JP2004115888A - Tire rim material and frame material for stainless steel-made two-wheeled vehicle excellent in deflecting resistance - Google Patents

Tire rim material and frame material for stainless steel-made two-wheeled vehicle excellent in deflecting resistance Download PDF

Info

Publication number
JP2004115888A
JP2004115888A JP2002283413A JP2002283413A JP2004115888A JP 2004115888 A JP2004115888 A JP 2004115888A JP 2002283413 A JP2002283413 A JP 2002283413A JP 2002283413 A JP2002283413 A JP 2002283413A JP 2004115888 A JP2004115888 A JP 2004115888A
Authority
JP
Japan
Prior art keywords
less
martensite
stainless steel
steel
tire rim
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002283413A
Other languages
Japanese (ja)
Other versions
JP3920185B2 (en
JP2004115888A5 (en
Inventor
Hiroki Tomimura
冨村 宏紀
Hiroshi Fujimoto
藤本 廣
Kenichi Morimoto
森本 憲一
Naoto Hiramatsu
平松 直人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2002283413A priority Critical patent/JP3920185B2/en
Priority to CNA031570852A priority patent/CN1490184A/en
Priority to TW92126429A priority patent/TWI275649B/en
Priority to EP20030021820 priority patent/EP1403394A1/en
Publication of JP2004115888A publication Critical patent/JP2004115888A/en
Publication of JP2004115888A5 publication Critical patent/JP2004115888A5/ja
Application granted granted Critical
Publication of JP3920185B2 publication Critical patent/JP3920185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tire rim material and a frame material for using stainless steel-made two-wheeled vehcle, such as a bicycle, a motorcycle, excellent in deflecting resistance without damaging corrosion resistance in welded point and this heat-affected part caused by welding. <P>SOLUTION: This tire material has the steel composition composed by mass% of ≤0.04% C, ≤2.0% Si, ≤2.0% Mn, 10.0-20.0% Cr, ≤4.0% Ni, ≤3.0% Cu, ≤0.12% N and the balance substantially Fe. Further, this tire rim material has ferrite + martensite double phase structure having the martensite amount adjusted so that value of a sensitizing index St shown in the following formula (1) becomes in the range of -31 to <-7, and also, the steel plate having ≥270 HV surface hardness, is formed as the blank. Then, the above formula is shown as the following. St=100C+30N-0.32γ. Wherein, γ is the martensite amount (%) at room temperature after annealing into the double phases. Further, this tire rim material can be contained of one or more elements among ≤0.015% B, ≤3.0% Mo, ≤0.10% Ti, ≤0.40% Nb and ≤0.30% V. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、溶接熱影響部の耐食性ならびに耐たわみ性に優れた自転車,オートバイ,車いす等の二輪車用のタイヤリム材またはフレーム材に関する。
【0002】
【従来の技術】
自転車,オートバイ,車いす等の二輪車に使用されるタイヤリム材またはフレーム材としては、使用環境によっては耐食性が要求されるため、従来のめっき品に代わってSUS430系のフェライト系ステンレス鋼が使用されている。
また上記部材は溶接接合されて使用されるので、優れた溶接性も要求される。このため、例えば特開昭61−73866号公報では、10〜20%のCrを含有するフェライト系ステンレス鋼に、0.1〜0.3%のTiと0.15〜0.3%のNbを添加して、溶接部の靭性,延性及び耐食性を確保しつつ溶接時の座屈を防止することが提案されている。また、特開昭62−164857号公報では、12.5〜17%のCrを含有するフェライト系ステンレス鋼において、C,Nを適度に低減した上で、Ni,Mn,Cu等のオーステナイト形成元素を適量添加し、溶接部にマルテンサイトを形成させることにより、Ti,Nbの安定化元素を用いなくても、溶接部靭性及び加工性に問題を生じさせることなく、溶接の耐粒界腐食性を向上させた高強度のリム用ステンレス鋼材が得られることが報告されている。そして当該公報においては、マルテンサイト相を形成しやすくするために、その指標であるCE値を所定に範囲にすることが示されている。
【0003】
しかながら、特開昭61−73866号公報に記載されたような、Tiを多量に含むフェライト系ステンレス鋼は、Ti介在物に起因したTiストリークが生成するといった問題点がある。
また、特開昭62−164857号公報に記載されたステンレス鋼では、C+Nを0.04%以下に規定しているために、マルテンサイトを形成しても充分な強度がでない。強度向上のためには、合金元素の添加量を多くする必要が有り、結果的にコストが高くなっている。
本発明は、このような問題を解消すべく案出されたものであり、溶接性に優れ、溶接熱影響部及び母材の耐食性に優れ、且つ強度が高く、耐たわみ性も良好な自転車,オートバイ,車いす等の二輪車用のタイヤリム材またはフレーム材を低コストで提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明の耐たわみ性に優れたステンレス鋼製の二輪車用タイヤリム材は、その目的を達成するため、質量%で、C:0.04%以下,Si:2.0%以下,Mn:2.0%以下,Cr:10.0〜20.0%,Ni:4.0%以下,Cu:3.0%以下,N:0.12%以下を含み、残部が実質的にFeからなる鋼組成を有し、5〜75体積%のフェライトと25〜95体積%のマルテンサイトからなる複相組織であって、しかも下記(1)式で表される鋭敏化指数Stの値が−31以上−7未満の範囲となるように調整されたマルテンサイト量の組織を有するとともに、表面硬度がHV270以上の鋼板からなることを特徴とする。
St=100C+30N−0.32γ  ・・・・(1)
ただし、γは複相化焼鈍後の室温でのマルテンサイト量(%)である。
【0005】
また、本発明の耐たわみ性に優れたステンレス鋼製の二輪車用フレーム材は、質量%で、C:0.04%以下,Si:2.0%以下,Mn:2.0%以下,Cr:10.0〜20.0%,Ni:4.0%以下,Cu:3.0%以下,N:0.12%以下を含み、残部が実質的にFeからなる鋼組成を有し、5〜75体積%のフェライトと25〜95体積%のマルテンサイトからなる複相組織であって、しかも下記(1)式で表される鋭敏化指数Stの値が−31以上−7未満の範囲となるマルテンサイト量の組織を有する鋼板を素材として造管され、母材部の表面硬度がHV270以上の鋼管からなることを特徴とする。
St=100C+30N−0.32γ  ・・・・(1)
ただし、γは複相化焼鈍後の室温でのマルテンサイト量(%)である。
【0006】
このステンレス鋼製の二輪車用タイヤリム材及び二輪車用フレーム材は、さらに0.015%以下のB,3.0%以下のMo,0.10%以下のTi,0.40%以下のNb,0.30%以下のVを1種または2種以上含有するものでもよい。
そして、このような溶接熱影響部の耐食性に優れる高強度複相ステンレス鋼帯,鋼板は、所定組成の冷延鋼帯を連続焼鈍炉に導入し、フェライト+オーステナイトの二相域となる温度850〜1100℃に加熱した後冷却する仕上げ複相化焼鈍を施すことにより、5体積%以上のフェライトを含むフェライト+マルテンサイトの二相組織に調整することにより製造される。
【0007】
【作用】
本発明者等は、溶接熱影響部の耐食性ならびに耐たわみ性に優れた自転車,オートバイ,車いす等の二輪車用のタイヤリム材或いはフレーム材に使用されるステンレス鋼板を得る手段について、種々検討した。なお、以下の説明では、自転車部品に限って説明する。オートバイ,車いす等でも同様であることは言うまでもない。
自転車の車体を構成する主要材料としては、タイヤリム材や各種パイプ材が挙げられる。これらの材料には、走行中の自転車に対してその安定性を維持するために、剛性、すなわちたわみ難いことが必要である。また、路面に近いタイヤリム材については、走行環境での腐食環境の影響を受けやすく、耐食性も必要である。さらに、タイヤリム材については、ブレーキ部品であるゴムに対する耐摩耗性も必要である。さらにまた、タイヤリム材或いはフレーム材では、走行中の小石等の飛散による凹凸の発生を抑制する耐デント性の改善も必要である。
【0008】
その結果、加工誘起マルテンサイトとオーステナイトからなる準安定オーステナイト系ステンレス鋼ではなく、C含有量0.04%以下,N含有量0.12%以下,Cr含有量10.0〜20.0%のフェライトとマルテンサイトの複相組織のステンレス鋼において、複相化処理後の室温でのマルテンサイト量と、含有C量及び含有N量が関係する鋭敏化指数Stを所定の範囲内に設定することにより、目標とする耐たわみ性と耐食性を有する二輪車用タイヤリム材及び二輪車用フレーム材を得ることができたものである。
耐たわみ性は、硬度HVを270以上に硬くすること、およびフェライト+マルテンサイトの微細複合組織にすることでヤング率を大きくすることにより改善することができる。また、マルテンサイト相の生成により強度が上昇するため、耐デント性や耐摩耗性も向上されることになる。
【0009】
ところで、フェライト+マルテンサイトの複相組織を呈する母材に溶接を施すと、その入熱で温度が600〜900℃の温度域に達する。このような高温に達すると、Cr系炭窒化物が析出して母相にCr欠乏層が生じ、鋭敏化現象が起きて耐食性が低下することになる。
フェライト,マルテンサイトともに結晶構造がbcc系で、C及びNの固溶限がほとんどない。さらにfcc系のオーステナイトに比べ拡散が速いために炭窒化物系析出物が形成されやすい。そして、マルテンサイトは温度が上昇するとオーステナイトに逆変態する。このオーステナイトでは、フェライトやマルテンサイトに比べてはるかに多くのCやNを固溶する。特にNは多く固溶する。逆変態に伴い、フェライトやマルテンサイト中に一度析出した炭窒化物は、逆変態で生成したオーステナイト中に再度固溶していく。もしくは、炭化物の生成には時間がかかるので、フェライトやマルテンサイト中に炭窒化物が析出する前に、オーステナイト域まで素早く昇温して逆変態すれば、炭窒化物生成によるCr欠乏層に起因した鋭敏化は回避できると考えられる。速度論的にも、昇温過程でまずフェライトやマルテンサイトでの析出物形成領域を通過するが、析出現象にある程度潜伏期があることを考えると、析出前に逆変態が生じることは十分予想される。
そして、Cを含有したオーステナイトを冷却すると、C固溶オーステナイト相はマルテンサイト相に変態し、炭化物を析出させることなく強度も向上することができる。
【0010】
本発明者等は、このようなメカニズムから、鋭敏化現象を促進する要素がC量とN量(特にCはNよりその作用が大きい)で、逆に鋭敏化を抑制する要素が複相化加熱状態での逆変態オーステナイト量(言い換えれば、逆変態し得る室温でのマルテンサイト量)であることを見出したものである。そして、室温でのマルテンサイト量を、高温で逆変態させたオーステナイト相に含有C,Nを固溶させるように、室温でのマルテンサイト量と含有C,N量を所定の関係にすれば、Cr炭化物の析出に起因する鋭敏化を防止でき、耐食性が良くなることを見出したものである。この3者の関係については、後に詳述する。
以下に、本発明タイヤリム材或いはフレーム材に含まれる合金成分,含有量等について詳しく説明する。なお、各元素の含有量を示す「%」は、本明細書中では、特に示さない限り「質量%」を意味する。
【0011】
C:0 04%以下
Cはオーステナイト形成元素で、マルテンサイト相の強化に極めて有効であり、高温でのオーステナイト化温度Ac1点以上の温度に加熱熱処理を行った後のマルテンサイト量を調整でき、強度の制御及び高強度化に有効に作用する。これらの作用は、0.1%以上のC含有量で顕著になる。しかし、多量のC含有は複相化処理後の冷却中や時効処理で粒界にCr炭化物が析出し、耐粒界腐食性低下の原因となるので、Cは0.04%以下とした。
Si:2.0%以下
Siは通常脱酸の目的で添加される。また、Siはマルテンサイト相を硬くするとともに、オーステナイト相にも固溶しこれを硬化させ、冷間加工後の強度を大きくする。さらに時効処理においては歪み時効により時効硬化能を促進する。このようにSiには種々の効果があるが、過度の添加は高温割れを誘発しやすくし、製造上種々の問題が生じる。このため、Si添加量は2.0%以下とした。
【0012】
Cr:10.0〜20.0質量%
Crは耐食性上、必須の成分である。意図する耐食性を賦与するためには、少なくとも10.0%のCrを必要とする。しかし、20.0%を超える過剰のCrは、靭性を低下する。またマルテンサイトを生成させて高強度を得るために必要なオーステナイト形成元素(C,N,Ni,Mn,Cu等)を添加しなければならなくなって、鋼帯,鋼板のコスト上昇を招くばかりでなく、室温でのオーステナイトの安定化をもたらして高強度を得ることが不可能になる。したがって、Cr含有量の上限は20.0%とする。
【0013】
Mn:2.0%以下
Ni:4.0%以下
Cu:3.0%以下
Ni,Mn及びCuはオーステナイト形成元素で、高温でフェライト+オーステナイトの組織(室温でフェライト+マルテンサイトの組織)を得るために必要である。これらの元素の含有量が増加するにしたがってマルテンサイト量が増加し、高強度化をもたらすことができる。しかし、過剰の添加は、高温で生成したオーステナイト相が室温までの冷却中にマルテンサイトに変態せず、オーステナイトのまま残留し、強度低下を招くことになる。したがって、Mn量は2.0%以下、Ni量は4.0%以下、さらにCu量は3.0%以下とした。
【0014】
N:0.12%以下
NもCと同様にオーステナイト形成元素で、Cほどではないがマルテンサイト相の強化に極めて有効であり、高温でのオーステナイト化温度Ac1点以上の温度に加熱熱処理を行った後のマルテンサイト量を調整でき、強度の制御及び高強度化に有効に作用する。また、Cに比較して鋭敏化が起こり難いので、複相化処理後の冷却中や時効処理で粒界に窒化物として析出して耐食性を低下させる窒素量は、Cに比べて高い。ただし、過度の含有はブローホール等の内部欠陥をもたらすので、N含有量の上限は0.12%とした。
【0015】
B:0.015%以下
Bは、熱間圧延温度域でのフェライト相とオーステナイト相の変形抵抗の差異により生じる熱延鋼帯でのエッジクラックの発生防止に有効な元素であるが、過度の添加は低融点硼化物を形成しやすくし、逆に熱間加工性や溶接高温割れをもたらすので、添加する場合も、上限は0.015%とする。
Mo:1.0%以下
Moは、耐食性向上に寄与するので、必要に応じて添加される。しかし、過剰のMo添加は、熱間加工性の低下や鋼材コスト上昇の原因となるので、添加する場合、その上限は1.0%とする。
【0016】
Ti:0.10%以下
Nb:0.40%以下
V:0.30%以下
Ti,NbならびにVは、CやNを炭窒化物として固定することにより、溶接熱影響部の耐食性を改善する元素である。さらに、結晶粒を微細にする作用があり、強度上昇面でも有効な元素である。しかし、TiはTiクラスター起因の表面欠陥をもたらすので、添加する場合、その上限は0.10%とする。Nbは低融点合金層もしくは酸化に起因した溶接高温割れをもたらすので、添加する場合、その上限は0.40%とする。また、Vは過剰添加で極端に高温強度が上昇して製造面で障害となるので、添加する場合、その上限は0.30%とする。
【0017】
なお、本発明が対象とする溶接熱影響部の耐食性ならびに耐たわみ性に優れた自転車,オートバイ,車いす等の二輪車用のタイヤリム材或いはフレーム材に適した高強度複相組織のステンレス鋼では、各合金成分の個々の含有量を以上のように規制するとともに、フェライト形成元素であるAl等を添加し、常温でフェライト+マルテンサイトの複合組織が得られるように各合金成分を調整してもよい。また、必要とする強度を低下させない限り、耐酸化性や熱間加工性を向上させる目的で、Y,CaやREM(希土類元素)を添加することもできる。
【0018】
鋭敏化指数St:−31以上−7未満
先に説明したように、溶接時に高温下に曝されると、Cr系炭窒化物が析出して母相にCr欠乏層が生じ鋭敏化現象が起きて耐食性が低下することになる。そして、鋭敏化現象を促進する要素がC量とN量で、逆に鋭敏化を抑制する要素が複相化加熱状態での逆変態オーステナイト量(言い換えれば、逆変態し得る室温でのマルテンサイト量)である。そして、鋭敏化指数値Stとして、含有C量,含有N量及び室温でのマルテンサイト量を所定の関係にすれば、鋭敏化し難く、耐食性が良くなることを見出した。その鋭敏化指数値Stは後述する種々の予備実験を繰り返すことにより、下記(1)式なる関係式で表され、この値が−7未満であれば鋭敏化が起こらなくなることを見出した。しかし、−31より小さくなると、強化元素であるCやNが不足してHV270以上の高強度が得られなくなる。
St=100C+30N−0.32γ  ・・・・(1)
ただし、γは複相化焼鈍後の室温でのマルテンサイト量(%)である。
このようなマルテンサイト量の鋼板は、例えば、780℃×12時間均熱・炉冷の熱延板焼鈍を施した後、80%の冷間圧延を行い、その後950℃×1分均熱・空冷の焼鈍を施すような熱処理法で得られる。
【0019】
母材表面硬度:HV270以上
CやN、Ni含有量の選定及びマルテンサイト量の調整により、本発明鋼の溶接熱影響部の耐食性ならびに耐たわみ性に優れた自転車,オートバイ,車いす等の二輪車に使用されるタイヤリム材やフレーム材の硬度は調整されるが、軽量化やばね性も加味すると、溶接の熱影響のない母材での表面硬度はHV270以上が必要である。この値に満たないと、二輪車に使用する際、所望の強度を持たせるためには肉厚を厚くせざるを得ず、結果的に重くなる。
このような強度を発現させ、二輪車に使用するのに充分な耐デント性や耐摩耗性を持たせるためには、室温で25体積%以上のマルテンサイト相を形成させる必要がある。
【0020】
【予備実験】
表1に示す成分の鋼材を真空溶解炉にて溶製し、鋳造,熱延にて板厚4.5mmとし、780℃×12時間均熱・炉冷の熱延板焼鈍を施した。さらに酸洗後、冷間圧延をして板厚1.5mmとし、800℃×1分均熱・空冷の中間焼鈍を施した後、再度、冷間圧延後、950℃×1分加熱での連続複相化熱処理を施し、最終板厚0.5mmとした。
上記方法で製造した板厚0.5mmmのステンレス鋼板を素材にし、タイヤリム材を模擬した図1に示す形状の枠を作製した。溶接はTIG溶接で実施した。複相化処理後のマルテンサイト量は、板厚断面の200μm×200μm10視野で算出した。溶接は溶接芯線を使用しないなめづけ溶接であり、溶接条件は以下の通りである
TIG溶接条件;
電極:W(直径1.6mm),溶接電流:70A,トーチ移動速度:300mm/min,シールガス:アルゴン,流量:10L/min
溶接ビード部凸部をグラインダーで平滑化し、最終的に母材部と併せて#400研磨で仕上げた。試験片サイズは100mm×150mmとした。
耐食性試験はJIS H8502に基づいたキャス試験で、200時間実施した。キャス試験の条件は、pH3.0〜3.1の(5%NaCl+0.26g/lCuCl+酢酸)で、温度35±2℃で行った。
そして溶接熱影響部の発銹の有無を調べて耐食性評価を評価した。その結果を図2に示す。なお、図中、発銹が認められなかったものを○で、発銹があったものを×で示している。
この結果から、100C+30N−0.32γ=−7を境に溶接部発銹の有無が整理でき、溶接部の耐食性を維持するためには、St=100C+30N−0.32γのStを−7未満にする必要がある。なお、Stが−31より小さくなると、強化元素であるCやNが不足してHV270以上の高強度が得られなくなることは前記した通りである。
【0021】

Figure 2004115888
【0022】
【実施例】
表2に示す成分の鋼材を真空溶解炉にて溶製し、鋳造,熱延にて板厚4.5mmとし、780℃×12時間均熱・炉冷の熱延板焼鈍を施した。さらに酸洗後、冷間圧延をして板厚1.5mmとし、800℃×1分均熱・空冷の中間焼鈍を施した後、再度、冷間圧延後、1030℃で均熱1分の焼鈍を施し、最終板厚0.5mmとした。なお、表2中、鋼No.KはSUS430LXであり、この鋼については、熱延板焼鈍ならびに冷延板の中間焼鈍条件は1000℃×1分均熱とした。
【0023】
表2の成分組成をもつ板厚0.5mmのステンレス鋼板を素材にし、タイヤリム材を模擬した図1に示す形状の枠、及び直径30mmのステンレス鋼管を作製した。いずれもTIG溶接を行った。TIG溶接は、溶接電流密度150A,移動速度500mm/minで実施した。溶接ビード部凸部をグラインダーで平滑化し、最終的に母材部と併せて、#400研磨で仕上げた。
耐たわみ試験は、図3に示したようなタイヤリム材を模擬した形状のハーフサイズ形状枠試験片Rに荷重50kgの重りWをのせる試験の、試験前のL方向の高さと荷重を除去した後の高さの差を永久歪みとして評価した。50kg荷重の重りを1時間のせて、荷重除去後の永久歪みが1mm以下であったものを合格(表3中では○)とした。
【0024】
Figure 2004115888
【0025】
以上のようにして作製した各鋼板について、複相化処理後の室温でマルテンサイト量を測定して前記(1)式でSt値を算出するとともに、表面ビッカース硬度(荷重1kg)、リム材たわみ試験前後のたわみ量ならびにリム材・フレーム材の耐食性試験を行った。
複相化処理後のマルテンサイト量は、板厚断面の200μm×200μm10視野で算出した。耐食性試験はJIS H8502に基づいたキャス試験で、200時間実施した。キャス試験の条件は、pH3.0〜3.1の(5%NaCl+0.26g/lCuCl+酢酸)で、温度35±2℃で行った。そして溶接熱影響部ならびに母材部の発銹の有無を調べて耐食性評価を評価した。
その結果を、耐たわみ試験の結果と併せて表3に示す。なお、表中、200時間のキャス試験後、発銹が認められなかったものを○で、発銹があったものを×で示している。
【0026】
表3の結果に見られるように、本発明鋼では、母材硬度HV270以上を維持しつつ、リム材ならびにステンレス鋼管はいずれもキャス試験で溶接部熱影響部・母材とも発銹していなかった。溶接熱影響部の耐食性も優れていることがわかった。また、耐たわみ試験でも、永久歪み量は1mm以下であった。
これに対して、比較鋼No.I、ならびにNo.Jは、マルテンサイトとフェライトの複相組織が得られず、硬度HV270以上の高強度材が得られなかった。このため、耐たわみ試験でも永久歪み量は1mmを大きく超えていた。
比較鋼No.G〜Jは、本発明鋼から成分もしくは鋭敏化指数St値が請求項に規定した範囲を外れるものである。比較鋼No.Gは含有Cが高く、比較鋼No.Hは含有C,N量が高いものである。このため溶接熱影響部の耐食性が十分でなかった。また比較鋼No.IはCr含有量が低いために十分な耐食性を得ることができず、耐たわみ性も十分でなかった。比較鋼No.Jは成分含有量は規定の範囲内であるが、鋭敏化指数St値が請求項に規定した範囲を外れるために、溶接熱影響部の耐食性が劣っていた。溶接時の熱で鋭敏化が進み耐食性が低下したものである。
なお、比較鋼No.KはSUS430LXであり、耐たわみ性が十分でなかった。
【0027】
Figure 2004115888
【0028】
【発明の効果】
以上に説明したように、本発明では、フェライトとマルテンサイトの複相組織からなるステンレス鋼において、C及びNの含有量をさほど低減させることなく、含有C量及び含有N量と、複相化処理でオーステナイトに逆変態するマルテンサイト量との関係を、所定の関係にすることにより、溶接後の溶接熱影響部等で鋭敏化することなく、目標とする耐たわみ性と耐食性を併せ持つ二輪車用タイヤリム材及び二輪車用フレーム材を得ることができたものである。
【図面の簡単な説明】
【図1】タイヤリム模擬成形品形状を説明する断面図
【図2】C,N含有量及びγ量と溶接部耐食性の関係を示す図
【図3】耐たわみ試験方法の概略を説明する図[0001]
[Industrial applications]
The present invention relates to a tire rim material or a frame material for motorcycles such as bicycles, motorcycles, wheelchairs and the like, which has excellent corrosion resistance and bending resistance of a weld heat affected zone.
[0002]
[Prior art]
As a tire rim material or a frame material used for motorcycles such as bicycles, motorcycles, wheelchairs, etc., corrosion resistance is required depending on the use environment, so SUS430-based ferritic stainless steel is used instead of conventional plated products. .
Further, since the above members are used by being welded and joined, excellent weldability is also required. Therefore, for example, in Japanese Patent Application Laid-Open No. 61-73866, a ferritic stainless steel containing 10 to 20% of Cr is added with 0.1 to 0.3% of Ti and 0.15 to 0.3% of Nb. Has been proposed to prevent buckling during welding while ensuring the toughness, ductility and corrosion resistance of the weld. Japanese Patent Application Laid-Open No. Sho 62-164857 discloses an austenite-forming element such as Ni, Mn, and Cu, in a ferritic stainless steel containing 12.5 to 17% of Cr, after appropriately reducing C and N. By adding an appropriate amount of to form martensite in the welded portion, without using a stabilizing element for Ti and Nb, without causing problems in weld toughness and workability, and at the intergranular corrosion resistance of the weld. It has been reported that a high-strength stainless steel material for rims having improved properties can be obtained. In this publication, in order to facilitate the formation of a martensite phase, it is disclosed that the CE value, which is an index thereof, is set within a predetermined range.
[0003]
However, a ferritic stainless steel containing a large amount of Ti as described in JP-A-61-73866 has a problem that Ti streaks are generated due to Ti inclusions.
Further, in the stainless steel described in Japanese Patent Application Laid-Open No. 62-164857, since C + N is regulated to 0.04% or less, sufficient strength is not obtained even when martensite is formed. In order to improve the strength, it is necessary to increase the addition amount of the alloy element, and as a result, the cost is increased.
The present invention has been devised to solve such a problem, and has excellent weldability, excellent corrosion resistance of a weld heat affected zone and a base material, high strength, and good bending resistance. It is an object to provide a low cost tire rim material or frame material for motorcycles such as motorcycles and wheelchairs.
[0004]
[Means for Solving the Problems]
In order to achieve the object, the stainless steel tire rim material of the present invention, which is excellent in deflection resistance and is made of stainless steel, has C: 0.04% or less, Si: 2.0% or less, Mn: 2. 0% or less, Cr: 10.0 to 20.0%, Ni: 4.0% or less, Cu: 3.0% or less, N: 0.12% or less, the balance being substantially Fe It has a composition, has a dual phase structure of 5 to 75% by volume of ferrite and 25 to 95% by volume of martensite, and has a value of a sensitization index St represented by the following formula (1) of -31 or more. It has a structure of a martensite amount adjusted to be less than −7 and is made of a steel plate having a surface hardness of HV270 or more.
St = 100C + 30N−0.32γ (1)
Here, γ is the amount of martensite (%) at room temperature after the dual phase annealing.
[0005]
Further, the frame material for a motorcycle made of stainless steel having excellent flex resistance according to the present invention is, in mass%, C: 0.04% or less, Si: 2.0% or less, Mn: 2.0% or less, Cr: Having a steel composition containing 10.0 to 20.0%, Ni: 4.0% or less, Cu: 3.0% or less, N: 0.12% or less, and the balance substantially consisting of Fe; It has a dual phase structure composed of 5 to 75% by volume of ferrite and 25 to 95% by volume of martensite, and has a value of a sensitization index St represented by the following formula (1) of -31 or more and less than -7. The steel pipe is made from a steel sheet having a structure of the amount of martensite, and has a surface hardness of HV270 or more in a base material portion.
St = 100C + 30N−0.32γ (1)
Here, γ is the amount of martensite (%) at room temperature after the dual phase annealing.
[0006]
The tire rim material and the frame material for motorcycle made of stainless steel further include B at 0.015% or less, Mo at 3.0% or less, Ti at 0.10% or less, and Nb, 0 at 0.40% or less. It may contain one or more kinds of V of .30% or less.
The high-strength duplex stainless steel strip and steel sheet having excellent corrosion resistance in the weld heat affected zone are introduced into a continuous annealing furnace by introducing a cold-rolled steel strip having a predetermined composition into a continuous annealing furnace at a temperature of 850 in a two-phase region of ferrite + austenite. It is manufactured by adjusting to a two-phase structure of ferrite + martensite containing 5% by volume or more of ferrite by performing finish dual-phase annealing in which the steel is heated to 11100 ° C. and then cooled.
[0007]
[Action]
The present inventors have studied various means for obtaining a stainless steel plate used for a tire rim material or a frame material for motorcycles such as bicycles, motorcycles and wheelchairs, which has excellent corrosion resistance and bending resistance of the weld heat affected zone. In the following description, only the bicycle parts will be described. It goes without saying that the same applies to motorcycles and wheelchairs.
The main materials constituting the bicycle body include tire rim materials and various pipe materials. These materials need to be rigid, i.e., non-flexible, in order to maintain their stability against the running bicycle. Further, tire rim materials close to the road surface are susceptible to a corrosive environment in a running environment and need to have corrosion resistance. Further, the tire rim material needs to have abrasion resistance to rubber as a brake component. Further, in the case of a tire rim material or a frame material, it is necessary to improve dent resistance for suppressing the occurrence of unevenness due to scattering of pebbles or the like during running.
[0008]
As a result, it is not a metastable austenitic stainless steel composed of work-induced martensite and austenite, but a C content of 0.04% or less, an N content of 0.12% or less, and a Cr content of 10.0 to 20.0%. In a stainless steel having a dual phase structure of ferrite and martensite, the martensite amount at room temperature after the dual phase treatment and the sensitization index St related to the content of C and the content of N are set within a predetermined range. As a result, a tire rim material for a motorcycle and a frame material for a motorcycle having target deflection resistance and corrosion resistance can be obtained.
The bending resistance can be improved by increasing the hardness HV to 270 or more and increasing the Young's modulus by forming a fine composite structure of ferrite and martensite. Further, since the strength is increased by the formation of the martensite phase, the dent resistance and the wear resistance are also improved.
[0009]
By the way, when welding is performed on a base material exhibiting a dual phase structure of ferrite and martensite, the temperature reaches a temperature range of 600 to 900 ° C. due to the heat input. When the temperature reaches such a high temperature, Cr-based carbonitride precipitates to form a Cr-deficient layer in the parent phase, causing a sensitization phenomenon and a reduction in corrosion resistance.
Both ferrite and martensite have a bcc-based crystal structure, and have almost no solid solubility limit of C and N. In addition, carbon nitride-based precipitates are easily formed due to faster diffusion than fcc-based austenite. Then, martensite reversely transforms to austenite when the temperature rises. In this austenite, much more C and N form a solid solution than ferrite and martensite. In particular, N forms a large solid solution. Along with the reverse transformation, the carbonitride once precipitated in ferrite or martensite forms a solid solution again in the austenite formed by the reverse transformation. Alternatively, since the formation of carbides takes time, if the temperature is quickly raised to the austenite region and reverse transformation occurs before the carbonitrides are precipitated in ferrite or martensite, the carbon-nitride formation causes a Cr-deficient layer. It is thought that the sensitization can be avoided. Kinetics also pass through the precipitate formation region of ferrite or martensite during the temperature rise process, but considering that the precipitation phenomenon has a certain incubation period, it is well anticipated that reverse transformation will occur before precipitation. You.
Then, when the C-containing austenite is cooled, the C-dissolved austenite phase is transformed into a martensite phase, and the strength can be improved without depositing carbides.
[0010]
According to the present inventors, from such a mechanism, the elements that promote the sensitization phenomenon are the C amount and the N amount (particularly, C has a larger effect than N), and the element that suppresses the sensitization is a polyphase. It has been found that the amount of reverse transformed austenite in the heated state (in other words, the amount of martensite at room temperature at which reverse transformation is possible). If the amount of martensite at room temperature and the amount of contained C and N are set so as to form a solid solution of the contained C and N in the austenite phase reverse-transformed at high temperature, It has been found that sensitization caused by the precipitation of Cr carbide can be prevented and the corrosion resistance is improved. The relationship between the three will be described later.
Hereinafter, alloy components, contents, and the like contained in the tire rim material or the frame material of the present invention will be described in detail. In addition, “%” indicating the content of each element means “% by mass” in this specification unless otherwise specified.
[0011]
C: 0 . C of less than 04% is an austenite-forming element and is extremely effective in strengthening the martensite phase. The amount of martensite after heat treatment at a temperature equal to or higher than the austenitizing temperature Ac1 at a high temperature can be adjusted to control the strength. And effectively acts to increase the strength. These effects become remarkable at a C content of 0.1% or more. However, a large amount of C causes precipitation of Cr carbide at the grain boundaries during cooling after aging treatment or aging treatment, which causes a decrease in intergranular corrosion resistance. Therefore, C was set to 0.04% or less.
Si: 2.0% or less Si is usually added for the purpose of deoxidation. In addition, Si hardens the martensite phase and also forms a solid solution in the austenite phase to harden it, thereby increasing the strength after cold working. Further, in the aging treatment, age hardening ability is promoted by strain aging. As described above, Si has various effects, but excessive addition easily causes hot cracking, and causes various problems in production. For this reason, the addition amount of Si is set to 2.0% or less.
[0012]
Cr: 10.0 to 20.0 mass%
Cr is an essential component in terms of corrosion resistance. At least 10.0% Cr is required to provide the intended corrosion resistance. However, an excessive amount of Cr exceeding 20.0% lowers toughness. In addition, an austenite forming element (C, N, Ni, Mn, Cu, etc.) necessary for forming martensite and obtaining high strength must be added, which only increases costs of steel strips and steel sheets. In addition, it becomes impossible to obtain high strength by stabilizing austenite at room temperature. Therefore, the upper limit of the Cr content is 20.0%.
[0013]
Mn: 2.0% or less
Ni: 4.0% or less
Cu: 3.0% or less Ni, Mn and Cu are austenite forming elements and are necessary to obtain a ferrite + austenite structure at high temperature (a ferrite + martensite structure at room temperature). As the content of these elements increases, the amount of martensite increases, and higher strength can be achieved. However, excessive addition does not transform the austenite phase formed at a high temperature into martensite during cooling to room temperature, but remains as austenite, resulting in a decrease in strength. Therefore, the Mn content was 2.0% or less, the Ni content was 4.0% or less, and the Cu content was 3.0% or less.
[0014]
N: 0.12% or less N is also an austenite-forming element like C, and although not as effective as C, is extremely effective in strengthening the martensitic phase, and is subjected to heat treatment at a temperature higher than the austenitizing temperature Ac1 point at a high temperature. The amount of martensite after the heat treatment can be adjusted, which effectively controls the strength and increases the strength. In addition, since sensitization is less likely to occur as compared with C, the amount of nitrogen that precipitates as nitrides at grain boundaries during cooling after aging treatment and aging treatment and lowers corrosion resistance is higher than that of C. However, since excessive content causes internal defects such as blowholes, the upper limit of the N content is set to 0.12%.
[0015]
B: 0.015% or less B is an element effective in preventing the occurrence of edge cracks in a hot-rolled steel strip caused by a difference in deformation resistance between a ferrite phase and an austenite phase in a hot rolling temperature range. The addition facilitates the formation of low-melting-point borides and, on the contrary, causes hot workability and hot cracking of the weld. Therefore, the upper limit of the addition is also 0.015%.
Mo: 1.0% or less Mo contributes to the improvement of corrosion resistance, and is added as necessary. However, excessive Mo addition causes a reduction in hot workability and an increase in steel material cost. Therefore, when adding Mo, the upper limit is made 1.0%.
[0016]
Ti: 0.10% or less
Nb: 0.40% or less
V: 0.30% or less Ti, Nb and V are elements that improve the corrosion resistance of the heat affected zone by fixing C and N as carbonitrides. Further, it has an effect of making crystal grains fine, and is also an effective element in terms of increasing strength. However, since Ti causes a surface defect caused by Ti clusters, the upper limit when added is 0.10%. Since Nb causes a high-temperature welding crack due to a low-melting alloy layer or oxidation, the upper limit of Nb is set to 0.40%. Further, when V is added excessively, the high-temperature strength is extremely increased and hinders production, so when V is added, the upper limit is set to 0.30%.
[0017]
In addition, in the stainless steel having a high-strength duplex structure suitable for a tire rim material or a frame material for motorcycles such as bicycles, motorcycles and wheelchairs, which is excellent in corrosion resistance and bending resistance of the weld heat affected zone targeted by the present invention, The individual contents of the alloy components may be regulated as described above, and a ferrite-forming element such as Al may be added, and the alloy components may be adjusted so that a composite structure of ferrite and martensite is obtained at room temperature. . Further, as long as the required strength is not reduced, Y, Ca or REM (rare earth element) can be added for the purpose of improving oxidation resistance and hot workability.
[0018]
Sensitization index St: -31 or more and less than -7 As described above, when exposed to a high temperature during welding, a Cr-based carbonitride precipitates and a Cr-deficient layer is formed in the matrix, resulting in a sharpness. A corrosion phenomenon occurs and the corrosion resistance decreases. The elements that promote the sensitization phenomenon are the amounts of C and N, while the elements that suppress the sensitization are the amounts of the reverse-transformed austenite in the multi-phase heating state (in other words, martensite at room temperature at which the reverse transformation can be performed). Amount). Then, it was found that when the content C content, the content N content, and the amount of martensite at room temperature were in a predetermined relationship as the sensitization index value St, sensitization was difficult, and the corrosion resistance was improved. The sensitization index value St is represented by the following equation (1) by repeating various preliminary experiments described later, and it has been found that sensitization does not occur if this value is less than -7. However, if it is smaller than -31, the strengthening elements C and N are insufficient, so that a high strength of HV270 or more cannot be obtained.
St = 100C + 30N−0.32γ (1)
Here, γ is the amount of martensite (%) at room temperature after the dual phase annealing.
The steel sheet having such a martensite amount is, for example, subjected to hot rolling of 780 ° C. × 12 hours for soaking and furnace cooling, then to cold rolling of 80%, and then to 950 ° C. × 1 minute soaking. It can be obtained by a heat treatment such as air-cooled annealing.
[0019]
Base material surface hardness: HV270 or more By selecting the content of C, N, and Ni and adjusting the amount of martensite, the steel of the present invention can be applied to motorcycles such as bicycles, motorcycles, wheelchairs, etc., which are excellent in the corrosion resistance and bending resistance of the weld heat affected zone. The hardness of the tire rim material and frame material used is adjusted, but in consideration of weight reduction and resilience, the surface hardness of the base material having no heat effect of welding must be HV270 or more. If the value is less than this value, when used for a motorcycle, the thickness must be increased in order to have a desired strength, resulting in a heavy weight.
In order to develop such strength and provide sufficient dent resistance and wear resistance for use in a motorcycle, it is necessary to form a martensite phase of 25% by volume or more at room temperature.
[0020]
【Preliminary experiment】
A steel material having the components shown in Table 1 was melted in a vacuum melting furnace, cast and hot-rolled to a sheet thickness of 4.5 mm, and annealed at 780 ° C. × 12 hours for soaking and furnace cooling. Further, after pickling, cold rolling was performed to a sheet thickness of 1.5 mm, intermediate annealing at 800 ° C. × 1 minute for soaking and air cooling was performed, and after cold rolling again, heating was performed at 950 ° C. × 1 minute. Continuous heat treatment for two-phase was performed to a final thickness of 0.5 mm.
A stainless steel sheet having a thickness of 0.5 mm manufactured by the above method was used as a material, and a frame having a shape shown in FIG. 1 simulating a tire rim material was produced. The welding was performed by TIG welding. The amount of martensite after the biphasic treatment was calculated in 10 visual fields of 200 μm × 200 μm in the plate thickness cross section. The welding is tanning welding without using a welding core wire, and welding conditions are as follows: TIG welding conditions;
Electrode: W (diameter 1.6 mm), welding current: 70 A, torch moving speed: 300 mm / min, seal gas: argon, flow rate: 10 L / min
The convex portion of the weld bead portion was smoothed with a grinder, and finally finished with # 400 polishing together with the base material portion. The test piece size was 100 mm x 150 mm.
The corrosion resistance test was a Cas test based on JIS H8502 and was performed for 200 hours. The conditions of the Cass test were (pH 5 to 3.1) (5% NaCl + 0.26 g / l CuCl 2 + acetic acid) at a temperature of 35 ± 2 ° C.
Then, the presence or absence of rust in the weld heat affected zone was examined to evaluate the corrosion resistance. The result is shown in FIG. In the figure, the symbol 銹 indicates that no rust was observed, and the symbol X indicates that rust occurred.
From this result, the presence or absence of rust on the weld can be arranged at the boundary of 100C + 30N−0.32γ = −7, and in order to maintain the corrosion resistance of the weld, the St of St = 100C + 30N−0.32γ should be less than −7. There is a need to. Note that, as described above, when St becomes smaller than -31, C and N as the strengthening elements become insufficient and high strength of HV270 or more cannot be obtained.
[0021]
Figure 2004115888
[0022]
【Example】
Steel materials having the components shown in Table 2 were melted in a vacuum melting furnace, cast and hot-rolled to a sheet thickness of 4.5 mm, and subjected to 780 ° C. × 12 hours soaking and furnace-cooled hot rolled sheet annealing. Further, after pickling, cold rolling was performed to a sheet thickness of 1.5 mm, an intermediate annealing at 800 ° C. × 1 minute for soaking and air cooling was performed, and after cold rolling again, soaking at 1030 ° C. for 1 minute Annealing was performed to a final thickness of 0.5 mm. In Table 2, steel No. K is SUS430LX. For this steel, the conditions for hot-rolled sheet annealing and cold-rolled sheet intermediate annealing were 1000 ° C. × 1 minute soaking.
[0023]
Using a stainless steel plate having a component composition of Table 2 and a thickness of 0.5 mm as a material, a frame having a shape shown in FIG. 1 simulating a tire rim material and a stainless steel tube having a diameter of 30 mm were produced. In each case, TIG welding was performed. TIG welding was performed at a welding current density of 150 A and a moving speed of 500 mm / min. The convex portion of the weld bead portion was smoothed with a grinder, and finally finished together with the base material portion by # 400 polishing.
In the deflection test, the height and the load in the L direction before the test were removed in a test in which a weight W having a load of 50 kg was placed on a half-size frame test piece R having a shape simulating a tire rim material as shown in FIG. The later difference in height was evaluated as permanent strain. A weight with a 50 kg load was applied for 1 hour, and a specimen having a permanent set of 1 mm or less after the load was removed was evaluated as acceptable (in Table 3).
[0024]
Figure 2004115888
[0025]
For each of the steel sheets prepared as described above, the amount of martensite was measured at room temperature after the dual phase treatment, the St value was calculated by the above equation (1), the surface Vickers hardness (load 1 kg), the rim material deflection The deflection amount before and after the test and the corrosion resistance test of the rim material and frame material were performed.
The amount of martensite after the biphasic treatment was calculated in 10 visual fields of 200 μm × 200 μm in the plate thickness cross section. The corrosion resistance test was a Cas test based on JIS H8502 and was performed for 200 hours. The conditions of the Cass test were (pH 5 to 3.1) (5% NaCl + 0.26 g / l CuCl 2 + acetic acid) at a temperature of 35 ± 2 ° C. Then, the presence or absence of rust in the weld heat affected zone and the base metal was examined to evaluate the corrosion resistance.
Table 3 shows the results together with the results of the deflection test. In the table, ○ indicates that no rust was observed after the 200-hour cast test, and X indicates that rust occurred.
[0026]
As can be seen from the results in Table 3, in the steel of the present invention, while maintaining the base metal hardness of HV 270 or more, neither the rim material nor the stainless steel tube rusted in the weld heat-affected zone / base metal in the cast test. Was. It was also found that the corrosion resistance of the heat affected zone was excellent. Also, in the deflection resistance test, the amount of permanent distortion was 1 mm or less.
On the other hand, the comparative steel No. I, and No. As for J, a double phase structure of martensite and ferrite was not obtained, and a high-strength material having a hardness of HV270 or more was not obtained. For this reason, even in the deflection resistance test, the amount of permanent strain was much more than 1 mm.
Comparative steel No. G to J are those in which the component or sensitization index St value of the steel of the present invention is out of the range defined in the claims. Comparative steel No. G has a high content C, and comparative steel No. H has a high C and N content. Therefore, the corrosion resistance of the heat affected zone was not sufficient. In addition, the comparative steel No. I was not able to obtain sufficient corrosion resistance due to the low Cr content, and was not sufficiently flexible. Comparative steel No. J had a component content within the specified range, but the sensitization index St value was out of the range specified in the claims, so that the corrosion resistance of the weld heat affected zone was poor. The sensitization was advanced by the heat during welding, and the corrosion resistance was reduced.
In addition, comparative steel No. K was SUS430LX, and the deflection resistance was not sufficient.
[0027]
Figure 2004115888
[0028]
【The invention's effect】
As described above, in the present invention, in a stainless steel having a dual phase structure of ferrite and martensite, the content of C and N is reduced without significantly reducing the content of C and N. By setting the relationship between the amount of martensite which reversely transforms to austenite during processing to a predetermined relationship, it does not sensitize the weld heat affected zone after welding, etc. A tire rim material and a frame material for a motorcycle can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating the shape of a simulated tire rim. FIG. 2 is a diagram illustrating the relationship between the C and N contents and the γ content and the corrosion resistance of a welded part. FIG.

Claims (4)

質量%で、C:0.04%以下,Si:2.0%以下,Mn:2.0%以下,Cr:10.0〜20.0%,Ni:4.0%以下,Cu:3.0%以下,N:0.12%以下を含み、残部が実質的にFeからなる鋼組成を有し、5〜75体積%のフェライトと25〜95体積%のマルテンサイトからなる複相組織であって、しかも下記(1)式で表される鋭敏化指数Stの値が−31以上−7未満の範囲となるように調整されたマルテンサイト量の組織を有するとともに、表面硬度がHV270以上の鋼板からなることを特徴とする耐たわみ性に優れたステンレス鋼製の二輪車用タイヤリム材。
St=100C+30N−0.32γ  ・・・・(1)
ただし、γは複相化焼鈍後の室温でのマルテンサイト量(%)である。
In mass%, C: 0.04% or less, Si: 2.0% or less, Mn: 2.0% or less, Cr: 10.0 to 20.0%, Ni: 4.0% or less, Cu: 3 0.02% or less, N: 0.12% or less, the balance having a steel composition substantially consisting of Fe, and a multi-phase structure composed of 5 to 75% by volume of ferrite and 25 to 95% by volume of martensite. And a structure having a martensite amount adjusted so that the value of the sensitization index St represented by the following formula (1) falls within a range of −31 or more and less than −7, and a surface hardness of HV 270 or more A tire rim material for motorcycles made of stainless steel, which is made of stainless steel and has excellent resistance to bending.
St = 100C + 30N−0.32γ (1)
Here, γ is the amount of martensite (%) at room temperature after the dual phase annealing.
鋼組成が、さらに0.015%以下のB,3.0%以下のMo,0.10%以下のTi,0.40%以下のNb,0.30%以下のVを1種または2種以上含有するものである請求項1に記載された耐たわみ性に優れたステンレス鋼製の二輪車用タイヤリム材。The steel composition further contains one or two types of B of 0.015% or less, Mo of 3.0% or less, Ti of 0.10% or less, Nb of 0.40% or less, and V of 0.30% or less. The tire rim material for motorcycles made of stainless steel having excellent flex resistance according to claim 1, which contains the above. 質量%で、C:0.04%以下,Si:2.0%以下,Mn:2.0%以下,Cr:10.0〜20.0%,Ni:4.0%以下,Cu:3.0%以下,N:0.12%以下を含み、残部が実質的にFeからなる鋼組成を有し、5〜75体積%のフェライトと25〜95体積%のマルテンサイトからなる複相組織であって、しかも下記(1)式で表される鋭敏化指数Stの値が−31以上−7未満の範囲となるように調整されたマルテンサイト量の組織を有する鋼板を素材として造管され、母材部の表面硬度がHV270以上の鋼管からなることを特徴とする耐たわみ性に優れたステンレス鋼製の二輪車用フレーム材。
St=100C+30N−0.32γ  ・・・・(1)
ただし、γは複相化焼鈍後の室温でのマルテンサイト量(%)である。
In mass%, C: 0.04% or less, Si: 2.0% or less, Mn: 2.0% or less, Cr: 10.0 to 20.0%, Ni: 4.0% or less, Cu: 3 0.02% or less, N: 0.12% or less, the balance having a steel composition substantially consisting of Fe, and a multi-phase structure composed of 5 to 75% by volume of ferrite and 25 to 95% by volume of martensite. The steel pipe having a structure of the martensite amount adjusted so that the value of the sensitization index St represented by the following formula (1) is in a range of −31 or more and less than −7 is formed into a pipe. A stainless steel frame material having excellent bending resistance, comprising a steel pipe having a base material having a surface hardness of HV270 or more.
St = 100C + 30N−0.32γ (1)
Here, γ is the amount of martensite (%) at room temperature after the dual phase annealing.
鋼組成が、さらに0.015%以下のB,3.0%以下のMo,0.10%以下のTi,0.40%以下のNb,0.30%以下のVを1種または2種以上含有するものである請求項3に記載された耐たわみ性に優れたステンレス鋼製の二輪車用フレーム材。The steel composition further contains one or two types of B of 0.015% or less, Mo of 3.0% or less, Ti of 0.10% or less, Nb of 0.40% or less, and V of 0.30% or less. The frame material for a motorcycle made of stainless steel having excellent bending resistance according to claim 3, which contains the above.
JP2002283413A 2002-09-27 2002-09-27 Stainless steel tire rim material and motorcycle frame material with excellent flexibility Expired - Fee Related JP3920185B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002283413A JP3920185B2 (en) 2002-09-27 2002-09-27 Stainless steel tire rim material and motorcycle frame material with excellent flexibility
CNA031570852A CN1490184A (en) 2002-09-27 2003-09-12 Bicycle frame parts made from anti-bending stainless steel
TW92126429A TWI275649B (en) 2002-09-27 2003-09-25 Deflection-resistant stainless steel-made structural members of a two-wheeled vehicle
EP20030021820 EP1403394A1 (en) 2002-09-27 2003-09-26 Deflection-resistant stainless steel-made structural members of a two-wheeled vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002283413A JP3920185B2 (en) 2002-09-27 2002-09-27 Stainless steel tire rim material and motorcycle frame material with excellent flexibility

Publications (3)

Publication Number Publication Date
JP2004115888A true JP2004115888A (en) 2004-04-15
JP2004115888A5 JP2004115888A5 (en) 2005-11-04
JP3920185B2 JP3920185B2 (en) 2007-05-30

Family

ID=31973350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002283413A Expired - Fee Related JP3920185B2 (en) 2002-09-27 2002-09-27 Stainless steel tire rim material and motorcycle frame material with excellent flexibility

Country Status (4)

Country Link
EP (1) EP1403394A1 (en)
JP (1) JP3920185B2 (en)
CN (1) CN1490184A (en)
TW (1) TWI275649B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015532684A (en) * 2012-08-31 2015-11-12 Jfeスチール株式会社 Ferritic stainless steel with excellent oxidation resistance, good high-temperature strength, and good workability
JP2015203144A (en) * 2014-04-15 2015-11-16 Jfeスチール株式会社 Ferrite-martensite two phase stainless steel
JP6093063B1 (en) * 2016-03-09 2017-03-08 日新製鋼株式会社 High-strength stainless steel material excellent in workability and its manufacturing method
RU2721668C2 (en) * 2014-04-01 2020-05-22 ЭйТиАй ПРОПЕРТИЗ ЭлЭлСи Two-phase stainless steel

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100532579C (en) * 2007-04-30 2009-08-26 郑州永通特钢有限公司 Method for smelting base material of low phosphorous stainless steel by using low-grade limonite containing nickel-chromium
CN100516274C (en) * 2007-08-20 2009-07-22 江阴市江东不锈钢制造有限公司 03Cr22Ni4NbN austenite-ferritic stainless steel and production technology therefor
MX355892B (en) * 2011-02-14 2018-05-04 Nippon Steel & Sumitomo Metal Corp Duplex stainless steel, and process for production thereof.
CN102605292A (en) * 2012-03-30 2012-07-25 宝山钢铁股份有限公司 Stainless steel for economical railway vehicle panel and preparation method of stainless steel
FR3047254B1 (en) 2016-02-02 2018-02-16 Vallourec Tubes France STEEL COMPOSITION WITH IMPROVED ANTI-COKAGE PROPERTIES
CN106834965A (en) * 2017-01-05 2017-06-13 宝钢不锈钢有限公司 A kind of two phase stainless steel cut deal and its manufacture method
CN109778066A (en) * 2019-01-22 2019-05-21 宋鑫 The pump head body production method of pump head body service life can be extended
CN109778080A (en) * 2019-01-22 2019-05-21 宋鑫 A kind of superhigh intensity super high-low temperature impact fracturing pump pump head body

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150086U (en) * 1985-09-12 1986-04-04
JPS62164857A (en) * 1986-01-16 1987-07-21 Nippon Steel Corp Stainless steel for bicycle rim
JPS63169331A (en) * 1987-01-03 1988-07-13 Nisshin Steel Co Ltd Production of chromium stainless steel strip of high strength double phase structure having excellent ductility
JPS63169334A (en) * 1986-12-30 1988-07-13 Nisshin Steel Co Ltd Production of chromium stainless steel strip of double phase structure having small intra-surface anisotropy and high ductility and high strength
JPS6455363A (en) * 1987-08-26 1989-03-02 Nippon Steel Corp Cr stainless steel
JPH01172524A (en) * 1987-12-28 1989-07-07 Nisshin Steel Co Ltd Production of complex phase structure chromium stainless strip having excellent corrosion resistance and high ductility and strength
JPH07138704A (en) * 1993-11-12 1995-05-30 Nisshin Steel Co Ltd High strength and high ductility dual-phase stainless steel and its production
JPH08199309A (en) * 1995-01-19 1996-08-06 Nippon Steel Corp Stainless steel excellent in workability and its production
JPH1099595A (en) * 1996-09-30 1998-04-21 Nisshin Steel Co Ltd Stainless steel clothes-drying bar and manufacture thereof
JP2001213377A (en) * 2000-02-03 2001-08-07 Honda Motor Co Ltd Frame for motorcycle
JP2003328083A (en) * 2002-05-10 2003-11-19 Nisshin Steel Co Ltd High-strength stainless steel sheet with plural phases for welded structure, and manufacturing method therefor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4078919A (en) * 1973-11-21 1978-03-14 Nippon Steel Corporation Ferritic stainless steel having excellent workability and high toughness
JPS60238456A (en) * 1984-05-10 1985-11-27 Nippon Steel Corp Ferritic stainless steel having superior resistance to intergranular corrosion and superior toughness
FR2567151B1 (en) * 1984-07-04 1986-11-21 Ugine Aciers METHOD FOR MANUFACTURING MARTENSITIC STAINLESS STEEL BARS OR MACHINE WIRE AND CORRESPONDING PRODUCTS
JPS6311618A (en) * 1986-06-30 1988-01-19 Kawasaki Steel Corp Production of ferritic stainless steel sheet for bicycle rim
JPH03146642A (en) * 1989-10-31 1991-06-21 Aichi Steel Works Ltd High strength ferritic stainless steel
JPH09249942A (en) * 1996-03-14 1997-09-22 Nisshin Steel Co Ltd Aperture frame using double layer stainless steel stock
JPH09263912A (en) * 1996-03-29 1997-10-07 Nisshin Steel Co Ltd High strength double phase structure chromium stainless steel sheet for punching and its production
US6464803B1 (en) * 1999-11-30 2002-10-15 Nippon Steel Corporation Stainless steel for brake disc excellent in resistance to temper softening
JP4202573B2 (en) * 2000-01-07 2008-12-24 新日鐵住金ステンレス株式会社 Martensitic stainless steel for disc brakes
JP4518645B2 (en) * 2000-01-21 2010-08-04 日新製鋼株式会社 High strength and high toughness martensitic stainless steel sheet
JP2002038242A (en) * 2000-07-27 2002-02-06 Kawasaki Steel Corp Stainless steel tube for structural member of automobile excellent in secondary working property
CN1697889B (en) * 2000-08-31 2011-01-12 杰富意钢铁株式会社 Low carbon martensitic stainless steel and its manufacture method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150086U (en) * 1985-09-12 1986-04-04
JPS62164857A (en) * 1986-01-16 1987-07-21 Nippon Steel Corp Stainless steel for bicycle rim
JPS63169334A (en) * 1986-12-30 1988-07-13 Nisshin Steel Co Ltd Production of chromium stainless steel strip of double phase structure having small intra-surface anisotropy and high ductility and high strength
JPS63169331A (en) * 1987-01-03 1988-07-13 Nisshin Steel Co Ltd Production of chromium stainless steel strip of high strength double phase structure having excellent ductility
JPS6455363A (en) * 1987-08-26 1989-03-02 Nippon Steel Corp Cr stainless steel
JPH01172524A (en) * 1987-12-28 1989-07-07 Nisshin Steel Co Ltd Production of complex phase structure chromium stainless strip having excellent corrosion resistance and high ductility and strength
JPH07138704A (en) * 1993-11-12 1995-05-30 Nisshin Steel Co Ltd High strength and high ductility dual-phase stainless steel and its production
JPH08199309A (en) * 1995-01-19 1996-08-06 Nippon Steel Corp Stainless steel excellent in workability and its production
JPH1099595A (en) * 1996-09-30 1998-04-21 Nisshin Steel Co Ltd Stainless steel clothes-drying bar and manufacture thereof
JP2001213377A (en) * 2000-02-03 2001-08-07 Honda Motor Co Ltd Frame for motorcycle
JP2003328083A (en) * 2002-05-10 2003-11-19 Nisshin Steel Co Ltd High-strength stainless steel sheet with plural phases for welded structure, and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015532684A (en) * 2012-08-31 2015-11-12 Jfeスチール株式会社 Ferritic stainless steel with excellent oxidation resistance, good high-temperature strength, and good workability
RU2721668C2 (en) * 2014-04-01 2020-05-22 ЭйТиАй ПРОПЕРТИЗ ЭлЭлСи Two-phase stainless steel
JP2015203144A (en) * 2014-04-15 2015-11-16 Jfeスチール株式会社 Ferrite-martensite two phase stainless steel
JP6093063B1 (en) * 2016-03-09 2017-03-08 日新製鋼株式会社 High-strength stainless steel material excellent in workability and its manufacturing method
JP2017160491A (en) * 2016-03-09 2017-09-14 日新製鋼株式会社 High strength stainless steel material excellent in processability and manufacturing method therefor

Also Published As

Publication number Publication date
JP3920185B2 (en) 2007-05-30
TWI275649B (en) 2007-03-11
TW200406494A (en) 2004-05-01
EP1403394A1 (en) 2004-03-31
CN1490184A (en) 2004-04-21

Similar Documents

Publication Publication Date Title
JP3704306B2 (en) Hot-dip galvanized high-strength steel sheet excellent in weldability, hole expansibility and corrosion resistance, and method for producing the same
JP2011190524A (en) Ferritic stainless steel having excellent oxidation resistance, secondary processing brittleness resistance and weld zone toughness
JP2005256169A (en) Wear resistant steel sheet having excellent low temperature toughness and production method therefor
JP2006161112A (en) High-strength hot rolled steel sheet and its production method
JP2004011009A (en) Electric resistance welded steel tube for hollow stabilizer
JP3920185B2 (en) Stainless steel tire rim material and motorcycle frame material with excellent flexibility
TWI629366B (en) Ferrous iron series stainless steel plate
JP3895986B2 (en) High-strength steel plate excellent in weldability and hole expansibility and method for producing the same
JP3961341B2 (en) Manufacturing method of high strength duplex stainless steel sheet for welded structures
JP4457492B2 (en) Stainless steel with excellent workability and weldability
JP7291222B2 (en) High-strength steel sheet with excellent ductility and workability, and method for producing the same
JP4083391B2 (en) Ferritic stainless steel for structural members
JPH05261567A (en) Manufacture of clad steel plate having excellent low temperature toughness
JP4197139B2 (en) Martensitic stainless steel sheet for welding, manufacturing method thereof and structural member
JP4082288B2 (en) Mo-containing austenitic stainless steel and method for producing the same
JP2004218066A (en) Steel sheet with composite structure having excellent fatigue property, and production method therefor
JP4419572B2 (en) Method for producing a composite steel sheet having excellent fatigue properties
JP3491625B2 (en) Fe-Cr alloy with excellent initial rust resistance, workability and weldability
JP7006855B2 (en) Clad steel and its manufacturing method
US20020009381A1 (en) Fe-Cr alloy having excellent initial rust resistance, workability and weldability
JP2004181530A (en) Welded joint having excellent fatigue strength characteristic
WO2007125571A1 (en) Steel sheet with less weld buckling deformation, and process for producing the same
JP4483089B2 (en) Cr-containing heat-resistant and corrosion-resistant steel sheet excellent in both formability and workability in the heat affected zone and its manufacturing method
JP2005105355A (en) Tire rim material for two-wheeled vehicle made of stainless steel excellent in corrosion resistance and flexibility, and frame material for two-wheeled vehicle
JP2024522170A (en) Austenitic stainless steel and its manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050915

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees