JPH03122236A - Ni-fe serite high permeability magnetic alloy - Google Patents

Ni-fe serite high permeability magnetic alloy

Info

Publication number
JPH03122236A
JPH03122236A JP1260217A JP26021789A JPH03122236A JP H03122236 A JPH03122236 A JP H03122236A JP 1260217 A JP1260217 A JP 1260217A JP 26021789 A JP26021789 A JP 26021789A JP H03122236 A JPH03122236 A JP H03122236A
Authority
JP
Japan
Prior art keywords
magnetic
permeability
alloy
present
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1260217A
Other languages
Japanese (ja)
Other versions
JPH0699766B2 (en
Inventor
Tadashi Inoue
正 井上
Masayuki Kinoshita
木下 正行
Tomoyoshi Okita
大北 智良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1260217A priority Critical patent/JPH0699766B2/en
Publication of JPH03122236A publication Critical patent/JPH03122236A/en
Publication of JPH0699766B2 publication Critical patent/JPH0699766B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To improve the DC-AC magnetic characteristics in the magnetic alloy and to improve its shielding capacity by specifying the amounts of Si, Ni, Mo, Mn, Fe and B to be added under the optimum regulation of inevitable impurities and regulating the componental balance of each amt. into a specified range. CONSTITUTION:The magnetic alloy contains, by weight, 77.5 to 79.5% Ni, 3.8 to 4.6% Mo, 1.8 to 2.5% Cu, 0.1 to 1.10% Mn, 0.010 to 0.080% P, <0.20% or 0.2 to 1.0% Si, <=0.0020% S, <=0.0030% O, <=0.0010% N and <=0.020% C, furthermore contains B in the range of the inequality I and the balance Fe and contains Ni, Mo, Cu, Mn and Fe in the range satisfying the inequality II. In the inequalities, the ones in [ ] are expressed by wt.%. B is essential for improving the magnetic permeability, and when [B] and [N] lie in the above range, high magnetic permeability can be obtd. P and Si improve the AC magnetic characteristics without deteriorating the DC magnetic characteristics; in either case, the DC magnetic characteristics are deteriorated at the time of more than the upper limit, and the amt. of Si is preferably regulated to <0.20% for the application requiring relatively high magnetic flux density.

Description

【発明の詳細な説明】 「発明の目的」 (産業上の利用分野) 本発明は、Ni−Fe系高透磁率磁性合金に係り、その
磁気特性を改良し、特に優れた直流磁気特性および卓越
した交流磁気特性を合わせ持ち、又透磁率の歪による劣
化を小となし、更に熱間加工性の良好な磁性合金に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Industrial Field of Application) The present invention relates to a Ni-Fe based high permeability magnetic alloy, and the present invention relates to a Ni-Fe based high permeability magnetic alloy, which improves the magnetic properties thereof, and achieves especially excellent direct current magnetic properties and outstanding The present invention relates to a magnetic alloy that has excellent AC magnetic properties, minimizes deterioration of magnetic permeability due to distortion, and has good hot workability.

(従来の技術) JIS  PC相当のNt−Fe系磁性合金は、現在磁
気ヘッドケースおよび各種コア、変成磁心、各種磁気シ
ールド材などのようにその利用範囲が極めて広い磁性材
料である。即ちこのようなPCパーマロイは高透磁率で
、低保磁力であることが特徴であり、今日実用化されて
いるものは、80%Ni−5%Mo−Fe(スーパーマ
ロイ)や、77%Ni5%Cu−4%Mo−Fe (M
o、 Cuパーマロイ)などであり、それら合金で通常
得られる透磁率のレベルは、直流特性でみると、初透磁
率(以下μiという)が150,000 、最大透磁率
(以下μmという)が300.000程度である。
(Prior Art) Nt-Fe based magnetic alloys equivalent to JIS PC are magnetic materials that are currently used in an extremely wide range of applications such as magnetic head cases, various cores, metamorphic cores, and various magnetic shielding materials. In other words, such PC permalloy is characterized by high magnetic permeability and low coercive force, and those in practical use today are 80%Ni-5%Mo-Fe (supermalloy) and 77%Ni5. %Cu-4%Mo-Fe (M
In terms of direct current characteristics, the level of magnetic permeability normally obtained with these alloys is 150,000 for the initial magnetic permeability (hereinafter referred to as μi) and 300 for the maximum magnetic permeability (hereinafter referred to as μm). It is about .000.

また交流特性でみると、たとえば、板厚0.2 mmで
のイングクタンス透磁率μLは10,000程度である
In terms of AC characteristics, for example, the inductance permeability μL at a plate thickness of 0.2 mm is about 10,000.

ところが昨今におけるエレクトロニクスの発達から各種
機器の小型高性能化が進み、上記したような磁性合金の
特性についてもより一層の向上が望まれている。即ちこ
のような要求に対して上記成分系の磁性合金における直
流磁気特性を不純物元素の低減およびCrの添加により
向上させた特開昭62−2.27053および特開昭6
2−227054が発表されている。
However, with the recent development of electronics, various devices have become smaller and more sophisticated, and there is a desire for further improvements in the properties of magnetic alloys as described above. In other words, in response to such demands, Japanese Patent Laid-Open No. 62-2.27053 and Japanese Patent Laid-Open No. 62-1989 have improved the DC magnetic properties of magnetic alloys with the above-mentioned composition system by reducing impurity elements and adding Cr.
2-227054 has been announced.

又特開昭63−149361では上記成分系の合金に製
造時の熱間加工性を改善するためBを添加した材料にお
いて、磁性焼鈍時に脱Bを行い直流磁性特性を改善する
ことが発表されている。
Furthermore, in JP-A No. 63-149361, it was announced that B was added to the alloy of the above composition system to improve hot workability during manufacturing, and the DC magnetic properties were improved by removing B during magnetic annealing. There is.

一方、上記成分系ではNiが約80wt%程度含まれて
いて高価なため、成分系を根本的に見直し、Niを低減
し、代りにNiより安価なCLIsMnを添加して高い
初透磁率を達成した特公昭62−13420、更にはこ
の特公昭62−13420の技術に加えて適量のAI添
加を行い酸化物系介在物を減少し直流磁気特性を高める
という特開昭63−247336および特開昭63−2
47339の技術も開発されている。特にこれら特開昭
63−247336および特開昭63−247339の
提案による合金のNiは最高で426,000という高
いレベルである。
On the other hand, the above component system contains about 80 wt% Ni and is expensive, so we fundamentally reviewed the component system, reduced the Ni content, and added CLIsMn, which is cheaper than Ni, to achieve high initial magnetic permeability. Japanese Patent Publication No. 62-13420, and furthermore, in addition to the technology of this Japanese Patent Publication No. 62-13420, Japanese Patent Application Laid-Open No. 63-247336 and Japanese Patent Application Publication No. 1989-1980 added an appropriate amount of AI to reduce oxide inclusions and improve DC magnetic properties. 63-2
47339 technology has also been developed. In particular, the Ni content of the alloys proposed in JP-A-63-247336 and JP-A-63-247339 is as high as 426,000.

更に上記したような磁気特性向上の要望に加え、最近で
は所要の特性をより低コストに製造することも求められ
ており、このような観点からは特開平1−100232
の技術も提案されている。即ちこの技術は通常のMoス
ス−−マロイにSiを1〜4wt%添加し、磁気焼鈍温
度を1030℃以下という比較的低い温度によっても、
充分に満足する50Hzでの透磁率および磁気シールド
性を得ることを特徴としている。
Furthermore, in addition to the above-mentioned demand for improved magnetic properties, there is also a recent demand for manufacturing with the required properties at a lower cost, and from this point of view, Japanese Patent Application Laid-Open No. 1-100232
techniques have also been proposed. In other words, this technology adds 1 to 4 wt% of Si to ordinary Mo-su-malloy and sets the magnetic annealing temperature to a relatively low temperature of 1030°C or less.
It is characterized by obtaining sufficiently satisfactory magnetic permeability and magnetic shielding properties at 50 Hz.

(発明が解決しようとする課題) 前記した特開昭62−227053および同22705
4で特徴としている不純物低減、Cr添加によっても最
終の水素雰囲気での熱処理(1100’CX3時間)後
の直流磁気特性は、例えばNiで高々100,000で
あり、それ以上の磁気特性が要求される用途に対しては
不適とならざるを得ない。
(Problem to be solved by the invention) The above-mentioned Japanese Patent Application Laid-open No. 62-227053 and No. 22705
Even with impurity reduction and Cr addition, which are featured in 4, the DC magnetic properties after the final heat treatment in a hydrogen atmosphere (1100'CX for 3 hours) are at most 100,000 for Ni, for example, and higher magnetic properties are required. It cannot help but be unsuitable for such uses.

また特開昭62−227054の提案では、通常のNi
 −Fe−Mo系またはNi−Fe−Mo−Cu系の成
分に新たにCrを添加するためコスト高となる。一方特
開昭62−227053の提案ではこのCrの添加によ
るコスト高に加え、Mnを通常レベルより高くする(1
.2〜10wt%とする)ため熱間加工性が極めて悪く
なるという製造上の問題も有している。
In addition, in the proposal of JP-A-62-227054, ordinary Ni
- Since Cr is newly added to the Fe-Mo or Ni-Fe-Mo-Cu components, the cost is high. On the other hand, in the proposal of JP-A-62-227053, in addition to the high cost due to the addition of Cr, the Mn content is increased above the normal level (1
.. 2 to 10 wt%), there is also a manufacturing problem in that hot workability becomes extremely poor.

なお上記した2つの提案では何れもBの添加が行われて
いるが、この場合のB添加は熱間加工性および打抜き性
を改善するためのもので、これらの提案で意図するBの
添加だけでは磁気特性の明かな向上は見られず、逆に劣
化する場合も認められる。
In both of the above two proposals, B is added, but in this case the B addition is to improve hot workability and punching properties, and the addition of B is the only addition intended in these proposals. No clear improvement in magnetic properties was observed, and on the contrary, some cases of deterioration were observed.

更に、特開昭62−149361では、磁気特性を脱B
処理により改善するものであるが、この処理の後で得ら
れる直流磁気特性はμiで高々75.000であり、こ
のレベルは通常のNi−Fe−Mo−Cu系合金で得ら
れるレベルである。従ってこの技術ではそれ以上の磁気
特性が要求される用途に対しては不適とならざるを得な
い。
Furthermore, in JP-A-62-149361, magnetic properties were removed from B.
Although it can be improved by treatment, the DC magnetic properties obtained after this treatment are at most 75.000 μi, which is the same level as that obtained with ordinary Ni-Fe-Mo-Cu alloys. Therefore, this technique is unsuitable for applications requiring higher magnetic properties.

なお前記した特開昭62−227053、および同22
7054、特開昭63−149361では、共通して交
流磁気特性の向上は、未だ達成されていない。
In addition, the above-mentioned Japanese Patent Application Laid-open No. 62-227053 and No. 227053
7054 and JP-A No. 63-149361, improvements in AC magnetic properties have not yet been achieved in common.

一方特公昭62−13420、特開昭63−24733
6および同247339の技術によっては高い直流磁気
特性を有するパーマロイを提供し得るが、Mn、Cuを
高めるため製造時の熱間加工性が本質的に低くなるとい
う製造上の問題点を有している。又この提案で得られる
合金の飽和磁束密度は、例えばB+o(’10エルステ
ッドでの磁束密度)で見ると、高々5oooガウスであ
り、スーパーマロイやHas Cuパーマロイにおける
B、。の7000−8000ガスウに比較すると低い。
On the other hand, JP 62-13420, JP 63-24733
6 and 247339 can provide permalloy with high direct current magnetic properties, but they have a manufacturing problem in that hot workability during manufacturing is inherently low due to increased Mn and Cu content. There is. Also, the saturation magnetic flux density of the alloy obtained by this proposal is, for example, B+o (magnetic flux density at '10 Oersteds) at most 500 Gauss, which is B in supermalloy and Has Cu permalloy. This is low compared to the 7,000-8,000 gas.

このことは、この合金がスーパーマロイやMO% C1
lパーマロイに比し低い外部磁場で材料内の磁束が飽和
してしまうことを意味し、シールド材料として用いる場
合において外部磁場が比較的高い場所での使用は不適と
ならざるを得ない。さらには、この合金の交流磁気性質
は、スーパーマロイやMO%Cuパーマロイに比し低い
という欠点を有している。
This means that this alloy is supermalloy or MO% C1
This means that the magnetic flux within the material is saturated with an external magnetic field that is lower than that of permalloy, and when used as a shielding material, it is unsuitable for use in places where the external magnetic field is relatively high. Furthermore, the AC magnetic properties of this alloy are lower than those of supermalloy and MO%Cu permalloy.

なお、上記した特開平1−100232の技術において
は50Hzのシールド性能は所要のレベルを有している
が直流でのシールド性能がそれなりに劣っている。
In the technique disclosed in Japanese Patent Application Laid-Open No. 1-100232, the shielding performance at 50 Hz is at the required level, but the shielding performance at direct current is rather poor.

「発明の構成」 (課題を解決するための手段) 本発明は上記したような従来の技術における問題点を解
決するように検討を重ねて創案されたものであって、熱
間加工性が良好で特に優れた交流磁気特性と共に優れた
直流磁気特性の両者を合わせて有すると共に透磁率の歪
による劣化を小となし、更には従来と同じレベルの要求
磁気特性を得るのに、磁気焼鈍温度を従来よりも100
℃程度低温化することをも可能ならしめたもので、磁気
特性に対するNi、 MO% C11% Feなどの主
要成分による影響を更に検討し、そこで得られた特性と
成分との関係をB添加系にまで拡大して実験、研究を重
ねた結果、本発明を完成した。即ち本発明は以下の如く
である。
"Structure of the Invention" (Means for Solving the Problems) The present invention was created after repeated studies to solve the problems in the conventional technology as described above, and has good hot workability. It has both particularly excellent AC magnetic properties and excellent DC magnetic properties, and minimizes deterioration due to distortion of magnetic permeability.Furthermore, in order to obtain the required magnetic properties at the same level as conventional methods, it is possible to reduce the magnetic annealing temperature. 100 more than before
This made it possible to lower the temperature by as much as ℃.The influence of major components such as Ni and MO%C11%Fe on magnetic properties was further investigated, and the relationship between the properties and components obtained was investigated for the B-added system. As a result of extensive experiments and research, the present invention was completed. That is, the present invention is as follows.

(11Ni : 77.5〜79.5wt%、  Mo
 : 0.0020 wt%、Cu : 1.8〜2.
5 wt%、  Mn : 0.1 ”1.10evt
%P : 0.010 ”0.080 wt%、Si 
: 0.20wt%未満、S : 0.0020wt%
以下、  O: 0.0030prt%以下、N : 
0.0010wt%以下、  かつBを 0.020 
wt%以下を含有し、かつBを 4 の範囲内で含有し、残部が基本的にFeからなり、しか
もNis MO% Cus Mn5Feが(但し〔〕内
は鍔t%) を満たす範囲でそれぞれ含有されたことを特徴とするN
i−Fe系高透磁率磁性合金。
(11Ni: 77.5-79.5wt%, Mo
: 0.0020 wt%, Cu: 1.8-2.
5 wt%, Mn: 0.1”1.10evt
%P: 0.010"0.080 wt%, Si
: Less than 0.20wt%, S: 0.0020wt%
Below, O: 0.0030prt% or less, N:
0.0010wt% or less, and B 0.020
wt% or less, B is contained within a range of 4, the remainder is basically Fe, and Nis MO% Cus Mn5Fe is contained within a range that satisfies (however, t% is in brackets). N characterized by being
i-Fe based high permeability magnetic alloy.

(21Ni : T’r、5〜79.5ht%、  M
o : 0.0020 wt%、Cu : 1.8〜2
.5 wL%、  lLn : 0.0030wt%、
P : 0.010 =0.080 ut%、St :
 0.2〜1.0 wt%、S : 0.0020wt
%以下、  O: 0.0030wt%以下、N : 
0.0010wt%以下、  かつBを 0.020 
wt%以下を含有し、かつBを 4 の範囲内で含有し、残部は基本的にFeからなり、しか
もNis MO% CLI、 MIDXFeが(但しく
 〕内はwt%) を満たす範囲内でそれぞれ含有されたことを特徴とする
Ni−Fe系高透磁率磁性合金。
(21Ni: T'r, 5-79.5ht%, M
o: 0.0020 wt%, Cu: 1.8-2
.. 5 wL%, lLn: 0.0030wt%,
P: 0.010 = 0.080 ut%, St:
0.2-1.0 wt%, S: 0.0020wt
% or less, O: 0.0030wt% or less, N:
0.0010wt% or less, and B 0.020
wt% or less, B is contained within a range of 4, the remainder is basically Fe, and Nis MO% CLI, MIDXFe are within a range that satisfies (however, the values in brackets are wt%). A Ni-Fe based high permeability magnetic alloy characterized by containing:

(3)前項(11項に記載の成分組成を有し、しかも磁
気焼鈍後でオーステナイト粒界およびその近傍でのBI
が10〜5Qatm%であることを特徴とするNi −
Fe系高透磁率磁性合金。
(3) Having the component composition described in the previous item (item 11), and having BI at the austenite grain boundary and its vicinity after magnetic annealing.
is 10 to 5 Qatm%.
Fe-based high permeability magnetic alloy.

(4)前項(2)項に記載の成分組成を有し、かつ磁気
焼鈍後でオーステナイト粒界およびその近傍でのB量が
10〜50atm%であることを特徴とするNi −F
e系高透磁率磁性合金。
(4) Ni-F having the component composition described in the preceding item (2), and characterized in that the amount of B at the austenite grain boundary and its vicinity after magnetic annealing is 10 to 50 atm%.
E-based high permeability magnetic alloy.

(作用) 本発明によるものは、不純物元素の適正制御のもとで、
熱間加工性を良好ならしめるレベルとして、Sis N
is MO% Cus Mns FeおよびBの各添加
量を適正化し、かつ容量の成分バランスを特定範囲内に
制御することによって従来の同系統によるMO%Coパ
ーマロイやスーパーマロイで見られなかった優れた直流
磁気特性と、優れた交流磁気特性を合わせ持ち、さらに
は従来と同じレベルの要求磁気特性を得るのに磁気焼鈍
温度を従来よりも100℃程度低温化することを可能と
する。
(Function) The device according to the present invention, under proper control of impurity elements,
As a level that makes hot workability good, Sis N
is MO% Cus Mns By optimizing the amounts of Fe and B added and controlling the component balance of capacity within a specific range, we have achieved excellent direct current that has not been seen in conventional MO%Co permalloys and supermalloys of the same type. It has both magnetic properties and excellent alternating current magnetic properties, and furthermore, it is possible to lower the magnetic annealing temperature by about 100° C. compared to the conventional method while obtaining the same level of required magnetic properties as the conventional method.

即ち、先ず本発明で意図する磁気特性の向上は合金中不
純物レベルの制御のもとで達成され、Si、S、、OS
N、Cの限度理由はwt%(以下単に%という)で以下
の如くである。
That is, first, the improvement in magnetic properties intended in the present invention is achieved by controlling the level of impurities in the alloy.
The reason for the limit on N and C is as follows in wt% (hereinafter simply referred to as %).

Sは、熱間加工性に有害であり、かつ硫化物の形成を通
じて最終の水素焼鈍時における粒成長を阻害し、焼鈍後
の粒径が小さくなるため透磁率が向上しないという理由
から磁気特性に対しては極めて有害な元素である。この
B量が0.0020%を超えると、以下に示すようなN
is Mo、、Cus Fe5Biiの適正化を計って
も本発明で目的とするような磁気特性の向上が計れず、
又熱間加工性が著しく悪くなるため0.0020%をを
上限とすることが必要である。なお直流および交流での
透磁率を更に向上するためには0.0005%以下がよ
り望ましい。
S is harmful to hot workability, inhibits grain growth during final hydrogen annealing through the formation of sulfides, and has a negative effect on magnetic properties because the grain size after annealing becomes small and magnetic permeability does not improve. It is an extremely harmful element. If this amount of B exceeds 0.0020%, the following N
is Mo,, even if we tried to optimize Cus Fe5Bii, we could not improve the magnetic properties as aimed at in the present invention,
Further, since hot workability is significantly deteriorated, it is necessary to set the upper limit to 0.0020%. Note that in order to further improve the magnetic permeability in direct current and alternating current, it is more desirable that the content be 0.0005% or less.

0は、本発明で対象とする合金の中では酸化物系介在物
として存在し、その量が多いと最終の水素焼鈍時におけ
る粒成長を阻害し、焼鈍後の粒径が小さいため透磁率が
向上しないことから磁気特性に対し極めて有害な元素で
ある。即ちこのO量が0.0030%を超えると上記同
様にNis MO% Cus Fe5B量の適正化を図
っても本発明で意図する磁気特性向上が計れないため0
.0030%を上限とした。なお直流および交流での透
磁率のさらなる向上のためには0.0005%以下がよ
り好ましい。
0 exists as oxide-based inclusions in the alloy targeted by the present invention, and if the amount is large, it will inhibit grain growth during the final hydrogen annealing, and the grain size after annealing will be small, resulting in a decrease in magnetic permeability. Since it does not improve magnetic properties, it is an extremely harmful element to magnetic properties. That is, if this amount of O exceeds 0.0030%, even if the amount of Nis MO% Cus Fe5B is optimized as described above, the magnetic properties cannot be improved as intended by the present invention.
.. The upper limit was set at 0.0030%. Note that in order to further improve the magnetic permeability in direct current and alternating current, the content is more preferably 0.0005% or less.

Nは、B添加を基本とした合金においては、Bと容易に
結合しBNを形成するため有効B量が低下する。また形
成されたBNにより磁気特性が著しく劣化せしめられる
などの理由より合金中に多く含有されると悪影響を及ぼ
す。即ちこのNが0.0010%を越えると上記のよう
な理由から磁気特性劣化が著しくなるので0.0010
%を上限とした。
In an alloy based on B addition, N easily combines with B to form BN, resulting in a decrease in the effective amount of B. Furthermore, since the magnetic properties are significantly deteriorated by the formed BN, if it is contained in a large amount in the alloy, it will have an adverse effect. In other words, if this N exceeds 0.0010%, the deterioration of magnetic properties will be significant for the reasons mentioned above.
The upper limit was %.

なお交流での透磁率のさらなる向上のためにはo、oo
os%以下がより好ましい。
In addition, in order to further improve the magnetic permeability in AC, o, oo
More preferably, it is os% or less.

Cは、本発明の対象合金の中では侵入型元素として存在
し、その量が多いと透磁率が低下するので磁気特性に対
して有害な元素であり、0.020%を越えるとこのよ
うな理由により磁気特性劣化が著しくなるため、0.0
20%を上限と定めた。
C exists as an interstitial element in the target alloy of the present invention, and if its amount is large, the magnetic permeability decreases, so it is a harmful element to magnetic properties, and if it exceeds 0.020%, this element For some reason, the deterioration of magnetic properties becomes significant, so 0.0
The upper limit was set at 20%.

さて、本発明では上記のような不純物元素の制御下にお
いて、Nis Mo、Cu、FeおよびBの各添加量を
適正化し、又容量の成分バランスを特定範囲内として始
めてその目的が達成され、これらについては以下の如く
である。
Now, in the present invention, the purpose of the present invention is achieved by optimizing the amounts of Nis Mo, Cu, Fe, and B added under the control of impurity elements as described above, and by keeping the component balance of capacity within a specific range. The details are as follows.

Niは、77.5〜79.5%の範囲で本発明の意図す
るような高い磁気特性および高いシールド特性を得しめ
る。このNiが77.5%未満または79.5%を越え
ると何れの場合においても透磁率が低下するので77.
5%を下限とし、79.5%を上限とした。
When Ni is in the range of 77.5 to 79.5%, high magnetic properties and high shielding properties as intended by the present invention can be obtained. If this Ni content is less than 77.5% or more than 79.5%, magnetic permeability will decrease in either case.
The lower limit was 5% and the upper limit was 79.5%.

Moは、0.0020%の範囲内のときに本発明の目的
とする高い磁気特性および高いシールド特性を達成し得
る。即ちMoが3.8%未満または4.6%を超えると
透磁率向上が達成されないので、0.0020%とする
ことが必要である。
When Mo is within the range of 0.0020%, the high magnetic properties and high shielding properties targeted by the present invention can be achieved. That is, if Mo is less than 3.8% or more than 4.6%, magnetic permeability cannot be improved, so it is necessary to set it to 0.0020%.

Cuは、Ni、、 Moや他の成分が本発明の規定範囲
内にある合金において、後述するBの共存のもとで、直
流磁気特性を飛躍的に向上させ、かつ交流の実効透磁率
をも向上せしめ、しかも交流(5’ OHz)での角型
性(Br/8m)も向上させる効果を有する。
In alloys in which Ni, Mo, and other components are within the specified ranges of the present invention, Cu, in the coexistence of B (described later), dramatically improves the DC magnetic properties and increases the effective magnetic permeability of AC. It also has the effect of improving the squareness (Br/8m) at AC (5' OHz).

このようなCuの効果は、Niが77.5〜79.5%
、Mo : 0.0020%のときにあられれ、最適の
Cu量は1.8〜2.5%である。なおCuが1.8%
未満ではこのようなCuによる特性向上が計れず、一方
Cuが2.5%を趨えると逆にこの特性が劣化するので
、Cuの範囲は1.8〜2.5%と定めた。
This effect of Cu is 77.5 to 79.5% of Ni.
, Mo: Appears when the content is 0.0020%, and the optimum amount of Cu is 1.8 to 2.5%. Note that Cu is 1.8%
If the content of Cu is less than 2.5%, the properties cannot be improved, and if the content exceeds 2.5%, the properties deteriorate, so the range of Cu is set at 1.8 to 2.5%.

Mnは、上記したMOXCuと同様に本発明対象合金の
磁性に影響を及ぼす元素であり、このMnが1.10%
以下でも本発明で目的とする高透磁率を達成し得るが、
1.10%を超えると斯うした透磁率向上が達成されな
いので1.10%を上限とする。一方Mnが0.10%
未満では熱間加工性が劣化し、好ましくないので0.1
0%を下限とした。
Like MOXCu mentioned above, Mn is an element that affects the magnetism of the alloy subject to the present invention, and when this Mn is 1.10%
Although the high magnetic permeability targeted by the present invention can be achieved with the following,
If it exceeds 1.10%, such improvement in magnetic permeability will not be achieved, so 1.10% is set as the upper limit. On the other hand, Mn is 0.10%
If it is less than 0.1, hot workability deteriorates and is not preferable.
The lower limit was 0%.

(〔B〕、(N)はそれぞれB、Nの合金中添加量、%
)がo、ooos〜0.0070%の範囲では本発明の
目的を有効に達成し得るが、0.0005%未満では透
磁率が向上せず、一方0.0070%を超えると透磁率
が低くなるので、 4 れ0.0005%、0.0070%とした。
([B] and (N) are the amounts of B and N added in the alloy, respectively, %
) is in the range of o,oos to 0.0070%, the object of the present invention can be effectively achieved, but if it is less than 0.0005%, the magnetic permeability will not improve, while if it exceeds 0.0070%, the magnetic permeability will be low. Therefore, the values were set to 0.0005% and 0.0070%.

Pは、本発明の規定範囲内成分において直流磁気特性を
劣化させ゛ることなく、交流磁気特性、即ち交流での実
効透磁率や低周波域での角型性の向上を得しめる元素で
ある。またPは適量の添加のもとで、直流および交流の
透磁率の歪による劣化を小さくすることを可能とする元
素でもある。
P is an element that can improve alternating current magnetic properties, that is, effective magnetic permeability in alternating current and squareness in a low frequency range, without deteriorating direct current magnetic properties within the specified range of the present invention. . P is also an element that, when added in an appropriate amount, makes it possible to reduce the deterioration of direct current and alternating current magnetic permeability due to distortion.

直流磁気特性を劣化させることなく、上記のような交流
磁気特性を向上させるP量は0.010〜0.080%
の範囲内である。Pがo、oio%未満では本発明で意
図する交流磁気特性の向上が図られず、一方0.080
%を超えると直流磁気特性が劣化するため、0.010
%および0.080%をそれぞれ下限、上限とした。な
お本発明で目的とする透磁率の歪による劣化を小さくす
るPの添加量としては0.020%以上であることが好
ましい。
The amount of P that improves the AC magnetic properties as described above without deteriorating the DC magnetic properties is 0.010 to 0.080%.
is within the range of If P is less than o, oio%, the AC magnetic properties intended in the present invention cannot be improved;
If it exceeds 0.010%, the DC magnetic properties will deteriorate.
% and 0.080% were the lower and upper limits, respectively. The amount of P added is preferably 0.020% or more in order to reduce the deterioration of magnetic permeability due to distortion, which is the objective of the present invention.

Stは、本発明の規定範囲内成分の合金において、直流
磁気特性を劣化させることなく、交流磁気特性、即ち交
流での実効透磁率を一層向上させる元素である。またこ
のStは特定の添加量のもとで直流および交流の透磁率
の歪による劣化をより小さくすることを可能とする元素
でもある。しかしこのStはその添加量と共に飽和磁束
密度が低下するために比較的高い磁束密度の要求される
用途においては0.20wt%以下とすることが好まし
い。即ちStが0.20wt%以下では100OA/m
の外部磁化を加えたときの材料内における磁束密度(以
下B+oooと略称゛する)が7700ガウス以上の値
を有する。直流磁気特性を劣化させることなく、上記し
たような交流磁気特性をより向上させるSi量は0.2
0〜1.0θ%の範囲である。つまりSiが0.20%
未満では本発明で目的とする交流磁気特性の向上を図る
ことができず、一方1.00%を越えると直流磁気特性
が劣化するので0.20〜1.00%とした。なお本発
明で意図する透磁率の歪による劣化を小さくするSiの
添加量としては0.30%以上であることが好ましい。
St is an element that further improves alternating current magnetic properties, that is, effective magnetic permeability in alternating current, without deteriorating direct current magnetic properties in the alloy of the present invention whose components are within the specified range. Furthermore, St is an element that makes it possible to further reduce deterioration of direct current and alternating current magnetic permeability due to distortion under a specific addition amount. However, since the saturation magnetic flux density of this St decreases with the amount added, it is preferable to keep it at 0.20 wt % or less in applications where a relatively high magnetic flux density is required. That is, when St is 0.20wt% or less, 100OA/m
The magnetic flux density within the material (hereinafter abbreviated as B+ooo) when external magnetization is applied has a value of 7700 Gauss or more. The amount of Si that further improves the AC magnetic properties as described above without deteriorating the DC magnetic properties is 0.2.
It is in the range of 0 to 1.0 θ%. In other words, Si is 0.20%
If it is less than 1.00%, it will not be possible to improve the alternating current magnetic properties, which is the objective of the present invention, and if it exceeds 1.00%, the direct current magnetic properties will deteriorate, so it is set at 0.20 to 1.00%. The amount of Si added to reduce the deterioration of magnetic permeability due to distortion as intended in the present invention is preferably 0.30% or more.

本発明で目的とする磁気特性向上のためには上記したS
、OlN、 CXN15M0. CLI% Mn、 B
量の適正化、St、 Pの適量添加のもとで、N1% 
MO% CIJ%BおよびFeの成分バランスを規定す
るパラメータ1 が0.0005〜0.0070%の範囲内であり、磁気
焼鈍後の直流の初透磁率、500ミリガウスの直流磁界
に対する磁気遮蔽度、IKHzでの実効透磁率、50H
zでの角型性といった直流および交流の磁気特性を飛躍
的に向上させることができる。
In order to improve the magnetic properties aimed at in the present invention, the above-mentioned S
, OlN, CXN15M0. CLI% Mn, B
By adjusting the amount and adding appropriate amounts of St and P, N1%
MO% CIJ% Parameter 1 that defines the component balance of B and Fe is within the range of 0.0005 to 0.0070%, the initial permeability of direct current after magnetic annealing, the degree of magnetic shielding against a direct current magnetic field of 500 milligauss, Effective permeability at IKHz, 50H
Direct current and alternating current magnetic properties such as squareness in z can be dramatically improved.

即ち、上記のような成分規定および成分バランス規定に
より、後述する実施例工に示すように、初透磁率μiは
300.000以上、500ミリガウスの直流磁界に対
する磁気遮蔽度を250以上、板厚0.20 tmにお
けるIKHzでの実効透磁率を15.000以上、50
Hzでの角型性を0.90以上と、それぞれすることが
できる。
That is, according to the above-mentioned component regulations and component balance regulations, as shown in the example work described later, the initial magnetic permeability μi is 300.000 or more, the magnetic shielding degree against a 500 milligauss DC magnetic field is 250 or more, and the plate thickness is 0. Effective magnetic permeability at IKHz at .20 tm is 15.000 or more, 50
The squareness at Hz can be 0.90 or more.

本発明合金において磁気特性を更に高めるためには、最
終の磁性を高めるための熱処理後のオーステナイト結晶
粒界およびその近傍でのB量が10〜50atm%の範
囲内でより高い初透磁率とより高い磁気遮蔽度、比較的
高い実効透磁率、比較的高い角型性を合わせ持つことが
できる。
In order to further improve the magnetic properties of the alloy of the present invention, it is necessary to increase the initial magnetic permeability by increasing the amount of B in the austenite grain boundaries and their vicinity after heat treatment to increase final magnetism within the range of 10 to 50 atm%. It can have high magnetic shielding, relatively high effective magnetic permeability, and relatively high squareness.

すなわち、本発明合金を用いて、磁気焼鈍後のオーステ
ナイト粒界及びその近傍でのBqが上記範囲内であれば
後述する実施例1よりも一層優れた磁気特性を付与する
ことができる。つまり後述する実施例2に示すように初
透磁率μiは400.000以上、500ミリガウスの
直流磁界に対する磁気遮蔽度を350以上、板厚0.2
0■■におけるIKHzでの実効透磁率を17,000
以上、5011zでの角型性を0.93以上とそれぞれ
することができる。
That is, by using the alloy of the present invention, if Bq at the austenite grain boundary and its vicinity after magnetic annealing is within the above range, it is possible to provide magnetic properties that are even more excellent than those of Example 1, which will be described later. In other words, as shown in Example 2, which will be described later, the initial magnetic permeability μi is 400.000 or more, the magnetic shielding degree against a 500 milligauss DC magnetic field is 350 or more, and the plate thickness is 0.2.
The effective permeability at IKHz at 0■■ is 17,000
As described above, the squareness at 5011z can be set to 0.93 or more.

なお本発明で対象とするNi−Fe合金では、熱間加工
性が劣っている。この加工性を改良する方法としては微
量のB添加と微量のCa添加を組合わせることがしばし
ば行われるが、斯うした1lca添加を行っても上述し
たような本発明の構成要件を満せば本発明の目的とする
初透磁率の向上は達成される。又本発明においては上記
したような成分組成の他、鉄合金とする場合に不可避的
に含まれる八lについても、詳しく言及しないが、例え
ば、八β: 0.03%以下の範囲内での含有が許容さ
れる。
Note that the Ni-Fe alloy targeted by the present invention has poor hot workability. As a method of improving this processability, a combination of adding a small amount of B and a small amount of Ca is often used, but even if such addition of 1lca is performed, as long as the above-mentioned requirements of the present invention are satisfied. The improvement in initial magnetic permeability that is the objective of the present invention is achieved. Further, in the present invention, in addition to the above-mentioned composition, 8L, which is inevitably included in iron alloys, will not be mentioned in detail, but for example, 8β: within a range of 0.03% or less. Containment is allowed.

このような磁気特性の向上原因は明かでないが、粒界お
よびその近傍で適量のBが存在することにより粒界部分
の性状を変え、この変化が磁気特性、特に初透磁率とい
った磁壁の移動のしやすさ、又は回転磁化のしやすさが
求められる特性値に対して良い影響を与えているものと
推察される。
The cause of this improvement in magnetic properties is not clear, but the presence of an appropriate amount of B at and near grain boundaries changes the properties of the grain boundary area, and this change improves magnetic properties, especially the movement of domain walls such as initial permeability. It is inferred that the ease of rotational magnetization or the ease of rotational magnetization has a positive influence on the required characteristic values.

本発明によるものの具体的な実施例について説明すると
、以下の如くである。
Specific embodiments according to the present invention will be described below.

実施例1゜ 次の第1表に示すような化学成分を有する高Ni−Fe
合金の本発明合金および比較合金を真空溶解にて溶製し
、これを熱間加工、脱スケールを施し、冷延素材を準備
した。又これらの素材は次いで冷延加工、焼鈍して0.
5 鶴の薄板サンプルとし、これらより外径が45鶴で
内径33麿嘗のJISリングを打抜き試料とした。
Example 1 High Ni-Fe having chemical components as shown in Table 1 below
The alloys of the present invention and comparative alloys were melted by vacuum melting, and then hot worked and descaled to prepare cold rolled materials. These materials are then cold rolled and annealed to a 0.
5 A thin plate sample of a crane was used, and a JIS ring with an outer diameter of 45 mm and an inner diameter of 33 mm was punched out from these samples.

上記した第1表の各試料について、その磁気特性をパラ
ジウム膜を透過させ精製した高純度水素気流中雰囲気下
において1100℃で3時間の熱処理を行い、1100
℃〜650℃の間は400’C/hrにて冷却し、その
後は炉冷させて測定し、μiを0.005エルステツド
での透4ff率として求めた結果および遮蔽度、実効透
磁率、50Hzでの角型性、保磁力、磁束密度及び面圧
付加時の初透磁率の結果は次の第2表に示す如くである
Each sample in Table 1 above was heat-treated at 1100°C for 3 hours in an atmosphere of purified high-purity hydrogen by permeating it through a palladium membrane.
It was measured by cooling at 400'C/hr between ℃ and 650℃, then furnace cooling, and the results of μi being determined as permeability 4ff at 0.005 oersted, degree of shielding, effective magnetic permeability, and 50Hz. The results of squareness, coercive force, magnetic flux density, and initial magnetic permeability when surface pressure is applied are as shown in Table 2 below.

遮蔽度は上記と同じ製造履歴を経た板厚0.5 amの
素材を直径50龍、長さ200 mmの円筒に加工し、
上記と同じ磁気焼鈍条件にて熱処理したサンプルを用い
てヘルムホルツコイルにより外部磁場(Ho)、500
ミリガウスを円筒の軸方向に対して直角方向にかけた場
合の円筒内側中央部での内部磁場H1を測定することに
より求めた。この遮蔽度(=HO/H1)の測定に際し
ては、地磁気の影響が十分無視できるレベルまで磁気シ
ールドしたボックス内にて行なった。
The degree of shielding is obtained by processing a material with a thickness of 0.5 am that has gone through the same manufacturing history as above into a cylinder with a diameter of 50mm and a length of 200mm.
Using a sample heat-treated under the same magnetic annealing conditions as above, an external magnetic field (Ho) of 500
It was determined by measuring the internal magnetic field H1 at the center inside the cylinder when a milliGauss force is applied in a direction perpendicular to the axial direction of the cylinder. The degree of shielding (=HO/H1) was measured in a box that was magnetically shielded to a level where the influence of geomagnetism could be sufficiently ignored.

IKHzの実効透磁率は、上記と同じ磁気焼鈍を経た板
厚0.20 wのリングサンプルを用い、5ミリエルス
テツドでのイングクタンス透磁率を測定することにより
求め、50Hzでの角型性は、実効透磁率を測定したと
同じリングサンプルを用いて磁場0.1エルステツドで
の残留磁束密度(Br)と、磁束密度(Bo、  1)
の比から求めた。
The effective magnetic permeability at IKHz was determined by measuring the inductance permeability at 5 millier steps using a ring sample with a thickness of 0.20 W that underwent the same magnetic annealing as above, and the squareness at 50 Hz was determined by the effective The residual magnetic flux density (Br) and the magnetic flux density (Bo, 1) at a magnetic field of 0.1 oersted using the same ring sample in which the magnetic permeability was measured.
It was calculated from the ratio of

なお、磁束密度及び保磁力は、初透磁率を求めたと同じ
リングサンプルにて測定した。磁束密度13to。。は
100OA/mの外部磁界を加えた時の磁束密度であり
、保磁力は100OA/mの外部磁場を加え、次に反転
し、磁束密度を0とする磁界の強さである。
Note that the magnetic flux density and coercive force were measured using the same ring sample as the one used to determine the initial magnetic permeability. Magnetic flux density 13to. . is the magnetic flux density when an external magnetic field of 100 OA/m is applied, and the coercive force is the strength of the magnetic field when an external magnetic field of 100 OA/m is applied, then reversed, and the magnetic flux density becomes 0.

面圧付加時の初透磁率は、上記の初透磁率を測定したサ
ンプルを用い、リング試料の板面に垂直方向に均一な荷
重(面圧4kg171.z 、を印加して初透磁率を測
定することにより求めた。
The initial magnetic permeability when surface pressure is applied is measured by applying a uniform load (surface pressure 4 kg 171.z) perpendicular to the plate surface of the ring sample using the sample whose initial magnetic permeability was measured above It was determined by

即ち、本発明による合金隘1および階2の各村はC% 
3% 0% N% BXP、Nis Mo、Cu及びM
n量が本発明成分範囲内のもので、特にNll、Na2
の合金はそれぞれ、本発明における第1発明と第2発明
に該当する合金であるがNiは300.000以上、遮
蔽度も約250以上、実効透磁率(以下μeと略称す)
も15,000以上、501(zでの角型性(以下Br
/amと略す)も0.90以上と比較合金に比べて優れ
た磁気特性を示している。更に隘2のものではStが本
発明規定範囲内で添加されたケースであって、隘1に比
してμeはさらに高い値を示している。
That is, each village of alloy floor 1 and floor 2 according to the present invention has C%
3% 0% N% BXP, Nis Mo, Cu and M
The amount of n is within the range of the components of the present invention, especially Nll, Na2
These alloys correspond to the first and second inventions of the present invention, respectively, but Ni has a Ni content of 300.000 or more, a shielding degree of about 250 or more, and an effective magnetic permeability (hereinafter abbreviated as μe).
is also 15,000 or more, 501 (squareness at z (hereinafter Br
/am) is also 0.90 or more, showing superior magnetic properties compared to comparative alloys. Furthermore, in case No. 2, St was added within the range specified by the present invention, and μe shows an even higher value than No. 1.

又合金光3はCSS、 0. N、 B、 Nis M
O% CLIおよびMn1lが本発明成分範囲内で、本
発明クレームに該当する合金であって、かつ熱間加工性
の向上を意図して、微量のCa添加を行なった合金であ
るが、この場合においても、磁気特性は、上記した合金
PkLl及び先2と略同じレベルにある。即ちこのよう
に微量Ca添加が行なわれた合金においても本発明の効
果は十分に発揮されることが確認された。
Also, Alloy Hikari 3 has CSS, 0. N, B, Nis M
O% CLI and Mn1l are within the range of the components of the present invention, and this is an alloy that falls under the claims of the present invention, and in which a trace amount of Ca has been added with the intention of improving hot workability. Also, the magnetic properties are at approximately the same level as the alloy PkLl and the second alloy mentioned above. That is, it was confirmed that the effects of the present invention can be sufficiently exhibited even in alloys to which a trace amount of Ca has been added in this manner.

更に、合金光4材では、C,S、OlNがより好ましい
レベルまで低減されており、μm1遮蔽度、μe、Br
/Bmは、隘1〜隘3の各村よりさらに高くなっている
。なお、これら1IkL1〜隘4の本発明合金では面圧
4kgf/■富2付加時の初透磁率劣化も後述する比較
合金隘5〜N1121に較べ小さくなっており、歪に対
する特性の劣化も小さいことが理解される。
Furthermore, in Alloy Optical 4 material, C, S, and OlN are reduced to more preferable levels, and μm1 shielding degree, μe, Br
/Bm is even higher than each village of No. 1 to No. 3. In addition, in these invention alloys of 1IkL1 to 4, the deterioration in initial magnetic permeability when a surface pressure of 4 kgf/■Tomi2 is applied is smaller than that of the comparative alloys 5 to N1121, which will be described later, and the deterioration of characteristics against strain is also small. is understood.

これに対し、合金階5および阻6の各村はNi量がそれ
ぞれ上限を越え、あるいは下限未満のものであり、又、
合金隘7および連8の各村はMolが上限を越えたもの
、あるいは下限未満のものであって、合金隘9および1
1に1.10はCu量がそれぞれ上限を越え、あるいは
下限未満のものである。さらに合金隘11は、Mn量が
上限を越えたものであり、合金階12はSt量が上限を
越えたものであって、合金隘13および!1h14のも
のは、それぞれB量が上限を越え、あるいは下限未満の
ものであって、さらに、合金阻15〜阻19の各村はそ
れぞれ、C,P、S、O,Hの何れかが本発明成分範囲
を越えるもの、又合金隘20および陽21はそれぞれパ
ラメータXが本発明で規定した上限を超えるものと、下
限未満のものであるが、これらの供試材隘5〜隘21は
、何れも本発明例に比して低いレベルにある。
On the other hand, in each village of alloy floors 5 and 6, the Ni content exceeds the upper limit or is less than the lower limit, and
Each village of Alloy No. 7 and Ream 8 has Mol exceeding the upper limit or less than the lower limit, and Alloy No. 9 and No. 1
1 and 1.10 are those in which the amount of Cu exceeds the upper limit or is less than the lower limit, respectively. Further, the alloy layer 11 has a Mn content exceeding the upper limit, and the alloy layer 12 has a St content exceeding the upper limit, and the alloy layer 13 and! In the case of 1h14, the amount of B exceeds the upper limit or is less than the lower limit, and furthermore, each village of alloy blocks 15 to 19 has either C, P, S, O, or H as the original. For those exceeding the invention component range, and for alloys No. 20 and No. 21, the parameter X exceeds the upper limit specified by the present invention and is less than the lower limit, respectively. Both are at a lower level compared to the examples of the present invention.

即ち本発明によるものはC%P、S、O,Nの不純物元
素低減のもとでNis MO% Cus Mn、 B、
 Feをそれらの単独量およびバランスが厳密に規定さ
れた範囲とすることにより優れた初透磁率、遮蔽度、実
効透磁率、501rzでの角型性を初めて達成すること
ができる。なお本発明において所要の特性を得るために
は熱処理に使用するガスは、この実施例で示したような
高純度のH2ガスで可能であるが、同様な特性はJIS
に規定されているような通常のH2雰囲気、すなわち露
点−40℃以下のH2ガス気流中で熱処理を行うことに
よっても得られる。
That is, in the present invention, Nis MO% Cus Mn, B, with the reduction of impurity elements of C%P, S, O, and N.
By controlling the amount and balance of Fe within strictly defined ranges, excellent initial magnetic permeability, shielding degree, effective magnetic permeability, and squareness at 501 rz can be achieved for the first time. In order to obtain the required characteristics in the present invention, the gas used for heat treatment can be a high-purity H2 gas as shown in this example, but similar characteristics can be obtained using JIS
It can also be obtained by heat treatment in a normal H2 atmosphere as defined in 2006, that is, in a H2 gas stream with a dew point of -40°C or less.

実施例2゜ 前記した実施例1の本発明合金!1h4について冷延、
焼鈍を経た0、 51111の薄板サンプルより外径4
5鶴、内径33鶴のJISリングを打抜きによって作製
し、試料とした。またオージェ観察用ステージに取付は
可能なノツチ入り試験片も同様のサンプルより切出した
Example 2゜The alloy of the present invention of Example 1 described above! Cold rolled about 1h4,
Outer diameter 4 from annealed thin plate sample of 0, 51111
A JIS ring with 5 cranes and an inner diameter of 33 cranes was produced by punching and used as a sample. A notched test piece that could be attached to an Auger observation stage was also cut from the same sample.

上記のようにして得られたサンプルは、次の第3表に示
すような種々雰囲気下で、1100℃×3時間の熱処理
を行い、1100℃〜650℃の間をそれぞれに異った
冷却速度で冷却し、その後は炉冷したサンプルにより磁
気特性及び遮蔽度を測定した。またオーステナイト粒界
およびその近傍でのB量は、上記熱処理の後に、カソー
ド電解法により電解水素を添加して粒界脆化処理を施し
、粒界破壊を真空中で行い、顕れた粒界破面の成分分析
をオージェ分光法により異る10点について行い平均し
て求めた。これら結果は第4表に併せて示す如くである
The samples obtained as described above were heat treated at 1100°C for 3 hours under various atmospheres as shown in Table 3 below, and cooled at different cooling rates between 1100°C and 650°C. The magnetic properties and degree of shielding were measured using the sample that was cooled in a furnace. In addition, the amount of B at austenite grain boundaries and their vicinity can be determined by adding electrolytic hydrogen by cathodic electrolysis to perform grain boundary embrittlement treatment after the above heat treatment, and performing grain boundary fracture in a vacuum. Component analysis of the surface was performed at 10 different points using Auger spectroscopy, and the results were averaged. These results are also shown in Table 4.

即ち、本発明規定外4を用いたものにおいて供試材11
hl〜4はそのオーステナイト粒界およびその近傍での
B量が本発明規定内であり、μi、tW蔽度、μe、B
r/Bmは、オーステナイト粒界及びその近傍でのB量
が本発明規定外の供試材隘6のものより高くなっている
。また、これらの供試材では、面圧4kgf/cnl付
加時の初透磁率の劣化も実施例1の比較合金に比較して
小さく、歪による特性劣化が小さいこともわかる。
That is, in the case of using material 4 not specified in the present invention, sample material 11
In hl~4, the amount of B at the austenite grain boundary and its vicinity is within the specification of the present invention, μi, tW degree of shielding, μe, B
r/Bm is higher than that of sample material No. 6, in which the amount of B at and near the austenite grain boundaries is not specified by the present invention. Furthermore, in these test materials, the deterioration of the initial magnetic permeability when a surface pressure of 4 kgf/cnl is applied is smaller than that of the comparative alloy of Example 1, and it can be seen that the deterioration of characteristics due to strain is small.

なお、第3.4表における、供試材阻4は1100℃×
3hrの雰囲気保持中におけるN2の露点が一40℃よ
り高い場合であり、このような条件で熱処理されたサン
プルのμi、遮蔽度、μe −、Br78mは、他の発
明例に比べて低い。即ち本発明の効果はJISで規定さ
れている露点−40℃以下のN2で熱処理を行うことに
より適切に発揮される。
In addition, in Table 3.4, the test material resistance 4 is 1100℃×
This is a case where the dew point of N2 is higher than 140° C. during the atmosphere maintenance for 3 hours, and the μi, degree of shielding, μe −, and Br78m of the sample heat-treated under such conditions are lower than those of other invention examples. That is, the effects of the present invention can be properly exhibited by performing heat treatment with N2 at a dew point of -40° C. or lower as defined by JIS.

またI X 10−’Torrというような高真空下の
熱処理でも本発明の効果は発揮し得る。
Further, the effects of the present invention can also be exhibited by heat treatment under a high vacuum such as I x 10-'Torr.

実施例3゜ 前記した実施例1における本発明規定外4及び次の第5
表に示すような成分を有する比較合金患22について実
施例2と同様の作製条件にてサンプルを作製し、それぞ
れ、第6表に示すような磁気焼鈍条件にて熱処理を行な
い、磁気特性及び遮蔽度を実施例2と同様の方法にて行
なった。結果を第7表に示す。
Example 3゜4 outside the scope of the present invention in Example 1 and the following 5th example
Samples of comparative alloy No. 22 having the components shown in the table were prepared under the same manufacturing conditions as in Example 2, and each sample was heat-treated under the magnetic annealing conditions shown in Table 6 to improve magnetic properties and shielding. The measurement was carried out in the same manner as in Example 2. The results are shown in Table 7.

なお、この比較合金隘22は、N1% CLI% Pが
本発明規定外であり、その他の成分は、本発明規定内の
ものである。
Note that in this comparative alloy 22, N1% CLI% P is outside the scope of the present invention, and the other components are within the scope of the present invention.

発明合金阻4を用いて、1000℃×1時間の磁気焼鈍
後で得られる特性は、比較合金N[N22を用いて、1
100℃×1時間の磁気焼鈍後で得られる磁気性質すな
わちμi、遮蔽度、μe、Br/Bm、μm及びHcと
較べてほぼ同レベルかやや高い値を示している。すなわ
ち本発明によれば、比較合金と同じ特性を得るのに、磁
気焼鈍温度を約100℃低温化することができることが
わかる。
The properties obtained after magnetic annealing at 1000°C for 1 hour using the invention alloy No. 4 are as follows: using the comparative alloy N [N22,
The magnetic properties obtained after magnetic annealing at 100° C. for 1 hour, ie, μi, degree of shielding, μe, Br/Bm, μm, and Hc, are approximately the same level or slightly higher. That is, according to the present invention, it is possible to lower the magnetic annealing temperature by about 100° C. to obtain the same properties as the comparative alloy.

本発明は、上記したような実施例の製造方法のみでなく
、溶解・溶製し、薄鋳板に鋳造し、鋳造のまま又は熱間
加工後および又は脱スケールし、冷延加工、焼鈍しても
良い。
The present invention is not limited to the manufacturing method of the above-described embodiments, but also includes melting and refining, casting into a thin cast plate, as-cast or after hot working and/or descaling, cold rolling, annealing. It's okay.

熱間加工に代えて又は冷延加工の高能率化のために温間
加工を施しても良い。
Warm working may be performed instead of hot working or to improve the efficiency of cold rolling.

但し表面性状、板厚形状、寸法精度が要求される場合は
、最終溶製の前に冷延加工を施した方が好ましい。
However, if surface quality, plate thickness shape, and dimensional accuracy are required, it is preferable to perform cold rolling before final melting.

更に、1回の冷延加工に代えて冷延加工、再結晶焼鈍(
例えば800℃以上)、冷延加工を繰り返しても良い。
Furthermore, instead of one cold rolling process, cold rolling process and recrystallization annealing (
For example, at 800° C. or higher), cold rolling may be repeated.

以上のような製造方法であっても、本発明の範囲以内で
あればほぼ同等のものが得られる。
Even with the above manufacturing method, substantially equivalent products can be obtained as long as they are within the scope of the present invention.

「発明の効果」 以上説明したような本発明によるときは、Ni −Fe
系の高透磁率磁性合金における磁気特性を適切に改善し
、特に直流および低周波域での透磁率などの磁気特性お
よびシールド性能、更には交流透磁率が従来からのPC
パーマロイの如きに比し飛躍的に優れた高透磁率磁性合
金を提供せしめ、従来におけるより更にシールド特性の
要求される各種磁器シールド材や磁気ヘッドケース、コ
ア類、さらには磁気増幅器、パルス変圧器などの非線形
応用に用いる材料などに広く採用せしめ得、しかも従来
と同じレベルの要求特性を得るのに磁気焼鈍温度を従来
よりも100℃程度低温化することをも可能とし、かつ
歪による特性劣化も小さく、シールドルームのような構
造部材とした際でも所要の磁気特性を発揮することがで
きるなどの効果を有し、近時におけるエレクトロニクス
産業の要請に対して適切に即応し得るものであるから工
業的にその効果の大きい発明である。
"Effects of the Invention" According to the present invention as explained above, Ni-Fe
Appropriately improves the magnetic properties of the system's high permeability magnetic alloy, particularly magnetic properties such as magnetic permeability in the DC and low frequency range, shielding performance, and even AC permeability compared to conventional PC.
We provide high permeability magnetic alloys that are dramatically superior to permalloy, and are used in various magnetic shielding materials, magnetic head cases, cores, and even magnetic amplifiers and pulse transformers that require even higher shielding properties than conventional ones. It can be widely used in materials used in nonlinear applications such as, and it also makes it possible to lower the magnetic annealing temperature by about 100 degrees Celsius than before to obtain the same level of required characteristics as before, and the characteristics deteriorate due to strain. This is because it is small in size and can exhibit the required magnetic properties even when used as a structural member such as a shielded room, and can respond quickly and appropriately to the recent demands of the electronics industry. This invention has great industrial effects.

手続補正書 (自発) 平成元年10月31日Procedural amendment (spontaneous) October 31, 1989

Claims (1)

【特許請求の範囲】 (1)Ni:77.5〜79.5wt%、Mo:3.8
〜4.6wt%、Cu:1.8〜2.5wt%、Mn:
0.1〜1.10wt%P:0.010〜0.080w
t%、Si:0.20wt%未満、S:0.0020w
t%以下、O:0.0030wt%以下、N:0.00
10wt%以下、C:0.020wt%以下を含有し、
かつBを 0.0005wt%≦〔B〕−10.8/14〔N〕≦
0.0070wt%の範囲内で含有し、残部が基本的に
Feからなり、しかもNi、Mo、Cu、Mn、Feが 3.2≦2.02×〔Ni〕−11.13×〔Mo〕−
1.25×〔Cu〕−5.03×〔Mn〕/2.13×
〔Fe〕≦3.8(但し〔 〕内はwt%) を満たす範囲でそれぞれ含有されたことを特徴とするN
i−Fe系高透磁率磁性合金。 (2)Ni:77.5〜79.5wt%、Mo:3.8
〜4.6wt%、Cu:1.8〜2.5wt%、Mn:
0.1〜1.10wt%、P:0.010〜0.080
wt%、Si:0.2〜1.0wt%、S:0.002
0wt%以下、O:0.0030wt%以下、N:0.
0010wt%以下、C:0.020wt%以下を含有
し、かつBを 0.0005wt%≦〔B〕−10.8/14〔N〕≦
0.0070wt%の範囲内で含有し、残部は基本的に
Feからなり、しかもNi、Mo、Cu、Mn、Feが 3.2≦2.02×〔Ni〕−11.13×〔Mo〕−
1.25×〔Cu〕−5.03×〔Mn〕/2.13〔
Fe〕≦3.82.13×〔Fe〕 (但し〔 〕内はwt%) を満たす範囲内でそれぞれ含有されたことを特徴とする
Ni−Fe系高透磁率磁性合金。 (3)請求項1に記載の成分組成を有し、しかも磁気焼
鈍後でオーステナイト粒界およびその近傍でのB量が1
0〜50atm%であることを特徴とするNi−Fe系
高透磁率磁性合金。 (4)請求項2に記載の成分組成を有し、かつ磁気焼鈍
後でオーステナイト粒界およびその近傍でのB量が10
〜50atm%であることを特徴とするNi−Fe系高
透磁率磁性合金。
[Claims] (1) Ni: 77.5 to 79.5 wt%, Mo: 3.8
~4.6wt%, Cu:1.8~2.5wt%, Mn:
0.1-1.10wt%P: 0.010-0.080w
t%, Si: less than 0.20wt%, S: 0.0020w
t% or less, O: 0.0030wt% or less, N: 0.00
Contains 10 wt% or less, C: 0.020 wt% or less,
and B is 0.0005wt%≦[B]−10.8/14[N]≦
The content is within the range of 0.0070 wt%, the balance basically consists of Fe, and Ni, Mo, Cu, Mn, and Fe are 3.2≦2.02×[Ni]−11.13×[Mo] −
1.25×[Cu]-5.03×[Mn]/2.13×
[Fe]≦3.8 (however, the values in brackets are wt%).
i-Fe based high permeability magnetic alloy. (2) Ni: 77.5 to 79.5 wt%, Mo: 3.8
~4.6wt%, Cu:1.8~2.5wt%, Mn:
0.1-1.10wt%, P: 0.010-0.080
wt%, Si: 0.2-1.0wt%, S: 0.002
0wt% or less, O: 0.0030wt% or less, N: 0.
0010wt% or less, C: 0.020wt% or less, and B: 0.0005wt%≦[B]-10.8/14[N]≦
The content is within the range of 0.0070 wt%, the remainder basically consists of Fe, and Ni, Mo, Cu, Mn, and Fe are 3.2≦2.02×[Ni]−11.13×[Mo] −
1.25×[Cu]-5.03×[Mn]/2.13[
A Ni-Fe based high permeability magnetic alloy, characterized in that each content is within a range that satisfies the following: Fe]≦3.82.13×[Fe] (wherein the values in brackets are wt%). (3) It has the component composition according to claim 1, and the amount of B at the austenite grain boundary and its vicinity after magnetic annealing is 1.
A Ni-Fe based high permeability magnetic alloy characterized by having a magnetic permeability of 0 to 50 atm%. (4) It has the component composition according to claim 2, and after magnetic annealing, the amount of B at the austenite grain boundary and its vicinity is 10
A Ni-Fe based high permeability magnetic alloy characterized by having a magnetic permeability of 50 atm%.
JP1260217A 1989-10-06 1989-10-06 Ni-Fe system high permeability magnetic alloy Expired - Fee Related JPH0699766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1260217A JPH0699766B2 (en) 1989-10-06 1989-10-06 Ni-Fe system high permeability magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1260217A JPH0699766B2 (en) 1989-10-06 1989-10-06 Ni-Fe system high permeability magnetic alloy

Publications (2)

Publication Number Publication Date
JPH03122236A true JPH03122236A (en) 1991-05-24
JPH0699766B2 JPH0699766B2 (en) 1994-12-07

Family

ID=17344976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1260217A Expired - Fee Related JPH0699766B2 (en) 1989-10-06 1989-10-06 Ni-Fe system high permeability magnetic alloy

Country Status (1)

Country Link
JP (1) JPH0699766B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316736A (en) * 1993-04-30 1994-11-15 Nkk Corp Ni-fe magnetic alloy excellent in magnetic property and producibility and its production
JPH07188817A (en) * 1993-12-27 1995-07-25 Nkk Corp Ni-fe magnetic alloy excellent in magnetic property and workability and its production
WO2008099812A1 (en) 2007-02-13 2008-08-21 Hitachi Metals, Ltd. Magnetic shielding material, magnetic shielding component, and magnetic shielding room
CN109524191A (en) * 2019-01-11 2019-03-26 北京北冶功能材料有限公司 A kind of high-performance iron nickel magnetically soft alloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260218A (en) * 1988-04-11 1989-10-17 Mitsubishi Electric Corp Indoor open type hot air oil heater

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260218A (en) * 1988-04-11 1989-10-17 Mitsubishi Electric Corp Indoor open type hot air oil heater

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316736A (en) * 1993-04-30 1994-11-15 Nkk Corp Ni-fe magnetic alloy excellent in magnetic property and producibility and its production
JPH07188817A (en) * 1993-12-27 1995-07-25 Nkk Corp Ni-fe magnetic alloy excellent in magnetic property and workability and its production
WO2008099812A1 (en) 2007-02-13 2008-08-21 Hitachi Metals, Ltd. Magnetic shielding material, magnetic shielding component, and magnetic shielding room
EP2123783A1 (en) * 2007-02-13 2009-11-25 Hitachi Metals, Ltd. Magnetic shielding material, magnetic shielding component, and magnetic shielding room
EP2123783A4 (en) * 2007-02-13 2010-11-03 Hitachi Metals Ltd Magnetic shielding material, magnetic shielding component, and magnetic shielding room
US8157929B2 (en) 2007-02-13 2012-04-17 Hitachi Metals, Ltd. Magnetic shielding material, magnetic shielding component, and magnetic shielding room
CN109524191A (en) * 2019-01-11 2019-03-26 北京北冶功能材料有限公司 A kind of high-performance iron nickel magnetically soft alloy
CN109524191B (en) * 2019-01-11 2020-09-04 北京北冶功能材料有限公司 High-performance iron-nickel soft magnetic alloy

Also Published As

Publication number Publication date
JPH0699766B2 (en) 1994-12-07

Similar Documents

Publication Publication Date Title
RU2725240C2 (en) Vibration damping material of ferrite stainless steel with high content of al and production method
RU2725239C2 (en) Damping material of ferritic stainless steel and production method
KR101949626B1 (en) Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
JP2000129410A (en) Nonoriented silicon steel sheet high in magnetic flux density
KR920004678B1 (en) METHOD FOR MANUFACTURING Ni-Fe ALLOY SHEET HAVING EXCELLENT DC MAGNETIC PROPERTY AND EXCELLENT AC MAGNETIC PROPERTY
JP2006328461A (en) Soft magnetic steel
JP2006328462A (en) Soft magnetic steel
JPH03122236A (en) Ni-fe serite high permeability magnetic alloy
JP4622162B2 (en) Non-oriented electrical steel sheet
KR101657848B1 (en) Soft magnetic steel having excellent forging characteristic, soft magnetic part and method of manufacturing the same
JPH03122237A (en) Ni-fe serite high permeability magnetic alloy
JP2560579B2 (en) Method for manufacturing high silicon steel sheet having high magnetic permeability
JPH08134604A (en) Soft-magnetic material, excellent in magnetic flux density, coercive force, and corrosion resistance and having high electric resistance, and its production
JPH0375327A (en) Ni-fe series high permeability magnetic alloy
JP4852804B2 (en) Non-oriented electrical steel sheet
JP4023088B2 (en) Soft magnetic steel sheet for electromagnet actuator parts and manufacturing method thereof
JPH0230743A (en) Manufacture of ni-fe alloy plate having excellent magnetic characteristics
KR20200076831A (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP3952762B2 (en) Non-oriented electrical steel sheet with excellent iron loss and caulking properties
JP4062833B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties
JP3883030B2 (en) Non-oriented electrical steel sheet
JPH01263218A (en) Production of high magnetic permeability alloy of ni-fe system
US20230257859A1 (en) Soft magnetic member and intermediate therefor, methods respectively for producing said member and said intermediate, and alloy for soft magnetic member
JP2002226953A (en) Nonoriented silicon steel sheet for high frequency having excellent low magnetic field characteristic
JP3424178B2 (en) Non-oriented electrical steel sheet with low iron loss

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees