JP5105822B2 - Heat transfer material for heat collection and manufacturing method thereof - Google Patents

Heat transfer material for heat collection and manufacturing method thereof Download PDF

Info

Publication number
JP5105822B2
JP5105822B2 JP2006284246A JP2006284246A JP5105822B2 JP 5105822 B2 JP5105822 B2 JP 5105822B2 JP 2006284246 A JP2006284246 A JP 2006284246A JP 2006284246 A JP2006284246 A JP 2006284246A JP 5105822 B2 JP5105822 B2 JP 5105822B2
Authority
JP
Japan
Prior art keywords
less
heat
oxide film
transfer material
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006284246A
Other languages
Japanese (ja)
Other versions
JP2008101240A (en
Inventor
幸寛 西田
一幸 景岡
芳明 堀
学 奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2006284246A priority Critical patent/JP5105822B2/en
Publication of JP2008101240A publication Critical patent/JP2008101240A/en
Application granted granted Critical
Publication of JP5105822B2 publication Critical patent/JP5105822B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • F28F21/083Heat exchange elements made from metals or metal alloys from steel or ferrous alloys from stainless steel

Description

本発明は、熱エネルギーを利用するシステム、例えばスターリングエンジン、燃料電池、マイクロガスエンジン、マイクロガスタービン、排ガス発電およびその他のコージェネシステムにおいて、エネルギー効率向上のために導入される排熱回収装置、高温熱交換器などの高温集熱機器で水蒸気を含む高温ガスから集熱するために使用される、集熱板、チューブ、フィン等の伝熱材料、およびその製造法に関する。   The present invention relates to an exhaust heat recovery device introduced to improve energy efficiency in a system using thermal energy, such as a Stirling engine, a fuel cell, a micro gas engine, a micro gas turbine, an exhaust gas power generation system, and other cogeneration systems. The present invention relates to a heat transfer material such as a heat collecting plate, a tube, and a fin, which is used for collecting heat from a high temperature gas containing water vapor in a high temperature heat collecting apparatus such as a heat exchanger, and a method for producing the same.

近年、石油を代表とする化石燃料の枯渇化、CO2排出による地球温暖化現象等の問題から、従来の発電システムに替わる新しいシステムの実用化が求められている。その一環として新しい発電システムや、分散電源あるいは自動車用動力源に使用するスターリングエンジン、燃料電池、排ガス発電など、様々なコージェネシステムが実用化されつつある。 In recent years, due to problems such as the depletion of fossil fuels typified by petroleum and the global warming phenomenon due to CO 2 emissions, there has been a demand for practical use of a new system that replaces the conventional power generation system. As part of this, various cogeneration systems such as new power generation systems, Stirling engines, fuel cells, and exhaust gas power generation used for distributed power sources or automobile power sources are being put into practical use.

これらのシステムでは概して800℃程度の排ガスが排出され、この排ガスで発生する熱を利用してエネルギー効率を向上させることが行われる。しかし、これらの排ガスは一般にガスバーナー、エンジンなどの燃焼により生成したガスであるため、水蒸気を多量に含む雰囲気となる。その他の成分に酸素、水素、CO2、CO、HC等が混在する雰囲気となる場合もある。また、加熱・冷却も頻繁に繰り返されるのが普通である。 In these systems, exhaust gas of about 800 ° C. is generally discharged, and energy efficiency is improved by using heat generated from the exhaust gas. However, since these exhaust gases are generally gas generated by combustion of a gas burner, an engine, etc., the atmosphere contains a large amount of water vapor. There may be an atmosphere in which oxygen, hydrogen, CO 2 , CO, HC, and the like are mixed with other components. Also, heating and cooling are usually repeated frequently.

上記システムのエネルギー効率を上げるためには、発生する熱を出来るだけ高効率で回収し、利用することが必要不可欠である。高効率で熱を回収するための伝熱材料としては熱伝導率が高く、かつ高温での耐久性や加熱・冷却に対する耐久性に優れることが要求される。   In order to increase the energy efficiency of the above system, it is essential to recover and use the generated heat as efficiently as possible. As a heat transfer material for recovering heat with high efficiency, it is required to have high thermal conductivity and excellent durability at high temperatures and resistance to heating and cooling.

熱伝導率が高い材料として銅系またはアルミニウム系の合金が挙げられる。しかしこれらは常温〜300℃程度の温度域なら使用できるが、さらに高温域では酸化による劣化が大きくなり、800℃では跡形もなくなってしまうことがある。   Examples of the material having high thermal conductivity include copper-based and aluminum-based alloys. However, these can be used in a temperature range from room temperature to about 300 ° C., but the deterioration due to oxidation becomes larger at a higher temperature range, and traces sometimes disappear at 800 ° C.

800℃レベルの水蒸気環境で耐え得る金属材料としては、ステンレス鋼、鉄基耐熱高合金、Ni基耐熱高合金がある。これらの材料であれば、初期性能としてはエネルギー効率を十分確保できる目安である18W/m・K以上の発電効率を実現することは可能である。しかしながら、800℃レベルの水蒸気環境で初期の良好な伝熱特性を維持し続け、かつ疲労特性やコストに優れた材料は未だ見出されていない。   Examples of metal materials that can withstand an 800 ° C. water vapor environment include stainless steel, iron-base heat-resistant high alloy, and Ni-base heat-resistant high alloy. With these materials, it is possible to achieve a power generation efficiency of 18 W / m · K or more, which is a guideline that can sufficiently ensure energy efficiency as the initial performance. However, no material has yet been found that maintains good initial heat transfer characteristics in a steam environment at a temperature of 800 ° C. and is excellent in fatigue characteristics and cost.

特開平7−292446号公報JP 7-292446 A 特開2003−328088号公報JP 2003-328088 A

コストや量産性を考慮すると、上記システムに適用する集熱用の伝熱材料としてはステンレス鋼が有利であると考えられる。特許文献2には、高温水蒸気酸化雰囲気において異常酸化が起こりにくく、酸化増量も低く抑えられるフェライト系ステンレス鋼が記載されている。しかし、特許文献2には高温水蒸気環境で18W/m・K以上といった高い熱伝導率が維持されるような皮膜を備えた材料は示されていない。集熱用の部材として満足できる特性を備えたステンレス鋼材料は未だ開発されていないのが現状である。   In view of cost and mass productivity, stainless steel is considered advantageous as a heat transfer material for collecting heat applied to the system. Patent Document 2 describes a ferritic stainless steel that is unlikely to cause abnormal oxidation in a high-temperature steam oxidation atmosphere and that can suppress an increase in oxidation. However, Patent Document 2 does not show a material having a coating that maintains a high thermal conductivity of 18 W / m · K or higher in a high-temperature steam environment. At present, a stainless steel material having satisfactory characteristics as a heat collecting member has not yet been developed.

本発明はこのような現状に鑑み、800℃レベルの水蒸気環境で初期の良好な伝熱特性を維持し続ける耐久性を有する集熱用の伝熱材料を開発し提供しようというものである。   In view of such a current situation, the present invention intends to develop and provide a heat transfer material for heat collection having durability that maintains the initial good heat transfer characteristics in a steam environment of 800 ° C. level.

発明者らは詳細な検討の結果、特定組成に限定されたフェライト系ステンレス鋼を基材とし、その表面にスピネル系酸化物濃度が低く抑えられた酸化皮膜を形成したとき、その材料は高温水蒸気環境で熱伝導率の維持特性が極めて良好になることを見出し、上記システムに好適な集熱用伝熱材を完成するに至った。
「伝熱材」は、その材料中に生じる熱流によって当該材料に接する高温側物質から低温側物質に熱を伝達する働きを担う材料である。
As a result of detailed studies, the inventors have made a ferritic stainless steel base material limited to a specific composition and formed an oxide film with a low spinel oxide concentration on the surface thereof. The inventors have found that the heat conductivity maintenance characteristics are extremely good in the environment, and have completed a heat transfer material suitable for the above system.
The “heat transfer material” is a material that plays a role of transferring heat from a high-temperature side substance in contact with the material to a low-temperature side substance by a heat flow generated in the material.

本発明の集熱用伝熱材は、以下の組成を有するフェライト系ステンレス鋼を基材とする。
質量%で、C:0.03%以下、Si:2.0%以下、Mn:1.5%以下、S:0.008%以下、Cr:11〜25%、Al:0.05〜6.0%、好ましくは0.2〜6.0%、N:0.03%以下、残部実質的にFe、かつ下記(1)式を満たす組成。
Cr+3Si+15Al>22.0 ……(1)
The heat transfer material for heat collection of the present invention is based on a ferritic stainless steel having the following composition.
In mass%, C: 0.03% or less, Si: 2.0% or less, Mn: 1.5% or less, S: 0.008% or less, Cr: 11-25%, Al: 0.05-5 A composition that satisfies 0.0 %, preferably 0.2-6.0%, N: 0.03% or less, the balance substantially Fe, and the following formula (1).
Cr + 3Si + 15Al> 22.0 (1)

さらに上記以外の元素として以下のi)、ii)の一方または双方を満たす組成とすることができる。
i) Y:0.1%以下、REM(希土類元素):0.1%以下、Ca:0.01%以下、Zr:0.5%以下の1種以上を含有する。
ii) Nb:0.8%以下、Ti:0.5%以下、Mo:4.0%以下、Cu:4.0%以下、W:4.0%以下の1種以上を含有する。
Furthermore, it can be set as the composition which satisfy | fills one or both of the following i) and ii) as elements other than the above.
i) Y: not more than 0.1%, REM (rare earth element): not more than 0.1%, Ca: not more than 0.01%, Zr: not more than 0.5%.
ii) One or more of Nb: 0.8% or less, Ti: 0.5% or less, Mo: 4.0% or less, Cu: 4.0% or less, and W: 4.0% or less are contained.

ここで、「残部実質的にFe」とは、本発明の効果を阻害しない範囲で、規定以外の元素の混入が許容されることを意味し、「残部がFeおよび不可避的不純物からなる」ものが含まれる。(1)式の元素記号の箇所には質量%で表された当該元素の含有量が代入される。   Here, “the balance is substantially Fe” means that mixing of elements other than those specified is permitted within a range that does not impair the effects of the present invention, and “the balance consists of Fe and inevitable impurities”. Is included. The content of the element expressed in mass% is substituted for the element symbol in the formula (1).

このステンレス鋼基材は、水蒸気を含む高温ガスと接触する側の表面に、スピネル系酸化物濃度が15質量%以下(0質量%すなわち検出されない場合を含む)に抑制された厚さ0.01〜10μmの酸化皮膜を有している。この酸化皮膜を介した熱伝導率が800℃で18W/m・K以上を呈するものが好適な対象となる。
酸化皮膜の厚さはSEM(走査型電子顕微鏡)による断面観察によって測定することができ、各部の厚さが0.01〜10μmの範囲にあればよい。スピネル系酸化物の濃度は後述のようにX線回折により行うことができる。
This stainless steel substrate has a thickness of 0.01 on the surface on the side in contact with the high-temperature gas containing water vapor, in which the spinel oxide concentration is suppressed to 15% by mass or less (including 0% by mass, that is, not detected). It has an oxide film of 10 μm. Those having a thermal conductivity of 18 W / m · K or more at 800 ° C. through this oxide film are suitable.
The thickness of the oxide film can be measured by cross-sectional observation with an SEM (scanning electron microscope), and the thickness of each part may be in the range of 0.01 to 10 μm. The concentration of the spinel oxide can be performed by X-ray diffraction as described later.

このような酸化皮膜は、上記の組成に成分調整された鋼の基材を、5〜60体積%の水蒸気と1〜20体積%の酸素を含む700〜1000℃のガスに例えば1h以上曝す酸化処理に供することにより形成させることができる。その酸化処理前に、700〜900℃の大気雰囲気に1h以下曝す予備酸化処理を行うと一層効果的である。上記酸化処理あるいは予備酸化処理に供するための基材として、JIS R6001に規定される番手で#100〜600の範囲で研磨仕上げされたものを使用することが好ましい。   Such an oxide film is formed by, for example, exposing a steel base material whose composition is adjusted to the above composition to a gas at 700 to 1000 ° C. containing 5 to 60% by volume of water vapor and 1 to 20% by volume of oxygen, for example for 1 hour or more. It can be formed by subjecting to treatment. Before the oxidation treatment, it is more effective to perform a pre-oxidation treatment by exposing it to an air atmosphere at 700 to 900 ° C. for 1 hour or less. As a base material for use in the oxidation treatment or preliminary oxidation treatment, it is preferable to use a substrate that is polished and finished in a range of # 100 to 600 with a count defined in JIS R6001.

本発明によれば、800℃レベルの高温水蒸気環境で長期間使用されたときに熱伝導率を高く維持できる材料が提供された。この材料はフェライト系ステンレス鋼を基材とするものであるため、コストや量産性に優れる。したがって本発明は、排ガスからの熱エネルギーを回収し有効利用する前記各コージェネシステムの実用化や性能向上に寄与し、環境問題の改善につながる。   According to the present invention, a material capable of maintaining a high thermal conductivity when used for a long time in a high-temperature steam environment at a temperature of 800 ° C. has been provided. Since this material is based on ferritic stainless steel, it is excellent in cost and mass productivity. Therefore, the present invention contributes to the practical application and performance improvement of each of the cogeneration systems that recover and effectively use the thermal energy from the exhaust gas, leading to improvement of environmental problems.

クロムを11質量%以上含むステンレス鋼は、生成する酸化皮膜の成長が遅く、高温での材料劣化が少ない金属材料であるため、伝熱性能と耐久性の両立が求められる高温集熱機器の伝熱材料として適している。一般的なステンレス鋼の場合、初期性能としては800℃で18〜30W/m・K程度の熱伝導率を有しているのが普通である。しかし、多量の水蒸気を含む燃焼排ガス雰囲気に曝されると水蒸気酸化が進行し、それに伴い伝熱性能が大幅に劣化してしまうという問題があった。   Stainless steel containing 11% by mass or more of chromium is a metal material with a slow growth of the oxide film to be produced and less material deterioration at high temperatures. Suitable as thermal material. In the case of general stainless steel, the initial performance is usually about 18 to 30 W / m · K at 800 ° C. as the initial performance. However, when exposed to a combustion exhaust gas atmosphere containing a large amount of water vapor, there is a problem that the water vapor oxidation proceeds and the heat transfer performance is greatly deteriorated accordingly.

発明者らは、高温雰囲気における水蒸気酸化が生じることでステンレス鋼材料の伝熱性能が低下する原因について詳細に検討を行った。その結果、以下のことがわかった。
水蒸気が存在する高温雰囲気下において、ステンレス鋼表面には通常、二層の酸化物が生成する。外側には保護性に乏しいポーラスなスピネル系酸化物((Fe,Cr)34、MnCr24など)を主体とした層が、内側には緻密なコランダム系酸化物(Cr23またはAl23)を主体とした層が生成する。その他、これらの層中には緻密なSiO2主体の酸化物が生成することもある。
The inventors have studied in detail the cause of the deterioration of the heat transfer performance of the stainless steel material due to the occurrence of steam oxidation in a high temperature atmosphere. As a result, the following was found.
In a high temperature atmosphere where water vapor is present, two layers of oxides are usually formed on the stainless steel surface. A layer mainly composed of a porous spinel oxide ((Fe, Cr) 3 O 4 , MnCr 2 O 4, etc.) having poor protection on the outer side, and a dense corundum oxide (Cr 2 O 3 ) on the inner side. Alternatively, a layer mainly composed of Al 2 O 3 is formed. In addition, dense SiO 2 -based oxides may be formed in these layers.

酸化物が成長するに従い、スピネル系酸化物層とコランダム系酸化物層との間にボイドが形成されやすくなり、また加熱−冷却の繰返しによリクラックが発生しやすくなる。これらの現象が生じることにより、この2層の間に極めて熱伝導の悪い空気層あるいは真空に近い状態の層(分離層)が形成される。その結果、材料の酸化皮膜を介した熱伝導率は大幅に低下してしまうのである。現に水蒸気酸化によって熱伝導率が低下したステンレス鋼材料の表層部断面をミクロ的に観察すると上記のような分離層の生成が認められる。   As the oxide grows, voids are likely to be formed between the spinel oxide layer and the corundum oxide layer, and cracks are likely to occur due to repeated heating and cooling. As a result of these phenomena, an air layer with very poor thermal conductivity or a layer close to a vacuum (separation layer) is formed between the two layers. As a result, the thermal conductivity through the oxide film of the material is greatly reduced. When the surface layer cross section of the stainless steel material whose thermal conductivity has actually decreased due to steam oxidation is observed microscopically, the formation of the separation layer as described above is observed.

発明者らは鋭意研究により、この不具合を解決する手法として、酸化皮膜中におけるポーラスなスピネル系酸化物の存在比率を抑制し、緻密なコランダム系酸化物またはSiO2が主体の酸化皮膜を構築することが極めて有効であることを見出した。具体的には、鋼材表面に形成される酸化皮膜中のスピネル系酸化物の存在割合を15質量%以下に低減したとき、800℃レベルの高温水蒸気環境下において熱伝導率の低下を顕著に抑制でき、長期間繰り返しこのような雰囲気に曝しても例えば800℃で18W/m・K以上という良好な熱伝導率が維持できる。 As a method for solving this problem, the inventors have studied the existence ratio of a porous spinel oxide in the oxide film and constructed a dense corundum oxide or an oxide film mainly composed of SiO 2 as a technique for solving this problem. Has been found to be extremely effective. Specifically, when the proportion of the spinel oxide in the oxide film formed on the steel surface is reduced to 15% by mass or less, a decrease in thermal conductivity is remarkably suppressed in a high-temperature steam environment at an 800 ° C. level. Even if it is repeatedly exposed to such an atmosphere for a long period of time, a good thermal conductivity of 18 W / m · K or more at 800 ° C. can be maintained.

酸化皮膜中のスピネル系酸化物の存在割合は、酸化皮膜のX線回折(Cu−Kα線使用)により求めることができる。ここでは、スピネル系酸化物の回折強度IS、コランダム系酸化物の回折強度IC、IA、SiO2の回折強度ISiを用いて、
S/(IS+IC+IA+ISi)×100
の値を求め、これを質量%に換算した値を酸化皮膜中のスピネル系酸化物の存在割合とする。
ここで、ISは(Fe,Cr)34またはMnCr24に相当するの最大回折ピークの高さ、ICはCr23に相当する最大回折ピークの高さ、IAはAl23に相当する最大回折ピークの高さ、ISiはSiO2の最大回折ピークの高さとする。最大回折ピークとは、各酸化物の回折ピークのうち、最も回折強度の高い(hkl)面の回折ピークである。ただし、スピネル系酸化物の最大回折ピークである(311)面(面間隔d=約0.25nm)のピークは、コランダム系酸化物で2番目に大きい回折ピーク(Cr23の(110)面、Al23の(104)面)と重なる可能性がある。スピネル系酸化物と、コランダム系酸化物がともに同定された場合は、コランダム系酸化物(Cr23、Al23)における他の主ピークの高さからCr23の(110)面のピーク高さおよびAl23の(104)面のピーク高さをそれぞれ計算し、実測された面間隔0.25nm近傍のピーク高さからCr23の(110)面の計算ピーク高さおよびAl23の(104)面の計算ピーク高さを差し引くことによってISを定める。Cr23、Al23のうち1種類のみが同定(存在が確認)された場合は、上記実測ピーク高さから同定された種類の計算ピーク高さを差し引けばよい。
The abundance ratio of the spinel oxide in the oxide film can be determined by X-ray diffraction (using Cu-Kα rays) of the oxide film. Here, using the diffraction intensity I S of the spinel oxide, the diffraction intensity I C , I A of the corundum oxide, and the diffraction intensity I Si of SiO 2 ,
I S / (I S + I C + I A + I Si ) × 100
The value obtained by converting this to mass% is defined as the existence ratio of the spinel oxide in the oxide film.
Here, I S is the height of the maximum diffraction peak corresponding to (Fe, Cr) 3 O 4 or MnCr 2 O 4 , I C is the height of the maximum diffraction peak corresponding to Cr 2 O 3 , and I A is The maximum diffraction peak height corresponding to Al 2 O 3 and I Si is the maximum diffraction peak height of SiO 2 . The maximum diffraction peak is a diffraction peak on the (hkl) plane having the highest diffraction intensity among the diffraction peaks of each oxide. However, the peak of the (311) plane (plane spacing d = about 0.25 nm) which is the maximum diffraction peak of the spinel oxide is the second largest diffraction peak ((110) of Cr 2 O 3 in the corundum oxide). And the (104) plane of Al 2 O 3 ). When both the spinel oxide and the corundum oxide are identified, the height of the other main peak in the corundum oxide (Cr 2 O 3 , Al 2 O 3 ) indicates that (110) of Cr 2 O 3 The peak height of the plane and the peak height of the (104) plane of Al 2 O 3 are calculated, and the calculated peak of the (110) plane of Cr 2 O 3 from the measured peak height in the vicinity of 0.25 nm. I S is determined by subtracting the height and the calculated peak height of the (104) plane of Al 2 O 3 . When only one type of Cr 2 O 3 and Al 2 O 3 is identified (existence is confirmed), the calculated peak height of the identified type may be subtracted from the measured peak height.

このようなスピネル系酸化物の少ない酸化皮膜を形成させるには、酸化の最も初期段階においてコランダム型の酸化物(Cr23またはAl23)、またはSiO2主体の緻密な酸化スケールを最表層に生成させることが最も効果的であるという結論に至った。このことにより、スピネル系酸化物を生成しやすい元素であるFe、Mnの最表層側(外方向)への外方拡散が抑制され、実質的にコランダム系酸化物を主体とする単層構造の酸化皮膜が形成される。その結果スピネル系酸化物とコランダム系酸化物との間の分離層が生成されなくなり、熱伝導率の低下を最小限に抑えることができる。 In order to form such an oxide film with little spinel oxide, a corundum type oxide (Cr 2 O 3 or Al 2 O 3 ) or a dense oxide scale mainly composed of SiO 2 is used at the earliest stage of oxidation. It came to the conclusion that it is most effective to make it the outermost layer. As a result, the outward diffusion of Fe and Mn, which are elements that easily generate spinel-based oxides, to the outermost layer side (outward direction) is suppressed, and a single-layer structure that is substantially composed of corundum-based oxides. An oxide film is formed. As a result, a separation layer between the spinel-based oxide and the corundum-based oxide is not generated, and a decrease in thermal conductivity can be minimized.

このようなコランダム系酸化物主体の単層構造の酸化皮膜を形成するには、基材のステンレス鋼として以下のように成分調整された鋼を用いることが重要である。すなわち、スピネル系酸化物の生成を抑制するために必要な成分として、Cr、Siの増量またはAlの増量が効果的である。これらの含有量として、下記(1)式を満たすことが必要である。
Cr+3Si+15Al>22.0 ……(1)
(1)式を外れる組成域では、酸化のごく初期にFeまたはMnを主体とするスピネル系酸化物が生成しやすく、使用中の熱伝導率低下を安定して防止することが難しくなる。
In order to form such a corundum-based oxide-based oxide film having a single layer structure, it is important to use steel whose components are adjusted as follows as the stainless steel of the base material. That is, an increase in Cr, Si or an increase in Al is effective as a component necessary for suppressing the formation of spinel oxide. As these contents, it is necessary to satisfy the following formula (1).
Cr + 3Si + 15Al> 22.0 (1)
In the composition range out of the formula (1), a spinel oxide mainly composed of Fe or Mn is easily formed at the very initial stage of oxidation, and it is difficult to stably prevent a decrease in thermal conductivity during use.

(1)式を満たすフェライト系ステンレス鋼を例えば5〜60体積%の水蒸気と1〜20体積%の酸素を含む700〜1000℃のガスに曝す酸化処理に供することによって、初期の段階で前述の単層構造の酸化皮膜が形成され、Fe、Mnの外方拡散が抑制される。その酸化皮膜の膜厚は0.01〜10μmの範囲になるようにする必要がある。薄すぎるとその後に高温水蒸気雰囲気で使用した際、条件によってはスピネル系酸化物の生成が抑制できないことがある。厚すぎるとスケール剥離が生じやすくなり熱伝導率の維持には逆効果となる。酸化処理時間は概ね1h以上とすることが望ましいが、実環境が上記範囲の酸化処理条件と一致しているのであれば、実環境での使用(運転)によって酸化処理を兼ねることができる。酸化処理雰囲気中の水蒸気濃度は5〜20体積%とすることがより好ましく、酸素濃度は5〜10体積%とすることがより好ましい。   By subjecting the ferritic stainless steel satisfying the formula (1) to an oxidation treatment of, for example, 700 to 1000 ° C. gas containing 5 to 60% by volume of water vapor and 1 to 20% by volume of oxygen, the above-described process is performed at an early stage. An oxide film having a single layer structure is formed, and outward diffusion of Fe and Mn is suppressed. The film thickness of the oxide film needs to be in the range of 0.01 to 10 μm. If it is too thin, when it is subsequently used in a high-temperature steam atmosphere, the formation of a spinel oxide may not be suppressed depending on the conditions. If it is too thick, scale peeling tends to occur, which is counterproductive to maintaining thermal conductivity. Although it is desirable that the oxidation treatment time is approximately 1 h or longer, if the actual environment matches the oxidation treatment conditions in the above range, the oxidation treatment can be performed by use (operation) in the actual environment. The water vapor concentration in the oxidation treatment atmosphere is more preferably 5 to 20% by volume, and the oxygen concentration is more preferably 5 to 10% by volume.

このようにして、スピネル系酸化物の存在割合が15質量%以下の酸化皮膜が形成され、本発明の集熱用伝熱材が構築される。その後は、当該酸化皮膜が形成された表面を種々の高温水蒸気雰囲気に曝して使用しても、スピネル系酸化物濃度が15質量%以下に抑制された厚さ0.01〜10μmの酸化皮膜構造は維持され、本発明の集熱用伝熱材の耐久性は長期間にわたって持続する。実際の使用条件が上記の酸化処理条件に合致している場合は、基材のステンレス鋼材料を実際の使用に供することで本発明材料を得るための酸化処理を兼ねることができる。   In this manner, an oxide film having a spinel oxide content of 15% by mass or less is formed, and the heat transfer material for heat collection of the present invention is constructed. Thereafter, even if the surface on which the oxide film is formed is exposed to various high-temperature steam atmospheres, the oxide film structure having a thickness of 0.01 to 10 μm in which the spinel oxide concentration is suppressed to 15% by mass or less. Is maintained, and the durability of the heat transfer material for heat collection of the present invention lasts for a long period of time. When the actual use conditions match the above-described oxidation treatment conditions, the stainless steel material of the base material can be used for actual use, and can also serve as an oxidation treatment for obtaining the material of the present invention.

この酸化処理に先立って、大気等の非水蒸気酸化雰囲気にて予備酸化処理を行うことが一層効果的である。予備酸化処理条件としては、組成調整された鋼の基材を、例えば700〜900℃の大気雰囲気に1h以下曝す方法が採用できる。0.05h以上の保持時間を確保することが好ましい。この予備酸化処理を行うとAl含有量が0.2%未満と低い場合でも、水蒸気雰囲気中での酸化処理によって前記所定の酸化皮膜を形成させることが可能になり、鋼の適用範囲が拡大する。ただし、前述の(1)式を満たすようにCr、Si、Alの含有量が確保されている必要がある。この予備酸化処理を終えた段階で、酸化皮膜中におけるスピネル系酸化物の存在割合が10質量%以下になっていることが好ましい。また、その酸化皮膜厚さは0.05〜5.0μmであることが好ましい。それより多いと予備酸化処理の効果が十分発揮されない。(1)式を満たさない場合は大気中でもスピネル系酸化物が生成しやすく、予備酸化処理によってスピネル系酸化物の存在量を10質量%以下に抑制することが難しい。
また、表層へのCrおよびAlの拡散速度を高める手段として、表層をJIS R6001に規定される番手#100〜600の範囲で研磨仕上げを施すことが有効である。
Prior to this oxidation treatment, it is more effective to perform a preliminary oxidation treatment in a non-steam oxidation atmosphere such as air. As a pre-oxidation treatment condition, a method of exposing a steel substrate whose composition has been adjusted to an air atmosphere of 700 to 900 ° C. for 1 hour or less can be employed. It is preferable to secure a holding time of 0.05 h or more. When this preliminary oxidation treatment is performed, even when the Al content is as low as less than 0.2%, the predetermined oxide film can be formed by oxidation treatment in a water vapor atmosphere, and the application range of steel is expanded. . However, the contents of Cr, Si, and Al need to be ensured so as to satisfy the above-described expression (1). It is preferable that the spinel oxide content in the oxide film is 10% by mass or less after the preliminary oxidation treatment is completed. Moreover, it is preferable that the oxide film thickness is 0.05-5.0 micrometers. If it is more than that, the effect of the pre-oxidation treatment is not sufficiently exhibited. When the formula (1) is not satisfied, a spinel oxide is likely to be generated even in the atmosphere, and it is difficult to suppress the amount of the spinel oxide to 10% by mass or less by pre-oxidation treatment.
Further, as a means for increasing the diffusion rate of Cr and Al to the surface layer, it is effective to finish the surface layer within the range of counts # 100 to 600 defined in JIS R6001.

基材のステンレス鋼は、通常のフェライト系ステンレス鋼板の製造方法に従って用意すればよい。板厚は用途に応じて様々であるが、通常、0.15〜2mm程度の範囲で多くの用途に適用できる。予備酸化処理や酸化処理は鋼板素材の状態で施すこともできるが、実使用環境が上記の酸化処理条件に合致しているときは、基材または基材に予備酸化処理を施した材料を直接実使用に供することにより、酸化処理が実施できる。その場合、実使用の初期の段階で本発明の集熱用伝熱材が構築される。   The base stainless steel may be prepared according to a normal ferritic stainless steel plate manufacturing method. The plate thickness varies depending on the application, but it is usually applicable to many applications in the range of about 0.15 to 2 mm. Pre-oxidation treatment or oxidation treatment can be performed in the state of steel plate material, but if the actual usage environment meets the above oxidation treatment conditions, the base material or the material that has been subjected to pre-oxidation treatment is directly applied. By subjecting it to actual use, oxidation treatment can be carried out. In that case, the heat transfer material for heat collection of the present invention is constructed in the initial stage of actual use.

この集熱用伝熱材は、酸化皮膜を形成した表面を高温水蒸気雰囲気に曝して使用し、その雰囲気ガスから酸化皮膜を介して吸収した熱を、基材を通して低温側の物質(部材のときもあるし流体のときもある)に伝える。   This heat transfer material is used by exposing the surface on which the oxide film is formed to a high-temperature steam atmosphere, and the heat absorbed from the atmosphere gas through the oxide film passes through the base material to the low-temperature substance (member (Sometimes fluid).

以下、基材を構成する鋼の成分元素について説明する。
C、Nは、高温強度、特にクリープ特性を改善する成分であるが、フェライト系ステンレス鋼に過剰添加すると加工性、低温靭性が著しく低下する。また、TiやNbとの反応によって炭窒化物を生成しやすく、高温強度の改善に有効な固溶Tiや固溶Nbが減少する。本発明ではC、Nの含有量はいずれも質量0.03%以下に制限される。
Hereinafter, the constituent elements of steel constituting the substrate will be described.
C and N are components that improve high-temperature strength, particularly creep properties, but if added excessively to ferritic stainless steel, workability and low-temperature toughness are significantly reduced. In addition, carbonitrides are easily generated by reaction with Ti and Nb, and solid solution Ti and solid solution Nb effective in improving high-temperature strength are reduced. In the present invention, the C and N contents are both limited to 0.03% by mass or less.

Siは、Cr系酸化物の安定化に有効な合金成分であり、耐水蒸気酸化性および伝熱性能の向上に寄与する。そのためには0.15質量%以上のSi含有量を確保することが望ましい。しかし、2.0質量%を超える過剰のSiが含まれると、加工性、特に延性が著しく低下し、低温靭性も低下する。また、鋼表面に疵が生成しやすくなり、製造性も低下する。   Si is an alloy component effective for stabilizing the Cr-based oxide, and contributes to improvement of steam oxidation resistance and heat transfer performance. For that purpose, it is desirable to secure a Si content of 0.15% by mass or more. However, when an excess of Si exceeding 2.0% by mass is included, workability, particularly ductility, is remarkably lowered, and low-temperature toughness is also lowered. Moreover, it becomes easy to produce | generate a flaw on the steel surface, and manufacturability also falls.

Mnは、フェライト系ステンレス鋼の耐スケール剥離性を向上させる成分であり、0.1質量%以上含有させると効果的である。しかし、Mn含有量が1.5質量%を超えると鋼材が硬質化し、加工性、低温靭性が低下する。   Mn is a component that improves the scale peel resistance of ferritic stainless steel, and is effective when contained in an amount of 0.1% by mass or more. However, if the Mn content exceeds 1.5% by mass, the steel material becomes hard, and the workability and low temperature toughness deteriorate.

Sは、熱間加工性、耐溶接高温割れ性に悪影響を及ぼす成分であり、異常酸化の起点にもなる。そのため、S含有量は可能な限り低いことが好ましく、本発明では0.008質量%以下に制限される。   S is a component that adversely affects hot workability and weld hot cracking resistance, and also serves as a starting point for abnormal oxidation. Therefore, the S content is preferably as low as possible. In the present invention, the S content is limited to 0.008% by mass or less.

Crは、ステンレス鋼に必要な耐食性、耐酸化性を付与する上で必要な合金成分である。800℃前後での耐水蒸気酸化性を確保するためには、11質量%以上のCr含有が必要である。しかし、25質量%を超えるCr添加はフェライト系ステンレス鋼の加工性、低温靭性および耐475℃脆化性を低下させ、好ましくない。   Cr is an alloy component necessary for imparting corrosion resistance and oxidation resistance necessary for stainless steel. In order to ensure the steam oxidation resistance at around 800 ° C., it is necessary to contain 11 mass% or more of Cr. However, addition of Cr exceeding 25% by mass is not preferable because it decreases the workability, low temperature toughness and 475 ° C. embrittlement resistance of ferritic stainless steel.

Alは、Cr系の酸化物を安定化させ、また自らアルミナ系酸化物となり、コランダム型の単一層形成に寄与する。このためAlは使用時の熱伝導率低下を抑制する重要な元素である。この作用を十分に引き出すには0.05質量%以上のAl含有量を確保することが望ましい。特にCrの添加量が低い場合は、Alの添加量を増やす必要がある。0.2質量%以上のAl含有量にすると、前述の予備酸化処理を行わなくても、所定の高温水蒸気雰囲気中での酸化処理だけで、スピネル系酸化物濃度が15質量%以下の単一な酸化物層を形成させることができる。一方、Alの添加には鋼(基材自体)の熱伝導率を下げるという悪影響もあり、Al含有量が6.0質量%を超えると、素材の初期特性として800℃で18W/m・K以上の熱伝導率が得られない場合がある。加えて、加工性、低温靭性も著しく低下するようになる。Al含有量は4.5質量%以下とすることがより好ましい。   Al stabilizes Cr-based oxides and also becomes alumina-based oxides, contributing to the formation of a corundum type single layer. For this reason, Al is an important element that suppresses a decrease in thermal conductivity during use. In order to sufficiently bring out this effect, it is desirable to secure an Al content of 0.05% by mass or more. In particular, when the addition amount of Cr is low, it is necessary to increase the addition amount of Al. When the Al content is 0.2% by mass or more, a single spinel oxide concentration of 15% by mass or less is obtained only by oxidation in a predetermined high-temperature steam atmosphere without performing the above-described pre-oxidation treatment. An oxide layer can be formed. On the other hand, the addition of Al also has an adverse effect of lowering the thermal conductivity of steel (base material itself). If the Al content exceeds 6.0% by mass, the initial properties of the material are 18 W / m · K at 800 ° C. The above thermal conductivity may not be obtained. In addition, workability and low temperature toughness are also significantly reduced. The Al content is more preferably 4.5% by mass or less.

Y、REM(希土類元素)、Ca、Zrは、いずれも酸化皮膜中に固溶し、酸化皮膜を強化する作用を呈するので、これらの元素の1種以上を必要に応じて添加することができる。上記作用を十分に得るには、Y:0.001質量%以上、REM:0.001質量%以上、Ca:0.001質量%以上、Zr:0.03質量%以上の含有量を確保するようにこれらを1種以上添加することが効果的である。しかし、これらの元素を過剰に添加すると鋼材が過度に硬質化するばかりでなく、製造時に表面疵が生じやすくなり製造コストの上昇を招く。したがってこれらの元素を添加する場合は、Y:0.1%以下、REM:0.1%以下、Ca:0.01%以下、Zr:0.5%以下の範囲で行う。   Since Y, REM (rare earth element), Ca, and Zr are all dissolved in the oxide film and exhibit an effect of strengthening the oxide film, one or more of these elements can be added as necessary. . In order to sufficiently obtain the above action, the content of Y: 0.001% by mass or more, REM: 0.001% by mass or more, Ca: 0.001% by mass or more, Zr: 0.03% by mass or more is ensured. Thus, it is effective to add one or more of these. However, when these elements are added excessively, the steel material is not only excessively hardened, but surface flaws are liable to occur during production, leading to an increase in production cost. Therefore, when adding these elements, it is performed in the range of Y: 0.1% or less, REM: 0.1% or less, Ca: 0.01% or less, and Zr: 0.5% or less.

Nb、Tiは析出強化により、またMo、Cu、Wは固溶強化により、それぞれフェライト系ステンレス鋼の高温強度を更に向上させるので、これらの元素の1種以上を必要に応じて添加することができる。その作用を十分に発揮させるには、Nb:0.05質量%以上、Ti:0.03質量%以上、Mo:0.1質量%以上、Cu:0.1質量%以上、W:0.1質量%以上の含有量を確保するようにこれらを1種以上添加することが効果的である。しかし、過剰のNb、Ti、Mo、Wが含まれると鋼材が過度に硬質化し、また過剰のCuが含まれると熱間加工性が低下するので、これらの元素を添加する場合は、Nb:0.8%以下、Ti:0.5%以下、Mo:4.0%以下、Cu:4.0%以下、W:4.0%以下の範囲で行う。   Nb and Ti further improve the high-temperature strength of ferritic stainless steel by precipitation strengthening and Mo, Cu and W by solid solution strengthening, respectively, so one or more of these elements may be added as necessary. it can. In order to fully exhibit the action, Nb: 0.05% by mass or more, Ti: 0.03% by mass or more, Mo: 0.1% by mass or more, Cu: 0.1% by mass or more, W: 0.00% It is effective to add one or more of these so as to ensure a content of 1% by mass or more. However, if excessive Nb, Ti, Mo, W is included, the steel material is excessively hardened, and if excessive Cu is included, the hot workability is reduced. Therefore, when these elements are added, Nb: 0.8% or less, Ti: 0.5% or less, Mo: 4.0% or less, Cu: 4.0% or less, W: 4.0% or less.

その他の成分について本発明では特に規定するものではないが、一般的な不純物元素であるP、O、Ni等は可能な限り低減することが好ましい。本発明ではP:0.04質量%以下、O:0.02質量%以下、Ni:0.6質量%以下の範囲で混入が許容される。高レベルの加工性や溶接性を確保する場合にはP、O、Niの含有量を更に厳しく規制することができる。また、耐熱性の改善に有効なTaは1.0質量%以下、Vは1.0質量%以下の範囲で含有が許容される。熱間加工性の改善に有効なBは0.01質量%以下、Mgは0.05質量%以下、Coは0.2質量%以下の範囲で含有が許容される。   Other components are not particularly defined in the present invention, but it is preferable to reduce general impurity elements such as P, O, and Ni as much as possible. In the present invention, mixing is allowed in the ranges of P: 0.04 mass% or less, O: 0.02 mass% or less, and Ni: 0.6 mass% or less. When ensuring a high level of workability and weldability, the contents of P, O, and Ni can be more strictly regulated. Further, Ta effective for improving heat resistance is allowed to be contained in an amount of 1.0 mass% or less, and V is contained in an amount of 1.0 mass% or less. B, which is effective for improving hot workability, is allowed to be contained in an amount of 0.01% by mass or less, Mg is 0.05% by mass or less, and Co is 0.2% by mass or less.

なお、スケール剥離が生じると伝熱性能が低下するため、オーステナイト系ステンレス鋼よりもスケール剥離の生じにくいフェライト系ステンレス鋼を基材に使用する方が集熱用伝熱材では有利となる。   In addition, since heat transfer performance will fall if scale peeling arises, it is advantageous in the heat-collecting material for heat collection to use the ferritic stainless steel for which a scale peeling does not produce easily as a base material rather than austenitic stainless steel.

表1の組成を有する各種ステンレス鋼を真空溶解炉で溶製し、インゴットに鋳造した。インゴットを粗圧延した後、熱間圧延、焼鈍、酸洗、冷間圧延、仕上焼鈍を経て、JIS G4305に規定されるNo.2D仕上げの冷延焼鈍鋼板(板厚1.0mm)を製造した。   Various stainless steels having the compositions shown in Table 1 were melted in a vacuum melting furnace and cast into ingots. After roughly rolling the ingot, No. 2D finish cold-rolled annealed steel sheet (plate thickness: 1.0 mm) defined in JIS G4305 was manufactured through hot rolling, annealing, pickling, cold rolling, and finish annealing. .

Figure 0005105822
Figure 0005105822

上記冷延焼鈍鋼板から切削加工により板厚1.0mm、直径10mmの円盤状試料を作製し、これを基材とした。各鋼種とも一部の基材について表面をJIS R6001に規定される#400の番手で乾式研磨処理したのち、大気中800℃×30minの予備酸化処理に供した。その後、予備酸化処理を施していない基材(表面はNo.2D仕上のまま)および予備酸化処理を施した材料について、20体積%H2O+5体積%O2+残部N2組成のガスを流しながら、「昇温→800℃×100h保持→常温まで放冷」を1サイクルとする水蒸気酸化試験を10サイクル(合計加熱保持時間1000時間)施した。後述表2の本発明例のものについては、この水蒸気酸化試験は、本発明規定の酸化皮膜を形成するための「酸化処理」を兼ねており、同時に10サイクルまで試験を継続することで実使用での耐久性が評価される。 A disk-shaped sample having a plate thickness of 1.0 mm and a diameter of 10 mm was prepared from the cold-rolled annealed steel sheet by cutting, and this was used as a base material. For each steel type, the surface of some of the base materials was dry-polished with a # 400 count defined in JIS R6001, and then subjected to a pre-oxidation treatment at 800 ° C. for 30 minutes in the air. Thereafter, a gas having a composition of 20 vol% H 2 O + 5 vol% O 2 + balance N 2 is flowed through the base material not subjected to the pre-oxidation treatment (the surface remains the No. 2D finish) and the material subjected to the pre-oxidation treatment. However, 10 cycles (total heating and holding time of 1000 hours) of a steam oxidation test in which “temperature rising → 800 ° C. × 100 h holding → cooling to room temperature” was taken as one cycle were performed. As for the examples of the present invention shown in Table 2 below, this steam oxidation test also serves as an “oxidation treatment” for forming an oxide film defined by the present invention, and is used by continuing the test up to 10 cycles at the same time. The durability at is evaluated.

〔熱伝導率の測定〕
基材(冷延焼鈍鋼板)および水蒸気酸化試験後の試料について、JIS R1611に準じたレーザーフラッシュ法にて酸化皮膜を介した熱伝導率を測定した。円盤試料の片面は酸化皮膜を研磨により除去し、酸化皮膜の付いている方の表面からレーザー光を当て、その裏面の温度を測温する方法で行った。試料は1×10-7Paの真空容器内に保持した。この方法で800℃における熱伝導率を測定し、18W/m・K以上のものを○(良好)、18W/m・K未満のものを×(不良)と評価した。基材の試料ではいずれの鋼種も○評価であった。水蒸気酸化試験後の試料の結果については表2に示す。
(Measurement of thermal conductivity)
About the base material (cold-rolled annealing steel plate) and the sample after the steam oxidation test, the thermal conductivity through the oxide film was measured by a laser flash method according to JIS R1611. On one side of the disk sample, the oxide film was removed by polishing, laser light was applied from the surface with the oxide film, and the temperature of the back surface was measured. The sample was held in a vacuum vessel of 1 × 10 −7 Pa. The thermal conductivity at 800 ° C. was measured by this method, and those with 18 W / m · K or higher were evaluated as “good” and those with less than 18 W / m · K were evaluated as “poor”. All steel types were evaluated as ○ in the sample of the base material. The results of the sample after the steam oxidation test are shown in Table 2.

〔酸化皮膜厚さの測定〕
水蒸気酸化試験後の試料について、表面付近の断面組織をSEM観察することにより、酸化皮膜の厚さを調べた。皮膜厚さが0.01〜10μmの範囲にあるものを○(良好)、10μmを超える皮膜部分が認められたものを×(不良)と評価した。結果を表2に示す。なお、0.01μm未満の皮膜部分が観察された試料はなかった。
また、予備酸化処理を行った試料については、予備酸化処理後の酸化皮膜厚さを、GDS(グロー放電発光分光分析装置)により調べた。すなわちGDSにより深さ方向分析を行い、スパッタリング時間とスパッタリング速度の関係から、酸素の検出強度がピーク値の1/2に低下する深さを算出し、これを酸化皮膜厚さとした。その結果、いずれも0.05〜5.0μmの範囲の酸化皮膜を有していた。
[Measurement of oxide film thickness]
For the sample after the steam oxidation test, the thickness of the oxide film was examined by SEM observation of the cross-sectional structure near the surface. A film having a film thickness in the range of 0.01 to 10 μm was evaluated as ◯ (good), and a film part having a film thickness exceeding 10 μm was evaluated as x (bad). The results are shown in Table 2. In addition, there was no sample in which a film portion of less than 0.01 μm was observed.
Further, for the sample subjected to the pre-oxidation treatment, the thickness of the oxide film after the pre-oxidation treatment was examined by GDS (glow discharge emission spectroscopic analyzer). That is, the depth direction analysis was performed by GDS, and the depth at which the oxygen detection intensity decreased to ½ of the peak value was calculated from the relationship between the sputtering time and the sputtering rate, and this was defined as the oxide film thickness. As a result, all had an oxide film in the range of 0.05 to 5.0 μm.

〔酸化皮膜中のスピネル系酸化物濃度の測定〕
水蒸気酸化試験後の試料、および予備酸化試験を行ったものについてはさらに予備酸化試験後の試料について、前述した方法で酸化皮膜のX線回折を行うことにより、酸化皮膜中のスピネル系酸化物濃度を求めた。その結果、水蒸気酸化試験後の試料についてはスピネル系酸化物濃度が15質量%以下のものを○(良好)、15質量%を超えるものを×(不良)と評価した。また予備酸化試験後の試料についてはスピネル系酸化物濃度が10質量%以下のものを○(良好)、10質量%を超えるものを×(不良)と評価した。結果を表2に示す。
なお、水蒸気酸化試験後の試料については、前述のSEM観察時に、EDX装置にて酸化皮膜中の元素の定量分析を行った。その結果、酸化皮膜中の各元素含有量はX線回折により求めたスピネル系酸化物濃度の値と矛盾しないことが確認された。
[Measurement of spinel oxide concentration in oxide film]
The sample after the steam oxidation test and the sample after the preliminary oxidation test were further subjected to the X-ray diffraction of the oxide film by the method described above, so that the spinel oxide concentration in the oxide film was measured. Asked. As a result, for samples after the steam oxidation test, those having a spinel oxide concentration of 15% by mass or less were evaluated as ◯ (good), and those exceeding 15% by mass were evaluated as x (bad). Moreover, about the sample after a preliminary oxidation test, the thing whose spinel type oxide density | concentration is 10 mass% or less was evaluated as (circle) (good), and the thing exceeding 10 mass% was evaluated as x (bad). The results are shown in Table 2.
In addition, about the sample after a steam oxidation test, the quantitative analysis of the element in an oxide film was performed with the EDX apparatus at the time of the above-mentioned SEM observation. As a result, it was confirmed that the content of each element in the oxide film is consistent with the value of the spinel oxide concentration determined by X-ray diffraction.

Figure 0005105822
Figure 0005105822

表2の結果にみられるように、本発明例の試料はいずれも水蒸気試験後にスピネル系酸化物濃度が15質量%以下に抑制された酸化皮膜を有するものが得られ、本発明で規定する集熱用伝熱材に相当するものが構築された。これらは1000時間の試験後にも800℃での熱伝導率は18W/m・K以上に維持されており、高温水蒸気雰囲気に曝されて使用する集熱用伝熱材として優れた耐久性を有するものである。
特に鋼種No.1〜9のものは基材のAl含有量を0.2質量%以上としたことにより、予備酸化処理なしでもスピネル系酸化物濃度が15質量%以下の酸化皮膜が形成できた。
As can be seen from the results in Table 2, all of the samples of the present invention have an oxide film in which the spinel oxide concentration is suppressed to 15% by mass or less after the water vapor test. The equivalent of heat transfer material for heat was built. They have a thermal conductivity at 800 ° C. of 18 W / m · K or more after 1000 hours of testing, and have excellent durability as a heat transfer material for heat collection used by being exposed to a high-temperature steam atmosphere. Is.
In particular, steel grades Nos. 1 to 9 were able to form an oxide film having a spinel oxide concentration of 15% by mass or less even without pre-oxidation treatment by setting the Al content of the base material to 0.2% by mass or more. .

これに対し、鋼種No.21〜24の試料は、(1)式を満たさない組成の基材を用いたことにより、たとえ予備酸化処理を施した場合でも、高温水蒸気に曝すと酸化皮膜中のスピネル系酸化物濃度が15質量%を超えてしまい、高温酸化試験後の熱伝導率は低下した。これらの試料に形成された酸化皮膜は、調査の結果、2層構造を有しており、それらの間に分離層の生成が認められた。外側の層は80質量%以上がスピネル系酸化物で占められていた。鋼種No.25は汎用的な耐熱ステンレス鋼であるオーステナイト系のSUS310Sを基材に用いたものであり、試験中に酸化スケール剥離が生じたことにより、熱伝導率が低下した。   On the other hand, the samples of steel types Nos. 21 to 24 used the base material having a composition not satisfying the formula (1), so that even when pre-oxidation treatment was performed, the samples in the oxide film were exposed to high-temperature steam. The spinel oxide concentration exceeded 15% by mass, and the thermal conductivity after the high temperature oxidation test was lowered. As a result of investigation, the oxide film formed on these samples has a two-layer structure, and formation of a separation layer was observed between them. 80% by mass or more of the outer layer was occupied by the spinel oxide. Steel type No. 25 uses austenitic SUS310S, which is a general-purpose heat-resistant stainless steel, as a base material, and the thermal conductivity decreased due to the occurrence of oxide scale peeling during the test.

Claims (8)

水蒸気を含む高温ガスから集熱するための伝熱材であって、質量%で、C:0.03%以下、Si:2.0%以下、Mn:1.5%以下、S:0.008%以下、Cr:11〜25%、Al:0.05〜6.0%、N:0.03%以下、残部Feおよび不可避的不純物からなり、かつ下記(1)式を満たす組成の鋼を基材にもち、その基材の前記ガスと接触する側の表面に、スピネル系酸化物濃度が15質量%以下に抑制された厚さ0.01〜10μmの酸化皮膜を有する集熱用伝熱材。
Cr+3Si+15Al>22.0 ……(1)
A heat transfer material for collecting heat from a high-temperature gas containing water vapor, in mass%, C: 0.03% or less, Si: 2.0% or less, Mn: 1.5% or less, S: 0.00. 008% or less, Cr: 11-25%, Al: 0.05-6.0 %, N: 0.03% or less, balance Fe and inevitable impurities , and steel having a composition satisfying the following formula (1) And a base material, and on the surface of the base material in contact with the gas, an oxide film having a thickness of 0.01 to 10 μm with a spinel oxide concentration suppressed to 15% by mass or less is used for heat collection. Thermal material.
Cr + 3Si + 15Al> 22.0 (1)
前記鋼は、さらにY:0.1%以下、REM:0.1%以下、Ca:0.01%以下、Zr:0.5%以下の1種以上を含有するものである、請求項1に記載の集熱用伝熱材。   The steel further contains one or more of Y: 0.1% or less, REM: 0.1% or less, Ca: 0.01% or less, Zr: 0.5% or less. Heat transfer material for heat collection as described in 1. 前記鋼は、さらにNb:0.8%以下、Ti:0.5%以下、Mo:4.0%以下、Cu:4.0%以下、W:4.0%以下の1種以上を含有するものである、請求項1または2に記載の集熱用伝熱材。   The steel further contains one or more of Nb: 0.8% or less, Ti: 0.5% or less, Mo: 4.0% or less, Cu: 4.0% or less, and W: 4.0% or less. The heat transfer material for heat collection according to claim 1 or 2, wherein the heat transfer material is used. 前記鋼のAl含有量が0.2〜6.0%である請求項1〜3のいずれかに記載の集熱用伝熱材。   The heat transfer material for heat collection according to any one of claims 1 to 3, wherein the steel has an Al content of 0.2 to 6.0%. 酸化皮膜を介した熱伝導率が800℃で18W/m・K以上である請求項1〜4のいずれかに記載の集熱用伝熱材。   The heat transfer material for heat collection according to any one of claims 1 to 4, wherein the heat conductivity through the oxide film is 18 W / m · K or more at 800 ° C. 組成調整された鋼の基材を、5〜60体積%の水蒸気と1〜20体積%の酸素を含む700〜1000℃のガスに曝すことにより酸化皮膜を形成させる、請求項に記載の集熱用伝熱材の製造法。 The collection according to claim 4 , wherein the composition-adjusted steel substrate is exposed to a gas at 700 to 1000 ° C containing 5 to 60% by volume of water vapor and 1 to 20% by volume of oxygen to form an oxide film. Manufacturing method for heat transfer material. 組成調整された鋼の基材を、700〜900℃の大気雰囲気に1h以下曝す予備酸化処理に供した後、5〜60体積%の水蒸気と1〜20体積%の酸素を含む700〜1000℃のガスに曝すことにより酸化皮膜を形成させる、請求項1〜5のいずれかに記載の集熱用伝熱材の製造法。   After subjecting the composition-adjusted steel base material to a pre-oxidation treatment in which it is exposed to an air atmosphere at 700 to 900 ° C. for 1 h or less, 700 to 1000 ° C. containing 5 to 60% by volume of water vapor and 1 to 20% by volume of oxygen. The manufacturing method of the heat-transfer material for heat collection in any one of Claims 1-5 which forms an oxide film by exposing to this gas. 組成調整された基材は、JIS R6001に規定される番手#100〜600の範囲で研磨仕上げされたものである請求項6または7に記載の集熱用伝熱材の製造法。   The method for producing a heat transfer material for heat collection according to claim 6 or 7, wherein the composition-adjusted base material is polished and finished within a range of counts # 100 to 600 defined in JIS R6001.
JP2006284246A 2006-10-18 2006-10-18 Heat transfer material for heat collection and manufacturing method thereof Active JP5105822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006284246A JP5105822B2 (en) 2006-10-18 2006-10-18 Heat transfer material for heat collection and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006284246A JP5105822B2 (en) 2006-10-18 2006-10-18 Heat transfer material for heat collection and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008101240A JP2008101240A (en) 2008-05-01
JP5105822B2 true JP5105822B2 (en) 2012-12-26

Family

ID=39435792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006284246A Active JP5105822B2 (en) 2006-10-18 2006-10-18 Heat transfer material for heat collection and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5105822B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5486244B2 (en) * 2009-09-01 2014-05-07 日野自動車株式会社 Ferritic stainless steel and method for improving its corrosion resistance
WO2012144600A1 (en) * 2011-04-22 2012-10-26 日立金属株式会社 Steel for solid oxide fuel cells having excellent oxidation resistance, and member for solid oxide fuel cells using same
JP5344103B1 (en) 2011-11-22 2013-11-20 新日鐵住金株式会社 Ferritic heat resistant steel and method for producing the same
JP5716054B2 (en) * 2012-07-13 2015-05-13 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent electrical conductivity and adhesion of oxide film
WO2015064739A1 (en) 2013-11-01 2015-05-07 新日鐵住金ステンレス株式会社 Ferritic stainless steel for use in fuel reformer and method of manufacturing ferritic stainless steel
WO2016017692A1 (en) * 2014-07-29 2016-02-04 新日鐵住金ステンレス株式会社 Ferritic stainless steel material for fuel cell, and method for producing same
JP5902253B2 (en) * 2014-07-29 2016-04-13 新日鐵住金ステンレス株式会社 Ferritic stainless steel for fuel cells and method for producing the same
JP6006759B2 (en) * 2014-07-29 2016-10-12 新日鐵住金ステンレス株式会社 Ferritic stainless steel for fuel reformer of fuel cell or heat exchanger of fuel cell and method for producing the same
JP6006893B2 (en) * 2016-01-25 2016-10-12 新日鐵住金ステンレス株式会社 Ferritic stainless steel for fuel cells
JP6667171B2 (en) * 2016-03-09 2020-03-18 日鉄ステンレス株式会社 Al-containing ferritic stainless steel
JP6190498B2 (en) * 2016-07-15 2017-08-30 新日鐵住金ステンレス株式会社 Ferritic stainless steel and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3534285B2 (en) * 1995-10-05 2004-06-07 日立金属株式会社 Solid electrolyte fuel cell separator steel
JP3995978B2 (en) * 2002-05-13 2007-10-24 日新製鋼株式会社 Ferritic stainless steel for heat exchanger
JP2006134662A (en) * 2004-11-04 2006-05-25 Nisshin Steel Co Ltd Heat exchanger for fuel cell system of automobile
JP4463663B2 (en) * 2004-11-04 2010-05-19 日新製鋼株式会社 Ferritic steel material excellent in high temperature steam oxidation resistance and method of use thereof

Also Published As

Publication number Publication date
JP2008101240A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
JP5105822B2 (en) Heat transfer material for heat collection and manufacturing method thereof
JP5401039B2 (en) Ferritic stainless steel and manufacturing method thereof
RU2566122C1 (en) Heat-resistant ferritic steel and method of its manufacturing
JP6832999B2 (en) Ferritic stainless steel, its steel sheet and their manufacturing method
JP2010116622A (en) Ferritic stainless steel for heat pipe and steel sheet, and heat pipe and high temperature waste heat recovery device
CA2740160A1 (en) Nickel chromium alloy
JP2010285683A (en) Ferritic stainless steel material for brazing, and heat exchanger member
JP2011162863A (en) Al-CONTAINING FERRITIC STAINLESS STEEL SUPERIOR IN OXIDATION RESISTANCE AND ELECTRIC CONDUCTIVITY
JP3995978B2 (en) Ferritic stainless steel for heat exchanger
JP2010236012A (en) High temperature conductive member
EP3064606B1 (en) Ferritic stainless steel for use in fuel reformer and method of manufacturing ferritic stainless steel
JP2009007601A (en) Ferritic stainless steel member for heat collection apparatus
JP7270444B2 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP6423138B2 (en) Austenitic stainless steel for fuel reformer with excellent adhesion of oxide film and method for producing the same
JP3814822B2 (en) Fins and tubes for high temperature heat exchangers
JP6643906B2 (en) Ferritic stainless steel with excellent heat resistance for solid oxide fuel cells and method for producing the same
JP5866628B2 (en) Ferritic stainless steel with excellent secondary workability and Cr evaporation resistance
JP4463663B2 (en) Ferritic steel material excellent in high temperature steam oxidation resistance and method of use thereof
Rakowski et al. The use and performance of oxidation and creep-resistant stainless steels in an exhaust gas primary surface recuperator application
JP5464037B2 (en) Austenitic stainless steel, stainless steel products, and methods for producing them
JP6498263B2 (en) Austenitic stainless steel for fuel reformer with excellent adhesion of oxide film and method for producing the same
JP3915717B2 (en) Thin stainless steel sheet
JP4577256B2 (en) Austenitic stainless steel
JP4078881B2 (en) Austenitic stainless steel sheet for heat exchanger
JP5191299B2 (en) Stainless steel for heat pipes, heat pipes and high-temperature exhaust heat recovery equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121002

R150 Certificate of patent or registration of utility model

Ref document number: 5105822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250