JP5786491B2 - Ferritic stainless steel for EGR cooler - Google Patents

Ferritic stainless steel for EGR cooler Download PDF

Info

Publication number
JP5786491B2
JP5786491B2 JP2011143001A JP2011143001A JP5786491B2 JP 5786491 B2 JP5786491 B2 JP 5786491B2 JP 2011143001 A JP2011143001 A JP 2011143001A JP 2011143001 A JP2011143001 A JP 2011143001A JP 5786491 B2 JP5786491 B2 JP 5786491B2
Authority
JP
Japan
Prior art keywords
mass
less
scale
stainless steel
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011143001A
Other languages
Japanese (ja)
Other versions
JP2013010981A (en
Inventor
宮崎 淳
宮崎  淳
聡 都築
聡 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47685100&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5786491(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011143001A priority Critical patent/JP5786491B2/en
Publication of JP2013010981A publication Critical patent/JP2013010981A/en
Application granted granted Critical
Publication of JP5786491B2 publication Critical patent/JP5786491B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • F28F21/083Heat exchange elements made from metals or metal alloys from steel or ferrous alloys from stainless steel

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

本発明は、ガソリンエンジンやディーゼルエンジン等に設置されるEGRクーラーに用いて好適なフェライト系ステンレス鋼に関するものである。   The present invention relates to a ferritic stainless steel suitable for use in an EGR cooler installed in a gasoline engine, a diesel engine, or the like.

EGR(Exhaust Gas Recirculation:排気ガス再循環装置)は、エンジンから排出される排気ガスの一部をエンジンの吸気系に戻し、空気とミックスさせてエンジンの燃焼室に供給するシステムのことをいう。このEGRは、例えば、ディーゼルエンジンでは、吸気中の酸素濃度を低下することで、燃焼時の最高温度を低くし、窒素酸化物NOxの生成量を減少させることができる。また、ガソリンエンジンでは、吸気中の酸素濃度の低下は、スロットルを絞ったときと同じ状況となるため、スロットルを開いてポンピングロス(エンジンが空気を吸込む時の抵抗)を低減することで、燃費を向上することができる。そのため、近年では、各種自動車のエンジンにEGRが設置されるようになってきている。   EGR (Exhaust Gas Recirculation) refers to a system in which a part of exhaust gas discharged from an engine is returned to the intake system of the engine, mixed with air, and supplied to the combustion chamber of the engine. For example, in a diesel engine, this EGR can lower the maximum temperature during combustion by reducing the oxygen concentration in the intake air, thereby reducing the amount of nitrogen oxide NOx produced. In gasoline engines, the decrease in oxygen concentration in the intake air is the same as when the throttle is throttled, so reducing the pumping loss (resistance when the engine inhales air) by opening the throttle reduces fuel consumption. Can be improved. Therefore, in recent years, EGR has been installed in engines of various automobiles.

しかし、EGR設置による吸気中の酸素濃度の低下は、燃焼が不安定となり易いので、空燃費を精密に制御することが必要となり、エンジン内に送り込む排気ガス量の制御が重要となる。そこで、排気ガスの体積をコントロールするため、排気ガスを一定温度に冷却するEGRクーラーの採用が進んでいる。   However, since the decrease in oxygen concentration in the intake air due to the EGR installation tends to cause unstable combustion, it is necessary to precisely control the air fuel consumption, and it is important to control the amount of exhaust gas sent into the engine. Therefore, in order to control the volume of the exhaust gas, an EGR cooler that cools the exhaust gas to a constant temperature has been adopted.

このEGRクーラーは、熱交換によって排気ガス温度を低下させるものであり、EGRクーラーの熱交換部材は、一方の面は800℃以上の高温の排気ガスと、他方の面は冷媒(冷却液)と常に接触している状態にある。そのため、EGRクーラーの熱交換部材は、高温での酸化と、加熱・冷却に伴う熱応力歪みを常に繰り返して受けるという厳しい使用環境に置かれている。   This EGR cooler lowers the exhaust gas temperature by heat exchange. The heat exchange member of the EGR cooler has a high temperature exhaust gas of 800 ° C. or higher on one side and a refrigerant (coolant) on the other side. Always in contact. Therefore, the heat exchange member of the EGR cooler is placed in a severe usage environment in which it is repeatedly subjected to oxidation at a high temperature and thermal stress distortion accompanying heating and cooling.

このような環境下で使用されるEGRクーラーの素材としては、従来、SUS304等のオーステナイト系ステンレス鋼が主に使用されてきた。しかしながら、オーステナイト系ステンレス鋼は、
(1)高価なNiを多量に含有しているため、高価である。
(2)熱膨張係数が高く、製造時、特に溶接やろう付け等において、熱歪みを生じて組立て後の製品が変形したり、部品の寸法精度が悪化したりする。
(3)EGRクーラー内の冷却側には冷却液が流れているものの、排気ガスに直接接する側は高温に曝されるため、鋼板表面に酸化スケールが生成し、そのスケールが剥離しやすい。
という問題がある。
Conventionally, austenitic stainless steel such as SUS304 has been mainly used as a material for an EGR cooler used in such an environment. However, austenitic stainless steel
(1) It is expensive because it contains a large amount of expensive Ni.
(2) The coefficient of thermal expansion is high, and during manufacturing, particularly during welding or brazing, thermal distortion is generated, and the assembled product is deformed or the dimensional accuracy of the parts is deteriorated.
(3) Although the coolant flows on the cooling side in the EGR cooler, the side directly in contact with the exhaust gas is exposed to high temperature, so that an oxide scale is generated on the surface of the steel sheet, and the scale is easily peeled off.
There is a problem.

上記の中でも(3)の問題は、排気ガス経路で生成した酸化スケールが剥離し、それがEGRクーラー内に蓄積されると、クーラーの機能低下を引き起こしたり、さらに、剥離したスケールがエンジンにまで到達すると、予期せぬエンジントラブルを引き起こしたりするため、重要な解決課題となってきている。特に近年では、燃費向上、エミッション削減要求に対応するため、排気ガスの温度は高くなる一方であり、このスケール剥離問題の解決は急務である。そこで、酸化スケールの耐剥離性に優れ、かつ、Niを含まない安価なフェライト系ステンレス鋼の開発が望まれている。   Among the above problems, the problem (3) is that when the oxide scale generated in the exhaust gas path peels off and accumulates in the EGR cooler, the function of the cooler deteriorates, and further, the peeled scale reaches the engine. When it reaches, it causes an unexpected engine trouble, and has become an important solution. In recent years, in particular, in order to meet demands for improving fuel consumption and reducing emissions, the temperature of exhaust gas is becoming higher, and it is an urgent task to solve this scale peeling problem. Therefore, development of an inexpensive ferritic stainless steel that is excellent in oxide scale peeling resistance and does not contain Ni is desired.

EGRクーラーに使用されるフェライト系ステンレス鋼としては、幾つかの提案がなされている。例えば、特許文献1には、Cr:23.0〜33.0wt%、Mo:0.55〜4.0wt%、C:0.01wt%以下、N:0.015wt%以下、Si:0.4wt%以下、Mn:0.4%wt以下、P:0.03wt%以下、S:0.02wt%以下を基本成分とするスーパーフェライトステンレス鋼が、特許文献2には、質量%で、C:0.03%以下、Mn:0.1〜2%、Cr:10〜25%、Nb:0.3〜0.8%を基本成分とするフェライト系ステンレス鋼が、特許文献3には、質量%で、C:0.03%以下、N:0.05%以下、C+N:0.015%以上、Si:0.02〜1.5%、Mn:0.02〜2%、Cr:10〜22%、Nb:0.03〜1%、Al:0.5%以下を含有し、更に、Tiを適正範囲で添加したフェライト系ステンレス鋼が、また、特許文献4には、質量%で、C:0.03%以下、Si:3%以下、Mn:2%以下、P:0.05%以下、S:0.03%以下、Cr:11〜30%、Nb:0.15〜0.8%、N:0.03%以下を基本成分とするフェライト系ステンレス鋼が開示されている。しかし、これらの技術は、いずれも熱疲労特性を改善したり、Niろう付け性を改善したりすることを目的とする技術であり、酸化スケールの耐剥離性改善については十分な検討がなされていない。   Several proposals have been made for ferritic stainless steel used in EGR coolers. For example, Patent Document 1 includes Cr: 23.0 to 33.0 wt%, Mo: 0.55 to 4.0 wt%, C: 0.01 wt% or less, N: 0.015 wt% or less, Si: 0.00. 4 wt% or less, Mn: 0.4 wt% or less, P: 0.03 wt% or less, S: 0.02 wt% or less as a basic component is a superferritic stainless steel. : Ferritic stainless steel whose basic components are 0.03% or less, Mn: 0.1 to 2%, Cr: 10 to 25%, Nb: 0.3 to 0.8%, In mass%, C: 0.03% or less, N: 0.05% or less, C + N: 0.015% or more, Si: 0.02-1.5%, Mn: 0.02-2%, Cr: 10 to 22%, Nb: 0.03 to 1%, Al: 0.5% or less, and further Ti added within the proper range Ferritic stainless steel is also disclosed in Patent Document 4 in terms of mass%, C: 0.03% or less, Si: 3% or less, Mn: 2% or less, P: 0.05% or less, S: 0 0.03% or less, Cr: 11 to 30%, Nb: 0.15 to 0.8%, and N: 0.03% or less are disclosed as ferritic stainless steels. However, these technologies are all aimed at improving the thermal fatigue characteristics and improving the Ni brazing property, and sufficient studies have been made to improve the peeling resistance of the oxide scale. Absent.

また、非特許文献1には、耐熱用フェライト系ステンレス鋼において、Mnを高めることで、耐スケール剥離性を著しく改善した自動車のエキゾーストマニホールドに用いるフェライト系ステンレス鋼が開示されている。   Further, Non-Patent Document 1 discloses a ferritic stainless steel used for an automobile exhaust manifold that has significantly improved scale peel resistance by increasing Mn in a heat resistant ferritic stainless steel.

特開2003−222498号公報JP 2003-222498 A 特開2009−174040号公報JP 2009-174040 A 特開2009−174046号公報JP 2009-174046 A 特開2009−299182号公報JP 2009-299182 A

奥、中村、植松、「耐熱用フェライト系ステンレス鋼 NSSEM−2の開発」、日新製鋼技報,No.71(1995),p.70、図5Oku, Nakamura, Uematsu, “Development of heat resistant ferritic stainless steel NSSEM-2”, Nisshin Steel Engineering Reports, No. 71 (1995), p. 70, FIG.

上記非特許文献1では、900℃あるいは1000℃の高温から自然冷却(空冷)することで酸化スケールの耐剥離性を評価している。しかしながら、EGRクーラーの熱交換部材は、一方の面が冷却液に接しているため、急速冷却を受けると考えられる。そこで、発明者らが、Mnを添加した鋼について、高温から急速冷却したときの酸化スケールの耐剥離性を評価したところ、却ってスケール剥離量が増加することが明らかとなった。   In the said nonpatent literature 1, peeling resistance of an oxide scale is evaluated by naturally cooling (air cooling) from the high temperature of 900 degreeC or 1000 degreeC. However, it is considered that the heat exchange member of the EGR cooler is subjected to rapid cooling because one surface is in contact with the coolant. Then, when the inventors evaluated the peeling resistance of the oxide scale when rapidly cooling from a high temperature for steel to which Mn was added, it became clear that the amount of scale peeling increased on the contrary.

また、EGRクーラーの組立ては、一般に、耐高温酸化性や高温強度に優れるNiろう付けで行われるため、EGRクーラー用素材には、Niろう付け性(濡れ性)やろう付け部の強度や靭性に優れることに加えて、排気ガス中のSOやNOxを多く含む凝結水に対する、ろう付け部の耐食性に優れていることが求められる。 In addition, the EGR cooler is generally assembled by Ni brazing, which has excellent resistance to high-temperature oxidation and high-temperature strength. Therefore, the EGR cooler material contains Ni brazing (wetting), brazing strength and toughness. In addition to being superior to the above, it is required that the brazed portion is excellent in corrosion resistance against condensed water containing a large amount of SO 2 and NOx in the exhaust gas.

そこで、本発明の目的は、高温から急速冷却を受ける場合でも、高温時に生成した酸化スケールが剥離することがなく、かつ、ろう付け部の耐食性にも優れるEGRクーラー用フェライト系ステンレス鋼を提供することにある。   Accordingly, an object of the present invention is to provide a ferritic stainless steel for an EGR cooler in which oxide scale generated at a high temperature does not peel even when subjected to rapid cooling from a high temperature and is excellent in corrosion resistance of a brazed portion. There is.

発明者らは、上記課題の解決に向けて、酸化スケールの剥離性に及ぼす鋼の成分組成の影響に着目して鋭意検討を重ねた。その結果、耐スケール剥離性を改善するためには、基本的に酸化スケールの生成量自体を抑制することが必要であること、そのためには、低Mn化した上で、CrとSiの含有量を適正範囲に制御することが有効であること、また、ろう付け部の耐食性を向上するためには、NbでC,Nを十分に固定した上で、MnとSの含有量を適正範囲に制御する必要があることを見出し、本発明を完成させた。   In order to solve the above-mentioned problems, the inventors have made extensive studies by paying attention to the effect of the composition of steel on the peelability of oxide scale. As a result, in order to improve the scale peel resistance, it is basically necessary to suppress the amount of oxide scale generated itself, and for that purpose, the content of Cr and Si is reduced after lowering Mn. In order to improve the corrosion resistance of the brazed part, it is effective to control the content of Mn and S within the proper range after sufficiently fixing C and N with Nb. The inventors have found that there is a need to control, and completed the present invention.

上記知見に基づく本発明は、C:0.02mass%以下、Si:0.3〜2mass%、Mn:0.45mass%未満、P:0.040mass%以下、S:0.001mass%超え0.005mass%以下、Al:0.01〜0.1mass%、N:0.02mass%以下、Cr:14〜30mass%、Nb:0.3mass%以上かつ15(C(mass%)+N(mass%))以上1.0mass%以下、Ti:0.01mass%以下を含有し、かつ、CrとSi、および、MnとSが、下記(1)および(2)式を満たして含有し、残部がFeおよび不可避的不純物からなるEGRクーラー用フェライト系ステンレス鋼である。

Cr+6Si:18〜30mass% ・・・(1)
Mn×S≦0.0005 ・・・(2)
(ただし、上記式中の元素記号はその元素の含有量(mass%)を示す。)
The present invention based on the above findings is: C: 0.02 mass% or less, Si: 0.3-2 mass%, Mn: less than 0.45 mass%, P: 0.040 mass% or less, S: 0.001 mass% or more. 005 mass% or less, Al: 0.01 to 0.1 mass%, N: 0.02 mass% or less, Cr: 14 to 30 mass%, Nb: 0.3 mass% or more and 15 (C (mass%) + N (mass%) ) 1.0 mass% or less, Ti: 0.01 mass% or less, and Cr and Si, and Mn and S satisfy the following formulas (1) and (2), and the balance is Fe And a ferritic stainless steel for an EGR cooler comprising inevitable impurities.
Cr + 6Si: 18-30 mass% (1)
Mn × S ≦ 0.0005 (2)
(However, the element symbol in the above formula indicates the content (mass%) of the element.)

本発明のフェライト系ステンレス鋼は、上記成分組成に加えてさらに、Ni:0.6mass%以下を含有することを特徴とする。 Ferritic stainless steels of the present invention, in addition to the above chemical composition, N i: characterized by containing a 0.6 mass% hereinafter.

また、本発明のフェライト系ステンレス鋼は、上記成分組成に加えてさらに、Mo:2mass%以下を含有することを特徴とする。   Further, the ferritic stainless steel of the present invention is characterized by further containing Mo: 2 mass% or less in addition to the above component composition.

本発明によれば、高温から急冷される場合でも酸化スケールの耐剥離性に優れるフェライト系ステンレス鋼を提供することができる。また、本発明のフェライト系ステンレス鋼は、耐スケール剥離性に優れるだけでなく、多量のNiを含有していないため安価であり、しかも、ろう付け性やろう付け部の耐食性にも優れているので、EGRクーラーに好適に用いることができる。   According to the present invention, it is possible to provide a ferritic stainless steel having excellent oxide scale peel resistance even when rapidly cooled from a high temperature. In addition, the ferritic stainless steel of the present invention is not only excellent in scale peel resistance but also inexpensive because it does not contain a large amount of Ni, and is also excellent in brazeability and corrosion resistance of the brazed part. Therefore, it can be suitably used for an EGR cooler.

まず、本発明を開発する契機となった実験について説明する。
上述したように、EGRクーラーの熱交換部分は、排気ガスと接する面は高温に加熱されるが、その反対面は冷却液によって冷却されている。そのため、例えば、エンジンが停止した時等には、排気ガスと接する面は、高温状態から急速冷却されるものと考えられる。そして、鋼表面に生成した酸化スケールは、素材との間の熱膨張係数の違いから大きな熱歪みを生じ、剥離を引き起こす。
First, an experiment that triggered the development of the present invention will be described.
As described above, in the heat exchange portion of the EGR cooler, the surface in contact with the exhaust gas is heated to a high temperature, but the opposite surface is cooled by the coolant. Therefore, for example, when the engine is stopped, the surface in contact with the exhaust gas is considered to be rapidly cooled from a high temperature state. And the oxide scale produced | generated on the steel surface produces a big thermal distortion from the difference in a thermal expansion coefficient between raw materials, and causes peeling.

そこで、非特許文献1の技術は、上記スケール剥離の問題を、Mnを0.8mass%以上添加し、素材と酸化スケールCrの界面にMnCrを生成させることによって熱歪みを緩和するとともに、鋼素地表面の凹凸を大きくすることによって、スケールの剥離を抑制している。しかし、Mnは、酸化スケールの生成を助長する元素であり、Mn添加により厚く生成する酸化スケールは、EGRクーラーの使用環境下では必ずしも十分な耐剥離性を有していない可能性がある。 Therefore, the technique of Non-Patent Document 1 is to solve the above-mentioned problem of scale peeling by adding Mn 0.8 mass% or more and generating MnCr 2 O 4 at the interface between the material and the oxide scale Cr 2 O 3. While mitigating, by increasing the unevenness of the steel substrate surface, the peeling of the scale is suppressed. However, Mn is an element that promotes the generation of oxide scale, and the oxide scale that is thickly formed by the addition of Mn may not necessarily have sufficient peeling resistance under the environment where the EGR cooler is used.

そこで、発明者らは、酸化スケールを生成させた後の冷却条件(冷却速度)を変えて、酸化スケールの耐剥離性を調査した。
実験は、表1に示した成分組成の異なる3種類の鋼板から、板厚:1.5mm×幅:20mm×長さ:40mmの試験片を採取し、各試験片を大気雰囲気中で、950℃×100hr加熱して試験片表面に酸化スケールを生成させた後、冷却速度を、
(i)自然冷却(空冷)する場合と、
(ii)アルゴンガスを10L/minで吹き付けて急冷する場合、
の2水準に振り分けて冷却した。
その後、各試験片の表面を目視観察し、スケール剥離の痕跡有無を確認すると共に、冷却時に剥離した酸化スケールを回収して、その質量を測定し、単位表面積当たりの剥離量を求め、剥離の痕跡がなくかつスケール剥離量が1.0mg/cm以下のものを耐スケール剥離性が良(○)、剥離の痕跡が視認されるおよび/またはスケール剥離量が1.0mg/cm超えのものを耐スケール剥離性が劣(×)と評価した。なお、各水準とも、n数を2として行い、1つでも上記×に該当するものは、×と評価した。
Therefore, the inventors investigated the peeling resistance of the oxide scale by changing the cooling condition (cooling rate) after the oxide scale was generated.
In the experiment, test pieces of plate thickness: 1.5 mm × width: 20 mm × length: 40 mm were sampled from three types of steel plates having different component compositions shown in Table 1, and each test piece was 950 in an air atmosphere. After heating at 100 ° C. for 100 hours to generate an oxide scale on the specimen surface, the cooling rate was
(I) natural cooling (air cooling);
(Ii) When quenching by blowing argon gas at 10 L / min,
It was divided into two levels and cooled.
Then, visually observe the surface of each test piece, confirm the presence or absence of traces of scale peeling, collect the oxide scale peeled during cooling, measure its mass, determine the amount of peel per unit surface area, No trace and scale peel-off amount of 1.0 mg / cm 2 or less, good scale peel resistance (◯), trace of peel is visually recognized and / or scale peel-off amount exceeds 1.0 mg / cm 2 The thing was evaluated as inferior in scale peel resistance (x). In each level, the number of n was set to 2, and even one corresponding to the above x was evaluated as x.

Figure 0005786491
Figure 0005786491


上記試験の結果を、表1中に併記した。この結果から、従来のSUS304鋼やSUS430LX鋼では、空冷、急冷条件のいずれの場合でも、耐スケール剥離性が劣る(×)こと、また、SUS430LXにMnを1.0mass%添加した鋼は、空冷条件では耐スケール剥離性が良好(○)ではあるものの、急冷条件では耐スケール剥離性が劣(×)るという結果が得られた。
,
The results of the above test are also shown in Table 1. From these results, the conventional SUS304 steel and SUS430LX steel have poor scale peel resistance in both cases of air cooling and rapid cooling conditions (x), and the steel in which 1.0 mass% of Mn is added to SUS430LX is air cooled. Although the scale peel resistance was good (◯) under the conditions, the results showed that the scale peel resistance was poor (×) under the rapid cooling conditions.

上記の結果は、酸化スケールの生成量を増大させるMn添加は、EGRクーラーのように急速冷却されて大きな熱応力が発生する使用環境では、耐スケール剥離性を改善する効果が小さいこと、したがって、耐スケール剥離性を改善するには、酸化スケールの生成自体を抑制するのが最も有効であることを示している。そこで、発明者らは、高温酸化雰囲気における酸化スケールの生成量を低減するべく検討を重ねた結果、CrとSiの含有量を、後述する関係式を満たして含有させてやる必要があることを見出した。   The above results show that the addition of Mn, which increases the amount of oxide scale produced, has a small effect of improving the scale peeling resistance in a use environment where a large thermal stress is generated due to rapid cooling like an EGR cooler. In order to improve the scale peeling resistance, it is shown that it is most effective to suppress the formation of oxide scale itself. Therefore, as a result of repeated studies to reduce the amount of oxide scale generated in a high-temperature oxidizing atmosphere, the inventors have to include the Cr and Si contents so as to satisfy the following relational expression. I found it.

また、発明者らは、ろう付け部の耐食性が低下する原因について調査した。その結果、ろう付け部の耐食性の低下は、ろう付け時の加熱によりCとNが鋼中のCrと結び付くことでCr欠乏層が生じて粒界腐食を生じること、および、MnとSは、MnSを形成して孔食等の起点となることに起因すること、したがって、ろう付け部の耐食性を向上させるには、Nbを所定量以上添加してC,Nを十分に固定した上で、MnとSの含有量(mass%)の積(Mn×S)を所定値以下に制御する必要があることを見出した。
以下、本発明のフェライト系ステンレス鋼が有すべき成分組成について具体的に説明する。
In addition, the inventors investigated the cause of a decrease in the corrosion resistance of the brazed part. As a result, the reduction in the corrosion resistance of the brazed part is caused by the fact that C and N are combined with Cr in the steel by heating during brazing, resulting in a Cr-deficient layer and intergranular corrosion. In order to improve the corrosion resistance of the brazed portion due to the formation of MnS and become a starting point of pitting corrosion, etc., after adding a predetermined amount of Nb and sufficiently fixing C and N, It has been found that the product (Mn × S) of the content (mass%) of Mn and S needs to be controlled to a predetermined value or less.
Hereinafter, the component composition that the ferritic stainless steel of the present invention should have will be specifically described.

C:0.02mass%以下
Cは、ろう付け後の冷却時にCrと結合してCr欠乏層を形成し、耐粒界腐食性を害したり、Nbと結合して鋼中に添加されたNbを消費したり、鋼の溶接性や加工性に悪影響を及ぼしたりする成分であるため、低いほど望ましい。そこで、本発明では、Cは0.02mass%以下とする。好ましくは、0.005mass%以下である。
C: 0.02 mass% or less C combines with Cr during cooling after brazing to form a Cr-deficient layer, impairs intergranular corrosion resistance, or combines Nb added to steel with Nb. Since it is a component that consumes or adversely affects the weldability and workability of steel, the lower the content, the better. Therefore, in the present invention, C is set to 0.02 mass% or less. Preferably, it is 0.005 mass% or less.

Si:0.3〜2mass%
Siは、鋼の脱酸材として添加されるが、高温酸化特性を改善すると共に、生成した酸化スケールの耐剥離性を改善するのに極めて有効な成分でもあるため、本発明では必須の添加元素として0.3mass%以上含有させる。スケールの耐剥離性をより改善するためには0.5mass%以上が好ましく、さらに好ましくは0.8mass%以上である。しかし、2mass%を超える添加は、鋼を硬質化し、加工性を著しく害するようになるので上限は2mass%とする。
Si: 0.3-2 mass%
Si is added as a deoxidizer for steel, but it is also an extremely effective component for improving the high-temperature oxidation characteristics and improving the peeling resistance of the generated oxide scale. As 0.3 mass% or more. In order to further improve the peeling resistance of the scale, 0.5 mass% or more is preferable, and 0.8 mass% or more is more preferable. However, addition exceeding 2 mass% hardens the steel and significantly impairs the workability, so the upper limit is made 2 mass%.

Mn:0.45mass%未満
Mnは、高温酸化雰囲気では、MnCr等の中間酸化物等を生成し、酸化増量を高める元素であり、大きな熱歪みが発生しない空冷程度の冷却速度では、スケールの耐剥離性を改善する効果がある。しかし、酸化スケールと素材との間に大きな熱歪みが発生する急速冷却を受ける場合には、Mnの添加は、却って耐スケール剥離性に悪影響を及ぼす。よって、本発明では、Mnは0.45mass%未満に制限する。好ましくは0.30mass%以下、より好ましくは0.25mass%以下である。
Mn: Less than 0.45 mass% Mn is an element that generates an intermediate oxide such as MnCr 2 O 4 in a high-temperature oxidizing atmosphere and increases the amount of oxidation, and at a cooling rate of about air cooling that does not generate large thermal distortion, This has the effect of improving the peel resistance of the scale. However, when subjected to rapid cooling in which a large thermal strain is generated between the oxide scale and the material, the addition of Mn adversely affects the scale peeling resistance. Therefore, in the present invention, Mn is limited to less than 0.45 mass%. Preferably it is 0.30 mass% or less, More preferably, it is 0.25 mass% or less.

P:0.040mass%以下
Pは、1100℃程度の温度で行われるNiろう付け後の冷却時に粒界に濃縮し、耐食性を低下させる有害な成分であるため、低いほど望ましく、本発明では0.040mass%以下とする。好ましくは0.030mass%以下である。
P: 0.040 mass% or less P is a harmful component that concentrates at the grain boundary during Ni brazing cooling at a temperature of about 1100 ° C. and lowers the corrosion resistance. 0.040 mass% or less. Preferably it is 0.030 mass% or less.

S:0.001mass%超え0.005mass%以下
Sは、MnとMnSを形成し、耐食性に悪影響を及ぼす成分であり、低いほど望ましく、本発明では0.005mass%以下とする。しかし、Sの過剰な低減は、製鋼コストの上昇を招くので、下限は0.001mass%超えとする。
S: More than 0.001 mass% and not more than 0.005 mass% S is a component that forms Mn and MnS and adversely affects the corrosion resistance, and is desirably as low as possible. In the present invention, it is 0.005 mass% or less. However, excessive reduction of S causes an increase in steelmaking costs, so the lower limit is made to exceed 0.001 mass%.

Al:0.01〜0.1mass%
Alは、脱酸材として添加される成分である。また、溶接ビード表面を強固なAl酸化膜で覆い、外部からの酸素の侵入を遮断する効果があるため、0.01mass%以上添加する必要がある。しかし、0.1mass%超える添加は、上記酸化膜によってNiろうの濡れ性が低下するようになるので、0.1mass%を上限とする。
Al: 0.01-0.1 mass%
Al is a component added as a deoxidizer. Further, since the weld bead surface is covered with a strong Al oxide film and has the effect of blocking the entry of oxygen from the outside, it is necessary to add 0.01 mass% or more. However, addition exceeding 0.1 mass% lowers the wettability of Ni brazing by the oxide film, so the upper limit is 0.1 mass%.

N:0.02mass%以下
Nは、Cと同様、ろう付け後の冷却時にCrと結合してCr欠乏層を形成し、耐粒界腐食性を害したり、Nbと結合して鋼中に添加されたNbを消費したり、鋼の溶接性や加工性に悪影響を及ぼしたりする成分であるため、低いほど望ましい。そこで、本発明では、Nは0.02mass%以下とする。
N: 0.02 mass% or less N, like C, forms a Cr-deficient layer by bonding with Cr during cooling after brazing, impairs intergranular corrosion resistance, or combines with Nb and added to steel The lower the content, the more desirable it is because it is a component that consumes the produced Nb or adversely affects the weldability and workability of steel. Therefore, in the present invention, N is set to 0.02 mass% or less.

Cr:14〜30mass%
Crは、ステンレス鋼としての耐食性を確保するため、14mass%以上の添加を必要とする。しかし、30mass%を超える添加は、加工性を害するようになる。よって、Crは14〜30mass%の範囲とする。好ましくは15〜23mass%の範囲である。
Cr: 14-30 mass%
Cr needs to be added in an amount of 14 mass% or more in order to ensure the corrosion resistance as stainless steel. However, the addition exceeding 30 mass% impairs workability. Therefore, Cr is set to a range of 14 to 30 mass%. Preferably it is the range of 15-23 mass%.

Nb:0.3〜1.0mass%、かつ、Nb≧15(C+N)
Nbは、炭窒化物を形成してろう付け時の加熱による結晶粒の粗大化を抑制して鋼の強度、靭性を確保したり、鋼の高温強度を高めたりするのに有用な元素であり0.3mass%以上の添加を必要とする。しかし、1mass%を超える添加は、鋼が脆化するので好ましくない。よって、Nbは0.3〜1.0mass%の範囲とする。
なお、Nbは、上述した効果の他に、CやNを固定し、Crと結合してCr欠乏層が形成され、鋭敏化するのを抑制することにより、ろう付け後の粒界腐食を防止する効果がある。斯かる効果を得るためには、Nbは15(C+N)以上(ただし、C,Nはmass%)添加する必要がある。好ましくは25(C+N)以上、さらに好ましくは50(C+N)以上である。
Nb: 0.3 to 1.0 mass% and Nb ≧ 15 (C + N)
Nb is a useful element for forming carbonitrides and suppressing the coarsening of crystal grains caused by heating during brazing to ensure the strength and toughness of the steel and to increase the high-temperature strength of the steel. Addition of 0.3 mass% or more is required. However, addition exceeding 1 mass% is not preferable because the steel becomes brittle. Therefore, Nb is set to a range of 0.3 to 1.0 mass%.
In addition to the effects described above, Nb fixes C and N and combines with Cr to form a Cr-deficient layer, thereby preventing sensitization and preventing intergranular corrosion after brazing. There is an effect to. In order to obtain such an effect, it is necessary to add Nb of 15 (C + N) or more (however, C and N are mass%). Preferably it is 25 (C + N) or more, more preferably 50 (C + N) or more.

Ti:0.01mass%以下
Tiは、Nbと同様、C,Nを固定する効果のある元素であるが、易酸化成分でもあるため、ろう付け時に強固な酸化皮膜を形成してろう付け性、特に、Niろうの濡れ性を著しく低下させる。そのため、Tiは低いほど望ましく、本発明では上限を0.01mass%とする。好ましくは0.005mass%以下である。
Ti: 0.01 mass% or less Ti is an element that has the effect of fixing C and N, like Nb, but is also an easily oxidizable component, so it forms a strong oxide film during brazing, In particular, the wettability of Ni brazing is significantly reduced. Therefore, Ti is desirably as low as possible. In the present invention, the upper limit is set to 0.01 mass%. Preferably it is 0.005 mass% or less.

本発明のフェライト系ステンレス鋼は、上記成分組成を満たしていることの他に、CrとSiおよびMnとSが、下記(1)式および(2)式を満たして含有していることが必要である。
Cr+6Si:18〜30mass% ・・・(1)
EGRクーラーの使用環境のように、950℃程度の高温から急冷を受ける際の酸化スケールの耐剥離性をより改善するためには、CrとSiを、(Cr+6Si)≧18mass%(ただし、Cr,Siはmass%)を満たして含有させる必要がある。(Cr+6Si)が18mass%未満では、耐酸化性不足のためスケール厚が増大するからである。しかし、(Cr+6Si)が30mass%を超えると、鋼の脆化が著しくなる。よって、本発明では、Cr+6Siは18〜30mass%の範囲とする。なお、1000℃から急冷されるEGRクーラーの場合には、Cr+6Siは20mass%以上が好ましく、22mass%以上がより好ましい。
In addition to satisfying the above component composition, the ferritic stainless steel of the present invention must contain Cr, Si, Mn, and S satisfying the following formulas (1) and (2): It is.
Cr + 6Si: 18-30 mass% (1)
In order to further improve the peeling resistance of the oxide scale when subjected to rapid cooling from a high temperature of about 950 ° C. as in the use environment of the EGR cooler, Cr and Si are changed to (Cr + 6Si) ≧ 18 mass% (however, Cr, Si must be contained so as to satisfy mass%). This is because if (Cr + 6Si) is less than 18 mass%, the scale thickness increases due to insufficient oxidation resistance. However, when (Cr + 6Si) exceeds 30 mass%, the embrittlement of the steel becomes significant. Therefore, in this invention, Cr + 6Si is taken as the range of 18-30 mass%. In the case of an EGR cooler that is rapidly cooled from 1000 ° C., Cr + 6Si is preferably 20% by mass or more, and more preferably 22% by mass or more.

Mn×S≦0.0005 ・・・(2)
MnおよびSは、MnSを形成し、耐食性に悪影響を及ぼす成分であり、両元素とも、できる限り低減することが望ましい。よって、本発明では、MnとSの含有量(mass%)の積を0.0005以下に制限する。好ましくは、0.0003以下である。
Mn × S ≦ 0.0005 (2)
Mn and S are components that form MnS and adversely affect the corrosion resistance, and it is desirable to reduce both elements as much as possible. Therefore, in the present invention, the product of Mn and S contents (mass%) is limited to 0.0005 or less. Preferably, it is 0.0003 or less.

また、本発明のフェライト系ステンレス鋼は、上記成分組成に加えてさらに、CuおよびNiのうちから選ばれる1種または2種を下記の範囲で添加することができる。
Cu:0.6mass%以下、Ni:0.6mass%以下
CuおよびNiは、鋼の耐食性を改善する効果があるため添加することができる。しかし、Cu,Niは、いずれも0.6mass%を超えて添加すると、耐食性改善効果が飽和するため、上限は、それぞれ0.6mass%として添加するのが好ましい。
Moreover, in addition to the said component composition, the ferritic stainless steel of this invention can further add 1 type or 2 types chosen from Cu and Ni in the following range.
Cu: 0.6 mass% or less, Ni: 0.6 mass% or less Cu and Ni can be added because they have an effect of improving the corrosion resistance of the steel. However, if both Cu and Ni are added in excess of 0.6 mass%, the effect of improving corrosion resistance is saturated. Therefore, it is preferable to add Cu and Ni at 0.6 mass% respectively.

また、本発明のフェライト系ステンレス鋼は、上記成分組成に加えてさらに、Moを下記の範囲で添加することができる。
Mo:2mass%以下
Moは、鋼の耐食性向上に大きな効果があるため、必要に応じて添加することができる。しかし、2mass%を超える添加は、加工性が著しく低下するため、上限を2mass%として添加するのが好ましい。
Moreover, the ferritic stainless steel of this invention can add Mo in the following range further in addition to the said component composition.
Mo: 2 mass% or less Mo has a great effect on improving the corrosion resistance of steel, and can be added as necessary. However, since addition exceeding 2 mass% significantly decreases the workability, it is preferable to add the upper limit of 2 mass%.

本発明のフェライト系ステンレス鋼は、上記成分以外の残部は、Feおよび不可避的不純物である。ただし、本発明の効果を害しない範囲であれば、上記以外の成分の含有を拒むものではない。   In the ferritic stainless steel of the present invention, the balance other than the above components is Fe and inevitable impurities. However, as long as the effects of the present invention are not impaired, the inclusion of components other than those described above is not rejected.

なお、本発明のフェライト系ステンレス鋼の製造方法は、鋼の成分組成を上記範囲に制御すること以外は、通常公知のフェライト系ステンレス鋼の製造方法で製造することができ、特に制限はない。   In addition, the manufacturing method of the ferritic stainless steel of this invention can be manufactured with the manufacturing method of a well-known ferritic stainless steel except controlling the component composition of steel to the said range, and there is no restriction | limiting in particular.

表2に示した成分組成の鋼を溶製し、鋼スラブとした後、熱間圧延し、冷間圧延して板厚:1.5mmの冷延板とし、仕上焼鈍して、冷延焼鈍板とした。その後、これらの冷延焼鈍板から、試験片を採取し、下記の高温酸化試験および耐食性試験に供した。   Steel having the composition shown in Table 2 was melted to form a steel slab, which was then hot-rolled, cold-rolled to obtain a cold-rolled sheet having a thickness of 1.5 mm, and then subjected to finish annealing and cold-rolling annealing. A board was used. Thereafter, test pieces were collected from these cold-rolled annealed plates and subjected to the following high-temperature oxidation test and corrosion resistance test.

<高温酸化試験>
上記各冷延焼鈍板から、板厚×幅:20mm×長さ:40mmの試験片を採取し、これらの試験片を、大気雰囲気の炉中で、950℃×100時間保持する高温酸化試験を行った後、試験片を炉外に取り出して、自然冷却(空冷)する、あるいは、10L/分でアルゴンガスを吹き付け冷却(急冷)した後、目視観察でスケール剥離の痕跡有無を確認すると共に、冷却時に剥離したスケールを回収してスケール剥離量を測定した。その結果、スケール剥離の痕跡なし、かつ、スケール剥離量が1.0mg/cm以下のものを、耐スケール剥離性が良好(○)、スケール剥離の痕跡ありおよび/またはスケール剥離量が1.0mg/cm超えのものを、耐スケール剥離性が不良(×)と評価した。なお、試験したn数は、各鋼板とも2とし、1つでも×に該当するものがあれば、×と評価した。
<High temperature oxidation test>
From each of the above-mentioned cold-rolled annealed plates, a test piece having a thickness x width: 20 mm x length: 40 mm was taken, and a high-temperature oxidation test was performed in which these test pieces were held in an atmosphere atmosphere furnace at 950 ° C. for 100 hours. After the test piece is taken out of the furnace, it is naturally cooled (air cooled), or cooled by blowing argon gas at 10 L / min (rapidly cooled), and then the presence of traces of scale peeling is confirmed by visual observation. The scale peeled during cooling was collected and the amount of scale peel was measured. As a result, when there is no trace of scale peeling and the scale peel amount is 1.0 mg / cm 2 or less, the scale peel resistance is good (◯), there is a trace of scale peel and / or the scale peel amount is 1. Those exceeding 0 mg / cm 2 were evaluated as poor (×) in scale peel resistance. The number of n tested was 2 for each steel plate, and even if there was one corresponding to x, it was evaluated as x.

<耐食性試験>
上記各冷延焼鈍板から、板厚×幅:20mm×長さ:40mmの試験片を採取し、これらの試験片に、ろう付け時の熱履歴を模擬して、真空雰囲気下で1100℃×10min加熱後、空冷する熱処理を施した。次いで、これらの試験片をJIS Z2371に準じた中性塩水噴霧試験(NSS)に供した後、試験片表面に生じた錆の発生状況を目視観察し、発錆なしのものを耐食性優(◎)、発錆面積率が10%以下のものを耐食性良(○)、発錆面積率が10%超えのものを耐食性劣(×)と評価した。
<Corrosion resistance test>
From each of the above-mentioned cold-rolled annealed plates, specimens having a thickness x width: 20 mm x length: 40 mm were collected, and the thermal history at the time of brazing was simulated on these specimens at 1100 ° C. in a vacuum atmosphere. After heating for 10 minutes, a heat treatment for air cooling was performed. Next, these specimens were subjected to a neutral salt spray test (NSS) in accordance with JIS Z2371, and then the state of rust generated on the specimen surface was visually observed, and those without rusting were excellent in corrosion resistance (◎ ), Those having a rusting area ratio of 10% or less were evaluated as good corrosion resistance (◯), and those having a rusting area ratio exceeding 10% were evaluated as inferior corrosion resistance (×).

Figure 0005786491
Figure 0005786491

上記測定の結果を表2中に併記した。この結果から、本発明の成分組成を満たす鋼は、いずれも耐スケール剥離性および耐食性に優れていることが確認された。   The measurement results are also shown in Table 2. From these results, it was confirmed that all the steels satisfying the component composition of the present invention were excellent in scale peel resistance and corrosion resistance.

本発明フェライト系ステンレス鋼は、耐スケール剥離性やろう付け性およびろう付け後の耐食性にも優れているので、EGRクーラー用の他、EGRパイプや熱交換器部品にも好適に用いることができる。   Since the ferritic stainless steel of the present invention is excellent in scale peel resistance, brazing resistance and corrosion resistance after brazing, it can be suitably used for EGR pipes and heat exchanger parts as well as for EGR coolers. .

Claims (3)

C:0.02mass%以下、
Si:0.3〜2mass%、
Mn:0.45mass%未満、
P:0.040mass%以下、
S:0.001mass%超え0.005mass%以下、
Al:0.01〜0.1mass%、
N:0.02mass%以下、
Cr:14〜30mass%、
Nb:0.3mass%以上かつ15(C(mass%)+N(mass%))以上1.0mass%以下、
Ti:0.01mass%以下を含有し、かつ、CrとSi、および、MnとSが、下記(1)および(2)式を満たして含有し、残部がFeおよび不可避的不純物からなるEGRクーラー用フェライト系ステンレス鋼。

Cr+6Si:18〜30mass% ・・・(1)
Mn×S≦0.0005
・・・(2)
(ただし、上記式中の元素記号はその元素の含有量(mass%)を示す。)
C: 0.02 mass% or less,
Si: 0.3-2 mass%
Mn: less than 0.45 mass%,
P: 0.040 mass% or less,
S: more than 0.001 mass% and 0.005 mass% or less,
Al: 0.01-0.1 mass%,
N: 0.02 mass% or less,
Cr: 14-30 mass%,
Nb: 0.3 mass% or more and 15 (C (mass%) + N (mass%)) or more and 1.0 mass% or less,
EGR cooler containing Ti: 0.01 mass% or less, Cr and Si, Mn and S satisfying the following formulas (1) and (2), and the balance being Fe and inevitable impurities Ferritic stainless steel.
Cr + 6Si: 18-30 mass% (1)
Mn × S ≦ 0.0005
... (2)
(However, the element symbol in the above formula indicates the content (mass%) of the element.)
上記成分組成に加えてさらに、Ni:0.6mass%以下を含有することを特徴とする請求項1に記載のEGRクーラー用フェライト系ステンレス鋼。 In addition to the above chemical composition, N i: 0.6mass% EGR cooler for ferritic stainless steel according to claim 1, characterized in that it contains hereinafter. 上記成分組成に加えてさらに、Mo:2mass%以下を含有することを特徴とする請求項1または2に記載のEGRクーラー用フェライト系ステンレス鋼。 The ferritic stainless steel for an EGR cooler according to claim 1 or 2, further comprising Mo: 2 mass% or less in addition to the above component composition.
JP2011143001A 2011-06-28 2011-06-28 Ferritic stainless steel for EGR cooler Active JP5786491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011143001A JP5786491B2 (en) 2011-06-28 2011-06-28 Ferritic stainless steel for EGR cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011143001A JP5786491B2 (en) 2011-06-28 2011-06-28 Ferritic stainless steel for EGR cooler

Publications (2)

Publication Number Publication Date
JP2013010981A JP2013010981A (en) 2013-01-17
JP5786491B2 true JP5786491B2 (en) 2015-09-30

Family

ID=47685100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011143001A Active JP5786491B2 (en) 2011-06-28 2011-06-28 Ferritic stainless steel for EGR cooler

Country Status (1)

Country Link
JP (1) JP5786491B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6295155B2 (en) * 2014-07-22 2018-03-14 新日鐵住金ステンレス株式会社 Ferritic stainless steel, manufacturing method thereof, and heat exchanger using ferritic stainless steel as a member
MX2020008492A (en) * 2018-02-14 2020-09-25 Jfe Steel Corp Ferritic stainless steel.
CN113107717A (en) * 2021-05-14 2021-07-13 宁波福士汽车部件有限公司 Automobile EGR heat exchange pipeline

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1571227B1 (en) * 2002-12-12 2007-02-21 Nippon Steel &amp; Sumikin Stainless Steel Corporation Cr-CONTAINING HEAT-RESISTANT STEEL SHEET EXCELLENT IN WORKABILITY AND METHOD FOR PRODUCTION THEREOF
JP2009097079A (en) * 2007-09-27 2009-05-07 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel having excellent atmospheric corrosion resistance
JP5264199B2 (en) * 2008-01-28 2013-08-14 日新製鋼株式会社 EGR cooler using ferritic stainless steel
JP5563203B2 (en) * 2008-03-12 2014-07-30 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent corrosion resistance in urea water and ferritic stainless steel for urea SCR system
JP5467673B2 (en) * 2009-04-23 2014-04-09 日新製鋼株式会社 Ferritic stainless steel for corrugated tubes
JP5349153B2 (en) * 2009-06-15 2013-11-20 日新製鋼株式会社 Ferritic stainless steel for brazing and heat exchanger members
JP5856878B2 (en) * 2011-03-29 2016-02-10 新日鐵住金ステンレス株式会社 Ferritic stainless steel for exhaust heat recovery and exhaust heat recovery

Also Published As

Publication number Publication date
JP2013010981A (en) 2013-01-17

Similar Documents

Publication Publication Date Title
JP6607268B2 (en) Ferritic stainless steel
JP5264199B2 (en) EGR cooler using ferritic stainless steel
JP5390175B2 (en) Ferritic stainless steel with excellent brazeability
JP5846339B1 (en) Ferritic stainless steel and manufacturing method thereof
KR101703464B1 (en) Ferritic stainless steel sheet having excellent brazability, heat exchanger, ferritic stainless steel sheet for heat exchangers, ferritic stainless steel, ferritic stainless steel for members of fuel supply systems, and member of fuel supply system
JP2011190524A (en) Ferritic stainless steel having excellent oxidation resistance, secondary processing brittleness resistance and weld zone toughness
JP6895787B2 (en) Austenitic stainless steel, brazed structures, brazed structural parts and exhaust gas heat exchange parts
WO2011013193A1 (en) Ferritic stainless steel for egr cooler and egr cooler
JPWO2010010916A1 (en) Ferritic stainless steel for urea water tank
JP2009007601A (en) Ferritic stainless steel member for heat collection apparatus
JP5786491B2 (en) Ferritic stainless steel for EGR cooler
JP5866628B2 (en) Ferritic stainless steel with excellent secondary workability and Cr evaporation resistance
JP7140309B1 (en) ferritic stainless steel
JP7548193B2 (en) Ferritic Stainless Steel
JP3536568B2 (en) Ferritic stainless steel for engine exhaust parts with excellent heat resistance and muffler corrosion resistance at welds
JP5788946B2 (en) Ferritic stainless steel for parts assembled by brazing with excellent brazing
JP6547927B1 (en) Ferritic stainless steel
JPH10102208A (en) Ferritic stainless steel for engine exhaust member, excellent in heat resistance, workability, and corrosion resistance in weld zone
WO2023276411A1 (en) Ferritic stainless steel
WO2024157580A1 (en) Ferrite stainless steel and method for producing same
WO2019159606A1 (en) Ferritic stainless steel
JP2023146183A (en) Ferritic stainless steel sheet
JP2023047211A (en) ferritic stainless steel
JP2019173115A (en) Ferritic stainless steel sheet excellent in high temperature salt damage resistance and automobile exhaust system component
JP2009041102A (en) Ni-BASED ALLOY FOR COMPONENT OF EXHAUST GAS RE-CIRCULATION SYSTEM

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150713

R150 Certificate of patent or registration of utility model

Ref document number: 5786491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250