JP5930635B2 - Austenitic heat resistant steel having excellent high temperature strength and method for producing the same - Google Patents

Austenitic heat resistant steel having excellent high temperature strength and method for producing the same Download PDF

Info

Publication number
JP5930635B2
JP5930635B2 JP2011208575A JP2011208575A JP5930635B2 JP 5930635 B2 JP5930635 B2 JP 5930635B2 JP 2011208575 A JP2011208575 A JP 2011208575A JP 2011208575 A JP2011208575 A JP 2011208575A JP 5930635 B2 JP5930635 B2 JP 5930635B2
Authority
JP
Japan
Prior art keywords
steel
strength
austenitic heat
temperature
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011208575A
Other languages
Japanese (ja)
Other versions
JP2013067843A (en
Inventor
篤史 庄
篤史 庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2011208575A priority Critical patent/JP5930635B2/en
Publication of JP2013067843A publication Critical patent/JP2013067843A/en
Application granted granted Critical
Publication of JP5930635B2 publication Critical patent/JP5930635B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、超々臨界圧の石炭火力発電や石炭ガス化複合発電などに用いられる高強度ボイラ用の鋼管の素材である高温強度を有するオーステナイト系耐熱鋼とその製造方法に関する。   The present invention relates to an austenitic heat-resistant steel having high-temperature strength, which is a material of a steel pipe for a high-strength boiler used in coal-fired power generation or coal gasification combined power generation with ultra super critical pressure, and a method for producing the same.

石炭火力発電システムは、経済性と安全性が高いことから、世界中で主要な電力源として多く採用されている。しかし、二酸化炭素を最も排出する発電方式であるため、近年、発電の高効率化が強く求められている。   Coal-fired power generation systems are widely used as a major power source all over the world because of their high economic efficiency and safety. However, since it is a power generation method that emits most carbon dioxide, in recent years, there has been a strong demand for higher efficiency in power generation.

従来の技術として、Mo、WとNbを高い含有量で有する高強度オーステナイト系耐熱合金が提案されている(例えば、特許文献1参照。)。この高強度オーステナイト系耐熱合金の製造法は、MoとWの複合添加による相乗効果と、NbとTiの複合添加およびBの添加による効果により、クリープ破断強度を著しく高める方法である。一般的に、鋼材中の元素偏析は、高温強度を低下させるので、偏析を可能な限り軽減するために、より高温での均質化熱処理や熱間加工が行われる。特に、より高温での熱間加工は、再結晶による拡散効果を同時に得ることができるので、均質化するための最も有効な手段として知られている。しかし、この方法では、強度向上のためにBが相当量添加されている影響で、鋼材のオーバーヒート温度が低下して、より高温での加工が困難となり、強化元素のMo、WおよびNbを十分に均質化できないため、さらなる強度向上に余地があった。   As a conventional technique, a high-strength austenitic heat-resistant alloy having a high content of Mo, W, and Nb has been proposed (see, for example, Patent Document 1). This method for producing a high-strength austenitic heat-resistant alloy is a method for significantly increasing the creep rupture strength by the synergistic effect by the combined addition of Mo and W and the effects by the combined addition of Nb and Ti and the addition of B. In general, elemental segregation in a steel material lowers the high-temperature strength. Therefore, in order to reduce segregation as much as possible, homogenization heat treatment and hot working at a higher temperature are performed. In particular, hot working at a higher temperature is known as the most effective means for homogenization because a diffusion effect by recrystallization can be obtained simultaneously. However, in this method, due to the effect that a considerable amount of B is added to improve the strength, the overheating temperature of the steel material is lowered, making it difficult to process at higher temperatures, and the strengthening elements Mo, W, and Nb are sufficient. Therefore, there was room for further strength improvement.

さらに、WとNbを含む鋼材を、熱間押出加工における加熱温度と加工後の冷却速度、固溶化熱処理温度および固溶化熱処理後の鋼中のNb固溶量を規定することで、溶接性に優れたオーステナイト系耐熱鋼を得る製造方法が提案されている(例えば、特許文献2参照。)。この方法は、短時間で高いリダクションの加工を行い、直ちに冷却を行う熱間押出法を利用している。このため、強化元素のWやNbの均質化が十分とは言えず、強度向上に余地があった。   Furthermore, the steel material containing W and Nb can be welded by prescribing the heating temperature in hot extrusion, the cooling rate after processing, the solution heat treatment temperature, and the amount of Nb solid solution in the steel after solution heat treatment. A production method for obtaining an excellent austenitic heat-resistant steel has been proposed (for example, see Patent Document 2). This method uses a hot extrusion method in which high reduction processing is performed in a short time and cooling is performed immediately. For this reason, it cannot be said that the homogenization of the reinforcing elements W and Nb is sufficient, and there is room for improvement in strength.

さらに、固溶化熱処理後の鋼管に、さらにごく少量の冷間加工を施すことで、クリープ破断強度に優れたオーステナイト系耐熱鋼管を得る製造方法が提案されている(例えば、特許文献3参照。)。しかし、実際のボイラの製作では、鋼管を大きく冷間曲げする必要があり、その後に曲げ部の固溶化熱処理を必ず行われなければならない。そのため曲げ部は、冷間加工による強化がリセットされて著しい強度低下が免れず、結果としてこの方法による鋼管を適用することは困難であった。   Furthermore, a manufacturing method has been proposed in which an austenitic heat-resistant steel pipe having excellent creep rupture strength is obtained by subjecting a steel pipe after solution heat treatment to a further small amount of cold working (see, for example, Patent Document 3). . However, in actual boiler production, it is necessary to cold-bend the steel pipe greatly, and then a solution heat treatment of the bent portion must be performed. Therefore, the strengthening by cold working is reset in the bent portion, and a significant decrease in strength is inevitable. As a result, it is difficult to apply the steel pipe by this method.

特開昭63−183155号公報JP 63-183155 A 特開平11−21624号公報Japanese Patent Laid-Open No. 11-21624 特開2002−212634号公報JP 2002-212634 A

石炭火力発電システムの高効率化のために、現在、700℃で優れたクリープ破断強度を有する耐熱鋼が求められている。これまでに開発された高強度材の多くは、Nb、Mo、Wなどが添加されている。しかし、Nbは、鋼材中に偏析し易い元素である一方、MoやWは鋼材中の拡散が遅い元素であるため、偏析が原因で強度が低下する場合があった。   In order to increase the efficiency of a coal-fired power generation system, a heat-resistant steel having excellent creep rupture strength at 700 ° C. is currently required. Many of the high-strength materials that have been developed so far contain Nb, Mo, W, and the like. However, while Nb is an element that is easily segregated in the steel material, Mo and W are elements that diffuse slowly in the steel material, so that the strength may decrease due to segregation.

そこで、本発明が解決しようとする課題は、700℃において優れたクリープ破断強度を有するオーステナイト系耐熱鋼およびその製造方法を提供することである。   Therefore, the problem to be solved by the present invention is to provide an austenitic heat resistant steel having excellent creep rupture strength at 700 ° C. and a method for producing the same.

上記の課題を解決するための本発明の手段は、Mo、WおよびNb添加型オーステナイト系耐熱鋼の化学成分を最適化することと、より高温下で鋼材を加熱保持、熱間加工し、鋼材中の化学組成を均質化することである。   The means of the present invention for solving the above-mentioned problems are to optimize the chemical components of Mo, W and Nb-added austenitic heat-resisting steel, and to heat-hold and hot-work the steel at a higher temperature. It is to homogenize the chemical composition.

そこで、考慮すべき第1としては、合金組成中のB添加量である。一般的にBは、オーステナイト系耐熱鋼の高温強度と熱間加工延性の向上に有効な元素であるので、0.001%から0.005%程度、鋼材中に添加される。一方でBは、鉄クロムほう化物を生成させて鋼材のオーバーヒート温度を低下させるので、より高温での熱間加工が行えなくなり、鋼材組成の均質化をはかりにくくさせている。そこで、組成の均質化をはかるためには、B含有量を最小限に留めることが重要である。第2としては、熱間加工中の少量の未固溶炭窒化物である。少量の未固溶炭化物は、高温加熱時の結晶粒粗大化を抑制し、熱間加工性を悪化させずに熱間加工時の結晶粒の微細化に寄与し、拡散による均質化の効果を一層高める。そこで、熱間加工時の再結晶によるMo、WおよびNbの均質化を一層高めるために、熱間加工中にごく少量の未固溶Nb炭窒化物を存在させることが重要である。第3としては、鋼塊を1200℃以上1290℃以下で1時間以上加熱することで、鋼材中のMo、WおよびNbの自己拡散を高めて均質化することである。第4としては、鋼塊をより高温である1200℃以上で鍛錬比3以上の鍛造または圧延を行うことで、自己拡散効果に動的再結晶による拡散効果を加えて、鋼材中のMo、WおよびNbを飛躍的に均質化することである。   Therefore, the first amount to be considered is the amount of B added in the alloy composition. In general, B is an element effective for improving the high temperature strength and hot work ductility of the austenitic heat resistant steel, so about 0.001% to 0.005% is added to the steel material. On the other hand, B generates iron chromium boride and lowers the overheating temperature of the steel material, so that hot working at a higher temperature cannot be performed, making it difficult to homogenize the steel material composition. Therefore, in order to achieve homogenization of the composition, it is important to keep the B content to a minimum. The second is a small amount of undissolved carbonitride during hot working. A small amount of undissolved carbide suppresses the coarsening of crystal grains during high-temperature heating, contributes to the refinement of crystal grains during hot working without deteriorating hot workability, and has the effect of homogenization by diffusion. Increase further. Therefore, in order to further increase the homogenization of Mo, W and Nb by recrystallization during hot working, it is important that a very small amount of undissolved Nb carbonitride is present during hot working. Thirdly, the steel ingot is heated at 1200 ° C. or higher and 1290 ° C. or lower for 1 hour or longer, thereby increasing the self-diffusion of Mo, W and Nb in the steel material and homogenizing. Fourthly, the steel ingot is subjected to forging or rolling at a higher temperature of 1200 ° C. or higher and a forging ratio of 3 or higher, thereby adding a diffusion effect by dynamic recrystallization to the self-diffusion effect, and Mo and W in the steel material. And homogenizing Nb dramatically.

すなわち、上記の手段における、請求項1の発明は、質量%で、C:0.02〜0.08%、Si:0.3超〜0.8%、Mn:0.6〜2.0%、P:≦0.040%、S:≦0.005%、Ni:15超〜26%、Cr:18〜23%、W:1.8〜4.2%、Mo:<0.5%、Nb:0.2〜0.5%、Al:0.001〜0.040%、N:0.07〜0.13%、B:<0.0010%を含有し、残部Feおよび不可避不純物からなり、下記の(1)式、(2)式および(3)式を満足し、700℃、10万時間時点におけるクリープ破断強度が110MPa以上であることからなる優れた高温強度を有するオーステナイト系耐熱鋼である。
0.05%≦Nb−0.031(C+N)(-0.744Nb-0.772)≦0.15%……(1)
2.8%≦W+2Mo≦4.2%……(2)
7.0%≦Ni+27C+23N+0.2Mn+0.3Cu−1.2(Cr+Mo+0.5W)−0.5Si−0.3Nb+10%……(3)
That is, in the above means, the invention of claim 1 is mass%, C: 0.02 to 0.08%, Si: more than 0.3 to 0.8%, Mn: 0.6 to 2.0. %, P: ≦ 0.040%, S: ≦ 0.005%, Ni: more than 15 to 26%, Cr: 18 to 23%, W: 1.8 to 4.2%, Mo: <0.5 %, Nb: 0.2-0.5%, Al: 0.001-0.040%, N: 0.07-0.13%, B: <0.0010%, the balance Fe and inevitable An austenite having excellent high-temperature strength consisting of impurities, satisfying the following formulas (1), (2) and (3), and having a creep rupture strength of not less than 110 MPa at 700 ° C. and 100,000 hours This is a heat resistant steel.
0.05% ≦ Nb−0.031 (C + N) (−0.744Nb−0.772) ≦ 0.15% …… (1)
2.8% ≦ W + 2Mo ≦ 4.2% (2)
7.0% ≦ Ni + 27C + 23N + 0.2Mn + 0.3Cu−1.2 (Cr + Mo + 0.5W) −0.5Si−0.3Nb + 10% (3)

請求項2の発明は、質量%で、C:0.02〜0.08%、Si:0.3超〜0.8%、Mn:0.6〜2.0%、P:≦0.040%、S:≦0.005%、Ni:15超〜26%、Cr:18〜23%、W:1.8〜4.2%、Mo:<0.5%、Nb:0.2〜0.5%、Al:0.001〜0.040%、N:0.07〜0.13%、B:<0.0010%を含有し、さらに、Cu:2.0〜3.2%およびCa:0.001〜0.007%いずれか1種又は2種を含有し、残部Feおよび不可避不純物からなり、下記の(1)式、(2)式および(3)式を満足し、700℃、10万時間時点におけるクリープ破断強度が110MPa以上であることからなる優れた高温強度を有するオーステナイト系耐熱鋼である。
0.05%≦Nb−0.031(C+N)(-0.744Nb-0.772)≦0.15%……(1)
2.8%≦W+2Mo≦4.2%……(2)
7.0%≦Ni+27C+23N+0.2Mn+0.3Cu−1.2(Cr+Mo+0.5W)−0.5Si−0.3Nb+10%……(3)
Invention of Claim 2 is the mass%, C: 0.02-0.08%, Si: more than 0.3-0.8%, Mn: 0.6-2.0%, P: <= 0.0. 040%, S: ≦ 0.005%, Ni: more than 15 to 26%, Cr: 18 to 23%, W: 1.8 to 4.2%, Mo: <0.5%, Nb: 0.2 -0.5%, Al: 0.001-0.040%, N: 0.07-0.13%, B: <0.0010%, and Cu: 2.0-3.2 % And Ca: 0.001 to 0.007%, either 1 type or 2 types, consisting of remaining Fe and inevitable impurities, satisfying the following formulas (1), (2) and (3) 700 ° C. An austenitic heat-resistant steel having excellent high-temperature strength consisting of a creep rupture strength at a time of 100,000 hours of 110 MPa or more .
0.05% ≦ Nb−0.031 (C + N) (−0.744Nb−0.772) ≦ 0.15% …… (1)
2.8% ≦ W + 2Mo ≦ 4.2% (2)
7.0% ≦ Ni + 27C + 23N + 0.2Mn + 0.3Cu−1.2 (Cr + Mo + 0.5W) −0.5Si−0.3Nb + 10% (3)

請求項3の発明は、質量%で、C:0.02〜0.08%、Si:0.3超〜0.8%、Mn:0.6〜2.0%、P:≦0.040%、S:≦0.005%、Ni:15超〜26%、Cr:18〜23%、W:1.8〜4.2%、Mo:<0.5%、Nb:0.2〜0.5%、Al:0.001〜0.040%、N:0.07〜0.13%、B:<0.0010%を含有し、残部Feおよび不可避不純物からなり、下記の(1)式、(2)式および(3)式を満足するオーステナイト系耐熱鋼の鋼塊を、1200℃以上の温度で1時間以上加熱した後、鍛練比3以上の鍛造または圧延により形成したビレットを用いて鋼材を製造することからなる優れた高温強度を有するオーステナイト系耐熱鋼の鋼材の製造方法である。
0.05%≦Nb−0.031(C+N)(-0.744Nb-0.772)≦0.15%……(1)
2.8%≦W+2Mo≦4.2%……(2)
7.0%≦Ni+27C+23N+0.2Mn+0.3Cu−1.2(Cr+Mo+0.5W)−0.5Si−0.3Nb+10%……(3)
Invention of Claim 3 is the mass%, C: 0.02-0.08%, Si: more than 0.3-0.8%, Mn: 0.6-2.0%, P: <= 0.0. 040%, S: ≦ 0.005%, Ni: more than 15 to 26%, Cr: 18 to 23%, W: 1.8 to 4.2%, Mo: <0.5% , Nb: 0.2 -0.5%, Al: 0.001-0.040%, N: 0.07-0.13%, B: <0.0010% , comprising the remainder Fe and inevitable impurities, Billet formed by forging or rolling with a forging ratio of 3 or more after heating a steel ingot of austenitic heat-resistant steel satisfying formulas (1), (2) and (3) at a temperature of 1200 ° C. or more for 1 hour or more It is a manufacturing method of the steel material of the austenitic heat-resistant steel which has the outstanding high temperature strength consisting of manufacturing a steel material using.
0.05% ≦ Nb−0.031 (C + N) (−0.744Nb−0.772) ≦ 0.15% …… (1)
2.8% ≦ W + 2Mo ≦ 4.2% (2)
7.0% ≦ Ni + 27C + 23N + 0.2Mn + 0.3Cu−1.2 (Cr + Mo + 0.5W) −0.5Si−0.3Nb + 10% (3)

請求項4の発明は、質量%で、C:0.02〜0.08%、Si:0.3超〜0.8%、Mn:0.6〜2.0%、P:≦0.040%、S:≦0.005%、Ni:15超〜26%、Cr:18〜23%、W:1.8〜4.2%、Mo:<0.5%、Nb:0.2〜0.5%、Al:0.001〜0.040%、N:0.07〜0.13%、B:<0.0010%を含有し、さらに、Cu:2.0〜3.2%およびCa:0.001〜0.007%いずれか1種又は2種を含有し、残部Feおよび不可避不純物からなり、下記の(1)式、(2)式および(3)式を満足するオーステナイト系耐熱鋼の鋼塊を、1200℃以上の温度で1時間以上加熱した後、鍛練比3以上の鍛造または圧延により形成したビレットを用いて鋼材を製造することからなる優れた高温強度を有するオーステナイト系耐熱鋼の鋼材の製造方法である。
0.05%≦Nb−0.031(C+N)(-0.744Nb-0.772)≦0.15%……(1)
2.8%≦W+2Mo≦4.2%……(2)
7.0%≦Ni+27C+23N+0.2Mn+0.3Cu−1.2(Cr+Mo+0.5W)−0.5Si−0.3Nb+10%……(3)
Invention of Claim 4 is the mass%, C: 0.02-0.08%, Si: more than 0.3-0.8%, Mn: 0.6-2.0%, P: <= 0.0. 040%, S: ≦ 0.005%, Ni: more than 15 to 26%, Cr: 18 to 23%, W: 1.8 to 4.2%, Mo: <0.5% , Nb: 0.2 -0.5%, Al: 0.001-0.040%, N: 0.07-0.13%, B: <0.0010% , and Cu: 2.0-3.2 % And Ca: 0.001 to 0.007%, or any one or two of them, consisting of the balance Fe and inevitable impurities, satisfying the following formulas (1), (2) and (3) After heating a steel ingot of austenitic heat-resistant steel at a temperature of 1200 ° C. or higher for 1 hour or longer, a steel material is manufactured using a billet formed by forging or rolling at a forging ratio of 3 or higher. A method for manufacturing the steel austenitic heat-resistant steel having excellent high temperature strength consisting.
0.05% ≦ Nb−0.031 (C + N) (−0.744Nb−0.772) ≦ 0.15% …… (1)
2.8% ≦ W + 2Mo ≦ 4.2% (2)
7.0% ≦ Ni + 27C + 23N + 0.2Mn + 0.3Cu−1.2 (Cr + Mo + 0.5W) −0.5Si−0.3Nb + 10% (3)

上記の手段の鋼成分の限定理由および(1式)〜(3)式の限定理由について以下に説明する。なお、%は質量%である。   The reasons for limiting the steel components and the reasons for limiting the formulas (1) to (3) will be described below. In addition,% is the mass%.

C:0.02〜0.08%
Cは、高温強度向上のために0.02%以上必要である。しかし、Cが0.08%を超えると炭化物が多量に粒界に析出し、高温長時間経過後に靭性が著しく悪化する。そこで、Cは0.02〜0.08%とする。
C: 0.02 to 0.08%
C is required to be 0.02% or more for improving the high temperature strength. However, if C exceeds 0.08%, a large amount of carbide precipitates at the grain boundaries, and the toughness deteriorates significantly after a long period of time at high temperatures. Therefore, C is set to 0.02 to 0.08%.

Si:0.3超〜0.8%
Siは、脱酸のために必要な元素で、そのために0.3%より多く必要である。しかし、Siが0.8%を超えると、σ相の粒界析出を促進し、高温長時間経過後に靭性が著しく悪化する。そこで、Siは0.3超〜0.8%とし、望ましくは0.3超〜0.6%とする。
Si: more than 0.3 to 0.8%
Si is an element necessary for deoxidation, and therefore more than 0.3% is necessary. However, if Si exceeds 0.8%, precipitation of grain boundaries in the σ phase is promoted, and the toughness is remarkably deteriorated after a high temperature and a long time. Therefore, Si is more than 0.3 to 0.8%, preferably more than 0.3 to 0.6%.

Mn:0.6〜2.0%
Mnは、脱酸のために必要な元素で、0.6%以上必要である。しかし、Mnが2.0%を超えると、過剰添加となり高コストとなる。そこで、Mnは0.6〜2.0%とする。
Mn: 0.6 to 2.0%
Mn is an element necessary for deoxidation and needs to be 0.6% or more. However, if Mn exceeds 2.0%, excessive addition results in high cost. Therefore, Mn is set to 0.6 to 2.0%.

P:≦0.040%
Pは、不可避不純物として含有される元素である。しかし、Pが0.040%より多く含有されると溶接性が著しく悪化する。そこで、Pは0.040%以下とする。
P: ≦ 0.040%
P is an element contained as an inevitable impurity. However, when P is contained more than 0.040%, the weldability is remarkably deteriorated. Therefore, P is set to 0.040% or less.

S:≦0.005%
Sは、不可避不純物として含有される元素である。しかし、Sが0.005%より多く含有されると熱間加工性が悪化し、加工中の割れ発生を促進する。そこで、Sは0.005%以下とする。
S: ≦ 0.005%
S is an element contained as an inevitable impurity. However, if S is contained in an amount of more than 0.005%, the hot workability is deteriorated and the generation of cracks during processing is promoted. Therefore, S is set to 0.005% or less.

Ni:15超〜26%
Niは、オーステナイト組織を安定化するために必要な元素で、15%より多く必要である。しかし、Niが26%を超えると、過剰添加となり高コストとなる。そこで、Niは15超〜26%とする。
Ni: more than 15 to 26%
Ni is an element necessary for stabilizing the austenite structure, and more than 15% is necessary. However, if Ni exceeds 26%, excessive addition results in high cost. Therefore, Ni is more than 15 to 26%.

Cr:18〜23%
Crは、優れた耐高温腐蝕性と耐水蒸気酸化性を確保するために必要な元素で、18%以上必要である。しかし、Crが23%を超えると、σ相の粒界析出を促進し、高温長時間経過後に靭性が著しく悪化する。そこで、Crは18〜23%とし、望ましくは19〜22%とする。
Cr: 18-23%
Cr is an element necessary for ensuring excellent high-temperature corrosion resistance and steam oxidation resistance, and needs to be 18% or more. However, when Cr exceeds 23%, the grain boundary precipitation of the σ phase is promoted, and the toughness is remarkably deteriorated after a high temperature and a long time. Therefore, Cr is 18 to 23%, preferably 19 to 22%.

W:1.8〜4.2%
Wは、高温強度向上のために1.8%以上必要な元素である。しかし、Wが4.2%を超えると、Laves相が粒界に析出するようになり、高温長時間経過後に靭性が著しく悪化する。そこで、Wは1.8〜4.2%とする。
W: 1.8-4.2%
W is an element necessary for 1.8% or more for improving high-temperature strength. However, if W exceeds 4.2%, the Laves phase will precipitate at the grain boundaries, and the toughness will deteriorate significantly after a high temperature and a long time. Therefore, W is set to 1.8 to 4.2%.

Mo:<0.5%
Moは、高温強度向上のために必要な元素である。しかし、Moが0.5%以上含有されるとLaves相が析出するようになり、高温長時間経過後に靭性が著しく悪化する。そこで、Moは0.5%未満とし、望ましくは0.3%以下とする。
Mo: <0.5%
Mo is an element necessary for improving high-temperature strength. However, when Mo is contained in an amount of 0.5% or more, a Laves phase is precipitated, and the toughness is remarkably deteriorated after a high temperature and a long time. Therefore, Mo is less than 0.5%, preferably 0.3% or less.

Nb:0.2〜0.5%
Nbは、高温強度向上のために0.2%以上必要な元素である。しかし、Nbが0.5%より多く含有されると熱間加工性が悪化し、加工中の割れを発生する。そこで、Nbは0.2〜0.5%とする。
Nb: 0.2-0.5%
Nb is an element necessary for 0.2% or more for improving high-temperature strength. However, if Nb is contained in an amount of more than 0.5%, the hot workability deteriorates and cracks occur during processing. Therefore, Nb is set to 0.2 to 0.5%.

Al:0.001〜0.040%
Alは、脱酸のために必要な元素で、そのために0.001%以上必要である。しかし、Alが0.040%を超えると、粒界にAlNが生じて高温長時間経過後に靭性が著しく悪化する。そこで、Alは0.001〜0.040%とする。
Al: 0.001 to 0.040%
Al is an element necessary for deoxidation, and for that purpose, 0.001% or more is necessary. However, if Al exceeds 0.040%, AlN is generated at the grain boundary, and the toughness is significantly deteriorated after a high temperature and a long time. Therefore, Al is made 0.001 to 0.040%.

N:0.07〜0.13%
Nは、高温強度向上のために0.07%以上必要な元素である。しかし、Nが0.13%を超えると、Laves相の析出を促進させて高温長時間経過後に靭性が著しく悪化する。そこで、Nは0.07〜0.13%とする。
N: 0.07 to 0.13%
N is an element necessary for 0.07% or more for improving the high-temperature strength. However, when N exceeds 0.13%, precipitation of the Laves phase is promoted, and the toughness is significantly deteriorated after a long period of time at a high temperature. Therefore, N is set to 0.07 to 0.13%.

B:<0.0010%
Bは、鋼材の熱間加工延性の向上に有効な元素である。しかし、Bが0.0010%以上添加されると、鋼材のオーバーヒート温度が低下し、より高温で熱間加工ができなくなって、動的再結晶による均質化効果が得られなくなる。そこで、Bは0.0010%未満とする。
B: <0.0010%
B is an element effective for improving the hot work ductility of a steel material. However, when B is added in an amount of 0.0010% or more, the overheating temperature of the steel material is lowered, hot working cannot be performed at a higher temperature, and the homogenization effect by dynamic recrystallization cannot be obtained. Therefore, B is less than 0.0010% .

0.05%≦Nb−0.031(C+N)(-0.744Nb-0.772)≦0.15%……(1)
(1)式は、材料の熱間加工中の動的再結晶を促進させ、材料中の元素組成を均質化し高温強度を向上させるために0.05%以上とする必要がある。しかし、(1)式が0.15%より多いと熱間加工性を悪化し、加工中に割れを発生する。そこで、(1)式は0.05〜0.15%とする。
0.05% ≦ Nb−0.031 (C + N) (−0.744Nb−0.772) ≦ 0.15% …… (1)
The formula (1) needs to be 0.05% or more in order to promote dynamic recrystallization during hot working of the material, homogenize the elemental composition in the material and improve the high temperature strength. However, if the formula (1) is more than 0.15%, the hot workability is deteriorated and cracks are generated during the processing. Therefore, the expression (1) is set to 0.05 to 0.15%.

2.8%≦W+2Mo≦4.2%……(2)
(2)式は、材料の優れた高温強度を確保するために2.8%以上とする必要がある。しかし、(2)式が4.2%より多いと、Laves相が粒界に多量に析出するようになり、高温長時間経過後に靭性が著しく悪化する。そこで、(2)式は2.8〜4.2%とする。
2.8% ≦ W + 2Mo ≦ 4.2% (2)
The formula (2) needs to be 2.8% or more in order to ensure excellent high temperature strength of the material. However, when the formula (2) is more than 4.2%, a large amount of the Laves phase is precipitated at the grain boundary, and the toughness is remarkably deteriorated after a high temperature and a long time. Therefore, formula (2) is set to 2.8 to 4.2%.

7.0%≦Ni+27C+23N+0.2Mn+0.3Cu−1.2(Cr+Mo+0.5W)−0.5Si−0.3Nb+10%……(3)
(3)式は、オーステナイト組織安定化に必要な条件式で、優れた高温強度を確保するために7.0%以上とする必要がある。そこで、(3)式は7.0%以上とする。
7.0% ≦ Ni + 27C + 23N + 0.2Mn + 0.3Cu−1.2 (Cr + Mo + 0.5W) −0.5Si−0.3Nb + 10% (3)
The formula (3) is a conditional formula necessary for stabilizing the austenite structure and needs to be 7.0% or more in order to ensure an excellent high temperature strength. Therefore, Equation (3) is set to 7.0% or more.

本願発明は、上記の手段の化学成分からなり、かつ(1)式、(2)式および(3)式を満足することで、700℃において優れたクリープ破断強度を発揮するオーステナイト耐熱鋼である。本願発明は、超々臨界圧石炭火力発電や石炭ガス化複合発電などに用いられる高強度ボイラ用鋼管などに適用可能な効果を奏する。   The present invention is an austenitic heat-resisting steel that exhibits excellent creep rupture strength at 700 ° C. by comprising the chemical components of the above means and satisfying the formulas (1), (2), and (3). . The present invention has an effect that can be applied to a steel pipe for a high-strength boiler used for ultra super critical pressure coal-fired power generation or coal gasification combined power generation.

本発明の実施するための形態について、以下に順次に表を参照して説明する。   EMBODIMENT OF THE INVENTION The form for implementing this invention is demonstrated with reference to a table | surface sequentially below.

表1に示す化学成分および表2に示す(1)式、(2)式および(3)式を満足するオーステナイト系耐熱鋼である発明例のNo.1〜12および比較例No.13〜21の鋼種について、それぞれ真空溶解炉にて1000kgの鋼塊に溶製した。この鋼塊を1200℃以上の高温で1時間以上加熱し、鍛練比3以上の熱間鍛造または熱間札塩によりビレットに成形した。このビレットからなる鋼材を1180℃〜1220℃で固溶化熱処理し、この材料をクリープ破断試験に供した。さらに、冷間加工した鋼材でも効果が得られることを確認するために、上記の熱間鍛造した鍛造材を冷間加工し、さらに1180℃〜1220℃で固溶化熱処理を行って、この鋼材をクリープ破断試験に供した。
なお、(1)式は、0.05%≦Nb−0.031(C+N)(-0.744Nb-0.772)≦0.15%、(2)式は、2.8%≦W+2Mo≦4.2%、(3)式は、7.0%≦Ni+27C+23N+0.2Mn+0.3Cu−1.2(Cr+Mo+0.5W)−0.5Si−0.3Nb+10%である。
No. of the invention example which is an austenitic heat-resistant steel satisfying the chemical composition shown in Table 1 and the formulas (1), (2) and (3) shown in Table 2. 1-12 and Comparative Example No. About 13 to 21 steels were each melted in a steel ingot of 1000kg in a vacuum melting furnace. The steel ingot was heated at a high temperature of 1200 ° C. or higher for 1 hour or longer, and formed into a billet by hot forging or hot bill salt with a forging ratio of 3 or higher. The steel material consisting of this billet was subjected to a solution heat treatment at 1180 ° C. to 1220 ° C., and this material was subjected to a creep rupture test. Further, in order to confirm that the effect can be obtained even with a cold-worked steel material, the above-mentioned hot-forged forging material is cold-worked and further subjected to a solution heat treatment at 1180 ° C. to 1220 ° C. The specimen was subjected to a creep rupture test.
In addition, the formula (1) is 0.05% ≦ Nb−0.031 (C + N) (−0.744 Nb −0.772) ≦ 0.15%, and the formula (2) is 2.8% ≦ W + 2Mo ≦ 4.2. %, The formula (3) is 7.0% ≦ Ni + 27C + 23N + 0.2Mn + 0.3Cu−1.2 (Cr + Mo + 0.5W) −0.5Si−0.3Nb + 10%.

Figure 0005930635
Figure 0005930635

Figure 0005930635
Figure 0005930635

クリープ破断試験は、平行部径6mm、標点距離30mmの試験片を用いて、700℃、750および800℃にて行った。試験結果からLarson−Millerパラメーターにて、700℃、10万時間時点におけるクリープ破断強度(推定値)を求めた。表2に、この推定値が115MPa以上の材料は「◎」、110MPa〜115MPa未満の材料は「○」とし、105MPa〜110MPa未満の材料は「△」とし、105MPa未満の材料は「×」としてそれぞれ評価して示した。   The creep rupture test was conducted at 700 ° C., 750 and 800 ° C. using a test piece having a parallel part diameter of 6 mm and a gauge distance of 30 mm. From the test results, the creep rupture strength (estimated value) at 700 ° C. and 100,000 hours was determined using the Larson-Miller parameter. In Table 2, a material having an estimated value of 115 MPa or more is indicated with “◎”, a material with 110 MPa to less than 115 MPa is indicated with “◯”, a material with 105 MPa to less than 110 MPa is indicated with “Δ”, and a material with less than 105 MPa is indicated with “x”. Each was evaluated and shown.

No.1〜12の全ての本発明の実施例は、No.1〜No.5、No.7、No.9、No.11およびNo.12が冷間加工を行わず、No.6、No.8およびNo.10が冷間加工を行ったものである。これらは、クリープ破断強度の700℃、10万時間における推定値が110MPa以上で、No.1、No.2、No.5、No.7、No.9、No.11およびNo.12は「○」の110MPa以上ないし115MPa未満であり、No.3、No.4、No.6、No.8およびNo.10は「◎」の115MPa以上であった。したがって、これらの実施例は、700℃で優れたクリープ破断強度を有するオーステナイト鋼であることが解る。   No. All examples of the present invention 1 to 12 are 1-No. 5, no. 7, no. 9, no. 11 and no. No. 12 does not perform cold working. 6, no. 8 and no. No. 10 is a product obtained by cold working. These have an estimated value of creep rupture strength at 700 ° C. and 100,000 hours of 110 MPa or more. 1, no. 2, no. 5, no. 7, no. 9, no. 11 and no. No. 12 is “◯” of 110 MPa or more and less than 115 MPa. 3, no. 4, no. 6, no. 8 and no. 10 was 115 MPa or more of “◎”. Therefore, it can be seen that these examples are austenitic steels having excellent creep rupture strength at 700 ° C.

これに対して、No.13〜21の比較例は、No.13およびNo.14の化学成分のBは本願発明の範囲から外れている。さらに表2に示すように、これらNo.13〜21の比較例において、No.16、No.18〜21が冷間加工を行わず、No.15およびNo.17が冷間加工を行ったものである。さらに、No.16およびNo.21は加熱温度が本発明方法の1200℃以上の範囲から外れており、No.17およびNo.19は加熱時間が本発明方法の1時間以上の範囲から外れており、No.18〜No.21は鍛練比が本発明方法の3以上の範囲から外れており、No.15およびNo.20は(1)式の値が0.05〜0.15%の範囲から外れている。以上の結果、比較例のNo.13およびNo.14は上記したようにBの添加量は本発明範囲の0.0010%以上の範囲であるので、熱間加工温度領域でオーバーヒート割れを起こしており、冷間加工は行われておらず、したがってクリープ破断強度は評価できなかった。   In contrast, no. Comparative examples 13 to 21 are No. 13 and no. B of 14 chemical components is out of the scope of the present invention. Further, as shown in Table 2, these Nos. In Comparative Examples 13 to 21, No. 16, no. 18-21 do not perform cold working, No. 15 and no. No. 17 is a product obtained by cold working. Furthermore, no. 16 and no. No. 21 has a heating temperature outside the range of 1200 ° C. or higher of the method of the present invention. 17 and no. No. 19 has a heating time outside the range of 1 hour or more of the method of the present invention. 18-No. No. 21 has a training ratio outside the range of 3 or more of the method of the present invention. 15 and no. 20 is out of the range of 0.05 to 0.15% in the value of equation (1). As a result, the comparative example No. 13 and no. No. 14, as described above, the addition amount of B is in the range of 0.0010% or more of the range of the present invention. The creep rupture strength could not be evaluated.

上記したように、比較例のNo.15は(1)式の値が請求項から外れているのでクリープ破断強度の評価は「△」で、強度は105MPa以上ないし110MPa未満であった。比較例のNo.16は加熱温度が1180℃で、かつNo.21は加熱温度が1190℃といずれも1200℃より低いため、クリープ破断強度評価は「×」で、強度は105MPa未満であった。比較例のNo.17は、加熱時間が0.5時間で1時間よりも短いため、クリープ破断強度評価は「△」で、強度は105MPa以上ないし110MPa未満であった。比較例のNo.18は、鍛練比が2.5で3よりも小さいため、クリープ破断強度評価は「×」で、強度は105MPa未満であった。比較例のNo.19は、0.5時間で1時間よりも短く、かつ鍛練比が2で3よりも小さいため、クリープ破断強度評価は「×」で、強度は105MPa未満であった。比較例のNo.20は、鍛練比が2.5で3よりも小さく、かつ(1)式の値が0.05%よりも小さいため、クリープ破断強度評価は「×」で、強度は105MPa未満であった。比較例のNo.21は、加熱温度が1190℃で1200℃よりも低く、かつ鍛練比が3よりも小さいため、クリープ破断強度評価は「×」で、強度は105MPa未満であった。   As described above, the comparative example No. Since the value of formula (1) is not within the scope of claim 15, the evaluation of creep rupture strength was “Δ”, and the strength was 105 MPa or more and less than 110 MPa. Comparative Example No. No. 16 has a heating temperature of 1180 ° C. No. 21 had a heating temperature of 1190 ° C. and both were lower than 1200 ° C., so the creep rupture strength evaluation was “x” and the strength was less than 105 MPa. Comparative Example No. In No. 17, since the heating time was 0.5 hour and shorter than 1 hour, the creep rupture strength evaluation was “Δ”, and the strength was 105 MPa or more and less than 110 MPa. Comparative Example No. Since No. 18 had a forging ratio of 2.5 and smaller than 3, the creep rupture strength evaluation was “x”, and the strength was less than 105 MPa. Comparative Example No. 19 was shorter than 1 hour in 0.5 hours and the training ratio was 2 and smaller than 3. Therefore, the creep rupture strength evaluation was “x” and the strength was less than 105 MPa. Comparative Example No. No. 20 had a forging ratio of 2.5 and smaller than 3, and the value of the formula (1) was smaller than 0.05%. Therefore, the creep rupture strength evaluation was “x” and the strength was less than 105 MPa. Comparative Example No. No. 21 had a heating temperature of 1190 ° C., which was lower than 1200 ° C. and a forging ratio of less than 3, and therefore the creep rupture strength evaluation was “x” and the strength was less than 105 MPa.

Claims (4)

質量%で、C:0.02〜0.08%、Si:0.3超〜0.8%、Mn:0.6〜2.0%、P:≦0.040%、S:≦0.005%、Ni:15超〜26%、Cr:18〜23%、W:1.8〜4.2%、Mo:<0.5%、Nb:0.2〜0.5%、Al:0.001〜0.040%、N:0.07〜0.13%、B:<0.0010%を含有し、残部Feおよび不可避不純物からなり、下記の(1)式、(2)式および(3)式を満足し、700℃、10万時間時点におけるクリープ破断強度が110MPa以上であることを特徴とする優れた高温強度を有するオーステナイト系耐熱鋼。
0.05%≦Nb−0.031(C+N)(-0.744Nb-0.772)≦0.15%……(1)
2.8%≦W+2Mo≦4.2%……(2)
7.0%≦Ni+27C+23N+0.2Mn+0.3Cu−1.2(Cr+Mo+0.5W)−0.5Si−0.3Nb+10%……(3)
In mass%, C: 0.02 to 0.08%, Si: more than 0.3 to 0.8%, Mn: 0.6 to 2.0%, P: ≦ 0.040%, S: ≦ 0 0.005%, Ni: more than 15 to 26%, Cr: 18 to 23%, W: 1.8 to 4.2%, Mo: <0.5%, Nb: 0.2 to 0.5%, Al : 0.001 to 0.040%, N: 0.07 to 0.13%, B: <0.0010%, consisting of the balance Fe and inevitable impurities, the following formula (1), (2) An austenitic heat-resisting steel having excellent high-temperature strength, characterized by satisfying the formulas (3) and (3) and having a creep rupture strength of not less than 110 MPa at 700 ° C. and 100,000 hours .
0.05% ≦ Nb−0.031 (C + N) (−0.744Nb−0.772) ≦ 0.15% …… (1)
2.8% ≦ W + 2Mo ≦ 4.2% (2)
7.0% ≦ Ni + 27C + 23N + 0.2Mn + 0.3Cu−1.2 (Cr + Mo + 0.5W) −0.5Si−0.3Nb + 10% (3)
質量%で、C:0.02〜0.08%、Si:0.3超〜0.8%、Mn:0.6〜2.0%、P:≦0.040%、S:≦0.005%、Ni:15超〜26%、Cr:18〜23%、W:1.8〜4.2%、Mo:<0.5%、Nb:0.2〜0.5%、Al:0.001〜0.040%、N:0.07〜0.13%、B:<0.0010%を含有し、さらに、Cu:2.0〜3.2%およびCa:0.001〜0.007%いずれか1種又は2種を含有し、残部Feおよび不可避不純物からなり、下記の(1)式、(2)式および(3)式を満足し、700℃、10万時間時点におけるクリープ破断強度が110MPa以上であることを特徴とする優れた高温強度を有するオーステナイト系耐熱鋼。
0.05%≦Nb−0.031(C+N)(-0.744Nb-0.772)≦0.15%……(1)
2.8%≦W+2Mo≦4.2%……(2)
7.0%≦Ni+27C+23N+0.2Mn+0.3Cu−1.2(Cr+Mo+0.5W)−0.5Si−0.3Nb+10%……(3)
In mass%, C: 0.02 to 0.08%, Si: more than 0.3 to 0.8%, Mn: 0.6 to 2.0%, P: ≦ 0.040%, S: ≦ 0 0.005%, Ni: more than 15 to 26%, Cr: 18 to 23%, W: 1.8 to 4.2%, Mo: <0.5%, Nb: 0.2 to 0.5%, Al : 0.001-0.040%, N: 0.07-0.13%, B: <0.0010%, Cu: 2.0-3.2% and Ca: 0.001 ~ 0.007% containing any one or two of them, consisting of the balance Fe and inevitable impurities, satisfying the following formulas (1), (2) and (3), 700 ° C, 100,000 hours An austenitic heat-resistant steel having excellent high-temperature strength, wherein the creep rupture strength at the time is 110 MPa or more .
0.05% ≦ Nb−0.031 (C + N) (−0.744Nb−0.772) ≦ 0.15% …… (1)
2.8% ≦ W + 2Mo ≦ 4.2% (2)
7.0% ≦ Ni + 27C + 23N + 0.2Mn + 0.3Cu−1.2 (Cr + Mo + 0.5W) −0.5Si−0.3Nb + 10% (3)
質量%で、C:0.02〜0.08%、Si:0.3超〜0.8%、Mn:0.6〜2.0%、P:≦0.040%、S:≦0.005%、Ni:15超〜26%、Cr:18〜23%、W:1.8〜4.2%、Mo:<0.5%、Nb:0.2〜0.5%、Al:0.001〜0.040%、N:0.07〜0.13%、B:<0.0010%を含有し、残部Feおよび不可避不純物からなり、下記の(1)式、(2)式および(3)式を満足するオーステナイト系耐熱鋼の鋼塊を、1200℃以上の温度で1時間以上加熱した後、鍛練比3以上の鍛造または圧延により形成したビレットを用いて鋼材を製造することを特徴とする優れた高温強度を有するオーステナイト系耐熱鋼の鋼材の製造方法。
0.05%≦Nb−0.031(C+N)(-0.744Nb-0.772)≦0.15%……(1)
2.8%≦W+2Mo≦4.2%……(2)
7.0%≦Ni+27C+23N+0.2Mn+0.3Cu−1.2(Cr+Mo+0.5W)−0.5Si−0.3Nb+10%……(3)
In mass%, C: 0.02 to 0.08%, Si: more than 0.3 to 0.8%, Mn: 0.6 to 2.0%, P: ≦ 0.040%, S: ≦ 0 0.005%, Ni: more than 15 to 26%, Cr: 18 to 23%, W: 1.8 to 4.2%, Mo: <0.5% , Nb: 0.2 to 0.5%, Al : 0.001-0.040%, N: 0.07-0.13%, B: <0.0010% , comprising the balance Fe and inevitable impurities, the following formula (1), (2) A steel ingot is produced using a billet formed by forging or rolling at a forging ratio of 3 or more after heating a steel ingot of austenitic heat-resistant steel satisfying the formulas (3) and (3) for 1 hour or more at a temperature of 1200 ° C. or higher. A method for producing a steel material of an austenitic heat-resistant steel having excellent high-temperature strength.
0.05% ≦ Nb−0.031 (C + N) (−0.744Nb−0.772) ≦ 0.15% …… (1)
2.8% ≦ W + 2Mo ≦ 4.2% (2)
7.0% ≦ Ni + 27C + 23N + 0.2Mn + 0.3Cu−1.2 (Cr + Mo + 0.5W) −0.5Si−0.3Nb + 10% (3)
質量%で、C:0.02〜0.08%、Si:0.3超〜0.8%、Mn:0.6〜2.0%、P:≦0.040%、S:≦0.005%、Ni:15超〜26%、Cr:18〜23%、W:1.8〜4.2%、Mo:<0.5%、Nb:0.2〜0.5%、Al:0.001〜0.040%、N:0.07〜0.13%、B:<0.0010%を含有し、さらに、Cu:2.0〜3.2%およびCa:0.001〜0.007%いずれか1種又は2種を含有し、残部Feおよび不可避不純物からなり、下記の(1)式、(2)式および(3)式を満足するオーステナイト系耐熱鋼の鋼塊を、1200℃以上の温度で1時間以上加熱した後、鍛練比3以上の鍛造または圧延により形成したビレットを用いて鋼材を製造することを特徴とする優れた高温強度を有するオーステナイト系耐熱鋼の鋼材の製造方法。
0.05%≦Nb−0.031(C+N)(-0.744Nb-0.772)≦0.15%……(1)
2.8%≦W+2Mo≦4.2%……(2)
7.0%≦Ni+27C+23N+0.2Mn+0.3Cu−1.2(Cr+Mo+0.5W)−0.5Si−0.3Nb+10%……(3)
In mass%, C: 0.02 to 0.08%, Si: more than 0.3 to 0.8%, Mn: 0.6 to 2.0%, P: ≦ 0.040%, S: ≦ 0 0.005%, Ni: more than 15 to 26%, Cr: 18 to 23%, W: 1.8 to 4.2%, Mo: <0.5% , Nb: 0.2 to 0.5%, Al : 0.001 to 0.040%, N: 0.07 to 0.13%, B: <0.0010% , Cu: 2.0 to 3.2% and Ca: 0.001 Steel ingot of austenitic heat-resisting steel that contains any one or two of ~ 0.007%, consists of remaining Fe and inevitable impurities, and satisfies the following formulas (1), (2), and (3) Is manufactured using a billet formed by forging or rolling at a forging ratio of 3 or more after being heated at a temperature of 1200 ° C. or more for 1 hour or more. Of austenitic heat-resisting steel having high-temperature strength.
0.05% ≦ Nb−0.031 (C + N) (−0.744Nb−0.772) ≦ 0.15% …… (1)
2.8% ≦ W + 2Mo ≦ 4.2% (2)
7.0% ≦ Ni + 27C + 23N + 0.2Mn + 0.3Cu−1.2 (Cr + Mo + 0.5W) −0.5Si−0.3Nb + 10% (3)
JP2011208575A 2011-09-26 2011-09-26 Austenitic heat resistant steel having excellent high temperature strength and method for producing the same Expired - Fee Related JP5930635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011208575A JP5930635B2 (en) 2011-09-26 2011-09-26 Austenitic heat resistant steel having excellent high temperature strength and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011208575A JP5930635B2 (en) 2011-09-26 2011-09-26 Austenitic heat resistant steel having excellent high temperature strength and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013067843A JP2013067843A (en) 2013-04-18
JP5930635B2 true JP5930635B2 (en) 2016-06-08

Family

ID=48473869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011208575A Expired - Fee Related JP5930635B2 (en) 2011-09-26 2011-09-26 Austenitic heat resistant steel having excellent high temperature strength and method for producing the same

Country Status (1)

Country Link
JP (1) JP5930635B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2759543T3 (en) * 2015-07-01 2020-05-11 Nippon Steel Corp Heat resistant austenitic alloy and welded structure
EP3318651B1 (en) * 2015-07-01 2019-11-13 Nippon Steel Corporation Austenitic heat-resistant alloy and welded joint

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322488A (en) * 1993-05-13 1994-11-22 Nippon Steel Corp High-strength austenitic heat resistant steel excellent in weldability and satisfactory in high temperature corrosion resistance
JP3329261B2 (en) * 1998-03-26 2002-09-30 住友金属工業株式会社 Welding materials and welded joints for high temperature high strength steel
JP2000129403A (en) * 1998-10-26 2000-05-09 Hitachi Ltd Austenitic heat resistant alloy excellent in high temperature strength and corrosion resistance and its use
JP3449282B2 (en) * 1999-03-04 2003-09-22 住友金属工業株式会社 Austenitic stainless steel with excellent high-temperature strength and ductility
JP4523696B2 (en) * 2000-04-18 2010-08-11 新日本製鐵株式会社 TIG welding material for austenitic heat resistant steel with excellent high temperature strength
JP4424471B2 (en) * 2003-01-29 2010-03-03 住友金属工業株式会社 Austenitic stainless steel and method for producing the same
JP5670103B2 (en) * 2010-06-15 2015-02-18 山陽特殊製鋼株式会社 High strength austenitic heat resistant steel
JP5661001B2 (en) * 2011-08-23 2015-01-28 山陽特殊製鋼株式会社 High strength austenitic heat resistant steel with excellent post-aging toughness

Also Published As

Publication number Publication date
JP2013067843A (en) 2013-04-18

Similar Documents

Publication Publication Date Title
JP4431905B2 (en) Austenitic heat-resistant alloy, heat-resistant pressure-resistant member made of this alloy, and manufacturing method thereof
JP4484093B2 (en) Ni-base heat-resistant alloy
WO2018151222A1 (en) Ni-BASED HEAT-RESISTANT ALLOY AND METHOD FOR MANUFACTURING SAME
JPWO2013183670A1 (en) Ni-based alloy
JP5838933B2 (en) Austenitic heat resistant steel
JP6477252B2 (en) Austenitic heat-resistant alloy and heat-resistant pressure-resistant member
JPWO2016129666A1 (en) Method for producing austenitic heat-resistant alloy welded joint and welded joint obtained using the same
JP5846076B2 (en) Austenitic heat-resistant alloy
JP6492747B2 (en) Austenitic heat-resistant alloy tube manufacturing method and austenitic heat-resistant alloy tube manufactured by the manufacturing method
JP7106962B2 (en) austenitic stainless steel
JP6816779B2 (en) Austenitic heat-resistant alloy member and its manufacturing method
JP6955322B2 (en) Austenitic heat-resistant steel with excellent workability, high-temperature strength and toughness after aging
JP6212920B2 (en) Metal material
JP5930635B2 (en) Austenitic heat resistant steel having excellent high temperature strength and method for producing the same
JP6439579B2 (en) Method for producing austenitic heat-resistant alloy welded joint and welded joint obtained using the same
JP6736964B2 (en) Austenitic heat resistant alloy material
JP6747207B2 (en) Ni-based heat-resistant alloy member
JP2018059135A (en) Ni-BASED HEAT-RESISTANT ALLOY MEMBER AND METHOD FOR PRODUCING THE SAME
JP5857894B2 (en) Austenitic heat-resistant alloy
JP3848463B2 (en) High strength austenitic heat resistant steel with excellent weldability and method for producing the same
JP6201731B2 (en) Austenitic heat-resistant casting alloy
JP6825514B2 (en) Austenitic heat resistant alloy member
JP6245023B2 (en) Austenitic heat resistant steel
JP6848483B2 (en) Ni heat resistant alloy member
JP2017202495A (en) Weld material for austenitic heat-resistant steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160426

R150 Certificate of patent or registration of utility model

Ref document number: 5930635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees