JP2001348652A - Nonoriented silicon steel sheet and its production method - Google Patents

Nonoriented silicon steel sheet and its production method

Info

Publication number
JP2001348652A
JP2001348652A JP2000170087A JP2000170087A JP2001348652A JP 2001348652 A JP2001348652 A JP 2001348652A JP 2000170087 A JP2000170087 A JP 2000170087A JP 2000170087 A JP2000170087 A JP 2000170087A JP 2001348652 A JP2001348652 A JP 2001348652A
Authority
JP
Japan
Prior art keywords
less
inclusions
steel sheet
weight
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000170087A
Other languages
Japanese (ja)
Inventor
Masayuki Yamato
正幸 大和
Kaoru Sato
馨 佐藤
Atsushi Chino
淳 千野
Yoshihiko Ono
義彦 小野
Akira Hiura
昭 日裏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2000170087A priority Critical patent/JP2001348652A/en
Publication of JP2001348652A publication Critical patent/JP2001348652A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To produce an inexensive silicon steel sheet having a characteristic of being small in core loss, and to provide its production method. SOLUTION: This nonoriented silicon steel sheet has a composition containing, by weight, <=0.01% C, 0.05 to 3.5% Si, <=1% Mn, <=1% Sol.Al, <=0.02% Cu, <=0.02% S, <=0.3% P, 0.01 to 0.2% Zr and 0.0005 to 0.025% Ca, and the balance substantially Fe, in which Ca inclusions dispersed into the steel contain at least either O or S, Zr inclusions contain at least N among N and C, and the total weight of each inclusion of CaO, CaS and Zr (N, C) is >=50% to the weight of all inclusions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、無方向性電磁鋼
板及びその製造方法に関するものであり、さらに詳しく
は、鋼板中における窒化析出物、硫化析出物、酸化析出
物の析出形態及び大きさを制御することにより、鉄損特
性に優れた性質を有する無方向性電磁鋼板及びその製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet and a method for producing the same, and more particularly, to a method for determining the form and size of nitride precipitates, sulfide precipitates and oxide precipitates in a steel sheet. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet having excellent iron loss characteristics by controlling, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】無方向性電磁鋼板は、モーター、変圧器
等の電気機器の鉄心材料として用いられている。近年、
より省エネルギー性が要望されて来るに従い、鉄心材料
についてもより一層の鉄損低減が望まれるようになって
来ている。一般に鉄損は、渦電流損とヒステリシス損の
和と考えられるので、無方向性電磁鋼板の低鉄損化の
為、渦電流損とヒステリシス損をそれぞれ低減すること
が試みられている。渦電流損の低減法としては、Si、Al
等の合金元素を鋼中に加えて電気抵抗を増加させる方法
が一般的である。また、ヒステリシス損の低減法として
は結晶粒径の適正化や鋼中の析出物、介在物の制御が一
般に行われている。
2. Description of the Related Art Non-oriented electrical steel sheets are used as iron core materials for electric equipment such as motors and transformers. recent years,
With the demand for more energy-saving properties, it has been desired that iron core materials be further reduced in iron loss. Generally, since iron loss is considered to be the sum of eddy current loss and hysteresis loss, reduction of eddy current loss and hysteresis loss has been attempted to reduce iron loss of non-oriented electrical steel sheets. Methods for reducing eddy current loss include Si and Al.
Generally, a method of adding an alloying element such as to steel to increase electric resistance is used. Further, as a method of reducing the hysteresis loss, optimization of the crystal grain size and control of precipitates and inclusions in steel are generally performed.

【0003】[0003]

【発明が解決しようとする課題】しかるに、SiやAl等の
合金元素を増加させていくと、その含有量の増加に伴い
磁束密度が低下することに加え、圧延加工時の変形抵抗
が増加することに起因して製造性が低下するために、こ
れらの成分元素をほぼ上限まで加えている現状において
は、これ以上の渦電流損の低減は困難となってきてい
る。
However, when alloying elements such as Si and Al are increased, the magnetic flux density decreases with an increase in the content, and the deformation resistance during rolling increases. Due to this, the manufacturability is reduced, so that it is difficult to further reduce the eddy current loss under the current situation where these component elements are added to almost the upper limit.

【0004】また、ヒステリシス損を下げる手段として
は、鋼板の結晶粒径をおよそ150〜250μmにすることを
目標に製造を行うのが一般的であるが、微細な析出物や
介在物が鋼板中に存在すると結晶粒の成長が阻害され、
均一に目標粒径にすることが困難となる。そこで、微細
な析出物や介在物を少なくするために不純物元素を低減
すること、また析出物・介在物自体の形態、大きさ等を
制御して析出物・介在物を無害化することが試みられて
いる。
In order to reduce the hysteresis loss, it is common practice to manufacture the steel sheet so that the crystal grain size is about 150 to 250 μm. When it is present, the growth of crystal grains is inhibited,
It is difficult to make the target particle size uniform. Therefore, an attempt is made to reduce impurity elements in order to reduce fine precipitates and inclusions, and to make the precipitates and inclusions harmless by controlling the form and size of the precipitates and inclusions themselves. Have been.

【0005】不純物元素の低減による低鉄損化は、例え
ば特開昭59−74258号公報に開示され、その効果を如実
に示している。しかしながら、その不純物管理値は製銑
及び製鋼の最高水準での操業を要求するものであり、現
時点で工業的に見合うものとは言えない。
[0005] Low iron loss by reducing impurity elements is disclosed in, for example, JP-A-59-74258, and its effect is clearly shown. However, the impurity control values require the operation of iron and steel at the highest level, and cannot be said to be industrially suitable at present.

【0006】析出物の形態制御による低鉄損化は、たと
えば特開平11−12699号公報に開示され、酸化物、硫化
物に対する制御で低鉄損化を図っている。しかしなが
ら、微細な窒化物が析出することがあるので、その改善
効果にはばらつきがある。本発明はこのような事情に鑑
みてなされたもので、鉄損が小さいという特質を有する
安価な電磁鋼板とその製造方法を提供することを課題と
する。
The reduction of iron loss by controlling the morphology of precipitates is disclosed, for example, in Japanese Patent Application Laid-Open No. H11-12699, in which reduction of iron loss is achieved by controlling oxides and sulfides. However, since fine nitrides may be precipitated, the improvement effect varies. The present invention has been made in view of such circumstances, and it is an object of the present invention to provide an inexpensive electromagnetic steel sheet having a characteristic of small iron loss and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するため
の第1の手段は、重量%でC:0.01%以下、Si:0.05%
〜3.5%、Mn:1%以下、Sol.Al:1%以下、Cu:0.02
%以下、S:0.02%以下、P:0.3%以下、Zr:0.01〜
0.2%、Ca:0.0005〜0.025%を含有し、残部が実質的に
Feからなる無方向性電磁鋼板であって、鋼中に分散する
Ca介在物はO、Sの少なくとも一方を含み、Zr介在物は
N、Cの内少なくともNを含むものであって、CaO、Ca
S、Zr(N,C)各介在物の重量の和が、全介在物重量に対
して50%以上であることを特徴とする無方向性電磁鋼板
(請求項1)である。
The first means for solving the above-mentioned problems is as follows: C: 0.01% or less and Si: 0.05% by weight.
3.5%, Mn: 1% or less, Sol. Al: 1% or less, Cu: 0.02
%, S: 0.02% or less, P: 0.3% or less, Zr: 0.01 ~
0.2%, Ca: 0.0005-0.025%, with the balance being substantially
Non-oriented electrical steel sheet made of Fe, dispersed in steel
The Ca inclusions contain at least one of O and S, and the Zr inclusions contain at least N of N and C, and CaO, Ca
The non-oriented electrical steel sheet according to claim 1, wherein the sum of the weights of the S and Zr (N, C) inclusions is 50% or more of the total inclusion weight (claim 1).

【0008】前記課題を解決するための第2の手段は、
重量%でC:0.01%以下、Si:0.05〜3.5wt%、Mn:1
%以下、Sol.Al:1%以下、Cu:0.02%以下、S:0.02
%以下、P:0.3%以下、Zr:0.01〜0.2%、Ca:0.0005
〜0.025wt%を含有し、残部が実質的にFeからなる無方
向性電磁鋼板の製造方法であって、転炉、真空脱ガス装
置にて成分調整し鋼中酸素量を0.01重量%以下とした溶
鋼に対し、鋳造完了までの間にCa源、Zr源の順番に添加
することを特徴とする無方向性電磁鋼板の製造方法(請
求項2)である。
[0008] A second means for solving the above problems is as follows.
C: 0.01% or less by weight%, Si: 0.05 to 3.5 wt%, Mn: 1
% Or less, Sol. Al: 1% or less, Cu: 0.02% or less, S: 0.02%
%, P: 0.3% or less, Zr: 0.01 to 0.2%, Ca: 0.0005
This is a method for producing a non-oriented electrical steel sheet containing about 0.025% by weight, and the balance substantially consisting of Fe, wherein the oxygen content in the steel is adjusted to 0.01% by weight or less by adjusting the components in a converter and a vacuum degassing apparatus. A method for producing a non-oriented electrical steel sheet, characterized by adding a Ca source and a Zr source in this order to the molten steel until casting is completed (Claim 2).

【0009】なお、本明細書において「残部が実質的にF
eからなる」とは、本発明の作用効果をなくさない限り、
他の微量元素を含むものが本発明の範囲に含まれること
を意味する。また、特に断らない限り、鋼の成分を示す
%は全て重量%である。
[0009] In this specification, "the remainder is substantially F
"is composed of e", unless the effects of the present invention are lost.
Those containing other trace elements are included in the scope of the present invention. Unless otherwise specified, all percentages indicating the components of steel are% by weight.

【0010】(発明に至る過程と介在物の限定理由)本
発明者らは、極端な高純度化に頼ることなく、比較的安
価な特殊元素利用による不純物元素の実質的無害化を検
討した結果、製鋼性の介在物の適切な利用により、冷間
圧延後の焼鈍過程において再結晶・粒成長に著しく影響
する有害な微細析出物をほぼ完全に無害化できることを
見い出した。
(Process leading to the invention and reason for limiting inclusions) The present inventors have studied the detoxification of impurity elements by using relatively inexpensive special elements without resorting to extreme purification. In addition, it has been found that harmful fine precipitates that significantly affect recrystallization and grain growth during the annealing process after cold rolling can be almost completely rendered harmless by appropriate use of steelmaking inclusions.

【0011】電磁鋼板中に1μm未満のAlN等の微細窒
化析出物、 MnS等の硫化物、Al2O3等の酸化物の介在物
が数多く存在している場合は、粒成長性が悪く鉄損特性
も悪いことが一般に知られている。本発明者らは、その
微細析出物、微細介在物の個数を減らすことを目標に鋭
意研究を重ねた結果、鋼中にZrを添加した場合に、鋼板
中の微細窒化析出物が減ることを見出した。
If the magnetic steel sheet contains a large number of fine nitride precipitates such as AlN of less than 1 μm, sulfides such as MnS, and oxides such as Al 2 O 3 , the grain growth is poor and iron It is generally known that the loss characteristics are also poor. The present inventors have conducted intensive studies with the aim of reducing the number of fine precipitates and fine inclusions, and found that when Zr is added to steel, fine nitride precipitates in the steel sheet are reduced. I found it.

【0012】ただし、その効果は鋼中のO量、S量に影
響を受け易く、脱酸と脱硫が不十分な場合は、鋼板の鉄
損値はZrを添加しない鋼板より劣る。その原因は、窒化
物形成能に優れたZrが、O、Sとも結合し易い為に、Zr
2、ZrSが生成しZrによる窒素の固定が不十分とな
り、AlN等の微細窒化析出物が生成される為であると推
定された。
However, the effect is easily affected by the amounts of O and S in the steel, and when deoxidation and desulfurization are insufficient, the iron loss value of the steel sheet is inferior to that of the steel sheet to which Zr is not added. The reason is that Zr, which has excellent nitride forming ability, is easily bonded to O and S,
It was presumed that this was because O 2 and ZrS were generated and the fixation of nitrogen by Zr was insufficient, and fine nitride precipitates such as AlN were generated.

【0013】そこで、Zrの酸化、硫化を防ぐことを目標
にスラブ鋳造の段階で、Zrより強力な脱酸剤、脱硫剤で
あるCaをZrより先に添加した鋼を製造した。結果は、添
加量に応じて鉄損値が極めて低い鋼となる場合があり、
その鋼板では、Ca介在物がO、Sを主体とし、Zr介在物
がNを主体とし、介在物の大きさが平均粒径で1μm以上
であることが判明した。
In view of the above, in order to prevent oxidation and sulfidation of Zr, a steel in which Ca, which is a stronger deoxidizing agent and desulfurizing agent than Zr, was added prior to Zr at the slab casting stage was manufactured. The result may be steel with very low iron loss value depending on the amount added,
In the steel sheet, it was found that Ca inclusions were mainly O and S, Zr inclusions were mainly N, and the size of the inclusions was 1 μm or more in average particle size.

【0014】すなわち、鉄損特性が良好な鋼板には平均
粒径で1μm以上の大きさのCaO、CaS介在物と、 Zr
(N、C)介在物が存在している。CaとO、S又はZrとN、
Cの溶解度は高温でも小さいのでO、S、N、CはCa
O、CaS、 Zr (N,C)として固定され、歪み取り焼鈍時
にも、 CaO、CaS、 Zr (N,C)のN、S等に起因するAl
N、MnS等の微細析出物は形成はほとんどなく、介在物
自身の大きさも減少することは少ない。
That is, a steel sheet having good iron loss characteristics includes CaO and CaS inclusions having an average grain size of 1 μm or more, and Zr
(N, C) inclusions are present. Ca and O, S or Zr and N,
O, S, N, C are Ca
O, CaS, and Zr (N, C) are fixed, and even during strain relief annealing, Al, which is caused by N, S, etc. of CaO, CaS, Zr (N, C)
Fine precipitates such as N and MnS are hardly formed, and the size of the inclusions rarely decreases.

【0015】また、 CaO、CaS介在物、 Zr (N,C)介在
物は、再固溶や大気からの吸収窒素等によるAlN等の微
細析出物の析出サイトになり易い為に、当該介在物と析
出物の複合化が起こり、微細な析出物が単独で析出する
ことも少ない。図1に、CaO、CaS、Zr(N,C)介在物重量
の和の全介在物重量に対する割合(%)と鉄損の関係を調
査した結果を示す。 化学成分は、C:0.002%、Si:0.2
%、Mn:0.2%、Sol.Al:0.1〜0.2%、S:0.004%、
P:0.07%以下、Zr:tr.〜0.15%、Ca: tr.〜0.0015
%以下である。
In addition, CaO, CaS inclusions, and Zr (N, C) inclusions are likely to become precipitation sites for fine precipitates such as AlN due to re-solid solution or nitrogen absorbed from the atmosphere. And precipitates are compounded, and fine precipitates are rarely precipitated alone. FIG. 1 shows the results of investigation of the relationship between the ratio (%) of the sum of the weights of CaO, CaS, and Zr (N, C) inclusions to the total inclusion weight and iron loss. Chemical composition: C: 0.002%, Si: 0.2
%, Mn: 0.2%, Sol. Al: 0.1-0.2%, S: 0.004%,
P: 0.07% or less, Zr: tr. To 0.15%, Ca: tr. To 0.0015
% Or less.

【0016】なお、板厚は0.5mmであり、歪み取り焼鈍
後の磁気特性を示す。鉄損特性はエプスタイン試験法で
測定し、介在物の粒径測定は鋼板断面を研磨しエッチン
グした後に、SEM又は光学顕微鏡で観察する方法で調
査した。なお、介在物が複合化している場合は、複合介
在物の粒径を介在物の粒径とした。また、介在物の重量
%による分類は、通常の化学分析に加え、抽出残さ分析
を組み合わせて行った。
The sheet thickness is 0.5 mm, which shows the magnetic properties after strain relief annealing. The iron loss characteristics were measured by an Epstein test method, and the particle size of inclusions was investigated by a method of polishing and etching a cross section of a steel sheet and then observing with a SEM or an optical microscope. In the case where the inclusions are complexed, the particle size of the composite inclusions was taken as the particle size of the inclusions. Also the weight of inclusions
Classification by% was performed by combining extraction residue analysis in addition to ordinary chemical analysis.

【0017】図1によると、 CaO、CaS、Zr(N,C)各介在
物重量の和の全介在物重量に対する割合(%)が、50%に
近くなると急激に低下することがわかる。 CaO、Ca
S、Zr(N,C)各介在物は1μmより大きくなり易い為
に、それ自身が粒成長性を悪くすることはなく、また他
の微細析出物の析出サイトになり微細析出を抑制するの
で、全介在物重量に対し割合が50%以上になると粒成長
性を向上させ鉄損値を低下させると考えられる。このこ
とにより、請求項に係る発明においては、CaO、CaS、Z
r(N,C)各介在物の重量の和を、全介在物重量に対して50
%以上に限定する。
FIG. 1 shows that the ratio (%) of the sum of the inclusion weights of CaO, CaS, and Zr (N, C) to the total weight of the inclusions rapidly decreases when approaching 50%. CaO, Ca
Since each of the S and Zr (N, C) inclusions tends to be larger than 1 μm, the inclusions do not themselves deteriorate the grain growth, and also serve as precipitation sites for other fine precipitates and suppress fine precipitates. On the other hand, when the proportion of the total inclusion weight is 50% or more, it is considered that the grain growth is improved and the iron loss value is reduced. Thereby, in the claimed invention, CaO, CaS, Z
r (N, C) Add the weight of each inclusion to 50
% Or more.

【0018】以上に述べたように、ZrとCa介在物の主要
な構成不純物元素を特定することで、鋼板の結晶粒の成
長性が改善されると共に、磁壁のピンニングサイトにな
りやすい微細析出物を減らすことができ、鉄損特性を中
心とする磁気特性が向上する。なお、図1において本発
明の範囲とされる測定点の横軸の値は、左から順に、50
%、56%、65%、80%である。
As described above, by specifying the main constituent impurity elements of Zr and Ca inclusions, the growth of the crystal grains of the steel sheet is improved, and the fine precipitates which are likely to become the pinning sites of the domain wall are formed. Can be reduced, and magnetic characteristics centering on iron loss characteristics can be improved. In FIG. 1, the values on the horizontal axis of the measurement points within the range of the present invention are 50
%, 56%, 65% and 80%.

【0019】次に、本発明の鋼成分の限定理由について
述べる。 (化学成分の限定理由) C:0.01%以下 Cは磁気特性の面からは有害な成分であり、極力低減す
ることが好ましいため、C量は0.01%以下とする。 Si:0.05%以上3.5%以下 Siは鋼の電気抵抗を増し鉄損を減少させる作用がある
が、0.05%以上添加しないと効果は発揮されない。ま
た、含有量が増えるに従い磁束密度が低下すると共に、
加工性が悪くなるので、その上限を3.5%以下とする。 Mn:1%以下 Mnは脱酸剤としてまたSによる熱間脆性を抑制されるた
めに加えられるが、含有量が増えるに従い磁束密度が低
下すると共に、加工性が悪くなるので 、その上限を1
%とする。
Next, the reasons for limiting the steel components of the present invention will be described. (Reason for limiting chemical components) C: 0.01% or less C is a harmful component from the viewpoint of magnetic properties, and it is preferable to reduce it as much as possible. Si: 0.05% or more and 3.5% or less Si has the effect of increasing the electrical resistance of steel and reducing iron loss, but the effect is not exhibited unless 0.05% or more is added. In addition, as the magnetic flux density decreases as the content increases,
Since workability deteriorates, the upper limit is set to 3.5% or less. Mn: 1% or less Mn is added as a deoxidizing agent and for suppressing hot brittleness due to S. However, as the content increases, the magnetic flux density decreases and the workability deteriorates.
%.

【0020】Sol.Al:1%以下 Alも脱酸剤として寄与する他に、Siと同様に鋼の固有抵
抗を高めて鉄損を減少させるが、逆に含有量が増えるに
従い磁束密度が低下し加工性も悪くなるので、その上限
を1%とする。 S:0.02%以下 不純物成分のなかでも特に低減を必要とする元素であ
る。0.02.%を超える含有量では、介在物制御による鉄損
の低減効果が減じる。従って、S量は0.02%以下とす
る。 P:0.3%以下 Pは鉄損の改善のために有効であるために含有させるこ
とができるが0.3%を超えると加工性に著しく影響する
ので、0.3%以下に限定する。 Cu:0.02%以下 Cuは硫化物として微細な析出物を作り易い成分であるの
で、その上限を0.02%とした。
Sol. Al: 1% or less Al also contributes as a deoxidizing agent and, like Si, increases the specific resistance of steel and reduces iron loss, but conversely, as the content increases, the magnetic flux density decreases. Therefore, the upper limit is set to 1%. S: 0.02% or less Among the impurity components, it is an element that needs to be particularly reduced. If the content exceeds 0.02.%, The effect of reducing iron loss by controlling inclusions decreases. Therefore, the S content is set to 0.02% or less. P: 0.3% or less P can be contained because it is effective for improving iron loss, but if it exceeds 0.3%, the workability is significantly affected, so it is limited to 0.3% or less. Cu: 0.02% or less Cu is a component that easily forms fine precipitates as sulfides, so the upper limit was made 0.02%.

【0021】Zr:0.001〜0.2% ZrはZr (N、C)で表現される介在物を形成し鋼中の窒
素、炭素を固定し微細な析出物が形成されるのを防ぐ効
果を持つ。しかし、多すぎる場合は、磁束密度の低下、
加工性の低下をもたらすので、最適な成分範囲を0.01〜
0.2%とする。 Ca:0.0005〜0.025% CaはCaO、CaSの安定な介在物を高温で形成し、脱酸力も
大きいZrを窒素と結合させるために添加する。しかし、
過剰な添加は機械的な特性の劣化につながるため、最適
範囲を0.0005〜0.025%とする。
Zr: 0.001 to 0.2% Zr forms an inclusion represented by Zr (N, C), has an effect of fixing nitrogen and carbon in steel and preventing formation of fine precipitates. However, if too much, the magnetic flux density decreases,
Since the processability is reduced, the optimal component range is from 0.01 to
0.2%. Ca: 0.0005 to 0.025% Ca is added to form stable inclusions of CaO and CaS at high temperature and bind Zr, which has a large deoxidizing power, to nitrogen. But,
Since excessive addition leads to deterioration of mechanical properties, the optimum range is 0.0005 to 0.025%.

【0022】(製造方法)請求項1に係る無方向性電磁
鋼板は、以下の方法で製造できる。転炉又は電気炉で溶
製された鋼を真空処理し脱ガスした後に、Si源、Al源、
Mn源を加え、酸素の低下を確認した後に、Ca源を添加す
る。その後、さらなる酸素の低下とSの低下を確認し、
Zrを添加し、引き続き鋳造を行う。以上により、介在物
はきわめて安定なものに制御される。これ以後は、通常
の電磁鋼板を製造する工程と同一でよい。特に、冷間圧
延に関しては、N、S、O、Cがすでに固定されている
ので、低温での微細析出物はほとんど生じないので、一
回冷圧法または二回冷圧法のどちらを用いてもよい。ま
た、最終焼鈍に関しても通常行われる還元雰囲気下で行
えば、良好な低鉄損特性を有する電磁鋼板を得ることが
可能である。
(Manufacturing method) The non-oriented electrical steel sheet according to claim 1 can be manufactured by the following method. After vacuum processing and degassing steel melted in a converter or electric furnace, Si source, Al source,
After adding a Mn source and confirming a decrease in oxygen, a Ca source is added. After that, further decrease in oxygen and decrease in S were confirmed,
Zr is added and casting is performed subsequently. Thus, the inclusions are controlled to be very stable. Subsequent steps may be the same as the steps for manufacturing a normal magnetic steel sheet. In particular, with regard to cold rolling, since N, S, O, and C are already fixed, and fine precipitates are hardly generated at low temperatures, it is possible to use either the single cold pressure method or the double cold pressure method. Good. Also, if the final annealing is performed in a reducing atmosphere which is usually performed, it is possible to obtain an electromagnetic steel sheet having good low iron loss characteristics.

【0023】[0023]

【実施例】(実施例と比較例)本発明の化学組成にある鋼
と本発明が規定する化学組成範囲から外れる鋼を、転炉
で吹練した後に脱ガス処理し、所定の成分源を添加し調
整後鋳造した。その際、各成分の添加は、前記(製造方
法)に示した手順で行った。ただし、比較例において
は、ZrとCaの少なくとも一方を添加しなかった。表1に
これらの鋼のレードル中での成分値を示す。
EXAMPLES (Examples and Comparative Examples) Steel having a chemical composition of the present invention and steel having a chemical composition outside the range specified by the present invention were subjected to degassing treatment after being blown in a converter, and a predetermined component source was obtained. After addition and adjustment, casting was performed. At that time, addition of each component was performed according to the procedure described in the above (manufacturing method). However, in the comparative example, at least one of Zr and Ca was not added. Table 1 shows the component values of these steels in the ladle.

【0024】[0024]

【表1】表1.本発明と本発明外を実施した鋼の化学分
析値表
[Table 1] Table of chemical analysis values of steels subjected to the present invention and those outside the present invention

【0025】鋳造後のスラブを、1200℃に加熱し、仕上
げ温度850〜900℃、巻き取り温度650〜700℃で板厚2.3m
mに熱間圧延し、酸洗した。引き続きこの熱延板を板厚
0.5mmまで冷間圧延し、75%H2-25%N2の雰囲気で900
℃×1分の仕上焼鈍を行った。この試料について、25cm
エプスタイン試験片を作成し、鉄損値(W15/50)および
磁束密度(B50)を測定した。
The slab after casting is heated to 1200 ° C., the finishing temperature is 850 to 900 ° C., the winding temperature is 650 to 700 ° C., and the thickness is 2.3 m.
m and hot-rolled and pickled. Continue to add this hot rolled sheet
Cold rolled to 0.5 mm, 900% in an atmosphere of 75% H 2 -25% N 2
Finish annealing was performed at 1 ° C. × 1 minute. For this sample, 25cm
An Epstein test piece was prepared, and the iron loss value (W 15/50 ) and the magnetic flux density (B 50 ) were measured.

【0026】さらに、鋼材断面を光学顕微鏡、SEMで
観察することで、 CaO、CaS、Zr(N,C)介在物の大き
さ、個数を求めた。また、抽出分析を行うことで、Ca
O、CaS、Zr(N,C)介在物の重量の和の全介在物重量に
対する割合(%)を求めた。以上、分析結果を表2にまと
める。
Further, the size and number of CaO, CaS, and Zr (N, C) inclusions were determined by observing the cross section of the steel material with an optical microscope and an SEM. In addition, by performing extraction analysis, Ca
The ratio (%) of the sum of the weights of O, CaS, and Zr (N, C) inclusions to the total inclusion weight was determined. Table 2 summarizes the analysis results.

【0027】[0027]

【表2】表2.本発明と比較条件による鋼材の鉄損値と
CaO、CaS、Zr(N,C)各介在物重量の和の全介在物重量
に対する割合(%) 表2から明らかな様に、Ca添加の後にZr添加を行った実
施例においては、CaO、CaS、Zr(N,C)各介在物重量が5
0%以上となり、比較例に比して鉄損(W15/50)で低い値
を示している。
[Table 2] Table 2. Iron loss value of steel material according to the present invention and comparative conditions
Ratio of the sum of the weights of CaO, CaS, and Zr (N, C) inclusions to the total inclusion weight (%) As is clear from Table 2, in the example in which Zr was added after Ca was added, the weight of each inclusion of CaO, CaS, and Zr (N, C) was 5%.
0% or more, indicating a lower value in iron loss (W 15/50 ) than the comparative example.

【0028】[0028]

【発明の効果】以上説明したように、本発明の無方向性
電磁鋼板は、特殊な製造工程を用いることなく、安価な
製造方法により低鉄損化を達成できる。本発明の無方向
性電磁鋼板は、モ−タや変圧器の鉄芯等、鉄損が低いこ
とが要求される用途に使用するのに好適である。
As described above, the non-oriented electrical steel sheet of the present invention can achieve low iron loss by an inexpensive manufacturing method without using a special manufacturing process. The non-oriented electrical steel sheet of the present invention is suitable for use in applications requiring low iron loss, such as motors and iron cores of transformers.

【図面の簡単な説明】[Brief description of the drawings]

【図1】CaO、CaS、Zr(N,C)各介在物の重量の和の、
全介在物重量対する割合(%)と鉄損値W15/50(W/Kg)と
の関係を示す図である。
FIG. 1 shows the sum of the weights of CaO, CaS, and Zr (N, C) inclusions,
It is a figure which shows the relationship between the ratio (%) with respect to the total inclusion weight, and iron loss value W15 / 50 (W / Kg).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 千野 淳 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 小野 義彦 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 日裏 昭 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4K013 AA04 BA08 BA16 EA18 EA25 5E041 AA02 AA11 AA19 CA02 CA04 HB09  ──────────────────────────────────────────────────続 き Continued on the front page (72) Atsushi Chino, Inventor 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Yoshihiko Ono 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Date Inside the Honko Co., Ltd. (72) Inventor Akira Hirata 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Japan Honkan Co., Ltd. F-term (reference) 4K013 AA04 BA08 BA16 EA18 EA25 5E041 AA02 AA11 AA19 CA02 CA04 HB09

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%でC:0.01%以下、Si:0.05%〜
3.5%、Mn:1%以下、Sol.Al:1%以下、Cu:0.02%
以下、S:0.02%以下、P:0.3%以下、Zr:0.01〜0.2
%、Ca:0.0005〜0.025%を含有し、残部が実質的にFe
からなる無方向性電磁鋼板であって、鋼中に分散するCa
介在物はO、Sの少なくとも一方を含み、Zr介在物は
N、Cの内少なくともNを含むものであって、CaO、Ca
S、Zr(N,C)各介在物の重量の和が、全介在物重量に対
して50%以上であることを特徴とする無方向性電磁鋼
板。
1. C: 0.01% or less by weight%, Si: 0.05% or less
3.5%, Mn: 1% or less, Sol.Al: 1% or less, Cu: 0.02%
Hereinafter, S: 0.02% or less, P: 0.3% or less, Zr: 0.01 to 0.2
%, Ca: 0.0005 to 0.025%, the balance being substantially Fe
Non-oriented electrical steel sheet consisting of
Inclusions include at least one of O and S, and Zr inclusions include at least N of N and C, and include CaO, Ca
Non-oriented electrical steel sheet characterized in that the sum of the weights of S and Zr (N, C) inclusions is 50% or more based on the weight of all inclusions.
【請求項2】 重量%でC:0.01%以下、Si:0.05 〜
3.5wt%、Mn:1%以下、Sol.Al:1%以下、Cu:0.02
%以下、S:0.02%以下、P:0.3%以下、Zr:0.01〜
0.2%、Ca:0.0005〜0.025%を含有し、残部が実質的に
Feからなる無方向性電磁鋼板の製造方法であって、転
炉、真空脱ガス装置にて成分調整し鋼中酸素量を0.01重
量%以下とした溶鋼に対し、鋳造完了までの間にCa源、
Zr源の順番に添加することを特徴とする無方向性電磁鋼
板の製造方法。
2. C: 0.01% or less by weight%, Si: 0.05 to
3.5wt%, Mn: 1% or less, Sol.Al: 1% or less, Cu: 0.02
%, S: 0.02% or less, P: 0.3% or less, Zr: 0.01 ~
0.2%, Ca: 0.0005-0.025%, with the balance being substantially
This is a method for producing non-oriented electrical steel sheets made of Fe, in which a molten steel with the oxygen content in the steel adjusted to 0.01% by weight or less by adjusting the components in a converter and a vacuum degassing apparatus is used. ,
A method for producing a non-oriented electrical steel sheet, characterized in that Zr sources are added in order.
JP2000170087A 2000-06-07 2000-06-07 Nonoriented silicon steel sheet and its production method Pending JP2001348652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000170087A JP2001348652A (en) 2000-06-07 2000-06-07 Nonoriented silicon steel sheet and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000170087A JP2001348652A (en) 2000-06-07 2000-06-07 Nonoriented silicon steel sheet and its production method

Publications (1)

Publication Number Publication Date
JP2001348652A true JP2001348652A (en) 2001-12-18

Family

ID=18672852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000170087A Pending JP2001348652A (en) 2000-06-07 2000-06-07 Nonoriented silicon steel sheet and its production method

Country Status (1)

Country Link
JP (1) JP2001348652A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027445A1 (en) * 2014-08-21 2016-02-25 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same
CN105734393A (en) * 2016-04-15 2016-07-06 唐山钢铁集团有限责任公司 Production method for non-oriented electrical steel
US10242782B2 (en) 2012-08-08 2019-03-26 Jfe Steel Corporation High-strength electrical steel sheet and method of producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10242782B2 (en) 2012-08-08 2019-03-26 Jfe Steel Corporation High-strength electrical steel sheet and method of producing the same
WO2016027445A1 (en) * 2014-08-21 2016-02-25 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same
JP5920548B1 (en) * 2014-08-21 2016-05-18 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
CN106574345A (en) * 2014-08-21 2017-04-19 杰富意钢铁株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
CN105734393A (en) * 2016-04-15 2016-07-06 唐山钢铁集团有限责任公司 Production method for non-oriented electrical steel

Similar Documents

Publication Publication Date Title
KR102095142B1 (en) Non-oriented electrical steel sheet and production method thereof
JP6350398B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR101949626B1 (en) Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
JP2001348652A (en) Nonoriented silicon steel sheet and its production method
JP4267437B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing and its manufacturing method
JPH0949023A (en) Production of grain oriented silicon steel sheet excellent in iron loss
JP2000328207A (en) Silicon steel sheet excellent in nitriding and internal oxidation resistances
JP4062833B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties
JP2000017330A (en) Production of nonoriented silicon steel sheet low in iron loss
WO2021045212A1 (en) Grain-oriented electromagnetic steel plate and production method therefor
JP5904151B2 (en) Method for producing grain-oriented electrical steel sheet
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP6863310B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH10212556A (en) Nonoriented silicon steel sheet excellent in magnetic property after stress relieving annealing and its production
KR102528345B1 (en) Manufacturing method of non-oriented electrical steel sheet and slab cast steel as its material
JPH03122236A (en) Ni-fe serite high permeability magnetic alloy
JP2002226953A (en) Nonoriented silicon steel sheet for high frequency having excellent low magnetic field characteristic
JPH10212555A (en) Nonoriented silicon steel sheet excellent in magnetic property and its production
JP2001011589A (en) Nonoriented electric steel sheet having high magnetic flux density and low core loss and its production
JP3247154B2 (en) Melting method of non-oriented electrical steel sheet with excellent magnetic properties
JP3975603B2 (en) Non-oriented electrical steel sheet
JPH1112701A (en) Nonoriented silicon steel sheet with low iron loss
JPH1112700A (en) Non-oriented electrical sheet having low iron loss
JPH11229098A (en) Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing
JPH11302741A (en) Production of nonoriented silicon steel sheet low in core loss and nonoriented silicon steel sheet low in core loss