.010%、
    Mg:0.001%~0.010%、
    REM:0.0005%~0.080%、
    から選択される1種以上を含有する、
    ことを特徴とする請求項1に記載のオーステナイト系耐熱鋼。
    The chemical composition
    V: 0.01% -0.08%,
    Ti: 0.01% -0.08%,
    Ta: 0.01% -0.08%,
    Ca: 0.001% to 0.010%,
    Mg: 0.001% -0.010%,
    REM: 0.0005% -0.080%,
    Contains one or more selected from,
    The austenitic heat-resistant steel according to claim 1.
PCT/JP2020/029240 2019-08-29 2020-07-30 Austenitic heat-resistant steel WO2021039266A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/635,312 US20220325394A1 (en) 2019-08-29 2020-07-30 Austenitic heat-resistant steel
KR1020227005208A KR20220034226A (en) 2019-08-29 2020-07-30 Austenitic heat-resistant steel
JP2021542661A JP7265203B2 (en) 2019-08-29 2020-07-30 Austenitic heat resistant steel
CN202080060833.0A CN114341381A (en) 2019-08-29 2020-07-30 Austenitic heat-resistant steel
EP20856550.7A EP4023776A4 (en) 2019-08-29 2020-07-30 Austenitic heat-resistant steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019156592 2019-08-29
JP2019-156592 2019-08-29

Publications (2)

Publication Number Publication Date
WO2021039266A1 true WO2021039266A1 (en) 2021-03-04
WO2021039266A9 WO2021039266A9 (en) 2022-01-06

Family

ID=74683820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029240 WO2021039266A1 (en) 2019-08-29 2020-07-30 Austenitic heat-resistant steel

Country Status (6)

Country Link
US (1) US20220325394A1 (en)
EP (1) EP4023776A4 (en)
JP (1) JP7265203B2 (en)
KR (1) KR20220034226A (en)
CN (1) CN114341381A (en)
WO (1) WO2021039266A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7368722B2 (en) * 2019-12-19 2023-10-25 日本製鉄株式会社 Austenitic heat-resistant steel weld metal, welded joints, and welding materials for austenitic heat-resistant steel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002537486A (en) 1999-02-16 2002-11-05 サンドビック アクティエボラーグ(プブル) Heat-resistant austenitic stainless steel
JP2004250783A (en) 2003-01-29 2004-09-09 Sumitomo Metal Ind Ltd Austenitic stainless steel, and production method therefor
WO2009044796A1 (en) 2007-10-03 2009-04-09 Sumitomo Metal Industries, Ltd. Austenitic stainless steel
JP2009084606A (en) 2007-09-28 2009-04-23 Sumitomo Metal Ind Ltd Austenitic stainless steel for use in high temperature superior in workability after long period of use
WO2017119415A1 (en) * 2016-01-05 2017-07-13 新日鐵住金株式会社 Austenitic heat-resistant alloy and method for manufacturing same
JP2019156592A (en) 2018-03-14 2019-09-19 Jfeスチール株式会社 Winding device and winding method for storage material protection sheet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104195460B (en) * 2014-09-02 2016-08-17 江苏武进不锈股份有限公司 Austenitic heat-resistance steel
JP6369632B2 (en) * 2015-06-15 2018-08-08 新日鐵住金株式会社 High Cr austenitic stainless steel
JP2017014576A (en) * 2015-07-01 2017-01-19 新日鐵住金株式会社 Austenitic heat resistant alloy and weldment structure
US20180216215A1 (en) * 2015-07-01 2018-08-02 Nippon Steel & Sumitomo Metal Corporation Austenitic heat-resistant alloy and welded structure
JP6753136B2 (en) * 2016-05-09 2020-09-09 日本製鉄株式会社 Austenitic heat-resistant steel weld metal and welded joints with it
CN106702259A (en) * 2016-11-29 2017-05-24 山西太钢不锈钢股份有限公司 Manufacturing method of wolfram-contained austenite stainless steel seamless tube

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002537486A (en) 1999-02-16 2002-11-05 サンドビック アクティエボラーグ(プブル) Heat-resistant austenitic stainless steel
JP2004250783A (en) 2003-01-29 2004-09-09 Sumitomo Metal Ind Ltd Austenitic stainless steel, and production method therefor
JP2009084606A (en) 2007-09-28 2009-04-23 Sumitomo Metal Ind Ltd Austenitic stainless steel for use in high temperature superior in workability after long period of use
WO2009044796A1 (en) 2007-10-03 2009-04-09 Sumitomo Metal Industries, Ltd. Austenitic stainless steel
WO2017119415A1 (en) * 2016-01-05 2017-07-13 新日鐵住金株式会社 Austenitic heat-resistant alloy and method for manufacturing same
JP2019156592A (en) 2018-03-14 2019-09-19 Jfeスチール株式会社 Winding device and winding method for storage material protection sheet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4023776A4

Also Published As

Publication number Publication date
JPWO2021039266A1 (en) 2021-03-04
JP7265203B2 (en) 2023-04-26
WO2021039266A9 (en) 2022-01-06
US20220325394A1 (en) 2022-10-13
KR20220034226A (en) 2022-03-17
EP4023776A1 (en) 2022-07-06
EP4023776A4 (en) 2022-08-31
CN114341381A (en) 2022-04-12

Similar Documents

Publication Publication Date Title
JP4697357B1 (en) Austenitic heat-resistant alloy
JP6384610B2 (en) Austenitic heat resistant alloys and welded structures
US20090196783A1 (en) Austenitic stainless steel welded joint and austenitic stainless steel welding material
JP6384611B2 (en) Austenitic heat resistant alloys and welded structures
JP6753136B2 (en) Austenitic heat-resistant steel weld metal and welded joints with it
JP5206676B2 (en) Ferritic heat resistant steel
JP5169532B2 (en) Ferritic heat resistant steel
JP6852809B2 (en) Austenitic heat-resistant steel Welded metal, welded joints, welding materials for austenitic heat-resistant steel, and methods for manufacturing welded joints
KR102255016B1 (en) Welding materials for austenitic heat-resistant steel, weld metals and welded structures, and methods of manufacturing welded metals and welded structures
KR102458203B1 (en) austenitic stainless steel
WO2021039266A1 (en) Austenitic heat-resistant steel
JP2017014576A (en) Austenitic heat resistant alloy and weldment structure
JP2017014575A (en) Austenitic heat resistant alloy and weldment structure
JP7295418B2 (en) welding material
JP6756147B2 (en) Welding material for austenitic heat resistant steel
JPWO2018066573A1 (en) Austenitic heat-resistant alloy and welded joint using the same
JP2021098199A (en) Austenitic heat-resistant steel weld metal, weld joint, and weld material for austenitic heat-resistant steel
JP7376767B2 (en) Ferritic heat-resistant steel dissimilar welded joint and its manufacturing method
JP7183808B2 (en) Welding material for heat-resistant austenitic steel, weld metal, welded structure, and method for manufacturing welded structure
JPH08120392A (en) Austenitic corrosion resistant alloy for high efficiency rubbish power generating boiler superheater tube
JP2017202492A (en) Austenitic heat-resistant steel weld metal and weld joint having the same
JP2021080510A (en) Austenitic heat-resistant steel welded joint

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856550

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021542661

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227005208

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020856550

Country of ref document: EP

Effective date: 20220329