JP5206676B2 - Ferritic heat resistant steel - Google Patents

Ferritic heat resistant steel Download PDF

Info

Publication number
JP5206676B2
JP5206676B2 JP2009517797A JP2009517797A JP5206676B2 JP 5206676 B2 JP5206676 B2 JP 5206676B2 JP 2009517797 A JP2009517797 A JP 2009517797A JP 2009517797 A JP2009517797 A JP 2009517797A JP 5206676 B2 JP5206676 B2 JP 5206676B2
Authority
JP
Japan
Prior art keywords
haz
less
content
steel
creep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009517797A
Other languages
Japanese (ja)
Other versions
JPWO2008149703A1 (en
Inventor
弘征 平田
満 吉澤
和博 小川
正晃 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009517797A priority Critical patent/JP5206676B2/en
Publication of JPWO2008149703A1 publication Critical patent/JPWO2008149703A1/en
Application granted granted Critical
Publication of JP5206676B2 publication Critical patent/JP5206676B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese

Description

本発明は、火力発電ボイラなどの高温で使用される部材に用いられる、溶接熱影響部の高温強度と耐溶接割れ性に優れるフェライト系耐熱鋼に関する。   The present invention relates to a ferritic heat resistant steel that is excellent in high temperature strength and weld crack resistance of a weld heat affected zone, which is used for a member used at high temperatures such as a thermal power generation boiler.

近年、火力発電においては熱効率を高めるために蒸気条件の高温高圧化が進められており、将来的には650℃、350気圧という超々臨界圧条件での操業が計画されている。フェライト系耐熱鋼は、オーステナイト系ステンレス鋼に比べて安価であり、かつ、熱膨張係数が小さいという耐熱鋼としての利点を有するため広く利用されている。   In recent years, in thermal power generation, high-temperature and high-pressure steam conditions have been promoted in order to increase thermal efficiency. In the future, operation under ultra-supercritical conditions of 650 ° C. and 350 atm is planned. Ferritic heat resistant steels are widely used because they are less expensive than austenitic stainless steels and have the advantage of heat resistant steels having a low coefficient of thermal expansion.

フェライト系耐熱鋼については、将来的な蒸気条件の過酷化に対応すべく高強度化が図られている。例えば、特許文献1と特許文献2には、WとMoの含有量を最適化するとともに、CoおよびBを含有させることが提案されている。また、特許文献3にはWとMoを添加することによって微細な金属間化合物相による強化を活用した鋼が提案されている。そして、特許文献4にはマルテンサイトラス界面に析出するM23系炭化物や金属間化合物相を活用して、高強度化を図った鋼が提案されている。Ferritic heat-resisting steels are being strengthened to cope with severe future steam conditions. For example, Patent Document 1 and Patent Document 2 propose that the contents of W and Mo are optimized and that Co and B are contained. Patent Document 3 proposes a steel that utilizes the strengthening by a fine intermetallic compound phase by adding W and Mo. Patent Document 4 proposes a steel having high strength utilizing M 23 C 6 carbides and intermetallic compound phases precipitated at the martensitic lath interface.

しかしながら、これらフェライト系耐熱鋼を溶接構造物として使用する場合、例えば、非特許文献1に示されているように、溶接による熱サイクルを受けた溶接熱影響部(以下、HAZ)ではクリープ強度が大きく低下することがある。そのため、高強度化を図った鋼の利点を十分に活用できないという問題がある。そこで、鋼のみならず,溶接熱サイクルを受けたHAZのクリープ強度の向上を目的とした鋼についても提案がなされている。   However, when these ferritic heat resistant steels are used as a welded structure, for example, as shown in Non-Patent Document 1, the creep strength is low in a weld heat affected zone (hereinafter referred to as HAZ) that has undergone a thermal cycle by welding. It may be greatly reduced. Therefore, there exists a problem that the advantage of steel which aimed at strengthening cannot fully be utilized. Therefore, not only steel but also steel aimed at improving the creep strength of HAZ subjected to welding heat cycle has been proposed.

例えば、特許文献5には溶接入熱に対して安定なTi、Zr、Hf系の窒化物を生成させることにより、特許文献6にはWを添加するとともに(Nb、Ta)炭窒化物を微細に析出させることにより、また、特許文献7と特許文献8にはCr炭化物の生成を抑制し、微細なV、Nb等の炭窒化物の長時間安定性を高める等により、それぞれ、継手部の長時間クリープ強度を改善した鋼が開示されている。このように、炭窒化物を活用したHAZの強度改善手法が種々提案されているものの、実用面からはさらなるHAZ強度の向上が望まれている。   For example, Patent Document 5 generates Ti, Zr, and Hf-based nitrides that are stable against welding heat input, and Patent Document 6 adds W to (Nb, Ta) carbonitrides. In addition, in Patent Document 7 and Patent Document 8, the formation of Cr carbide is suppressed, and the long-term stability of carbonitrides such as fine V and Nb is improved. Steels with improved long term creep strength are disclosed. As described above, various HAZ strength improvement methods utilizing carbonitrides have been proposed, but further improvement in HAZ strength is desired from a practical aspect.

さらに、特許文献9には、Bを0.003〜0.03%含有させることにより、HAZでの細粒化を抑え、HAZでのクリープ強度を改善するという方法が提案されている。しかしながら、Bはこのような効果を有する元素であることが知られている一方、溶接に際しては、溶接金属の凝固割れやHAZの液化割れ感受性を高める元素であることが広く知られている。そのため、ボイラ用主蒸気管や圧力容器など厚肉部材として使用される場合には、十分な溶接性(耐溶接割れ性)が得られないといった問題がある。   Furthermore, Patent Document 9 proposes a method in which 0.003 to 0.03% B is contained to suppress the fine graining in the HAZ and to improve the creep strength in the HAZ. However, while B is known to be an element having such an effect, it is widely known that during welding, it is an element that enhances the susceptibility to solidification cracking of weld metal and liquefaction cracking of HAZ. Therefore, when it is used as a thick member such as a main steam pipe for a boiler or a pressure vessel, there is a problem that sufficient weldability (weld crack resistance) cannot be obtained.

特開平4−371551号公報JP-A-4-371551 特開平4−371552号公報JP-A-4-371552 特開2001−152293号公報JP 2001-152293 A 特開2002−241903号公報JP 2002-241903 A 特開平8−85848号公報JP-A-8-85848 特開平9−71845号公報JP-A-9-71845 特開2001−279391号公報JP 2001-279391 A 特開2002−69588号公報JP 2002-69588 A 特開2004−300532号公報JP 2004-300532 A Science and Technologyof Welding and Joining, 1996, Vol.1, No.1, p.36〜42Science and Technologyof Welding and Joining, 1996, Vol.1, No.1, p.36〜42

このように、フェライト系耐熱鋼は、安価であることに加えて熱膨張係数が小さいという利点を有するため、蒸気条件の高温高圧化が進められている火力発電ボイラなどで溶接構造物として使用されることが期待されている。   Thus, ferritic heat-resistant steel has the advantage of having a low coefficient of thermal expansion in addition to being inexpensive, so it is used as a welded structure in thermal power generation boilers and the like where steam conditions are being increased at high temperatures and pressures. It is expected that

そして、上述のとおり、さらに高温高圧条件でも使用することができるように、さらなる高強度化とともに溶接継手のHAZのクリープ強度を改善するために、種々の提案がなされている。しかし、HAZの高強度化は未だ不十分であるだけでなく、溶接時の十分な耐溶接割れ性が得られていないという問題がある。   As described above, various proposals have been made in order to further increase the strength and improve the creep strength of the HAZ of the welded joint so that it can be used even under high temperature and high pressure conditions. However, there is a problem that not only the strength of HAZ is increased, but also sufficient weld crack resistance during welding cannot be obtained.

本発明は、このような状況に鑑み、HAZの耐溶接割れ性に優れるとともに、クリープ強度にも優れるフェライト系耐熱鋼を提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a ferritic heat resistant steel having excellent weld crack resistance of HAZ and excellent creep strength.

HAZのクリープ強度を向上させるためには、Cr、Co、V、Nbを所定の範囲に規制するとともに、Bを添加することが有効であることが明らかとなった。しかしながら、HAZを高強度化するのに必要な量のBを添加した場合、HAZおよび溶接金属の割れ感受性が増大し、耐溶接割れ性に問題があることが明らかとなった。   In order to improve the creep strength of HAZ, it has become clear that it is effective to restrict Cr, Co, V, Nb to a predetermined range and add B. However, it has been clarified that, when an amount of B necessary for increasing the strength of HAZ is added, the cracking susceptibility of HAZ and weld metal increases, and there is a problem in weld crack resistance.

そこで、HAZでのクリープ強度を改善し、かつ優れた溶接性を両立させるためには、次のとおり、CおよびBの含有量の最適化によって、問題解決を図ることができることを見出した。本発明に係るフェライト系耐熱鋼では、HAZにおけるクリープ強度が汎用鋼の破断時間の3倍以上の破断時間、好ましくは5倍以上の破断時間であることを目標値とする。   Thus, it has been found that in order to improve the creep strength in HAZ and achieve both excellent weldability, the problem can be solved by optimizing the contents of C and B as follows. In the ferritic heat resistant steel according to the present invention, the target value is that the creep strength in the HAZ is a rupture time that is at least three times the rupture time of the general-purpose steel, and preferably a rupture time that is five times or more.

調査検討を行った結果、Cr:7〜13%、Co:1〜8%、V:0.05〜0.4%およびNb:0.01〜0.09%の組成範囲を有するフェライト系鋼において、Bを含有させた場合、HAZが高強度化されることが確認された。   As a result of investigation, a ferritic steel having a composition range of Cr: 7 to 13%, Co: 1 to 8%, V: 0.05 to 0.4% and Nb: 0.01 to 0.09%. In Table 1, it was confirmed that when B was contained, HAZ was strengthened.

HAZでのクリープ強度が母材に比べて低下するのは、溶接熱サイクルによりAc変態点からAc変態点の間の温度に加熱されることによる細粒化が一因である。細粒化は元の組織であるフェライト相(焼き戻しマルテンサイト相)がこの温度域に加熱された場合、粒界にオーステナイト相が新たに核生成し、成長することによって生じる。Bは粒界に偏析しやすい元素であり、この温度域に加熱された場合、元のフェライト相の粒界に偏析して粒界のエネルギーを低減し、オーステナイト相の核生成を抑制、遅延させることにより細粒化を抑制する。その結果、HAZでのクリープ強度を改善するものと考えられた。The reason why the creep strength in the HAZ is lower than that of the base material is partly due to refinement by heating to a temperature between the Ac 1 transformation point and the Ac 3 transformation point by the welding heat cycle. When the ferrite phase (tempered martensite phase), which is the original structure, is heated to this temperature range, the fine graining is caused by newly nucleating and growing an austenite phase at the grain boundary. B is an element that easily segregates at the grain boundary. When heated to this temperature range, it segregates at the grain boundary of the original ferrite phase to reduce the energy of the grain boundary and suppress or delay the nucleation of the austenite phase. This prevents fine graining. As a result, it was considered that the creep strength in HAZ was improved.

しかしながら、クリープ強度を改善する効果が得られる必要量以上のBを含有させた場合、溶接金属の凝固割れおよびHAZの液化割れ感受性が増大することがわかった。   However, it has been found that when more than the necessary amount of B that can improve the creep strength is contained, the solidification cracking of the weld metal and the liquefaction cracking sensitivity of the HAZ increase.

これは、Bは粒界に偏析しやすい元素であると同時に融点を大きく低下させる元素であることが一因である。加えて、SおよびPも、Bと同様に粒界偏析しやすく、かつ融点を大きく低下させる元素である。そのため、溶融線直近のHAZでは、Bの粒界偏析にPおよびSの粒界偏析が重畳し、粒界溶融が生じ、熱応力もしくは、外部応力により開口し、液化割れを生じるものと考えられた。   This is partly because B is an element that easily segregates at grain boundaries and at the same time an element that greatly reduces the melting point. In addition, S and P are also elements that are likely to segregate at the grain boundaries as well as B and greatly reduce the melting point. Therefore, in the HAZ closest to the melting line, P and S grain boundary segregations are superimposed on the B grain boundary segregation, resulting in grain boundary melting, opening due to thermal stress or external stress, and liquefaction cracking. It was.

溶接金属の凝固割れは、溶接材料の成分を調整することで防止は可能である。一方、HAZの液化割れは、使用する鋼の組成に係わる課題であり、実用に際しては大きな制約となる。このような問題点を踏まえ、HAZの液化割れの防止を可能とし、かつHAZを高強度化しうる要件を鋭意調査した。   Solidification cracking of the weld metal can be prevented by adjusting the components of the weld material. On the other hand, liquefaction cracking of HAZ is a problem related to the composition of the steel used, and is a major limitation in practical use. In light of these problems, the present inventors have intensively investigated the requirements that enable prevention of liquefaction cracking of HAZ and increase the strength of HAZ.

検討を繰り返した結果、Cの含有量を所定の範囲に規定した場合にのみ、液化割れの防止が可能になるとの新たな知見が得られた。そして、この理由は、次のように考えられた。   As a result of repeated studies, new knowledge was obtained that liquefaction cracking can be prevented only when the C content is defined within a predetermined range. And this reason was considered as follows.

すなわち、CはBと同じく、融点低下元素として作用し、上述のBによる融点低下作用に重畳し、HAZの液化割れ感受性を高める。そのため、Bの含有量に応じてCの含有量を低減することにより、融点の低下を軽減することが可能となると考えられた。そして、本発明の基本合金成分であるCr:7〜13%、Co:1〜8%、V:0.05〜0.4%、Nb:0.01〜0.09%の範囲における凝固脆性温度範囲(BTR)を実用上液化割れを十分に防止しうる100℃以下に縮小させるCの含有量(%)の上限が、熱力学的理論計算から(−5/3)×[%B]+0.085であると特定することができた。ここで、[%B]は鋼中のBの含有量(質量%)を表す(以下同じ)。   That is, C, like B, acts as a melting point lowering element, superimposes on the above-described melting point lowering action by B, and increases the liquefaction cracking sensitivity of HAZ. Therefore, it was considered that the decrease in the melting point can be reduced by reducing the C content according to the B content. And the solid alloy brittleness in the range of Cr: 7-13%, Co: 1-8%, V: 0.05-0.4%, Nb: 0.01-0.09% which is the basic alloy component of the present invention The upper limit of the content (%) of C that reduces the temperature range (BTR) to 100 ° C. or less, which can sufficiently prevent liquefaction cracking in practice, is (−5/3) × [% B] from thermodynamic theoretical calculation. +0.085 could be specified. Here, [% B] represents the B content (mass%) in the steel (the same applies hereinafter).

加えて、Cはその相互作用により、硫化物や隣化物の生成自由エネルギーに影響を与える。すなわち、高温ではCの含有量の増加とともにCrやNd等の硫化物もしくは燐化物の溶解度が減少し、さらにCの含有量が増加するとこれらの溶解度が再び増加する傾向を有する。硫化物や燐化物の溶解度が増加した場合、溶接等の熱影響により粒界に偏析するSやPの量が増え、液化割れの感受性が高まる。そのため、C量を減じた本発明範囲のC含有量の場合、硫化物や燐化物の溶解度が小さくなり安定な化合物が形成される。それに伴い粒界におけるSおよびPが減少し、融点低下抑制との相乗作用により、HAZの液化割れが防止されるものと考えられた。   In addition, C affects the free energy of formation of sulfides and vicinals by its interaction. That is, at high temperatures, the solubility of sulfides or phosphides such as Cr and Nd decreases with an increase in the C content, and when the C content further increases, the solubility tends to increase again. When the solubility of sulfide or phosphide increases, the amount of S or P segregated at the grain boundary due to the thermal effect of welding or the like increases, and the sensitivity to liquefaction cracking increases. Therefore, in the case of the C content within the range of the present invention in which the C content is reduced, the solubility of sulfide and phosphide is reduced, and a stable compound is formed. Along with this, S and P at the grain boundary decreased, and it was considered that liquefaction cracking of HAZ was prevented by a synergistic effect with the suppression of melting point lowering.

さらに、Bを含有させた上でCの含有量を低減させた場合には、液化割れ防止が可能となるばかりか、Bのみを含有させた場合に比べて、HAZのクリープ強度がより向上するとの新たな知見を得た。   Further, when the content of C is reduced after containing B, not only liquefaction cracking can be prevented, but also the creep strength of HAZ is further improved as compared with the case where only B is contained. I got new knowledge.

これは、Cの含有量を所定の範囲に低減した場合、粒界に存在する炭化物が減少する。そのため、Ac変態点からAc変態点の間の温度に加熱されて、粒界にオーステナイト相が核生成した場合でもピニング効果が小さいため、結晶粒が容易に粗大化しやすい。その結果、B含有による核生成抑制との重畳効果により、HAZでの細粒化抑制効果が大きくなる。さらには、フェライト鋼の強化に寄与する粒内のVやNbの微細炭窒化物の成長速度が抑えられることにより、Bのみを含有させた場合に比べ、クリープ強度の強化代が大きくなることによると考えられた。This is because when the C content is reduced to a predetermined range, the carbides present at the grain boundaries are reduced. Therefore, even when the austenite phase is heated to a temperature between the Ac 1 transformation point and the Ac 3 transformation point and the austenite phase is nucleated at the grain boundary, the pinning effect is small, so that the crystal grains are easily coarsened. As a result, the effect of suppressing grain refinement in the HAZ is increased due to the superposition effect with the suppression of nucleation due to the B content. Furthermore, since the growth rate of V and Nb fine carbonitrides in the grains that contribute to strengthening of ferritic steel is suppressed, the allowance for increasing the creep strength is larger than when only B is contained. It was considered.

しかしながら、極端にCの含有量を低減した場合には、粒内強化に寄与するVやNbの微細炭窒化物の生成量が少なく、十分にその強化効果が得られなくなるため強度改善効果が小さくなると考えられた。したがって、Cの含有量の下限は0.005%以上とした。   However, when the C content is extremely reduced, the amount of fine carbonitrides of V and Nb contributing to intragranular strengthening is small, and the strengthening effect cannot be obtained sufficiently, so the strength improving effect is small. It was thought to be. Therefore, the lower limit of the C content is set to 0.005% or more.

これらの検討の結果から、HAZの液化割れの防止を可能とし、かつHAZのクリープ強度を改善しうるためには、B:0.005〜0.025%、かつ、0.005≦C≦(−5/3)×[%B]+0.085の条件を満たすことが必要であることが判った。   From the results of these studies, in order to enable prevention of liquefaction cracking of HAZ and to improve the creep strength of HAZ, B: 0.005 to 0.025% and 0.005 ≦ C ≦ ( It was found that the condition of −5/3) × [% B] +0.085 must be satisfied.

本発明は、これらの新たな知見に基づいて完成したものであり、本発明に係るフェライト系耐熱鋼の要旨は、次の(1)〜(3)に示すとおりである。以下、それぞれ、本発明(1)〜(4)という。これらを総称して、本発明ということがある。   The present invention has been completed based on these new findings, and the gist of the ferritic heat resistant steel according to the present invention is as shown in the following (1) to (3). Hereinafter, these are referred to as the present inventions (1) to (4). These are collectively referred to as the present invention.

(1) 質量%で、Si:0.1%を超えて1.0%以下、Mn:2.0%以下、Co:1〜8%、Cr:7〜13%、V:0.05〜0.4%、Nb:0.01〜0.09%、MoおよびWの一方または両方を合計で0.5〜4%、B:0.01%を超えて0.025%以下、Al:0.03%以下、N:0.003〜0.06%およびNd:0.005〜0.08%を含有し、Cを下記(1)式を満足する量で含み、残部がFeおよび不純物からなり、不純物としてのO、PおよびSがそれぞれ、O:0.02%以下、P:0.03%以下およびS:0.02%以下であることを特徴とする高Crフェライト系耐熱鋼。
0.005≦C≦(−5/3)×B+0.085 ・・・・・(1)
ここで、CおよびBは、それぞれの元素の含有量(質量%)を示す。
(1) By mass%, Si: more than 0.1% and 1.0% or less, Mn: 2.0% or less, Co: 1-8%, Cr: 7-13%, V: 0.05- 0.4%, Nb: 0.01 to 0.09%, one or both of Mo and W in total 0.5 to 4%, B: more than 0.01% and 0.025% or less , Al: 0.03% or less, N: 0.003 to 0.06% and Nd: 0.005 to 0.08%, including C in an amount satisfying the following formula (1), with the balance being Fe and impurities O, P, and S as impurities are O: 0.02% or less, P: 0.03% or less, and S: 0.02% or less, respectively. .
0.005 ≦ C ≦ (−5/3) × B + 0.085 (1)
Here, C and B show content (mass%) of each element.

(2) 質量%で、Feの一部に代えて、Ta:0.08%以下を含むことを特徴とする、上記(1)の高Crフェライト系耐熱鋼。 (2) The high Cr ferritic heat-resisting steel according to (1) above, which contains, by mass%, Ta: 0.08% or less instead of part of Fe.

(3) 質量%で、Feの一部に代えて、Ca:0.02%以下およびMg:0.02%以下のうちの1種または2種を含むことを特徴とする、上記(1)または(2)に記載の高Crフェライト系耐熱鋼。 (3) The above (1), characterized in that it contains one or two of Ca: 0.02% or less and Mg: 0.02% or less in place of part of Fe by mass% Alternatively, the high Cr ferritic heat resistant steel according to (2) .

本発明に係るフェライト系耐熱鋼は、HAZの耐溶接割れ性に優れるとともに、優れたHAZのクリープ強度を有する。   The ferritic heat resistant steel according to the present invention is excellent in the HAZ weld crack resistance and has an excellent HAZ creep strength.

次に、本発明鋼の限定理由について述べる。なお、%表示は、質量%を表す。   Next, the reasons for limiting the steel of the present invention will be described. In addition,% display represents mass%.

C:0.005%以上、かつ、{(−5/3)×[%B]+0.085}%以下
CはBとともに本発明における重要な元素である。Cは炭化物を形成し、高温強度の確保に寄与するとともにマルテンサイト組織を得るのに有効な元素であるため、必須の元素である。しかしながら、粒界に偏析すると、BやS、Pと重畳して粒界の融点低下を促し、かつ粗粒HAZの硫化物や隣化物の生成に間接的に関与して液化割れ感受性に影響をあたえる。また、Cの含有量を低減すると、細粒HAZにおいて、変態時の結晶粒の粗大化促進および微細炭化物の成長抑制の効果によりクリープ強度改善効果を有する。Cそのものによる粒界の融点低下を抑制し、かつ粗粒HAZで安定した硫化物および燐化物を形成させ、S、Pの粒界偏析に起因した融点低下を軽減して液化割れを防止するとともに、細粒HAZのクリープ強度を改善するためには、後述するとおり、Bの含有量を特定の範囲に規定するとともに、Cを0.005%以上、かつ、{(−5/3)×[%B]+0.085}%以下とする必要がある。C含有量の好ましい下限は0.010%である。
C: 0.005% or more and {(−5/3) × [% B] +0.085}% or less
C together with B is an important element in the present invention. C is an essential element because it forms carbides, contributes to securing high-temperature strength and is effective in obtaining a martensite structure. However, if segregated at the grain boundaries, it will overlap with B, S, and P to promote a decrease in the melting point of the grain boundaries, and indirectly participate in the formation of sulfides and vicinals in the coarse grain HAZ, affecting the liquefaction cracking susceptibility. Give it. Further, when the content of C is reduced, the fine-grained HAZ has an effect of improving the creep strength due to the effect of promoting the coarsening of crystal grains at the time of transformation and suppressing the growth of fine carbides. Suppressing the lowering of the melting point of the grain boundary due to C itself and forming stable sulfides and phosphides with coarse-grained HAZ, reducing the lowering of the melting point due to segregation of S and P grain boundaries, and preventing liquefaction cracking In order to improve the creep strength of the fine-grained HAZ, as described later, the B content is specified in a specific range, and C is 0.005% or more, and {(−5/3) × [ % B] +0.085}% or less. The minimum with preferable C content is 0.010%.

Si:0.1%を超えて1.0%以下
Siは脱酸剤として0.1%超えで含有させるが、過剰に含有させるとクリープ延性および靭性の低下を招くため、上限を1.0%とする。望ましくは、0.8%以下である。より望ましくは、0.2%を超えて0.7%以下である。
Si: more than 0.1% and not more than 1.0% Si is contained as a deoxidizer in an amount exceeding 0.1%, but excessive addition causes a decrease in creep ductility and toughness. %. Desirably, it is 0.8% or less. More desirably, it is more than 0.2% and 0.7% or less.

Mn:2.0%以下
MnはSiと同様に、脱酸剤として含有させるが、過剰に含有させた場合、クリープ脆化および靭性の低下を招く。そのため、2.0%以下とする。望ましくは、1.8%以下である。しかしながら、過度の低減は、十分な脱酸効果が得られず鋼の清浄度を劣化させるとともに、製造コストの増大を招く。このため、特に下限は設けないが、Mnは0.01%以上含有させることが望ましい。
Mn: 2.0% or less Mn is contained as a deoxidizing agent in the same manner as Si. However, when excessively contained, Mn causes creep embrittlement and a decrease in toughness. Therefore, it is set to 2.0% or less. Desirably, it is 1.8% or less. However, excessive reduction does not provide a sufficient deoxidizing effect and deteriorates the cleanliness of the steel, and increases the manufacturing cost. For this reason, although there is no particular lower limit, it is desirable to contain Mn 0.01% or more.

Co:1〜8%
Coはオーステナイト生成元素であり、マトリックスのマルテンサイト化に必要な元素である。その効果を得るためには1%以上含有させる必要がある。しかし、8%を超えて含有させるとクリープ延性の著しい低下を招く。なお、望ましくは2%を超えて7%以下である。
Co: 1-8%
Co is an austenite-forming element and is an element necessary for the martensite formation of the matrix. In order to acquire the effect, it is necessary to contain 1% or more. However, if the content exceeds 8%, the creep ductility is significantly reduced. Desirably, it exceeds 2% and is 7% or less.

Cr:7〜13%
Crは、耐熱鋼において耐酸化性および耐高温腐食性を確保するとともにマトリックスのマルテンサイト組織を安定して得るために、必須の元素である。その効果を得るためには、7%以上含有させることが必要である。しかし、過剰に含有させると、多量のCr炭化物の生成により炭化物の安定性を低下させ、クリープ強度の低下を招くとともに、靭性も劣化する、そのため、Crの含有量は13%以下とする必要がある。望ましくは、8〜12%である。さらに望ましくは8〜10%である。
Cr: 7-13%
Cr is an indispensable element in order to ensure oxidation resistance and high temperature corrosion resistance in a heat resistant steel and to stably obtain a martensitic structure of a matrix. In order to acquire the effect, it is necessary to make it contain 7% or more. However, if it is contained excessively, the stability of the carbide is reduced due to the generation of a large amount of Cr carbide, and the creep strength is lowered and the toughness is also deteriorated. Therefore, the Cr content needs to be 13% or less. is there. Desirably, it is 8 to 12%. More desirably, it is 8 to 10%.

V:0.05〜0.4%
Vは、Nbとともに粒内に微細な炭窒化物を形成し、クリープ強度の向上に大きく寄与する元素である。その効果を得るためには、少なくとも0.05%以上含有させることが必要である。しかし、過剰に含有させた場合、炭窒化物の成長速度の増大を招き、その分散強化効果が早期に消失するとともに、靭性の低下を招くため、Vの含有量は0.4%以下とする必要がある。望ましくは、0.10〜0.35%である。
V: 0.05-0.4%
V is an element that forms fine carbonitrides in the grains together with Nb and greatly contributes to the improvement of creep strength. In order to acquire the effect, it is necessary to make it contain at least 0.05% or more. However, when excessively contained, the growth rate of carbonitrides is increased, the dispersion strengthening effect disappears early, and the toughness is reduced, so the V content is 0.4% or less. There is a need. Desirably, it is 0.10 to 0.35%.

Nb:0.01〜0.09%
Nbは、Vとともに粒内に高温まで安定な微細炭窒化物を形成し、クリープ強度の向上に大きく寄与する元素である。その効果を得るためには、少なくとも0.01%以上含有させることが必要である。しかし、過剰に含有させた場合、炭窒化物の成長速度の増大を招き、その分散強化効果が早期に消失するとともに、靭性の低下を招くため、Nbの含有量は0.09%以下とする必要がある。
Nb: 0.01 to 0.09%
Nb is an element that forms fine carbonitride that is stable up to a high temperature in the grains together with V and contributes greatly to the improvement of creep strength. In order to obtain the effect, it is necessary to contain at least 0.01% or more. However, when excessively contained, the growth rate of carbonitrides is increased, the dispersion strengthening effect disappears early, and the toughness is reduced. Therefore, the Nb content is 0.09% or less. There is a need.

MoおよびWの一方又は両方:0.5〜4%(合計で)
MoおよびWはマトリックスを固溶強化し、クリープ強度の向上に寄与する元素である。この効果を得るためには、MoおよびWの一方又は両方を、合計で0.5%以上含有させることが必要である。しかし、4%を超えて過剰に含有させると、粗大な金属間化合物を生成し、靭性の極端な低下を招く。なお、Wを単独で含有させる場合には、Wの含有量の下限は1%とすることが好ましい。
One or both of Mo and W: 0.5 to 4% (total)
Mo and W are elements that solid-solution strengthen the matrix and contribute to the improvement of creep strength. In order to acquire this effect, it is necessary to contain 0.5% or more of one or both of Mo and W in total. However, if it exceeds 4% and contains excessively, a coarse intermetallic compound will be produced | generated and the extreme fall of toughness will be caused. In addition, when making W contain independently, it is preferable that the minimum of content of W shall be 1%.

B:0.005〜0.025%
Bは、Cとともに本発明における重要な元素である。Bは、HAZにおいて粒界に偏析して粒界エネルギーを下げることにより、オーステナイト相の核生成を遅延させ、細粒化を抑制する。その効果を十分に得るためには少なくとも、0.005%以上含有させることが必要である。しかしながら、粗粒HAZにおいては、粒界偏析したBは粒界の融点低下を促し、SおよびPの偏析と重畳して、液化割れを発生させる。これを防止するためには、Cを前述の範囲に規定する必要がある。しかし、Bの含有量が0.025%を超えると、HAZのクリープ強度の改善効果が飽和するとともに、Cの含有量を前述の範囲に規定しても液化割れを防止することができない。なお、Bの含有量の下限は0.007%以上が望ましい。さらに望ましい範囲は、0.01%を超えて0.02%以下である。
B: 0.005-0.025%
B is an important element in the present invention together with C. B segregates at grain boundaries in HAZ and lowers grain boundary energy, thereby delaying nucleation of the austenite phase and suppressing grain refinement. In order to sufficiently obtain the effect, it is necessary to contain at least 0.005% or more. However, in coarse-grained HAZ, grain boundary segregated B promotes a decrease in the melting point of the grain boundary and overlaps with the segregation of S and P to cause liquefaction cracks. In order to prevent this, it is necessary to define C within the aforementioned range. However, if the B content exceeds 0.025%, the effect of improving the creep strength of HAZ is saturated, and liquefaction cracking cannot be prevented even if the C content is specified in the above range. The lower limit of the B content is preferably 0.007% or more. A more desirable range is more than 0.01% and 0.02% or less.

N:0.003〜0.06%
Nは、VやNbを含む微細な炭窒化物を形成し、クリープ強度の確保に有効な元素である。その効果を得るためには0.003%以上含有させることが必要である。しかし、過剰に含有させると炭窒化物の析出量の増大を招き、脆化の原因となる。そのため、Nの含有量の上限を0.06%とする。
N: 0.003-0.06%
N is an element that forms fine carbonitrides containing V and Nb and is effective in ensuring creep strength. In order to acquire the effect, it is necessary to make it contain 0.003% or more. However, if it is contained excessively, the amount of carbonitride deposited increases and causes embrittlement. Therefore, the upper limit of the N content is 0.06%.

Al:0.03%以下
Alは、脱酸剤として含有させるが、過剰に含有させるとクリープ延性および靭性の低下を招くため、上限を0.03%とする。望ましくは、0.02%以下である。しかしながら、過度の低減は、十分な脱酸効果が得られず鋼の清浄度を劣化させるとともに、製造コストの増大を招く。このため、特に下限は設けないが、Alは0.001%以上含有させることが望ましい。
Al: 0.03% or less Al is contained as a deoxidizing agent. However, if excessively contained, the creep ductility and toughness are reduced, so the upper limit is made 0.03%. Desirably, it is 0.02% or less. However, excessive reduction does not provide a sufficient deoxidizing effect and deteriorates the cleanliness of the steel, and increases the manufacturing cost. For this reason, although there is no particular lower limit, it is desirable to contain Al in an amount of 0.001% or more.

O:0.02%以下
Oは不純物として存在するが、多量に含まれる場合には、多量の酸化物を生成し、加工性や延性を劣化させる。そのため、Oの含有量を0.02%以下とする必要がある。
P:0.03%以下
Pは不純物として含まれるが、SおよびBとともに粗粒HAZにおいて粒界に偏析し、融点を低下させ液化割れを招く。それを防止するためには、C、Nb、SおよびBを所定の範囲に規定するとともに、Pの含有量を0.03%以下とする必要がある。
O: 0.02% or less O is present as an impurity, but when it is contained in a large amount, a large amount of oxide is generated, and workability and ductility are deteriorated. Therefore, the O content needs to be 0.02% or less.
P: 0.03% or less P is contained as an impurity, but segregates at grain boundaries in coarse-grained HAZ together with S and B, lowers the melting point, and causes liquefaction cracking. In order to prevent this, it is necessary to define C, Nb, S and B within a predetermined range and to make the P content 0.03% or less.

S:0.02%以下
Sは、Pと同様に不純物として含まれ、粗粒HAZにおいて粒界に偏析し、融点を低下させ液化割れを招く。それを防止するためには、C、Nb、SおよびPを所定の範囲に規定するとともに、Sの含有量を0.02%以下とする必要がある。
S: 0.02% or less S is contained as an impurity in the same manner as P, and segregates at the grain boundary in the coarse grain HAZ to lower the melting point and cause liquefaction cracking. In order to prevent this, it is necessary to define C, Nb, S and P within a predetermined range and to make the S content 0.02% or less.

本発明鋼は、必要に応じて、次に示す元素を所定量だけ含有させることができる。   The steel of the present invention can contain a predetermined amount of the following elements as required.

Nd:0.08%以下
Ndは、PやSとの親和力が強く、粗粒HAZの粒界において、SやPとの間で化合物を形成することにより、SやPによる融点低下を抑制し、HAZの液化割れを防止するとともに、SやPによる高温での使用中の粒界脆化を軽減してHAZのクリープ延性を改善するのに有効であるので、必要に応じて含有させてもよい。しかしながら、酸素との親和力が強いため、過剰に含有させた場合には、余分な酸化物を生成して、HAZの靭性低下を招くため、上限は0.08%とする。望ましい上限は0.06%である。なお、Ndを含有させることによる上記の効果を確実に得るためには、Ndを0.005%以上含有させることが望ましい。より望ましくは0.015%以上含有させることである。
Nd: 0.08% or less Nd has strong affinity with P and S, and forms a compound with S and P at the grain boundary of coarse HAZ, thereby suppressing a decrease in melting point due to S and P. In addition to preventing liquefaction cracking of HAZ, it is effective in reducing grain boundary embrittlement during use at high temperatures due to S and P and improving the creep ductility of HAZ. Good. However, since the affinity with oxygen is strong, if it is contained excessively, an excess oxide is generated and the toughness of the HAZ is reduced, so the upper limit is made 0.08%. A desirable upper limit is 0.06%. In addition, in order to acquire the said effect by containing Nd reliably, it is desirable to contain Nd 0.005% or more. More desirably, the content is 0.015% or more.

Ta:0.08%以下
Taは、VやNbと同様に、高温まで安定な微細炭化物を形成し、クリープ強度の向上に大きく寄与するため、必要に応じて含有させても良い。しかしながら、過剰に含有させた場合、炭化物の成長速度の増大を招くので、その分散強化効果が早期に消失するとともに、靭性の低下を招くため、上限は0.08%以下とする。なお、Ta含有による上記の効果を得るためには、0.005%以上含有させることが望ましい。
Ta: 0.08% or less Ta, like V and Nb, forms fine carbides that are stable up to a high temperature and greatly contributes to the improvement of creep strength. Therefore, Ta may be contained as necessary. However, when it is contained excessively, the growth rate of carbides is increased, so that the dispersion strengthening effect disappears early and the toughness is lowered. Therefore, the upper limit is made 0.08% or less. In addition, in order to acquire said effect by Ta containing, it is desirable to make it contain 0.005% or more.

Ca:0.02%以下
Caは、鋼の熱間加工性を向上させる元素であり、熱間加工性を向上させる必要がある場合には、含有させることができる。しかしながら、その含有量が0.02%を超えると、介在物の粗大化を招いて逆に加工性や靭性を損なうことから、その上限は0.02%とする。なお、Ca含有による上記の効果を得るためには、0.0003%以上含有させることが望ましい。なお、Caの含有量のより望ましい範囲は、0.001〜0.01%である。
Ca: 0.02% or less Ca is an element that improves the hot workability of steel, and can be contained when it is necessary to improve the hot workability. However, if its content exceeds 0.02%, inclusions become coarse and conversely, workability and toughness are impaired, so the upper limit is made 0.02%. In addition, in order to acquire said effect by Ca containing, it is desirable to make it contain 0.0003% or more. A more desirable range for the Ca content is 0.001 to 0.01%.

Mg:0.02%以下
Mgは、Caと同様に、鋼の熱間加工性を向上させる元素であり、熱間加工性を向上させる必要がある場合には、Caとともに又はMgを単独で、含有させることができる。しかしながら、その含有量が0.02%を超えると、介在物の粗大化を招いて逆に加工性や靭性を損なうことから、その上限は0.02%とする。なお、Mg含有による上記の効果を得るためには、0.0003%以上含有させることが望ましい。なお、Caの含有量のより望ましい範囲は、0.001〜0.01%である。
Mg: 0.02% or less Mg, like Ca, is an element that improves the hot workability of steel, and when it is necessary to improve the hot workability, Mg alone or Mg alone, It can be included. However, if its content exceeds 0.02%, inclusions become coarse and conversely, workability and toughness are impaired, so the upper limit is made 0.02%. In addition, in order to acquire said effect by Mg containing, it is desirable to make it contain 0.0003% or more. A more desirable range for the Ca content is 0.001 to 0.01%.

表1に示す化学組成を有する16種類の鋼を、真空溶解炉により溶製し、鋳造および圧延をした後、1150℃で1時間保持後に空冷の焼きならしと、770℃で1.5時間保持後に空冷の焼きもどしの熱処理を行った。なお、代符13は汎用鋼である火SUS410J3TBに相当する鋼であり,クリープ強度に関する比較鋼として使用した。機械加工により、板厚12mm、幅50mmおよび長さ300mmの鋼板ならびに板厚10mm、幅100〜120mmおよび長さ300〜500mmの鋼板を作製した。板厚12mmの鋼板はロンジバレストレイン試験に供し、HAZの液化割れ感受性を評価した。なお、代符9、10及び14は参考例である。
Sixteen kinds of steels having the chemical compositions shown in Table 1 were melted in a vacuum melting furnace, cast and rolled, held at 1150 ° C. for 1 hour, air-cooled normalizing, and 770 ° C. for 1.5 hours. After holding, heat treatment of air-cooled tempering was performed. In addition, the symbol 13 is steel equivalent to fire SUS410J3TB, which is a general-purpose steel, and was used as a comparative steel relating to creep strength. A steel plate having a plate thickness of 12 mm, a width of 50 mm and a length of 300 mm and a plate thickness of 10 mm, a width of 100 to 120 mm and a length of 300 to 500 mm were produced by machining. A steel plate having a thickness of 12 mm was subjected to the longibarestrain test to evaluate the liquefaction cracking susceptibility of HAZ. Incidentally, the symbols 9, 10 and 14 are reference examples.

Figure 0005206676
Figure 0005206676

ロンジバレストレイン試験とは、図1に模式的に示すように、GTA溶接により鋼板の長手方向にビードオンプレート溶接を行い、その溶接中に端部に力Fを負荷して曲げによる歪を付加し、強制的にHAZに割れを発生させ、その合計長さを測定することによって、HAZの液化割れ感受性を評価する方法である。溶接条件は200A×15V×10cm/min、付加歪量は4%とし、HAZに液化割れが発生しなかったものを合格とした。   As shown schematically in Fig. 1, the Longi Ballest Train test performs bead-on-plate welding in the longitudinal direction of a steel plate by GTA welding, and applies a force F to the end during the welding to add strain due to bending. In this method, the cracking of HAZ is forcibly generated and the total length thereof is measured to evaluate the liquefaction cracking sensitivity of HAZ. The welding conditions were 200 A × 15 V × 10 cm / min, the amount of added strain was 4%, and the one in which liquefaction cracking did not occur in HAZ was considered acceptable.

HAZに液化割れが生じなかった鋼種について、10mm厚さの鋼板から、板厚10mm、幅10mmおよび長さ100mmの試験材を採取し、HAZの強度低下の特に顕著な温度である1000℃に5秒間加熱するHAZ再現溶接熱サイクルを付与した。その後、試験材に740℃×30分、空冷の溶接後熱処理を実施し、クリープ試験片を採取し、温度650℃、応力117.7MPaの条件にてクリープ試験を実施した。   For a steel type in which liquefaction cracking did not occur in the HAZ, a test material having a thickness of 10 mm, a width of 10 mm and a length of 100 mm was taken from a 10 mm thick steel sheet, and the temperature was increased to 1000 ° C., which is a particularly remarkable temperature at which HAZ strength decreases. A HAZ reproducible welding heat cycle was applied that was heated for 2 seconds. Thereafter, the test material was subjected to heat treatment after welding at 740 ° C. for 30 minutes and air cooling, and a creep test piece was collected, and a creep test was performed under conditions of a temperature of 650 ° C. and a stress of 117.7 MPa.

表2に、ロンジバレストレイン試験における溶接割れ長さ(mm)およびクリープ試験における破断時間(hr)を示す。   Table 2 shows the weld crack length (mm) in the longibarestrain test and the rupture time (hr) in the creep test.

Figure 0005206676
Figure 0005206676

表2より明らかなように、CおよびBの含有量が本発明の規定範囲および(1)式を満足している代符3〜6、11および15の材料は、ロンジバレストレイン試験のような厳しい割れ試験においてもHAZの液化割れが生じることがなく、また、HAZのクリープ破断時間が代符13の破断時間の3倍以上となっていた。特に、代符3〜5、11および15の材料は、HAZのクリープ破断時間が代符13の破断時間の5倍以上となっていた。
As is apparent from Table 2, the materials of the alternatives 3-6, 11 and 15 in which the contents of C and B satisfy the specified range of the present invention and the formula (1) are as in the Longibarestrain test. Even in a severe cracking test, HAZ liquefaction cracking did not occur, and the HAZ creep rupture time was more than three times the break time of the symbol 13. In particular, the materials of the symbols 3 to 5, 11 and 15 had a HAZ creep rupture time of 5 times or more that of the symbol 13.

しかしながらCの含有量が(1)式の上限を超える代符1、2および16の材料では、粗粒HAZの粒界の融点低下が著しく、ロンジバレストレイン試験においてHAZに液化割れが生じた。
However , in the materials of the symbols 1, 2 and 16 where the C content exceeds the upper limit of the formula (1), the melting point of the grain boundary of the coarse HAZ is remarkably lowered, and liquefaction cracking occurred in the HAZ in the longibarestrain test .

これに対して、代符7、8および12の材料は、ロンジバレストレイン試験においてHAZに液化割れが生じなかったものの、いずれも、HAZのクリープ破断時間が目標値を満足しなかった。   On the other hand, although the materials of the symbols 7, 8 and 12 did not cause liquefaction cracking in the HAZ in the longibarestrain test, none of the HAZ creep rupture time satisfied the target value.

すなわち、Bの含有量は本発明の規定範囲内にあるが、Cの含有量が(1)式の下限に満たない代符12は、HAZのクリープ破断時間が目標値を満足しなかった。一方、Bの含有量が本発明の規定範囲に満たない代符8の材料は、Cの含有量は(1)式を満足しているものの、HAZのクリープ破断時間が目標値を満足しなかった。また、Bの含有量が本発明の範囲に満たないことに加えて、Cの含有量が(1)式の上限を超える代符7の材料は、HAZのクリープ破断時間が代符8に比べてさらに低かった。   That is, the content of B is within the specified range of the present invention, but the mark 12 in which the content of C is less than the lower limit of the expression (1) did not satisfy the target value of the creep rupture time of HAZ. On the other hand, the material of the symbol 8 whose B content is less than the specified range of the present invention does not satisfy the target value of the HAZ creep rupture time although the C content satisfies the formula (1). It was. Further, in addition to the content of B being less than the range of the present invention, the material of surrogate 7 in which the content of C exceeds the upper limit of the formula (1), the creep rupture time of HAZ compared to surrogate 8 It was even lower.

以上の結果より、本発明範囲を満たす化学成分を有する材料は、HAZにおける優れた耐液化割れ性ならびにクリープ強度を有することがわかる。   From the above results, it can be seen that a material having a chemical component satisfying the scope of the present invention has excellent liquefaction cracking resistance and creep strength in HAZ.

本発明に係るフェライト系耐熱鋼は、HAZの耐溶接割れ性とクリープ強度に優れたフェライト系耐熱鋼を提供するので、蒸気条件の高温高圧化が進められている火力発電ボイラなどで溶接構造物として使用することができる。   Since the ferritic heat resistant steel according to the present invention provides ferritic heat resistant steel having excellent weld cracking resistance and creep strength of HAZ, it is a welded structure in a thermal power generation boiler and the like where steam conditions are being increased at high temperature and pressure. Can be used as

ロンジバレストレイン試験方法を示す。The Longi Ballest Train test method is shown.

Claims (3)

質量%で、Si:0.1%を超えて1.0%以下、Mn:2.0%以下、Co:1〜8%、Cr:7〜13%、V:0.05〜0.4%、Nb:0.01〜0.09%、MoおよびWの一方または両方を合計で0.5〜4%、B:0.01%を超えて0.025%以下、Al:0.03%以下、N:0.003〜0.06%およびNd:0.005〜0.08%を含有し、Cを下記(1)式を満足する量で含み、残部がFeおよび不純物からなり、不純物としてのO、PおよびSがそれぞれ、O:0.02%以下、P:0.03%以下およびS:0.02%以下であることを特徴とする高Crフェライト系耐熱鋼。
0.005≦C≦(−5/3)×B+0.085 ・・・・・(1)
ここで、CおよびBは、それぞれの元素の含有量(質量%)を示す。
In mass%, Si: more than 0.1% and 1.0% or less, Mn: 2.0% or less, Co: 1-8%, Cr: 7-13%, V: 0.05-0.4 %, Nb: 0.01 to 0.09%, one or both of Mo and W in total 0.5 to 4%, B: more than 0.01% and 0.025% or less , Al: 0.03 %, N: 0.003 to 0.06% and Nd: 0.005 to 0.08%, C is contained in an amount satisfying the following formula (1), and the balance consists of Fe and impurities, O, P, and S as impurities are O: 0.02% or less, P: 0.03% or less, and S: 0.02% or less, respectively.
0.005 ≦ C ≦ (−5/3) × B + 0.085 (1)
Here, C and B show content (mass%) of each element.
質量%で、Feの一部に代えて、Ta:0.08%以下を含むことを特徴とする、請求項1に記載の高Crフェライト系耐熱鋼。   2. The high Cr ferritic heat resistant steel according to claim 1, wherein, in mass%, Ta: 0.08% or less is included instead of a part of Fe. 質量%で、Feの一部に代えて、Ca:0.02%以下およびMg:0.02%以下のうちの1種または2種を含むことを特徴とする、請求項1または2に記載の高Crフェライト系耐熱鋼。
The mass% includes one or two of Ca: 0.02% or less and Mg: 0.02% or less in place of part of Fe. High Cr ferritic heat resistant steel.
JP2009517797A 2007-06-04 2008-05-26 Ferritic heat resistant steel Active JP5206676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009517797A JP5206676B2 (en) 2007-06-04 2008-05-26 Ferritic heat resistant steel

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2007148063 2007-06-04
JP2007148063 2007-06-04
JP2008035788 2008-02-18
JP2008035788 2008-02-18
PCT/JP2008/059630 WO2008149703A1 (en) 2007-06-04 2008-05-26 Ferrite heat resistant steel
JP2009517797A JP5206676B2 (en) 2007-06-04 2008-05-26 Ferritic heat resistant steel

Publications (2)

Publication Number Publication Date
JPWO2008149703A1 JPWO2008149703A1 (en) 2010-08-26
JP5206676B2 true JP5206676B2 (en) 2013-06-12

Family

ID=40093525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009517797A Active JP5206676B2 (en) 2007-06-04 2008-05-26 Ferritic heat resistant steel

Country Status (6)

Country Link
US (1) US20100086430A1 (en)
EP (1) EP2157202B1 (en)
JP (1) JP5206676B2 (en)
KR (1) KR20090130334A (en)
CN (1) CN101680065B (en)
WO (1) WO2008149703A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140363328A1 (en) * 2011-12-27 2014-12-11 Jfe Steel Corporation Ferritic stainless steel
US9303295B2 (en) * 2012-12-28 2016-04-05 Terrapower, Llc Iron-based composition for fuel element
CN103525984A (en) * 2013-09-26 2014-01-22 无锡阳工机械制造有限公司 Heat treatment method of heat-resistant steel
CN104451453A (en) * 2014-11-14 2015-03-25 无锡信大气象传感网科技有限公司 Wear-resistant alloy steel material for fan blades of wind-driven generator
JP6575392B2 (en) * 2015-05-19 2019-09-18 日本製鉄株式会社 High Cr ferritic heat resistant steel
JP6338028B2 (en) 2015-12-18 2018-06-06 新日鐵住金株式会社 Welding material for ferritic heat resistant steel, welded joint for ferritic heat resistant steel, and method for producing welded joint for ferritic heat resistant steel
JP6801712B2 (en) * 2016-06-29 2020-12-16 日本製鉄株式会社 Ferritic heat-resistant steel and ferrite heat transfer members
CN108950148B (en) * 2018-07-30 2020-07-21 钢铁研究总院 Method for improving radial structure and performance uniformity of G115 steel large-caliber thick-wall pipe
WO2020116588A1 (en) 2018-12-05 2020-06-11 日本製鉄株式会社 Method for manufacturing ferritic heat resistant steel welded joint
JP7136325B2 (en) * 2019-03-19 2022-09-13 日本製鉄株式会社 Ferritic heat-resistant steel

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320410A (en) * 1989-06-19 1991-01-29 Nippon Steel Corp Production of high-cr ferritic heat-resisting steel tube having high creep rupture strength
JPH08294793A (en) * 1995-03-01 1996-11-12 Sumitomo Metal Ind Ltd Welding material with high strength, high corrosion resistance and superior welding performance for ferritic steel
JPH09217146A (en) * 1996-02-10 1997-08-19 Sumitomo Metal Ind Ltd Low mn, low cr fertitic heat resistant steel excellent in high temperature strength
JPH1088291A (en) * 1996-09-10 1998-04-07 Mitsubishi Heavy Ind Ltd Heat resistant cast steel with high strength and high toughness
JPH1192881A (en) * 1997-09-22 1999-04-06 Natl Res Inst For Metals Ferritic heat resistant steel having lath martensitic structure and its production
JP2002180208A (en) * 2000-12-15 2002-06-26 Babcock Hitachi Kk Ferritic heat resistant steel
JP2002235154A (en) * 2001-02-07 2002-08-23 Sumitomo Metal Ind Ltd HIGH Cr FERRITIC HEAT RESISTANT STEEL
JP2002317252A (en) * 2001-04-19 2002-10-31 National Institute For Materials Science Ferritic heat resistant steel and production method therefor
WO2007091535A1 (en) * 2006-02-06 2007-08-16 Babcock-Hitachi Kabushiki Kaisha Ferritic heat-resistant steel

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311346A (en) * 1992-05-14 1993-11-22 Nippon Steel Corp Ferritic heat resistant steel having high creep strength
JP3196587B2 (en) * 1995-09-05 2001-08-06 住友金属工業株式会社 High Cr ferritic heat resistant steel
JP3245097B2 (en) * 1997-01-08 2002-01-07 三菱重工業株式会社 High temperature steam turbine rotor material
JP3982069B2 (en) * 1998-07-08 2007-09-26 住友金属工業株式会社 High Cr ferritic heat resistant steel
JP2000248337A (en) * 1999-03-02 2000-09-12 Kansai Electric Power Co Inc:The Method for improving water vapor oxidation resistance of high chromium ferritic heat resistant steel for boiler and high chromium ferritic heat resistant steel for boiler excellent in water vapor oxidation resistance
JP3518515B2 (en) * 2000-03-30 2004-04-12 住友金属工業株式会社 Low / medium Cr heat resistant steel
JP2002004008A (en) * 2000-06-14 2002-01-09 Sumitomo Metal Ind Ltd HIGH Cr FERRITIC HEAT RESISTANT STEEL
JP4023106B2 (en) * 2001-05-09 2007-12-19 住友金属工業株式会社 Ferritic heat resistant steel with low softening of heat affected zone
US7520942B2 (en) * 2004-09-22 2009-04-21 Ut-Battelle, Llc Nano-scale nitride-particle-strengthened high-temperature wrought ferritic and martensitic steels

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320410A (en) * 1989-06-19 1991-01-29 Nippon Steel Corp Production of high-cr ferritic heat-resisting steel tube having high creep rupture strength
JPH08294793A (en) * 1995-03-01 1996-11-12 Sumitomo Metal Ind Ltd Welding material with high strength, high corrosion resistance and superior welding performance for ferritic steel
JPH09217146A (en) * 1996-02-10 1997-08-19 Sumitomo Metal Ind Ltd Low mn, low cr fertitic heat resistant steel excellent in high temperature strength
JPH1088291A (en) * 1996-09-10 1998-04-07 Mitsubishi Heavy Ind Ltd Heat resistant cast steel with high strength and high toughness
JPH1192881A (en) * 1997-09-22 1999-04-06 Natl Res Inst For Metals Ferritic heat resistant steel having lath martensitic structure and its production
JP2002180208A (en) * 2000-12-15 2002-06-26 Babcock Hitachi Kk Ferritic heat resistant steel
JP2002235154A (en) * 2001-02-07 2002-08-23 Sumitomo Metal Ind Ltd HIGH Cr FERRITIC HEAT RESISTANT STEEL
JP2002317252A (en) * 2001-04-19 2002-10-31 National Institute For Materials Science Ferritic heat resistant steel and production method therefor
WO2007091535A1 (en) * 2006-02-06 2007-08-16 Babcock-Hitachi Kabushiki Kaisha Ferritic heat-resistant steel

Also Published As

Publication number Publication date
CN101680065B (en) 2011-11-16
KR20090130334A (en) 2009-12-22
WO2008149703A1 (en) 2008-12-11
JPWO2008149703A1 (en) 2010-08-26
US20100086430A1 (en) 2010-04-08
EP2157202A4 (en) 2011-09-14
EP2157202A1 (en) 2010-02-24
EP2157202B1 (en) 2017-07-12
CN101680065A (en) 2010-03-24

Similar Documents

Publication Publication Date Title
JP5206676B2 (en) Ferritic heat resistant steel
JP5169532B2 (en) Ferritic heat resistant steel
JP4697357B1 (en) Austenitic heat-resistant alloy
JP5254693B2 (en) Welding material for Ni-base alloy
US20090196783A1 (en) Austenitic stainless steel welded joint and austenitic stainless steel welding material
JP6852809B2 (en) Austenitic heat-resistant steel Welded metal, welded joints, welding materials for austenitic heat-resistant steel, and methods for manufacturing welded joints
WO2016129666A1 (en) Method for manufacturing austenitic heat-resistant alloy welded joint, and welded joint obtained using same
JP5838933B2 (en) Austenitic heat resistant steel
JP6753136B2 (en) Austenitic heat-resistant steel weld metal and welded joints with it
KR20180005713A (en) Austenitic heat-resistant alloys and welded structures
JP5137934B2 (en) Ferritic heat resistant steel
TWI548758B (en) Fat iron stainless steel
JP6122319B2 (en) Dissimilar material joint
JP6795038B2 (en) Austenitic heat-resistant alloy and welded joints using it
WO2021039266A1 (en) Austenitic heat-resistant steel
JP6756147B2 (en) Welding material for austenitic heat resistant steel
JP7295418B2 (en) welding material
JPH0543986A (en) High chromium ferritic heat resisting steel reduced in deterioration in strength in weld heat-affected zone
JP2000301377A (en) Welded joint of ferritic heat resistant steel and welding material
JP4615196B2 (en) High Cr ferritic heat resistant steel
JP6638551B2 (en) Austenitic heat-resistant steel weld metal and welded joint having the same
JP2002180208A (en) Ferritic heat resistant steel
JP7436793B2 (en) Manufacturing method of welded joints of ferritic heat-resistant steel
JP6566166B1 (en) Steel sheet and manufacturing method thereof
JPH0639659B2 (en) High strength high chromium steel with excellent oxidation resistance and weldability

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5206676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350