JP3362077B2 - Smelting method of molten steel for non-oriented electrical steel sheets with low iron loss - Google Patents

Smelting method of molten steel for non-oriented electrical steel sheets with low iron loss

Info

Publication number
JP3362077B2
JP3362077B2 JP09734194A JP9734194A JP3362077B2 JP 3362077 B2 JP3362077 B2 JP 3362077B2 JP 09734194 A JP09734194 A JP 09734194A JP 9734194 A JP9734194 A JP 9734194A JP 3362077 B2 JP3362077 B2 JP 3362077B2
Authority
JP
Japan
Prior art keywords
iron loss
less
molten steel
oriented electrical
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09734194A
Other languages
Japanese (ja)
Other versions
JPH07305109A (en
Inventor
高島  稔
圭司 佐藤
隆史 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP09734194A priority Critical patent/JP3362077B2/en
Publication of JPH07305109A publication Critical patent/JPH07305109A/en
Application granted granted Critical
Publication of JP3362077B2 publication Critical patent/JP3362077B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、低Si無方向性電磁鋼
板の製造に供する溶鋼の溶製方法に関し、特に鉄損の低
い製品を得るための取鍋精錬などといった炉外精錬法に
ついての研究開発の成果を提案することにある。 【0002】 【従来の技術】無方向性電磁鋼板は、回転機や変圧器の
鉄心等として使用される。これら回転機や変圧器等のエ
ネルギー効率を高めて省エネルギーや高能率化を図るた
めには、この無方向性電磁鋼板の鉄損を下げる必要があ
る。ここに、無方向性電磁鋼板の低鉄損化には、結晶粒
径を最適化することが有効であり、結晶粒径がおよそ 1
50μm の場合に鉄損は最小となることは従来からよく知
られている。しかし、無方向性電磁鋼板の製品出荷時の
結晶粒径は、高々20μm 程度である。 【0003】そこで、需要家において、打抜加工後に施
す750 ℃,2時間の歪取焼鈍によって結晶粒を成長さ
せ、低鉄損化を図ることも行われてきたが、それでも歪
取焼鈍後の結晶粒径は60μm 程度であり、上述した鉄損
が最小となる粒径 150μm には程遠いレベルであった。
そのため、近年の省エネルギーを目的とする電気機器の
高効率化の要請に応えるべく、無方向性電磁鋼板の低鉄
損化を目指して、無方向性電磁鋼板用溶鋼の取鍋精錬方
法について研究開発が進められた。 【0004】従来の、Si:1.0 wt%以下、Al:0.1 wt%
以下といった低Si, 低Alの無方向性電磁鋼板の製造に供
される溶鋼の取鍋精錬方法としては、次の方法がある。 1) Alを添加せず、Si又はMnで脱酸する方法。 (特公昭56-43294号公報,特開平3-249115号公報) 2) Alを添加せず、希土類金属で脱酸する方法。 (特開昭60-145310 号公報) 3) Al添加後、Si添加する方法。 (特公昭54-3443 号公報) 4) Si添加後、Al添加する方法。 【0005】 【発明が解決しようとする課題】しかしながら、上記し
た取鍋精錬方法のうち、1)のAlを添加せず、Si, Mn又は
Cで脱酸する方法は、弱脱酸性元素を用いるため、連続
鋳造時に脱酸生成物が多量に生成してノズル詰まりを生
起し易いという操業上の問題点があった。また、2)のAl
を添加せず、希土類金属で脱酸する方法は、高価な希土
類金属を多量に用いるため、経済上の理由から適しなか
った。さらに、3), 4)の方法は、操業上や経済上の問題
点はないけれども、1), 2)の方法に比べて鉄損に劣ると
いう問題があった。 【0006】ところで、Si:1.0 wt%以下の無方向性電
磁鋼板に関して鋼中のsol.Al量を0.0010wt%以下にする
ことにより、鉄損の低い無方向性電磁鋼板が得られるこ
とが特公昭58-55210号公報に示されている。このように
鋼中のsol.Al量を0.0010wt%以下にすれば、鉄損の良好
な無方向性電磁鋼板を得ることができるが、近年の低鉄
損化の要求の高まりとともに、上掲特公昭58-55210号公
報に示された鉄損特性では不十分なものとなってきた。 【0007】この発明は、上記の問題を有利に解決する
もので、低Si無方向性電磁鋼板につき鉄損の低い製品を
得ることができ、さらに経済的でかつ操業性にも優れる
溶鋼の溶製方法を提案することを目的とする。 【0008】 【課題を解決するための手段】発明者らは、鉄損特性に
優れる無方向性電磁鋼板を得べく、鋭意研究を重ねた結
果、取鍋精錬中に添加される金属や合金中の不純物成分
が、電磁鋼板の鉄損に著しく影響を及ぼすことを見い出
した。この発明は、上記の知見に立脚するものである。 【0009】すなわち、この発明は、C:0.01wt%以
下、Si:0.05〜1.0 wt%、Mn:0.05〜0.5 wt%、P:0.
3 wt%以下及びsol.Al:0.0010wt%以下を含み、残部は
Fe及び不可避的不純物よりなる無方向性電磁鋼板用溶鋼
を溶製する方法であって、炉外精錬におけるSiの成分調
整に先立って、真空脱ガス処理を行って溶鋼中の溶存酸
素濃度を700 wtppm 以下まで低減し、次いでAlによりさ
らなる脱酸を行って溶鋼中の溶存酸素濃度を50wtppm 以
上、200 wtppm 以下とした後、上記Siの成分調整を、Al
含有量を0.3 wt%以下に制限したFe-Si 合金で行うこと
を特徴とする鉄損の低い無方向性電磁鋼板用溶鋼の溶製
方法である。 【0010】 【作用】以下、この発明をなすに至った知見及びそれに
到る実験結果について説明する。発明者らは、Al添加後
にSi添加する取鍋精錬方法が操業性、経済性に優れるこ
とに着目し、従来、製品の鉄損特性が劣るとされていた
Al添加後にSi添加する取鍋精錬方法の鉄損改善法につい
て検討した。その結果、低Si, 低Alの無方向性電磁鋼板
の溶製に従来用いられていたFe-Si合金に比して、よりA
l濃度の低いFe-Si 合金を取鍋精錬の際に添加すること
で、鉄損が著しく改善できることが次に述べる実験によ
り明らかとなった。 【0011】転炉精錬後の取鍋精錬において、まず、Fe
-Mn 合金でMnの成分調整を行った後、真空脱ガス処理を
行って溶鋼中の溶存酸素濃度を350 〜400 wtppm とした
後、金属Alを添加して溶鋼中の溶存酸素濃度を200 wtpp
m 以下とした。その後、Alをそれぞれ1.2 wt%及び0.13
wt%含有するFe-Si 合金をそれぞれ添加してSiの成分調
整を行い、取鍋精錬を終了後は連続鋳造によりスラブと
した。該スラブをスラブ加熱後熱間圧延し、2mmの熱延
板とした後、冷間圧延して板厚0.5 mmとし、次いで780
℃,1分の仕上焼鈍を施して製品板とした。この製品板
の成分はC:0.003 wt%, Si:0.12wt%, Mn:0.2 wt
%, P:0.01wt%であった。この製品板にはさらに750
℃,2時間の歪取焼鈍を施した後、鉄損測定及び結晶粒
径測定に供した。 【0012】図1に製品板のsol.Al分析値と歪取焼鈍後
の鉄損特性との関係を示す。同図から分かるように、Al
含有量の少ないFe-Si 合金を用いることにより良好な鉄
損特性を得ることができた。特に、同一sol.Al濃度であ
っても、Si濃度調整のためにAl含有量の少ないFe-Si を
用いることにより、良好な鉄損を得ることのできること
が注目される。 【0013】その原因を求めるために、歪取焼鈍後の結
晶粒径を、製品板のsol.Al量分析値との関係で調べて図
2に示す。その結果、製品板における同一sol.Al量であ
っても、Fe-Si 合金としてAl含有量の少ないFe-Si 合金
を用いた場合には、良好な結晶粒成長性を示した。この
ような、粒成長性の向上が鉄損改善の一因と考えられ
る。 【0014】これらの実験を基に、Fe-Si 合金中のAl含
有量が鉄損に及ぼす影響をさらに詳細に調査した。転炉
精錬後の取鍋精錬において、まず、Fe-Mn 合金でMnの成
分調整を行った後、真空脱ガス処理を行って溶鋼中の溶
存酸素濃度を350 〜400 wtppm とした後、金属Alを添加
して溶鋼中の溶存酸素濃度を200 wtppm 以下とした。そ
の後、Alを0.01wt%〜0.7 wt%の範囲の量で含有する種
々のFe-Si 合金を用いて、Siの成分調整を行い、取鍋精
錬を終了後は連続鋳造によりスラブとした。該スラブを
スラブ加熱後熱間圧延し、2mmの熱延板とした後、冷間
圧延して板厚0.5 mmとし、次いで780 ℃,1分の仕上焼
鈍を施して製品板とした。この製品板の成分はC:0.00
3 wt%, Si:0.12wt%, Mn:0.2 wt%, P:0.01wt%,
sol.Al:2〜5wtppmであった。この製品板にはさらに7
50 ℃,2時間の歪取焼鈍を施した後、鉄損測定及び結
晶粒径測定に供した。 【0015】図3に取鍋精錬で使用したFe-Si 合金中の
Al含有量と鉄損特性との関係を示す。同図から分かるよ
うに、Fe-Si 合金中のAl含有量が0.3 wt%以下で良好な
鉄損を得ることができた。Fe-Si 中のAl含有量により鉄
損特性が顕著に相違する理由は明らかではないが、Al脱
酸さらにはFe-Si 合金添加により酸素濃度が十分低くな
っている溶鋼中に含有されることになったFe-Si 合金中
のAlは、微細なAl2O3 を形成して取鍋精錬中に浮上する
ことなく鋼中に残存し、その結果、粒成長並びに磁壁移
動の阻害因子となり、ひいては、鉄損劣化を招いていた
ためと推定される。 【0016】以上の知見より、低Si, 低Al無方向性電磁
鋼板の取鍋精錬において、従来、1〜2wt%であったFe
-Si 中のAl含有量を0.3 wt%以下に制限することによ
り、著しく鉄損に優れた無方向性電磁鋼板を製造できる
ことが明らかとなったのである。このように、真空ガス
処理及びAl脱酸処理により溶存酸素濃度を極力低減した
溶鋼中に、鉄損劣化の解消を目的として、Al含有量を抑
制したFe-Si 合金を用いるのは、この発明が初めてであ
る。従来公知のFe-Si 合金は、Al含有量を低減したもの
でもせいぜい0.4 wt%までであり、Fe-Si 合金に関しAl
含有量0.3 wt%を境にして、鉄損特性が顕著に異なるこ
とは従来知られていなかった。 【0017】次にこの発明で規定した諸条件について説
明する。まず、製品板成分の限定理由から述べる。 C:0.01wt%以下 C量が0.01wt%を超えると磁気時効し、磁気特性が劣化
するので0.01wt%以下とした。 Si:0.05wt%以上1.0 wt%以下 Siは、固有抵抗を高める作用を有し、鉄損を低減できる
有用な成分であるが、添加量が増加するとコストアップ
になることから0.05wt%以上1.0 wt%以下とした。 Mn:0.05wt%以上0.5 wt%以下 Mnは、Sを粗大なMnS として固定し無害化する働きがあ
るが、0.5 wt%以上の添加はコストアップとなることか
ら、0.05wt%以上0.5 wt%以下とした。 P:0.3 wt%以下 Pは打抜性改善のため、添加することができるが、0.3
wt%を超える添加は冷延性を劣化させるので0.2 wt%以
下とすることが望ましい。 sol.Al:0.0010wt%以下 sol.Alが0.0010wt%を超える量で含まれると、微細なAl
N を形成し、鉄損は著しく劣化する。そこで0.0010wt%
以下とした。 【0018】この発明では、上記以外の成分については
特に限定するものではないが、不純物成分の許容範囲は
次のとおりである。 S:0.01wt%以下 SはMnとともにMnS を形成し、磁壁移動、粒成長の障害
となることから、0.01wt%以下とすることが望ましい。 N:0.01wt%以下 Nは窒化物を形成し、磁壁移動、粒成長の障害となるこ
とから、0.01wt%以下とすることが望ましい。 T.O:0.025 wt%以下 T.Oが0.025 wt%を超えると、酸化物が磁壁移動、粒
成長の障害となることから、0.025 wt%以下とすること
が望ましい。 【0019】次に、この発明における好適な製造条件な
らびに製造条件の限定理由について述べる。転炉等の製
鋼炉から溶鋼(出鋼時の成分は、例えばC:0.04wt%,
溶存酸素:800 wtppm , Si:tr. , Mn:0.1 wt%, P:
0.01wt%, sol.Al tr.)を出鋼し、この溶鋼に公知の真
空脱ガス装置によって取鍋精錬を施す。 【0020】取鍋精錬においては、まず必要に応じて、
金属Mn, Fe-Mn 合金、Fe-P合金などにてAl, Siを除く各
成分の調整を行い、次いで真空脱ガス処理により溶鋼中
の溶存酸素濃度を700 wtppm 以下とする。溶鋼中の溶存
酸素濃度が700 wtppm を超えると、脱酸生成物が多量に
生成して連続鋳造の際にノズル詰まりを起こす。より好
ましくは、600 wtppm 以下である。なお、溶存酸素濃度
の測定は、酸素濃淡電池により行えばよい。 【0021】その後、脱酸のためにAlを添加する。この
際にAl添加量が少なく、その結果Al添加後の溶鋼中の溶
存酸素濃度が200 wtppm を超える場合には連続鋳造の際
にノズル詰まりを起こす。一方、Al添加量が多く、その
ためAl添加後の溶存酸素濃度が50wtppm 以下となった場
合、Alが鋼中に残留し、製品板のsol.Alが10wtppm を超
え、鉄損は劣化する。したがって、Al添加後の溶鋼中の
溶存酸素濃度が200 wtppm 以下、50wtppm 以上となるよ
うにAlを添加する。より好ましくは、60〜160wtppm の
範囲である。 【0022】Al添加の後、Fe-Si 合金をSi濃度調整のた
めに添加する。この際、前述したようにFe-Si 合金中の
Al含有量が0.3 wt%を超えると鉄損が劣化するので、A
l:0.3 wt%以下に制限されたFe-Si 合金を用いる。よ
り好ましくは 0.2wt%以下である。さらに、必要に応じ
て、金属Mn, Fe-Mn 合金、Fe-P合金などで、Al, Siを除
く各成分の調整を行う。以上、好適な取鍋精錬条件につ
いて述べたが、Si, Al以外の成分の調整は、上記の方法
によらずとも、任意の方法で行ってよい。 【0023】 【実施例】 (実施例1)200 トン底吹き転炉で、C:0.04〜0.06wt
%, 溶存酸素:800 wtppm, Si :tr., Mn:0.04wt%,
P:0.01wt%, sol.Al:tr. の溶鋼を溶製し、その後真
空脱ガス装置によって、取鍋精錬を行った。この取鍋精
錬では、まずFe-Mn 合金 (25wt%Fe−74%Mn) 、Fe-P合
金 (67%Fe−32%P)でそれぞれMn, Pの成分調整を行
い、次いで酸素プローブにて溶存酸素濃度を測定し、そ
の後、Alを添加し、引き続いてFe-Si 合金を添加してSi
濃度を調整し、無方向性電磁鋼板用溶鋼を得た。取鍋精
錬時の諸条件については表1に示すとおりであった。 【0024】 【表1】 【0025】次に、得られた溶鋼を連続鋳造してスラブ
となし、このスラブを熱間圧延して熱延板を得た。これ
らの熱延板を酸洗後冷間圧延を施して0.5 mmの板厚とし
たのち、780 ℃,1分の仕上焼鈍を施し、次いで絶縁被
膜を被成して製品板とした。この製品板に750 ℃,2時
間の歪取焼鈍を施したのち、磁気測定に供した。製品板
の成分、ならびに歪取焼鈍後の磁気特性を表1に併記す
る。表1からこの発明に従う適合例は、優れた鉄損が得
られていることがわかる。 【0026】(実施例2)100 トン底吹き転炉で、C:
0.04〜0.06wt%, 溶存酸素:750 wtppm , Si:tr. , M
n:0.1 wt%, P:0.01wt%, sol.Al:tr. の溶鋼を溶
製し、その後真空脱ガス装置によって、取鍋精錬を行っ
た。この取鍋精錬では、まずFe-Mn 合金 (25%Fe−74%
Mn) でMnの成分調整を行い、次いで酸素プローブにて溶
存酸素濃度を測定し、その後、Alを添加し、引き続いて
Fe-Si 合金を添加してSi濃度を調整し、無方向性電磁鋼
板用溶製鋼を得た。取鍋精錬時の諸条件については表2
に示すとおりであった。 【0027】 【表2】 【0028】次に、得られた溶鋼を連続鋳造してスラブ
となし、このスラブを熱間圧延して熱延板を得た。これ
らの熱延板を酸洗後冷間圧延を施し、0.5 mmの板厚とし
たのち、780 ℃,1分の仕上焼鈍を施し、次いで8%の
スキンパス圧延を施し、製品板とした。この製品板に75
0 ℃,2時間の歪取焼鈍を施したのち、磁気測定に供し
た。製品板の成分、ならびに歪取焼鈍後の磁気特性を表
2に併記する。表2からこの発明に従う適合例は、優れ
た鉄損が得られることがわかる。 【0029】 【発明の効果】この発明によれば、鉄損の低い低Si無方
向性電磁鋼板を良好な操業性及び経済性の下に得ること
ができ、電気機器の効率化に伴い、その鉄心材料として
用いられる無方向性電磁鋼板に対する低鉄損化への要請
に十分応えることができ、その工業的効果は大きい。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing molten steel for producing low-Si non-oriented electrical steel sheets, and more particularly to a method for obtaining a product with low iron loss. To propose the results of research and development on out-of-pile refining methods such as pot refining. [0002] Non-oriented electrical steel sheets are used as iron cores for rotating machines and transformers. In order to increase the energy efficiency of these rotating machines and transformers to achieve energy saving and high efficiency, it is necessary to reduce the iron loss of the non-oriented electrical steel sheet. Here, to reduce the iron loss of the non-oriented electrical steel sheet, it is effective to optimize the crystal grain size.
It is well known that iron loss is minimized at 50 μm. However, the grain size of non-oriented electrical steel sheets at the time of product shipment is at most about 20 μm. [0003] Therefore, it has been practiced in customers to reduce the iron loss by growing crystal grains by strain relief annealing at 750 ° C for 2 hours performed after the punching process. The crystal grain size was about 60 μm, which was far from the particle size of 150 μm at which the above-mentioned iron loss was minimized.
Therefore, in response to the recent demand for higher efficiency of electrical equipment for energy saving, research and development of ladle refining method of molten steel for non-oriented electrical steel sheet with the aim of reducing iron loss of non-oriented electrical steel sheet Was advanced. Conventional Si: 1.0 wt% or less, Al: 0.1 wt%
The following methods are used as ladle refining methods for molten steel used in the production of low-Si, low-Al non-oriented electrical steel sheets as described below. 1) A method of deoxidizing with Si or Mn without adding Al. (JP-B-56-43294, JP-A-3-249115) 2) A method of deoxidizing with a rare earth metal without adding Al. (Japanese Patent Laid-Open No. 60-145310) 3) A method of adding Si after adding Al. (Japanese Patent Publication No. 54-3443) 4) A method of adding Al after adding Si. [0005] However, of the ladle refining methods described above, the method of 1) deoxidizing with Si, Mn or C without adding Al uses a weakly deacidifying element. Therefore, there is a problem in operation that a large amount of deoxidized product is generated during continuous casting and nozzle clogging is likely to occur. Also, 2) Al
The method of deoxidizing with a rare earth metal without adding any of them is not suitable for economic reasons because a large amount of expensive rare earth metal is used. Furthermore, although the methods 3) and 4) have no operational or economical problems, there is a problem that iron loss is inferior to the methods 1) and 2). Incidentally, with respect to a non-oriented electrical steel sheet having a Si content of 1.0 wt% or less, a non-oriented electrical steel sheet with low iron loss can be obtained by reducing the sol.Al content in the steel to 0.0010 wt% or less. This is disclosed in Japanese Patent Publication No. 58-55210. If the amount of sol.Al in the steel is set to 0.0010 wt% or less, a non-oriented electrical steel sheet having good iron loss can be obtained. The iron loss characteristics disclosed in Japanese Patent Publication No. 58-55210 have become insufficient. [0007] The present invention advantageously solves the above-mentioned problems, and provides a low-Si non-oriented electrical steel sheet having a low iron loss and is economical and excellent in operability. The purpose is to propose a manufacturing method. Means for Solving the Problems The inventors of the present invention have conducted intensive studies to obtain a non-oriented electrical steel sheet having excellent iron loss characteristics. Was found to significantly affect the iron loss of the electrical steel sheet. The present invention is based on the above findings. That is, according to the present invention, C: 0.01 wt% or less, Si: 0.05 to 1.0 wt%, Mn: 0.05 to 0.5 wt%, P: 0.
3 wt% or less and sol.Al: 0.0010 wt% or less, with the balance being
This is a method of melting molten steel for non-oriented electrical steel sheets comprising Fe and unavoidable impurities, and performing a vacuum degassing process to reduce the dissolved oxygen concentration in the molten steel to 700 before the adjustment of the Si component in out-of-pile refining. wtppm or less, and then further deoxidation with Al to reduce the dissolved oxygen concentration in the molten steel to 50 wtppm or more and 200 wtppm or less.
This is a method for producing molten steel for non-oriented electrical steel sheets having a low iron loss, which is performed with an Fe-Si alloy whose content is limited to 0.3 wt% or less. The findings that led to the present invention and the experimental results leading to them will be described below. The inventors have noted that the ladle refining method of adding Si after adding Al is excellent in operability and economic efficiency, and conventionally, iron loss characteristics of the product were considered to be inferior.
The iron loss improvement method of the ladle refining method in which Si was added after Al addition was examined. As a result, compared to Fe-Si alloys conventionally used for melting low-Si, low-Al non-oriented electrical steel sheets,
The following experiments revealed that iron loss can be remarkably improved by adding a low-concentration Fe-Si alloy during ladle refining. In ladle refining after converter refining, first,
After adjusting the composition of Mn in the -Mn alloy, performing a vacuum degassing process to bring the dissolved oxygen concentration in the molten steel to 350 to 400 wtppm, then adding metallic Al to bring the dissolved oxygen concentration in the molten steel to 200 wtpp.
m or less. Thereafter, Al was added in an amount of 1.2 wt% and 0.13%, respectively.
The Fe-Si alloys containing wt% were added to adjust the components of Si, and after the ladle refining was completed, slabs were formed by continuous casting. The slab was hot-rolled after slab heating to form a 2 mm hot-rolled sheet, then cold-rolled to a sheet thickness of 0.5 mm, and then 780 mm.
Finish annealing was performed at 1 ° C. for 1 minute to obtain a product plate. The composition of this product plate is C: 0.003 wt%, Si: 0.12 wt%, Mn: 0.2 wt%
%, P: 0.01 wt%. This product plate has an additional 750
After the strain relief annealing at 2 ° C. for 2 hours, the sample was subjected to iron loss measurement and crystal grain size measurement. FIG. 1 shows the relationship between the sol. Al analysis value of the product sheet and the iron loss characteristics after strain relief annealing. As can be seen from FIG.
Good iron loss characteristics could be obtained by using a Fe-Si alloy with a small content. In particular, it is noted that good iron loss can be obtained by using Fe-Si having a small Al content for adjusting the Si concentration even at the same sol.Al concentration. In order to find the cause, the crystal grain size after strain relief annealing is examined in relation to the sol.Al content analysis value of the product sheet, and is shown in FIG. As a result, even with the same sol.Al content in the product plate, good crystal grain growth was exhibited when the Fe-Si alloy having a low Al content was used as the Fe-Si alloy. Such improvement in grain growth is considered to be a cause of improvement in iron loss. Based on these experiments, the effect of Al content in the Fe—Si alloy on iron loss was investigated in more detail. In the ladle refining after the converter refining, first, the composition of Mn is adjusted with Fe-Mn alloy, then the vacuum oxygen degassing is performed to adjust the dissolved oxygen concentration in the molten steel to 350 to 400 wtppm, and then the metal Al Was added to reduce the dissolved oxygen concentration in the molten steel to 200 wtppm or less. Thereafter, the composition of Si was adjusted using various Fe-Si alloys containing Al in an amount ranging from 0.01 wt% to 0.7 wt%, and after the ladle refining was completed, a slab was formed by continuous casting. The slab was hot-rolled after slab heating to form a hot-rolled sheet of 2 mm, then cold-rolled to a sheet thickness of 0.5 mm, and then subjected to finish annealing at 780 ° C for 1 minute to obtain a product sheet. The composition of this product plate is C: 0.00
3 wt%, Si: 0.12 wt%, Mn: 0.2 wt%, P: 0.01 wt%,
sol.Al: 2-5 wtppm. This product plate has 7 more
After performing the strain relief annealing at 50 ° C. for 2 hours, it was subjected to iron loss measurement and crystal grain size measurement. FIG. 3 shows that the Fe-Si alloy used in the ladle refining
The relationship between Al content and iron loss characteristics is shown. As can be seen from the figure, good iron loss was obtained when the Al content in the Fe-Si alloy was 0.3 wt% or less. It is not clear why the iron loss characteristics are significantly different depending on the Al content in Fe-Si, but it is necessary that the oxygen content be contained in molten steel whose oxygen concentration is sufficiently low due to Al deoxidation and addition of Fe-Si alloy. Al in the turned Fe-Si alloy forms fine Al 2 O 3 and remains in the steel without floating during ladle refining, and as a result, becomes an inhibitory factor for grain growth and domain wall movement, Eventually, it is presumed that iron loss deterioration was caused. From the above findings, in the ladle refining of low-Si, low-Al non-oriented electrical steel sheets, the content of Fe was 1 to 2 wt% conventionally.
It has been clarified that by limiting the Al content in -Si to 0.3 wt% or less, a non-oriented electrical steel sheet with remarkably excellent iron loss can be manufactured. As described above, the present invention uses a Fe-Si alloy with a suppressed Al content in molten steel in which the dissolved oxygen concentration is reduced as much as possible by vacuum gas treatment and Al deoxidation treatment in order to eliminate iron loss deterioration. Is the first time. Conventionally known Fe-Si alloys have a reduced Al content of at most 0.4 wt%.
It was not conventionally known that the iron loss characteristics were significantly different from the 0.3 wt% content. Next, various conditions defined in the present invention will be described. First, the reason for limiting the components of the product plate will be described. C: 0.01 wt% or less When the C content exceeds 0.01 wt%, magnetic aging occurs and the magnetic characteristics deteriorate, so the content was made 0.01 wt% or less. Si: 0.05 wt% or more and 1.0 wt% or less Si has a function of increasing the specific resistance and is a useful component that can reduce iron loss. However, if the added amount increases, the cost increases, so that 0.05 wt% or more and 1.0 wt% or less. wt% or less. Mn: 0.05 wt% or more and 0.5 wt% or less Mn has a function of fixing S as coarse MnS and detoxifying it. However, addition of 0.5 wt% or more increases the cost, so that 0.05 wt% or more and 0.5 wt% or less. It was as follows. P: 0.3 wt% or less P can be added to improve the punching property.
Since the addition of more than wt% deteriorates the cold rolling property, the content is desirably 0.2 wt% or less. sol.Al: 0.0010wt% or less If sol.Al is contained in an amount exceeding 0.0010wt%, fine Al
N forms, and iron loss deteriorates remarkably. So 0.0010wt%
It was as follows. In the present invention, components other than those described above are not particularly limited, but the allowable ranges of impurity components are as follows. S: 0.01 wt% or less S forms MnS together with Mn, and hinders domain wall movement and grain growth. N: 0.01 wt% or less N forms nitrides and hinders domain wall movement and grain growth. Therefore, it is preferable that N be 0.01 wt% or less. T. O: 0.025 wt% or less If O exceeds 0.025 wt%, the oxide will hinder domain wall movement and grain growth, so it is desirable that the content be 0.025 wt% or less. Next, preferable manufacturing conditions and reasons for limiting the manufacturing conditions in the present invention will be described. Molten steel from a steelmaking furnace such as a converter (for example, C: 0.04wt%,
Dissolved oxygen: 800 wtppm, Si: tr., Mn: 0.1 wt%, P:
0.01 wt%, sol.Al tr.), And the molten steel is subjected to ladle refining by a known vacuum degassing apparatus. In ladle refining, first, if necessary,
The components except Al and Si are adjusted with metallic Mn, Fe-Mn alloy, Fe-P alloy, etc., and then the dissolved oxygen concentration in the molten steel is reduced to 700 wtppm or less by vacuum degassing. If the concentration of dissolved oxygen in the molten steel exceeds 700 wtppm, a large amount of deoxidized products will be generated, causing nozzle clogging during continuous casting. More preferably, it is at most 600 wtppm. The dissolved oxygen concentration may be measured using an oxygen concentration cell. Thereafter, Al is added for deoxidation. At this time, when the amount of Al added is small, and as a result, the dissolved oxygen concentration in the molten steel after the addition of Al exceeds 200 wtppm, nozzle clogging occurs during continuous casting. On the other hand, when the added amount of Al is large and the dissolved oxygen concentration after the addition of Al becomes 50 wtppm or less, Al remains in the steel, sol.Al of the product plate exceeds 10 wtppm, and iron loss deteriorates. Therefore, Al is added so that the dissolved oxygen concentration in the molten steel after Al addition is 200 wtppm or less and 50 wtppm or more. More preferably, it is in the range of 60 to 160 wtppm. After the addition of Al, an Fe-Si alloy is added for adjusting the Si concentration. At this time, as described above, the Fe-Si alloy
If the Al content exceeds 0.3 wt%, iron loss will deteriorate.
l: Use Fe-Si alloy limited to 0.3 wt% or less. More preferably, it is at most 0.2 wt%. Further, if necessary, components other than Al and Si are adjusted by using metal Mn, Fe-Mn alloy, Fe-P alloy, or the like. Although the preferred ladle refining conditions have been described above, adjustment of components other than Si and Al may be performed by any method, not by the above method. EXAMPLES (Example 1) A 200-ton bottom-blowing converter, C: 0.04 to 0.06 wt%
%, Dissolved oxygen: 800 wtppm, Si: tr., Mn: 0.04 wt%,
A molten steel of P: 0.01 wt%, sol. Al: tr. Was melted, and then ladle refining was performed by a vacuum degassing apparatus. In this ladle refining, the components of Mn and P are first adjusted with Fe-Mn alloy (25wt% Fe-74% Mn) and Fe-P alloy (67% Fe-32% P), and then with oxygen probe. Measure dissolved oxygen concentration, then add Al, then add Fe-Si alloy to Si
The concentration was adjusted to obtain molten steel for non-oriented electrical steel sheets. Table 1 shows the conditions for ladle refining. [Table 1] Next, the obtained molten steel was continuously cast into a slab, and the slab was hot-rolled to obtain a hot-rolled sheet. These hot-rolled sheets were pickled, cold-rolled to a thickness of 0.5 mm, subjected to finish annealing at 780 ° C. for 1 minute, and then coated with an insulating film to form a product sheet. This sheet was subjected to strain relief annealing at 750 ° C. for 2 hours, and then subjected to magnetic measurement. Table 1 also shows the components of the product sheet and the magnetic properties after the strain relief annealing. It can be seen from Table 1 that the conforming example according to the present invention has excellent iron loss. Example 2 In a 100-ton bottom blow converter, C:
0.04 to 0.06 wt%, dissolved oxygen: 750 wtppm, Si: tr., M
A molten steel of n: 0.1 wt%, P: 0.01 wt%, sol. Al: tr. was smelted, and then ladle refining was performed by a vacuum degassing apparatus. In this ladle refining, first, an Fe-Mn alloy (25% Fe-74%
(Mn) to adjust the composition of Mn, then measure the dissolved oxygen concentration with an oxygen probe, then add Al, and then
A Fe-Si alloy was added to adjust the Si concentration to obtain a smelted steel for non-oriented electrical steel sheets. Table 2 shows the conditions for ladle refining.
Was as shown in FIG. [Table 2] Next, the obtained molten steel was continuously cast into a slab, and the slab was hot-rolled to obtain a hot-rolled sheet. These hot-rolled sheets were pickled, cold-rolled to a thickness of 0.5 mm, subjected to finish annealing at 780 ° C. for 1 minute, and then subjected to 8% skin pass rolling to obtain product sheets. 75 on this product plate
After subjecting to strain relief annealing at 0 ° C. for 2 hours, the sample was subjected to magnetic measurement. Table 2 also shows the components of the product sheet and the magnetic properties after the strain relief annealing. From Table 2, it can be seen that the conforming example according to the present invention provides excellent iron loss. According to the present invention, a low-Si non-oriented electrical steel sheet having a low iron loss can be obtained with good operability and economical efficiency. It can sufficiently meet the demand for low iron loss in non-oriented electrical steel sheets used as iron core materials, and has great industrial effects.

【図面の簡単な説明】 【図1】Fe-Si 合金中のAl含有量と製品のsol.Al量とが
鉄損W15/50に及ぼす影響を示すグラフである。 【図2】Fe-Si 合金中のAl含有量と製品sol.Al量とが製
品の結晶粒径及ぼす影響を示すグラフである。 【図3】Fe-Si 合金中のAl含有量と鉄損W15/50との関係
を示すグラフである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the effect of the Al content in the Fe—Si alloy and the sol.Al content of the product on the iron loss W 15/50 . FIG. 2 is a graph showing the effect of the Al content in the Fe—Si alloy and the product sol.Al content on the crystal grain size of the product. FIG. 3 is a graph showing the relationship between the Al content in the Fe—Si alloy and the iron loss W 15/50 .

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特公 昭54−3443(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C21C 7/00 - 7/10 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-B-54-3443 (JP, B2) (58) Field surveyed (Int. Cl. 7 , DB name) C21C 7/ 00-7/ 10

Claims (1)

(57)【特許請求の範囲】 【請求項1】 C:0.01wt%以下、 Si:0.05〜1.0 wt%、 Mn:0.05〜0.5 wt%、 P:0.3 wt%以下及びsol.Al:0.0010wt%以下を含み、
残部はFe及び不可避的不純物よりなる無方向性電磁鋼板
用溶鋼を溶製する方法であって、 炉外精錬におけるSiの成分調整に先立って、 真空脱ガス処理を行って溶鋼中の溶存酸素濃度を700 wt
ppm 以下まで低減し、 次いでAlによりさらなる脱酸を行って溶鋼中の溶存酸素
濃度を50wtppm 以上、200 wtppm 以下とした後、 上記Siの成分調整を、Al含有量を0.3 wt%以下に制限し
たFe-Si 合金で行うことを特徴とする鉄損の低い無方向
性電磁鋼板用溶鋼の溶製方法。
(57) [Claims] [Claim 1] C: 0.01 wt% or less, Si: 0.05 to 1.0 wt%, Mn: 0.05 to 0.5 wt%, P: 0.3 wt% or less, and sol.Al: 0.0010 wt% % Or less,
The remainder is a method of smelting molten steel for non-oriented electrical steel sheets consisting of Fe and unavoidable impurities.Before adjusting the Si composition in out-of-pile refining, vacuum degassing is performed to dissolve the dissolved oxygen concentration in the molten steel. To 700 wt
ppm, and then further deoxidation with Al to reduce the dissolved oxygen concentration in the molten steel to 50 wtppm or more and 200 wtppm or less. Then, the above Si component adjustment was restricted to an Al content of 0.3 wt% or less. A method for smelting molten steel for non-oriented electrical steel sheets having low iron loss, which is performed using an Fe-Si alloy.
JP09734194A 1994-05-11 1994-05-11 Smelting method of molten steel for non-oriented electrical steel sheets with low iron loss Expired - Fee Related JP3362077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09734194A JP3362077B2 (en) 1994-05-11 1994-05-11 Smelting method of molten steel for non-oriented electrical steel sheets with low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09734194A JP3362077B2 (en) 1994-05-11 1994-05-11 Smelting method of molten steel for non-oriented electrical steel sheets with low iron loss

Publications (2)

Publication Number Publication Date
JPH07305109A JPH07305109A (en) 1995-11-21
JP3362077B2 true JP3362077B2 (en) 2003-01-07

Family

ID=14189784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09734194A Expired - Fee Related JP3362077B2 (en) 1994-05-11 1994-05-11 Smelting method of molten steel for non-oriented electrical steel sheets with low iron loss

Country Status (1)

Country Link
JP (1) JP3362077B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100925594B1 (en) * 2002-12-27 2009-11-06 주식회사 포스코 A method for refining the molten steel of non-oriented electrical steel sheet having low iron loss
CN103361544B (en) 2012-03-26 2015-09-23 宝山钢铁股份有限公司 Non orientating silicon steel and manufacture method thereof

Also Published As

Publication number Publication date
JPH07305109A (en) 1995-11-21

Similar Documents

Publication Publication Date Title
EP1627086B1 (en) Improved method for production of non-oriented electrical steel strip
EP0084569B1 (en) Process for manufacturing isotropic electromagnetic steel plate having excellent magnetic characteristics
JP6194956B2 (en) Ferritic stainless steel with excellent oxidation resistance, good high-temperature strength, and good workability
JP2971080B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties
JP3350285B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent surface properties and magnetic properties
JP3852419B2 (en) Non-oriented electrical steel sheet
JP3687644B2 (en) Method for producing non-oriented electrical steel sheet
JP4259177B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP3362077B2 (en) Smelting method of molten steel for non-oriented electrical steel sheets with low iron loss
JP3037878B2 (en) Non-oriented electrical steel sheet excellent in iron loss after strain relief annealing and method for producing the same
JP3252692B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and method for producing the same
JP3456295B2 (en) Melting method of steel for non-oriented electrical steel sheet
JP2005002401A (en) Method for producing non-oriented silicon steel sheet
JP3280959B1 (en) Low iron loss non-oriented electrical steel sheet with good workability and method for producing the same
JP3554283B2 (en) Fe-Ni alloy excellent in surface properties and method for producing the same
JP4218136B2 (en) Non-oriented electrical steel sheet with high magnetic flux density and low iron loss and method for producing the same
JP2004204252A (en) Ti-CONTAINING HIGH-WORKABILITY FERRITIC CHROMIUM STEEL SHEET SUPERIOR IN RIDGING RESISTANCE, AND MANUFACTURING METHOD THEREFOR
JP3247154B2 (en) Melting method of non-oriented electrical steel sheet with excellent magnetic properties
JP3881626B2 (en) Refining method of Fe-Ni alloy
JP3422773B2 (en) Refining method of Fe-Ni alloy
JP4259011B2 (en) Non-oriented electrical steel sheet
JP3422772B2 (en) Fe-Ni alloy cold rolled sheet
JP2003183734A (en) Method for manufacturing non-oriented electromagnetic steel sheet superior in cold-rolling property
JP2003064456A (en) Nonoriented silicon steel sheet for semiprocess, and production method therefor
JPH10212555A (en) Nonoriented silicon steel sheet excellent in magnetic property and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101018

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101018

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111018

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111018

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121018

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121018

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131018

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees