JP4023088B2 - Soft magnetic steel sheet for electromagnet actuator parts and manufacturing method thereof - Google Patents

Soft magnetic steel sheet for electromagnet actuator parts and manufacturing method thereof Download PDF

Info

Publication number
JP4023088B2
JP4023088B2 JP2000392725A JP2000392725A JP4023088B2 JP 4023088 B2 JP4023088 B2 JP 4023088B2 JP 2000392725 A JP2000392725 A JP 2000392725A JP 2000392725 A JP2000392725 A JP 2000392725A JP 4023088 B2 JP4023088 B2 JP 4023088B2
Authority
JP
Japan
Prior art keywords
less
annealing
rolled
hot
magnetic steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000392725A
Other languages
Japanese (ja)
Other versions
JP2002194512A (en
Inventor
大成 中山
法之 本庄
崇 三長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000392725A priority Critical patent/JP4023088B2/en
Publication of JP2002194512A publication Critical patent/JP2002194512A/en
Application granted granted Critical
Publication of JP4023088B2 publication Critical patent/JP4023088B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リレーに用いる、または自動車におけるバルブコントロールなどのために用いる電磁石アクチュエータのヨークとして使用される軟磁性鋼板およびその製造方法に関する。
【0002】
【従来の技術】
軟磁性鋼板は、そのような電磁石アクチュエータのヨーク、特にソレノイドヨークなどにおけるように、一般に電磁石の鉄心として使用される。
【0003】
これまでの直流電磁石では電流調整が困難であるためON−OFF のみの制御が主流であった。ところがバルブコントロール用などにおけるように途中位置での位置制御を求められる場合、電磁石の吸引力は、発生する磁化力すなわち、電流に比例するため、電流コントロールが必要となる。近年、インバータ制御の発展に伴い、電磁石も交流にて電流制御が可能となっている。
【0004】
したがって、かかる電流制御はインバータ制御による交流変換ならば容易であるが、これまではインバータが高価であり普及していなかった。しかし、近年のインバータ普及に伴い、かかる位置制御可能な電磁石も大幅なコストダウンが可能となり小型部品まで使用できるようになった。
【0005】
【発明が解決しようとする課題】
このように交流での電流制御が可能な電磁石では、これまでの直流による使用とは異なった問題が発生している。
【0006】
すなわち、従来技術ではたとえばJIS C 2504に規定された電磁軟鉄板や電子材料工業会標準規格EMAS−1007に規定された電磁けい素鉄板などがあるが、いずれも高価な「磨き帯鋼」で製造されており表面粗さが0.1 μm程度の極めて平滑な表面であり滑りやすく音を発生させやすく、製造コスト高とインバータ使用時に「音」が発生する問題で更なる利用範囲の拡大が困難であった。
【0007】
ここに、本発明の課題は、低コストで磁気特性に優れ、かつ、制音性に優れた電磁石アクチュエータ部品用軟磁性鋼板およびその製造方法を提供することである。
【0008】
【課題を解決するための手段】
かかる問題を解決するために本発明者らは、種々検討の結果、この音は磁歪によるものと電磁吸引力によるものの2つが原因であるがいずれの場合も「共振」によりヨーク内で増幅されることがわかった。ところが従来の電磁軟鉄板は絞り加工や曲げ加工などによる「冷間加工」をうけると磁性焼鈍後の結晶粒径が小さくなり「音」の伝播性がよくなるため制音効果がなかった。しかも平滑な表面のため滑りやすく、一層音を発生させやすかった。
【0009】
一方、電磁けい素鋼鉄板ではもともと結晶粒径は小さく、「音」の伝播性がよく制音性に乏しかった。
かくして本発明者らは成分コントロールと表面仕上げ、磁性焼鈍後の結晶粒径の最適化により低コストで上述の課題が達成可能であることを見出した。
【0010】
さらに具体的には、かかる手段により、インバータなどの非正弦波励磁による磁気特性が磁化力10e の時の磁束密度が0.5T以上、200eでの磁束密度が1.6T以上でありかつ磁束密度1.5Tの時の保磁力が70A/m以下で電磁吸引音、磁歪による音が45db以下の良好な結果が得られることを見出した。
【0011】
本発明の要旨とするところは、次の通りである。
(1)質量%で、
C:0.01%以下、Si:0.05%以上3.0 %以下、Mn:0.08%以上2.5 %以下、
S:0.01%以下、酸可溶Al:3.0 %以下、P:0.1 %以下、
N:0.0050%以下、
かつ、0.1≦[Si]+[Al]+0.5×[Mn]≦4.5
残部Feおよび不可避不純物
より成る鋼組成を有し、磁性焼鈍後の結晶粒径が30μm以上2.0mm以下であり、平均表面粗さがRa:0.3μm以上である、曲げ加工または絞り加工が施される電磁石アクチュエータ部品用軟磁性鋼板。
【0012】
(2)質量%で、
C:0.01%以下、Si:0.5 %超3.0 %以下、Mn:0.08%以上2.5 %以下、
S:0.01%以下、酸可溶Al:3.0 %以下、P:0.1 %以下、
N:0.0050%以下、
かつ、0.1≦[Si]+[Al]+0.5×[Mn]≦4.5
残部Feおよび不可避不純物
より成る鋼組成を有し、磁性焼鈍後の結晶粒径が30μm以上2.0mm以下である、曲げ加工または絞り加工が施される電磁石アクチュエータ部品用軟磁性鋼板。
【0013】
(3)インバータによる交流磁化を行う用途に用いる、インバータによりPWM波形で基本波50Hzキャリア周波数1kHzの電源を使用し1.0Tで励磁した時の音圧が45dbを越えない制音性に優れた上記(1)または(2)記載の電磁石アクチュエータ部品用軟磁性鋼板。
(4)上記(1)または(2)記載の鋼組成を有するスラブを1300℃以下の温度で加熱し熱間圧延を行った後、冷間圧延を1回または中間焼鈍をはさんで2回以上行って最終板厚とし、次いで600 ℃〜1050℃にて連続焼鈍またはバッチ焼鈍を行い、その後、15%以下の圧下率で調質圧延を行うことを特徴とする上記(1)〜(3)のいずれかに記載の電磁石アクチュエータ部品用軟磁性鋼板の製造方法。
【0014】
(5)上記(1)または(2)記載の鋼組成を有するスラブを1300℃以下の温度で加熱し熱間圧延を行った後、600℃〜1000℃の熱延板焼鈍を行ってから、冷間圧延を1回または中間焼鈍をはさんで2回以上行って最終板厚とし、次いで600℃〜1050℃にて連続焼鈍またはバッチ焼鈍を行い、その後、15%以下の圧下率で調質圧延を行うことを特徴とする上記(1)〜(3)のいずれかに記載の電磁石アクチュエータ部品用軟磁性鋼板の製造方法。
(6)上記(1)または(2)記載の鋼組成を有するスラブを1300℃以下の温度で加熱し熱間圧延を行った後、15%以下の圧下率で調質圧延を行うことを特徴とする上記(1)〜(3)のいずれかに記載の電磁石アクチュエータ部品用軟磁性鋼板の製造方法。
(7)上記(1)または(2)記載の鋼組成を有するスラブを1300℃以下の温度で加熱し熱間圧延を行った後、600℃〜1000℃の熱延板焼鈍あるいは仕上焼鈍を行ってから、15%以下の圧下率で調質圧延を行うことを特徴とする上記(1)〜(3)のいずれかに記載の電磁石アクチュエータ部品用軟磁性鋼板の製造方法。
【0015】
【発明の実施の形態】
本発明によれば、所定成分よりなるスラブを熱間圧延後、酸洗し冷間圧延を行うか、あるいは熱延板焼鈍を行い、酸洗後冷間圧延で所定の板厚とする。冷間圧延に際しては、一回または中間焼鈍をはさみ2回以上の冷間圧延によって所定の板厚に仕上げてもよい。
【0016】
冷延板は連続焼鈍またはバッチ焼鈍にて再結晶焼鈍を行い、引続き圧下率15%以下の調質圧延を行う。
変更例として熱延板に酸洗のまま、または酸洗後熱延板焼鈍のまま、引続き15%以下の調質圧延を行ってもよい。
【0017】
上述のように鋼組成および製造条件を規定するその限定理由を以下に示す。なお、本明細書において「%」は特にことわりがない限り、「質量%」である。
<鋼組成>
C:
Cは、0.01%を越えて含有すると磁気時効が起こり磁気特性を劣化させるため0.01%以下とする。好ましくは0.005 %以下とする。
【0018】
Si:
Siは磁気特性改善に必須の元素であるが3.0 %を越えて含有させるとヴィッカース硬度の上昇を招き、鉄心加工時の割れ等を生じ易くなるので、3.0 %以下とした。好ましくは2.2 %以下である。下限は0.05%とする。0.05%を下回ると鋼中酸素濃度が上昇し「へげ疵」等の表面欠陥が発生しやすくなるので0.05%以上とした。さらなる磁気特性の改善には、好ましくは、Si:0.5%超とする。さらに好ましくは、1.0 %以上である。
【0019】
Mn:
Mnは、磁気特性改善に有効な元素であるが2.5 %超では磁性焼鈍時の結晶粒径コントロールが困難となるため、2.5 %以下とした。下限は0.08%とした。0.08%を下回るためには精錬に要する時間が著しく長くなりコストアップを招くので0.08%以上とした。好ましい上限は2.0 %であり、より好ましくは0.1 %以上0.5 %以下である。
【0020】
S:
Sの添加は逆に磁気特性を劣化させるためSは0.01%以下とした。好ましくは0.005 %以下である。
【0021】
酸可溶Al:
酸可溶Alは磁気特性を改善するのに重要な元素であるが、3.0 %を超えて含有すると硬さの著しい上昇をまねき磁性焼鈍後の結晶粒径コントロールに支障をきたすので3.0 %以下とした。好ましくは0.0001%以上0.05%以下または0.1 %以上0.5 %以下である。
【0022】
P:
Pは、打抜き性を確保するための機械的性質を改善するのに重要であるが0.1 %を越えて含有すると冷間圧延時の破断を引き起こすため0.1 %以下とした。好ましくは0.005 %以上0.02%以下である。
【0023】
N:
Nは、磁気特性にとって有害でありAlと結合しAlN を形成し結晶粒を微細化させ磁気特性劣化をまねくのでNを0.0050%以下とした。
[Si]+[Al]+0.5 ×[Mn]:
かかる関係式は、磁性焼鈍時の結晶粒径と加工性に影響をおよぼすため合計量を規定した。磁気特性の良好でかつ粗大な結晶粒を得るのに必須の元素の組合せであり、SiとAlは同等の効果を発揮し、Mnはその 1/2の効果であることを見出した。従って、その合計量が、磁気特性良好で粗大な結晶粒を得る必要条件となり、0.1 未満では磁気特性改善の効果が少なく、4.5 を越えると加工性が著しく悪くなり曲げ加工や絞り加工で割れが発生するため4.5 以下とした。好ましくは3.1 以下である。
【0024】
その他、Ni、Cu、Sb、Sn、Ca、Mg等は合計量で0.5 %以下程度の存在は許容される。
本発明にかかる鋼組成において、残部はFeであるが、不可避不純物としてTi、Nb、Zr、V、W等を合計で0.1 %以下含んでいてもよい。
【0025】
かかる鋼組成を有するスラブは1300℃以下の温度で加熱し通常の熱間圧延を行う。1300℃を越えた加熱温度は鋼中のMnS を溶解させ磁気特性の劣化を招く。圧延性を確保するために、好ましくは1100℃〜1250℃である。
【0026】
熱間圧延後、場合により磁気特性改善のために熱延板焼鈍を行う。熱延板焼鈍温度は600 ℃未満では効果がなく、1100℃を越えると結晶粒が過度に粗大化し、冷間圧延時に破断等のトラブルを引き起こす。好ましい熱延板焼鈍は 700〜1000℃で行う。
【0027】
このようにして得られた熱延板は熱延ままあるいは熱延板焼鈍後、冷間圧延を行う。冷間圧延は1回または中間焼鈍をはさみ2回もしくはそれ以上行い所定の厚みに仕上げる。
【0028】
仕上げ焼鈍は、連続焼鈍あるいはバッチ焼鈍で600 〜1050℃で行う。仕上焼鈍温度600 ℃未満では再結晶組織が十分得られず磁気特性は不良となり、かつ硬さの上昇を招く。1050℃超では結晶粒が著しく粗大化しヨーク加工時の曲げや絞りで割れるため1050℃以下とする。好ましくは700 〜1050℃である。
【0029】
仕上げ焼鈍後、圧下率15%以下の調質圧延を行う。好ましくは0.1 %〜15%の調質圧延を行う。かかる調質圧延は式で表された成分[Si]+[Al]+0.5 ×[Mn]が1.0 以上の時は加工でのYPE(降伏点伸び) 除去の目的で、1.0 未満のときはヨーク加工成形後の磁気特性改善の目的で行う。
【0030】
本発明の変更例では熱延板に対し、冷間圧延を行うことなく、必要により熱延板焼鈍を行ってから、直接に上述の調質圧延を行ってもよい。かかる変更例においては、冷間圧延および仕上げ焼鈍を省略できることから、製造コストの大幅な低下が実現できるが、磁気特性の多少の低下は免れない。ただし、調質圧延により平均表面粗さをRa:0.3μm 以上に調整することで、この点による十分な制音性は確保できる。
【0031】
<結晶粒径>
上述のようにして得られた軟磁性鋼板は、使用に当たっては例えば 700〜950 ℃での磁性焼鈍を行うが、本発明ではそのような熱処理後の結晶粒径を30μm以上2.0mm 以下とする。
【0032】
ところで、インバータで発生させた1kHz 以上の可聴域のキャリア周波数は音圧45dbを越えると著しい不快音となる。従来より、例えば特開昭60−208417号公報に記載されているような結晶粒の粗大な鋼板はその音の伝播性が悪く、制音性に優れることが知られているが、従来の音の発生源は「外的」なもの、すなわち鋼板から製造された溶接鋼管内を通過する流体の流動音や、騒音を発生源の遮蔽材として、外から与えられた振動を吸収することを目的としている。
【0033】
これに対して本発明の目的は鋼板そのものが磁化によって振動する現象の抑止であり、振動も磁化電源基本波の逓倍あるいはインバータキャリアの逓倍である。かかる内部より発生する振動の伝播は鋼板の結晶粒径に強く依存し、結晶粒が大きいほどその伝播性は劣る、すなわち制音性に優れる。
【0034】
結晶粒径は30μm未満ではこの不快音が音圧45dbを越え制音性が悪く、2.0mm を越えると曲げ加工時に割れを生じるため30μm 以上2mm以下とした。好ましくは35μm以上 500μm以下である。
【0035】
【実施例】
本発明の作用効果を実施例を参照することでさらに具体的に説明する。
[実施例1]
表1に示した化学組成よりなるスラブを表2に示した条件にて加熱、熱間圧延、酸洗後、熱延板焼鈍、冷間圧延にて表中の板厚に仕上げた後、連続焼鈍あるいはバッチ焼鈍で、再結晶焼鈍後、調質圧延を行った。
【0036】
磁気的な評価はJIS C 2504の磁気測定方法に従い外径45mm、内径33mmのリング試験片加工後、800 ℃での磁性焼鈍を行い直流にて磁気測定した。
音の評価はインバータによりPWM 波形で基本波50Hzキャリア周波数1kHz の電源を使用し1.0Tで励磁した時の音圧を測定し評価した。
【0037】
表2に示す通り、本発明の範囲に属するところの、保磁力が低く磁束密度が高く結晶粒径が30μm 以上を満たし、成分範囲および成分から構成される式Si+Al+0.5Mn が所定の範囲に属する鋼板では音圧が著しく低く交流磁化されるヨークに使用するのに適している。
【0038】
【表1】

Figure 0004023088
【0039】
【表2】
Figure 0004023088
【0040】
【実施例2】
本例においては表3に示す化学組成よりなるスラブを用いて実施例1を繰り返した。結果は表4にまとめて示す。
【0041】
【表3】
Figure 0004023088
【0042】
【表4】
Figure 0004023088
【0043】
【発明の効果】
以上説明したように、本発明によれば、鋼組成および磁気焼鈍後の結晶粒径を特定範囲に規定することで磁気特性と制音性とに優れた軟磁性鋼板が得られ、その製造に当たっても、通常のスラブ加熱、熱間圧延、冷間圧延、焼鈍そして調質圧延と慣用手段でもって行えばよく、低コストで製造が可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a soft magnetic steel sheet used as a yoke of an electromagnetic actuator used for a relay or for valve control in an automobile, and a method for manufacturing the same.
[0002]
[Prior art]
Soft magnetic steel sheets are generally used as iron cores for electromagnets, such as in the yokes of such electromagnet actuators, particularly solenoid yokes.
[0003]
Conventional DC electromagnets are difficult to adjust the current, so only ON-OFF control has been the mainstream. However, when position control at an intermediate position is required as in valve control or the like, since the attraction force of the electromagnet is proportional to the generated magnetizing force, that is, current, current control is required. In recent years, with the development of inverter control, electromagnets can also be controlled by alternating current.
[0004]
Therefore, such current control is easy if AC conversion is performed by inverter control, but until now, inverters are expensive and have not become widespread. However, with the recent widespread use of inverters, such position-controllable electromagnets can be greatly reduced in cost, and even small parts can be used.
[0005]
[Problems to be solved by the invention]
As described above, the electromagnet capable of controlling the current with an alternating current has a problem different from that of the conventional direct current.
[0006]
In other words, in the prior art, for example, there are electromagnetic soft iron plates specified in JIS C 2504 and electromagnetic silicon iron plates specified in the Electronic Materials Industry Association Standards EMAS-1007. It has a very smooth surface with a surface roughness of about 0.1 μm, and it is easy to slip and generate sound. It is difficult to further expand the range of use due to high manufacturing costs and the problem of “sound” when using an inverter. It was.
[0007]
An object of the present invention is to provide a soft magnetic steel sheet for an electromagnet actuator part that is low in cost, excellent in magnetic properties, and excellent in sound damping, and a method for manufacturing the same.
[0008]
[Means for Solving the Problems]
In order to solve such a problem, the present inventors have conducted various studies. As a result, the sound is caused by magnetostriction and electromagnetic attraction force. In either case, the sound is amplified in the yoke by “resonance”. I understood it. However, when the conventional electromagnetic soft iron plate is subjected to “cold working” such as drawing or bending, the crystal grain size after magnetic annealing is reduced and the propagation of “sound” is improved. In addition, the smooth surface was easy to slip, making it easier to generate sound.
[0009]
On the other hand, the magnetic silicon steel plate originally had a small crystal grain size and had good sound transmission and poor sound damping.
Thus, the present inventors have found that the above-mentioned problems can be achieved at low cost by controlling the components, surface finishing, and optimizing the crystal grain size after magnetic annealing.
[0010]
More specifically, by such means, the magnetic flux density when the magnetic characteristic by non-sinusoidal excitation of an inverter or the like is a magnetizing force 10e is 0.5 T or more, the magnetic flux density at 200 e is 1.6 T or more, and the magnetic flux density 1.5 T It was found that good results were obtained with a coercive force of 70 A / m or less and a sound of electromagnetic attraction and magnetostriction of 45 db or less.
[0011]
The gist of the present invention is as follows.
(1) In mass%,
C: 0.01% or less, Si: 0.05% or more and 3.0% or less, Mn: 0.08% or more and 2.5% or less,
S: 0.01% or less, acid-soluble Al: 3.0% or less, P: 0.1% or less,
N: 0.0050% or less,
And 0.1 ≦ [Si] + [Al] + 0.5 × [Mn] ≦ 4.5
Has a steel composition consisting of balance of Fe and unavoidable impurities, the grain size after the magnetic annealing is at 30μm or 2.0mm or less, the average surface roughness Ra: is 0.3μm or more, bending or squeezing processing is given electromagnetic actuator parts soft magnetic steel plate that.
[0012]
(2) In mass%,
C: 0.01% or less, Si: more than 0.5%, 3.0% or less, Mn: 0.08% or more, 2.5% or less,
S: 0.01% or less, acid-soluble Al: 3.0% or less, P: 0.1% or less,
N: 0.0050% or less,
And 0.1 ≦ [Si] + [Al] + 0.5 × [Mn] ≦ 4.5
A soft magnetic steel sheet for an electromagnet actuator part which has a steel composition composed of the remaining Fe and inevitable impurities and has a crystal grain size after magnetic annealing of 30 μm or more and 2.0 mm or less, which is subjected to bending or drawing .
[0013]
(3) Used in applications where AC magnetization is performed by an inverter, using a power source with a PWM waveform with a fundamental frequency of 50 Hz and a carrier frequency of 1 kHz, and having excellent sound damping performance when the sound pressure when excited at 1.0 T does not exceed 45 db. The soft magnetic steel sheet for an electromagnet actuator part according to the above (1) or (2).
(4) After heating the slab having the steel composition described in (1) or (2) above at a temperature of 1300 ° C or less and performing hot rolling, cold rolling is performed once or twice with intermediate annealing. The above-mentioned (1) to (3), characterized in that the final plate thickness is obtained and then continuous annealing or batch annealing is performed at 600 ° C. to 1050 ° C., and then temper rolling is performed at a reduction rate of 15% or less. The method for producing a soft magnetic steel sheet for an electromagnet actuator part according to any one of the above.
[0014]
(5) After heating the slab having the steel composition described in the above (1) or (2) at a temperature of 1300 ° C. or less and performing hot rolling, after performing hot-rolled sheet annealing at 600 ° C. to 1000 ° C., Perform cold rolling once or twice or more with intermediate annealing to the final thickness, then perform continuous annealing or batch annealing at 600 ° C to 1050 ° C, and then temper at a reduction rate of 15% or less Rolling is performed, The manufacturing method of the soft magnetic steel plate for electromagnet actuator components in any one of said (1)-(3) characterized by the above-mentioned.
(6) A slab having the steel composition described in (1) or (2) above is heated at a temperature of 1300 ° C. or lower and hot rolled, and then temper rolled at a reduction rate of 15% or less. The method for producing a soft magnetic steel sheet for electromagnet actuator parts according to any one of (1) to (3) above.
(7) After heating the slab having the steel composition described in (1) or (2) above at a temperature of 1300 ° C or less and performing hot rolling, 600 ° C to 1000 ° C hot-rolled sheet annealing or finish annealing is performed. The method for producing a soft magnetic steel sheet for electromagnet actuator parts according to any one of the above (1) to (3), wherein temper rolling is performed at a rolling reduction of 15% or less.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
According to the present invention, a slab made of a predetermined component is hot-rolled and then pickled and cold-rolled, or hot-rolled sheet annealing is performed and cold-rolled after pickling to obtain a predetermined thickness. At the time of cold rolling, it may be finished to a predetermined thickness by one or intermediate annealing and by cold rolling two or more times.
[0016]
Cold-rolled sheets are subjected to recrystallization annealing by continuous annealing or batch annealing, and then temper rolling with a rolling reduction of 15% or less.
As a modified example, temper rolling of 15% or less may be performed continuously on the hot-rolled sheet while pickling or with hot-rolled sheet annealing after pickling.
[0017]
The reasons for limiting the steel composition and production conditions as described above are shown below. In the present specification, “%” is “% by mass” unless otherwise specified.
<Steel composition>
C:
If C is contained in excess of 0.01%, magnetic aging occurs and magnetic properties are deteriorated, so the content is made 0.01% or less. Preferably it is 0.005% or less.
[0018]
Si:
Si is an essential element for improving the magnetic properties, but if it exceeds 3.0%, Vickers hardness is increased and cracking during iron core processing is likely to occur, so it was made 3.0% or less. Preferably it is 2.2% or less. The lower limit is 0.05%. If it is less than 0.05%, the oxygen concentration in the steel increases and surface defects such as “hegepo” are likely to occur. For further improvement of magnetic properties, Si: more than 0.5% is preferable. More preferably, it is 1.0% or more.
[0019]
Mn:
Mn is an element effective for improving the magnetic properties, but if it exceeds 2.5%, it becomes difficult to control the crystal grain size during magnetic annealing, so it was made 2.5% or less. The lower limit was 0.08%. In order to be less than 0.08%, the time required for refining is remarkably increased, leading to an increase in cost. The upper limit is preferably 2.0%, more preferably 0.1% to 0.5%.
[0020]
S:
On the contrary, the addition of S deteriorates the magnetic properties, so S was made 0.01% or less. Preferably it is 0.005% or less.
[0021]
Acid soluble Al:
Acid-soluble Al is an important element for improving the magnetic properties, but if it exceeds 3.0%, it causes a significant increase in hardness and hinders control of the crystal grain size after magnetic annealing, so it is less than 3.0%. did. Preferably they are 0.0001% or more and 0.05% or less or 0.1% or more and 0.5% or less.
[0022]
P:
P is important for improving the mechanical properties for ensuring the punchability, but if it exceeds 0.1%, it causes breakage during cold rolling, so it was made 0.1% or less. Preferably they are 0.005% or more and 0.02% or less.
[0023]
N:
N is harmful to the magnetic properties and combines with Al to form AlN to refine the crystal grains and cause deterioration of the magnetic properties. Therefore, N is set to 0.0050% or less.
[Si] + [Al] + 0.5 x [Mn]:
Since the relational expression affects the crystal grain size and workability during magnetic annealing, the total amount is specified. It is a combination of elements essential for obtaining coarse crystal grains with good magnetic properties, and Si and Al have the same effect, and Mn has been found to be half of that effect. Therefore, the total amount is a necessary condition for obtaining coarse crystal grains with good magnetic properties.If the total amount is less than 0.1, the effect of improving the magnetic properties is small, and if it exceeds 4.5, the workability is remarkably deteriorated and cracking occurs during bending or drawing. It was 4.5 or less because it occurred. Preferably it is 3.1 or less.
[0024]
In addition, Ni, Cu, Sb, Sn, Ca, Mg, etc. are allowed to be present in a total amount of about 0.5% or less.
In the steel composition according to the present invention, the balance is Fe, but Ti, Nb, Zr, V, W, and the like may be included as inevitable impurities in total of 0.1% or less.
[0025]
The slab having such a steel composition is heated at a temperature of 1300 ° C. or lower and subjected to normal hot rolling. Heating temperature exceeding 1300 ℃ dissolves MnS in steel and causes deterioration of magnetic properties. In order to ensure rollability, the temperature is preferably 1100 ° C to 1250 ° C.
[0026]
After hot rolling, hot-rolled sheet annealing is optionally performed to improve magnetic properties. If the hot-rolled sheet annealing temperature is less than 600 ° C, it is ineffective, and if it exceeds 1100 ° C, the crystal grains become excessively coarse, causing troubles such as fracture during cold rolling. Preferred hot-rolled sheet annealing is performed at 700 to 1000 ° C.
[0027]
The hot-rolled sheet thus obtained is subjected to cold rolling after hot rolling or after hot-rolled sheet annealing. Cold rolling is performed once or by intermediate annealing twice or more to finish to a predetermined thickness.
[0028]
The final annealing is performed at 600 to 1050 ° C. by continuous annealing or batch annealing. If the finish annealing temperature is less than 600 ° C., a sufficient recrystallized structure cannot be obtained, resulting in poor magnetic properties and an increase in hardness. If it exceeds 1050 ° C, the crystal grains become extremely coarse and cracked by bending or drawing during yoke processing. Preferably it is 700-1050 degreeC.
[0029]
After finish annealing, temper rolling with a rolling reduction of 15% or less is performed. Preferably, temper rolling is performed at 0.1% to 15%. Such temper rolling is used for the purpose of removing YPE (yield point elongation) during processing when the component [Si] + [Al] + 0.5 × [Mn] expressed by the formula is 1.0 or more. This is done for the purpose of improving magnetic properties after yoke processing.
[0030]
In the modified example of the present invention, the above-described temper rolling may be performed directly after performing hot-rolled sheet annealing if necessary without performing cold-rolling on the hot-rolled sheet. In such a modified example, since cold rolling and finish annealing can be omitted, a significant reduction in manufacturing cost can be realized, but a slight reduction in magnetic properties is inevitable. However, by adjusting the average surface roughness to Ra: 0.3 μm or more by temper rolling, it is possible to ensure sufficient sound damping properties in this respect.
[0031]
<Crystal grain size>
The soft magnetic steel sheet obtained as described above is subjected to magnetic annealing at, for example, 700 to 950 ° C. when used. In the present invention, the crystal grain size after such heat treatment is set to 30 μm or more and 2.0 mm or less.
[0032]
By the way, if the carrier frequency in the audible range of 1 kHz or more generated by the inverter exceeds 45 dB, the sound becomes extremely unpleasant. Conventionally, it is known that a steel plate with a coarse crystal grain as described in, for example, Japanese Patent Application Laid-Open No. Sho 60-208417 has a poor sound transmission property and an excellent sound damping property. The source of the "external" is to absorb the vibration applied from the outside by using the flow noise of the fluid passing through the welded steel pipe made from steel plate and the noise as a shielding material of the source It is said.
[0033]
On the other hand, the object of the present invention is to suppress the phenomenon that the steel plate itself vibrates due to magnetization, and the vibration is also the multiplication of the fundamental frequency of the magnetizing power source or the multiplication of the inverter carrier. The propagation of vibration generated from the inside strongly depends on the crystal grain size of the steel sheet, and the larger the crystal grain, the worse the propagation property, that is, the better the sound damping property.
[0034]
If the crystal grain size is less than 30 μm, this unpleasant sound exceeds 45 dB and the sound-damping property is poor, and if it exceeds 2.0 mm, cracking occurs during bending, so it is set to 30 μm to 2 mm. Preferably they are 35 micrometers or more and 500 micrometers or less.
[0035]
【Example】
The function and effect of the present invention will be described more specifically with reference to examples.
[Example 1]
After the slab having the chemical composition shown in Table 1 is heated, hot-rolled, pickled, hot-rolled sheet annealed and cold-rolled under the conditions shown in Table 2, the sheet thickness in the table is continuously processed. Temper rolling was performed after recrystallization annealing by annealing or batch annealing.
[0036]
Magnetic evaluation was carried out in accordance with JIS C 2504 magnetic measurement method, after processing a ring test piece having an outer diameter of 45 mm and an inner diameter of 33 mm, magnetic annealing was performed at 800 ° C., and magnetic measurement was performed by direct current.
The sound was evaluated by measuring the sound pressure when excited with 1.0T using a power source with a PWM waveform and a fundamental frequency of 50Hz and a carrier frequency of 1kHz.
[0037]
As shown in Table 2, the formula Si + Al + 0.5Mn, which belongs to the range of the present invention, has a low coercive force, a high magnetic flux density, a crystal grain size of 30 μm or more, and a component range and components, belongs to a predetermined range. The steel plate is suitable for use in a yoke that has a remarkably low sound pressure and is AC magnetized.
[0038]
[Table 1]
Figure 0004023088
[0039]
[Table 2]
Figure 0004023088
[0040]
[Example 2]
In this example, Example 1 was repeated using a slab having a chemical composition shown in Table 3. The results are summarized in Table 4.
[0041]
[Table 3]
Figure 0004023088
[0042]
[Table 4]
Figure 0004023088
[0043]
【The invention's effect】
As described above, according to the present invention, a soft magnetic steel sheet excellent in magnetic properties and sound damping properties can be obtained by defining the steel composition and the crystal grain size after magnetic annealing within a specific range, and in the production thereof. However, normal slab heating, hot rolling, cold rolling, annealing, temper rolling and conventional means may be used, and production can be performed at low cost.

Claims (7)

質量%で、
C:0.01%以下、Si:0.05%以上3.0 %以下、Mn:0.08%以上2.5 %以下、
S:0.01%以下、酸可溶Al:3.0 %以下、P:0.1 %以下、
N:0.0050%以下、
かつ、0.1≦[Si]+[Al]+0.5×[Mn]≦4.5
残部Feおよび不可避不純物
より成る鋼組成を有し、磁性焼鈍後の結晶粒径が30μm以上2.0mm以下であり、平均表面粗さがRa:0.3μm以上である、曲げ加工または絞り加工が施される電磁石アクチュエータ部品用軟磁性鋼板。
% By mass
C: 0.01% or less, Si: 0.05% or more and 3.0% or less, Mn: 0.08% or more and 2.5% or less,
S: 0.01% or less, acid-soluble Al: 3.0% or less, P: 0.1% or less,
N: 0.0050% or less,
And 0.1 ≦ [Si] + [Al] + 0.5 × [Mn] ≦ 4.5
Has a steel composition consisting of balance of Fe and unavoidable impurities, the grain size after the magnetic annealing is at 30μm or 2.0mm or less, the average surface roughness Ra: is 0.3μm or more, bending or squeezing processing is given electromagnetic actuator parts soft magnetic steel plate that.
質量%で、
C:0.01%以下、Si:0.5 %超3.0 %以下、Mn:0.08%以上2.5 %以下、
S:0.01%以下、酸可溶Al:3.0 %以下、P:0.1 %以下、
N:0.0050%以下、
かつ、0.1≦[Si]+[Al]+0.5×[Mn]≦4.5
残部Feおよび不可避不純物
より成る鋼組成を有し、磁性焼鈍後の結晶粒径が30μm以上2.0mm以下である、曲げ加工または絞り加工が施される電磁石アクチュエータ部品用軟磁性鋼板。
% By mass
C: 0.01% or less, Si: more than 0.5%, 3.0% or less, Mn: 0.08% or more, 2.5% or less,
S: 0.01% or less, acid-soluble Al: 3.0% or less, P: 0.1% or less,
N: 0.0050% or less,
And 0.1 ≦ [Si] + [Al] + 0.5 × [Mn] ≦ 4.5
A soft magnetic steel sheet for an electromagnet actuator part which has a steel composition composed of the remaining Fe and inevitable impurities and has a crystal grain size after magnetic annealing of 30 μm or more and 2.0 mm or less, which is subjected to bending or drawing .
インバータによる交流磁化を行う用途に用いる、インバータによりPWM波形で基本波50Hzキャリア周波数1kHzの電源を使用し1.0Tで励磁した時の音圧が45dbを越えない制音性に優れた請求項1または2記載の電磁石アクチュエータ部品用軟磁性鋼板。2. An excellent sound-damping property in which the sound pressure when the inverter is excited at 1.0 T using a power source with a PWM waveform of a fundamental wave of 50 Hz and a carrier frequency of 1 kHz is used for applications in which AC magnetization is performed by an inverter. Or the soft-magnetic steel plate for electromagnet actuator components of 2. 請求項1または2記載の鋼組成を有するスラブを1300℃以下の温度で加熱し熱間圧延を行った後、冷間圧延を1回または中間焼鈍をはさんで2回以上行って最終板厚とし、次いで600℃〜1050℃にて連続焼鈍またはバッチ焼鈍を行い、その後、15%以下の圧下率で調質圧延を行うことを特徴とする請求項1〜3のいずれかに記載の電磁石アクチュエータ部品用軟磁性鋼板の製造方法。After the slab having the steel composition according to claim 1 or 2 is heated at a temperature of 1300 ° C. or less and hot-rolled, the final sheet thickness is obtained by performing cold rolling once or twice or more with intermediate annealing. The electromagnetic actuator according to any one of claims 1 to 3, wherein continuous annealing or batch annealing is performed at 600 ° C to 1050 ° C, and then temper rolling is performed at a rolling reduction of 15% or less. Manufacturing method of soft magnetic steel sheet for parts . 請求項1または2記載の鋼組成を有するスラブを1300℃以下の温度で加熱し熱間圧延を行った後、600℃〜1000℃の熱延板焼鈍を行ってから、冷間圧延を1回または中間焼鈍をはさんで2回以上行って最終板厚とし、次いで600℃〜1050℃にて連続焼鈍またはバッチ焼鈍を行い、その後、15%以下の圧下率で調質圧延を行うことを特徴とする請求項1〜3のいずれかに記載の電磁石アクチュエータ部品用軟磁性鋼板の製造方法。A slab having the steel composition according to claim 1 or 2 is heated at a temperature of 1300 ° C or lower and hot-rolled, and then subjected to hot-rolled sheet annealing at 600 ° C to 1000 ° C, and then cold-rolled once. Or, it is characterized by carrying out intermediate annealing twice or more to obtain the final thickness, then performing continuous annealing or batch annealing at 600 ° C to 1050 ° C, and then performing temper rolling at a rolling reduction of 15% or less. The manufacturing method of the soft-magnetic steel plate for electromagnet actuator components in any one of Claims 1-3. 請求項1または2記載の鋼組成を有するスラブを1300℃以下の温度で加熱し熱間圧延を行った後、15%以下の圧下率で調質圧延を行うことを特徴とする請求項1〜3のいずれかに記載の電磁石アクチュエータ部品用軟磁性鋼板の製造方法。The slab having the steel composition according to claim 1 or 2 is heated at a temperature of 1300 ° C or lower and hot-rolled, and then temper-rolled at a reduction rate of 15% or less. 4. A method for producing a soft magnetic steel sheet for an electromagnet actuator component according to any one of 3 above. 請求項1または2記載の鋼組成を有するスラブを1300℃以下の温度で加熱し熱間圧延を行った後、600℃〜1000℃の熱延板焼鈍あるいは仕上焼鈍を行ってから、15%以下の圧下率で調質圧延を行うことを特徴とする請求項1〜3のいずれかに記載の電磁石アクチュエータ部品用軟磁性鋼板の製造方法。The slab having the steel composition according to claim 1 or 2 is heated at a temperature of 1300 ° C or lower and hot-rolled, and then subjected to hot-rolled sheet annealing or finish annealing at 600 ° C to 1000 ° C, and 15% or less. The method for producing a soft magnetic steel sheet for an electromagnetic actuator component according to any one of claims 1 to 3, wherein the temper rolling is performed at a reduction ratio of 5%.
JP2000392725A 2000-12-25 2000-12-25 Soft magnetic steel sheet for electromagnet actuator parts and manufacturing method thereof Expired - Fee Related JP4023088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000392725A JP4023088B2 (en) 2000-12-25 2000-12-25 Soft magnetic steel sheet for electromagnet actuator parts and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000392725A JP4023088B2 (en) 2000-12-25 2000-12-25 Soft magnetic steel sheet for electromagnet actuator parts and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002194512A JP2002194512A (en) 2002-07-10
JP4023088B2 true JP4023088B2 (en) 2007-12-19

Family

ID=18858669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000392725A Expired - Fee Related JP4023088B2 (en) 2000-12-25 2000-12-25 Soft magnetic steel sheet for electromagnet actuator parts and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4023088B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4681450B2 (en) * 2005-02-23 2011-05-11 新日本製鐵株式会社 Non-oriented electrical steel sheet with excellent magnetic properties in the rolling direction and manufacturing method thereof
JP5186753B2 (en) * 2006-02-21 2013-04-24 Jfeスチール株式会社 Damping alloy sheet and manufacturing method thereof
JP5303908B2 (en) * 2006-12-08 2013-10-02 Jfeスチール株式会社 Member having excellent damping ability, method for producing the same, and steel sheet used as member having excellent damping ability
JP5402694B2 (en) * 2010-02-08 2014-01-29 新日鐵住金株式会社 Method for producing non-oriented electrical steel sheet with excellent magnetic properties in rolling direction

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897024A (en) * 1994-09-29 1996-04-12 Nippon Steel Corp Oriented magnetic steel plate for laminated core with excellent transformer noise characteristics
JPH0967655A (en) * 1995-08-29 1997-03-11 Nkk Corp Nonoriented silicon steel sheet excellent in low magnetic field characteristics
JP3358138B2 (en) * 1995-11-27 2002-12-16 新日本製鐵株式会社 Method for producing semi-process non-oriented electrical steel sheet with excellent isotropic magnetic properties
JP3527020B2 (en) * 1996-07-10 2004-05-17 新日本製鐵株式会社 Non-oriented electrical steel sheet for inverter-controlled compressor motor
JP2000104118A (en) * 1998-09-28 2000-04-11 Nippon Steel Corp Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JP4092791B2 (en) * 1998-10-06 2008-05-28 住友金属工業株式会社 Low loss and low noise iron core and manufacturing method thereof
JP3915308B2 (en) * 1999-03-31 2007-05-16 Jfeスチール株式会社 Steel sheet for laminated core
JP4192403B2 (en) * 2000-05-26 2008-12-10 Jfeスチール株式会社 Electrical steel sheet used under DC bias

Also Published As

Publication number Publication date
JP2002194512A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
JP5446377B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5655295B2 (en) Low carbon steel sheet and method for producing the same
JP6436316B2 (en) Method for producing grain-oriented electrical steel sheet
JP2003096520A (en) Method of producing high magnetic flux density grain oriented silicon steel sheet having excellent film property and high magnetic field core loss
JP7393623B2 (en) grain-oriented electrical steel sheet
JP2000129410A (en) Nonoriented silicon steel sheet high in magnetic flux density
JP4329550B2 (en) Method for producing non-oriented electrical steel sheet
JP7180694B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5008949B2 (en) Method for producing grain-oriented electrical steel sheets with excellent productivity
JP4023088B2 (en) Soft magnetic steel sheet for electromagnet actuator parts and manufacturing method thereof
JPH07268567A (en) Grain oriented silicon steel sheet having extremely low iron loss
JP3474837B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet having B8 of 1.91 T or more
JP2011111645A (en) Method for producing grain-oriented magnetic steel sheet
JP2005200755A (en) Method for producing non-oriented silicon steel sheet
KR20230109739A (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP2003041320A (en) Method for manufacturing grain-oriented electromagnetic steel sheet with mirror surface superior in core loss
JP4016552B2 (en) Method for producing non-oriented electrical steel sheets with excellent magnetic properties and surface properties
JP3236684B2 (en) Oriented silicon steel sheet with excellent bending properties and iron loss properties
JP2006097095A (en) Soft magnetic steel sheet for forming low temperature oxide film and soft magnetic steel sheet, and production method therefor
JPH0949023A (en) Production of grain oriented silicon steel sheet excellent in iron loss
RU2784933C1 (en) Method for producing a sheet of electrotechnical steel with oriented grain structure
JP7188459B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH06212274A (en) Production of grain-oriented silicon steel sheet having extremely low iron loss
JPH0641685A (en) High mn non-magnetic cold-rolled steel sheet and its production
JP3148093B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees