JP5303908B2 - Member having excellent damping ability, method for producing the same, and steel sheet used as member having excellent damping ability - Google Patents

Member having excellent damping ability, method for producing the same, and steel sheet used as member having excellent damping ability Download PDF

Info

Publication number
JP5303908B2
JP5303908B2 JP2007297403A JP2007297403A JP5303908B2 JP 5303908 B2 JP5303908 B2 JP 5303908B2 JP 2007297403 A JP2007297403 A JP 2007297403A JP 2007297403 A JP2007297403 A JP 2007297403A JP 5303908 B2 JP5303908 B2 JP 5303908B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
mass
grain size
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007297403A
Other languages
Japanese (ja)
Other versions
JP2008163453A (en
Inventor
耕一郎 藤田
和浩 花澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007297403A priority Critical patent/JP5303908B2/en
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to MYPI20092319A priority patent/MY148256A/en
Priority to KR1020097011158A priority patent/KR101100050B1/en
Priority to PCT/JP2007/073897 priority patent/WO2008072645A1/en
Priority to CN2012105875104A priority patent/CN103074541A/en
Priority to SG2011089950A priority patent/SG177187A1/en
Priority to CN200780045442.6A priority patent/CN101553589B/en
Publication of JP2008163453A publication Critical patent/JP2008163453A/en
Application granted granted Critical
Publication of JP5303908B2 publication Critical patent/JP5303908B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、家電製品や自動車用部品、例えばオイルパンなど、使用時における騒音や振動の発生が問題視され、低騒音化や振動低減が望まれる減衰能に優れた部材およびその製造方法、ならびに該減衰能に優れた部材用として好適な鋼板に関する。   The present invention relates to a member having excellent damping ability, such as home appliances and automobile parts, such as oil pans, in which noise and vibration during use are desired and low noise and vibration are desired, and a method for manufacturing the same, and The present invention relates to a steel plate suitable for a member having excellent damping ability.

従来より、オイルパンなどの自動車用部品や家電製品等に対する騒音や振動の低減に対する社会的ニーズの高まりとともに、低騒音部材や低振動部材に対する要望が強くなっている。例えば、自動車用オイルパンなどの騒音が問題視されるいわゆる低騒音部材に関しては、特許文献1に記載されるような、2枚の金属板の間に粘弾性樹脂を介在させた樹脂複合型制振金属板などの使用が検討されている。しかし、こうした、樹脂複合型制振金属板等の使用については、製造コストが高いことや加工性、溶接性が乏しいことのため、部材自体に優れた低騒音性能や振動低減性能を持たせることが望まれる。部材自体の騒音や振動を低減させるには、板厚を厚くして遮音性能を上げたり、剛性を高める手法が一般的であるが、材料コストが上昇したり、部材の重量が大きくなってしまう。   2. Description of the Related Art With increasing social needs for reducing noise and vibration for automobile parts such as oil pans and home appliances, there has been a growing demand for low noise members and low vibration members. For example, for so-called low-noise members where noise such as oil pans for automobiles is a problem, a resin composite type damping metal having a viscoelastic resin interposed between two metal plates as described in Patent Document 1 The use of plates is under consideration. However, the use of such resin composite vibration-damping metal plates, etc., is due to high manufacturing costs, poor workability, and poor weldability, so that the parts themselves have excellent low noise performance and vibration reduction performance. Is desired. In order to reduce the noise and vibration of the member itself, it is common to increase the sound insulation performance and increase the rigidity by increasing the plate thickness, but the material cost will increase and the weight of the member will increase. .

そこで、部材材料として樹脂複合型制振金属板などよりも安価な鋼板を用い、部材を構成する鋼板自体の振動の減衰を高めること、すなわち減衰能に優れた鋼板を用いて部材を構成することで、部材の減衰能を高めることが望まれる。ここで優れた減衰能を有する鋼板として、磁壁移動のヒステリシスを利用した強磁性型制振鋼板、例えば、特許文献2〜4には、Al、Si、Crなどのフェライトフォーマー元素のうち少なくとも1種の元素を1%以上添加した高合金鋼板が提案されている。こうした鋼板では、振動のエネルギーを磁壁移動のエネルギーに変換することによって損失させて、振動の減衰ならびに低騒音化が図られる。
特開平10-86271号公報 特開平4-99148号公報 特開昭52-73118号公報 特開2002-294408号公報
Therefore, a steel plate that is less expensive than a resin composite vibration-damping metal plate or the like is used as the member material, and the damping of the vibration of the steel plate itself that constitutes the member is increased, that is, the member is configured using a steel plate having excellent damping capacity. Therefore, it is desired to increase the damping capacity of the member. Here, as a steel plate having excellent damping ability, a ferromagnetic-type damping steel plate using hysteresis of domain wall movement, for example, Patent Documents 2 to 4, include at least one of ferrite former elements such as Al, Si, and Cr. A high alloy steel sheet to which 1% or more of seed elements are added has been proposed. In such a steel sheet, vibration energy is lost by converting it into energy of domain wall motion, so that vibration is attenuated and noise is reduced.
Japanese Patent Laid-Open No. 10-86271 JP-A-4-99148 JP 52-73118 A JP 2002-294408 A

しかしながら、特許文献2〜4に記載の高合金鋼板は硬質で、加工性に劣り、深絞り加工で製造されるオイルパンなどの部材には不適である。   However, the high alloy steel sheets described in Patent Documents 2 to 4 are hard, inferior in workability, and unsuitable for members such as oil pans manufactured by deep drawing.

本発明は、かかる事情に鑑みてなされたもので、加工が容易な鋼板を用いて低騒音化ならびに振動低減の図れる減衰能に優れた部材およびその製造方法、ならびに該減衰能に優れた部材用として好適な鋼板を提供することを目的とする。   The present invention has been made in view of such circumstances, and a member excellent in damping ability that can reduce noise and reduce vibration using a steel plate that is easy to process, a method for manufacturing the same, and a member that has excellent damping ability. It aims at providing a suitable steel plate.

本発明者らは、鋼板の加工後の騒音性能などの減衰性能について鋭意研究を重ねた結果、加工後に鋼板の平均結晶粒径を30μm以上とし、かつ加工後の最も硬い部位のビッカース硬度を120以下にすれば、優れた減衰性能を持たせることができることを見出した。   As a result of intensive research on damping performance such as noise performance after processing of the steel sheet, the present inventors made the average crystal grain size of the steel sheet 30 μm or more after processing, and set the Vickers hardness of the hardest part after processing to 120 μm. It has been found that excellent damping performance can be obtained if the following is used.

本発明は、このような知見に基づきなされたもので、
(1)鋼板を加工して製造された部材において、鋼板の平均結晶粒径が30μm以上で、最も硬い部位のビッカース硬度が120以下であることを特徴とする減衰能に優れた部材を提供する。
(2)鋼板の平均結晶粒径が50μm以上であれば、より優れた減衰性能を持たせることができる。
鋼板として、例えば、
(3)質量%で、C:0.050%以下、Si:1.0%未満、Mn:0.05〜0.5%、P:0.04%以下、S:0.03%以下、Al:1.0%以下、N:0.005%以下を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼板を用いることが好ましい。
(4)(3)の鋼板には、さらに、質量%で、B:0.0001〜0.0030%を含有させることが好ましい。
The present invention has been made based on such findings,
(1) In a member manufactured by processing a steel plate, a member having an excellent damping ability is characterized in that the average crystal grain size of the steel plate is 30 μm or more, and the Vickers hardness of the hardest part is 120 or less. .
(2) If the average crystal grain size of the steel sheet is 50 μm or more, more excellent damping performance can be provided.
As a steel plate, for example,
(3) By mass%, C: 0.050% or less, Si: less than 1.0%, Mn: 0.05 to 0.5%, P: 0.04% or less, S: 0.03% or less, Al: 1.0% or less, N: 0.005% or less It is preferable to use a steel plate having a composition comprising the balance Fe and inevitable impurities.
(4) It is preferable that the steel sheet of (3) further contains B: 0.0001 to 0.0030% by mass%.

さらに、
(5)質量%で、C:0.005%以下、Si:1.0%未満、Mn:0.05〜0.5%、P:0.04%以下、S:0.03%以下、Al:1.0%以下、N:0.005%以下、Ti:0.01〜0.06%、B:0.0001〜0.0030%を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼板、
あるいは、
(6)質量%で、C:0.005%以下、Si:1.0%未満、Mn:0.05〜0.5%、P:0.04%以下、S:0.03%以下、Al:0.004%以下、N:0.005%以下を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼板を用いることが好ましい。
further,
(5) By mass%, C: 0.005% or less, Si: less than 1.0%, Mn: 0.05 to 0.5%, P: 0.04% or less, S: 0.03% or less, Al: 1.0% or less, N: 0.005% or less, Steel sheet containing Ti: 0.01-0.06%, B: 0.0001-0.0030%, having a composition consisting of the balance Fe and inevitable impurities,
Or
(6) By mass%, C: 0.005% or less, Si: less than 1.0%, Mn: 0.05 to 0.5%, P: 0.04% or less, S: 0.03% or less, Al: 0.004% or less, N: 0.005% or less It is preferable to use a steel plate having a composition comprising the balance Fe and inevitable impurities.

なお、上記鋼板においては、所望の形状に加工後に施す熱処理によって、結晶粒径を30μm以上とすることも可能であるが、所望の形状に加工する前の鋼板としての平均結晶粒径を予め30μm以上、より好ましくは50μm以上とすることが好適であり、所望の形状に加工後に500℃以上の温度範囲で熱処理して減衰能に優れた部材として使用することが好適である。
すなわち、
(7)質量%で、C:0.050%以下、Si:1.0%未満、Mn:0.05〜0.5%、P:0.04%以下、S:0.03%以下、Al:1.0%以下、N:0.005%以下を含有し、残部Feおよび不可避的不純物からなる組成を有し、平均結晶粒径が30μm以上である鋼板であって、所望の形状に加工後に500℃以上の温度範囲で熱処理して減衰能に優れた部材として使用されることを特徴とする鋼板、
(8)(7)の鋼板に、さらに、質量%で、B:0.0001〜0.0030%を含有させた鋼板、
あるいは、
(9)質量%で、C:0.005%以下、Si:1.0%未満、Mn:0.05〜0.5%、P:0.04%以下、S:0.03%以下、Al:1.0%以下、N:0.005%以下、Ti:0.01〜0.06%、B:0.0001〜0.0030%を含有し、残部Feおよび不可避的不純物からなる組成を有し、平均粒径が30μm以上である鋼板であって、所望の形状に加工後に500℃以上の温度範囲で熱処理して減衰能に優れた部材として使用されることを特徴とする鋼板である。
In the steel sheet, the crystal grain size can be 30 μm or more by heat treatment performed after processing into a desired shape, but the average grain size as a steel sheet before processing into a desired shape is 30 μm in advance. As described above, it is more preferable that the thickness is 50 μm or more, and it is preferable to use it as a member having excellent damping ability by heat treatment in a temperature range of 500 ° C. or higher after processing into a desired shape.
That is,
(7) By mass%, C: 0.050% or less, Si: less than 1.0%, Mn: 0.05 to 0.5%, P: 0.04% or less, S: 0.03% or less, Al: 1.0% or less, N: 0.005% or less Contained, steel sheet with the balance of Fe and unavoidable impurities, with an average crystal grain size of 30μm or more, and after processing to a desired shape, heat treatment in a temperature range of 500 ° C or higher has excellent damping capacity Steel plate, characterized in that it is used as a member
(8) A steel plate further containing, in mass%, B: 0.0001 to 0.0030% in the steel plate of (7),
Or
(9) By mass%, C: 0.005% or less, Si: less than 1.0%, Mn: 0.05 to 0.5%, P: 0.04% or less, S: 0.03% or less, Al: 1.0% or less, N: 0.005% or less, Ti: 0.01% to 0.06%, B: 0.0001% to 0.0030%, a steel plate having a composition composed of the balance Fe and inevitable impurities, and having an average particle size of 30 μm or more, and after processing into a desired shape, 500 It is a steel plate characterized by being used as a member excellent in damping capacity by heat treatment in a temperature range of not lower than ° C.

上記(7)〜(9)の鋼板においては、
(10)平均結晶粒径を50μm以上とすることがさらに好ましい。
In the steel plates of (7) to (9) above,
(10) It is more preferable that the average crystal grain size is 50 μm or more.

本発明の減衰能に優れた部材は、例えば、
(11)上記した(7)〜(10)の鋼板を、所望の形状に加工後、500℃以上の温度範囲で熱処理することによって製造できる。
The member excellent in damping capacity of the present invention is, for example,
(11) The steel plates of (7) to (10) described above can be produced by heat treatment in a temperature range of 500 ° C. or higher after processing into a desired shape.

また、上記した(7)に記載の成分組成の鋼板において、C量およびAl量を低減し、優れた結晶粒成長性を確保した場合は、加工後に施す熱処理温度を600℃以上とすることにより、加工後に施す熱処理において30μm以上の平均結晶粒径を確保することが容易である。すなわち、加工後に施す熱処理温度を600℃以上とする場合は、下記(12)の鋼板を用いることが好適である。
(12)質量%で、C:0.005%以下、Si:1.0%未満、Mn:0.05〜0.5%、P:0.04%以下、S:0.03%以下、Al:0.004%以下、N:0.005%以下を含有し、残部Feおよび不可避的不純物からなる組成を有し、所望の形状に加工後に600℃以上の温度範囲で熱処理して減衰能に優れた部材として使用されることを特徴とする鋼板。
Further, in the steel sheet having the component composition described in (7) above, when the amount of C and Al is reduced and excellent crystal grain growth is ensured, the heat treatment temperature applied after processing is set to 600 ° C. or higher. It is easy to secure an average crystal grain size of 30 μm or more in the heat treatment performed after processing. That is, when the heat treatment temperature to be applied after processing is set to 600 ° C. or higher, it is preferable to use the following steel plate (12).
(12) By mass%, C: 0.005% or less, Si: less than 1.0%, Mn: 0.05 to 0.5%, P: 0.04% or less, S: 0.03% or less, Al: 0.004% or less, N: 0.005% or less A steel sheet comprising: a composition comprising balance Fe and unavoidable impurities, wherein the steel sheet is heat-treated in a temperature range of 600 ° C. or higher after processing into a desired shape, and used as a member having excellent damping ability.

本発明の減衰能に優れた部材は、例えば、
(13)上記した(12)の鋼板を、所望の形状に加工後、600℃以上の温度範囲で熱処理することによって製造できる。
The member excellent in damping capacity of the present invention is, for example,
(13) The steel plate of (12) described above can be produced by heat treatment in a temperature range of 600 ° C. or higher after processing into a desired shape.

本発明により、オイルパンなどに好適な低騒音部材などの減衰能に優れた部材(以下、高減衰部材と呼ぶ)を提供できるようになった。また、本発明の高減衰部材は、自動車や家電などの分野で厳しい加工を受け、かつ低騒音性能や振動低減性能(制振性能)の必要なオイルパン以外の部材にも適用可能である。   According to the present invention, it has become possible to provide a member (hereinafter referred to as a high attenuation member) having excellent damping ability such as a low noise member suitable for an oil pan or the like. Further, the high damping member of the present invention can be applied to members other than oil pans that are severely processed in fields such as automobiles and home appliances and that require low noise performance and vibration reduction performance (damping performance).

本発明のポイントは、鋼板をプレス加工等により加工して製造された高減衰部材において、部材に製造された状態の鋼板の平均結晶粒径を30μm以上として結晶粒界を低減するとともに、最も硬い部位のビッカース硬度を120以下として結晶粒内の残留応力や歪みを低減して、鋼板内の磁壁移動を容易にし、振動のエネルギーを磁壁移動のエネルギーに変換することによって鋼板の振動の減衰能を高め、優れた低騒音性能などの高減衰性能を持たせたことにある。   The point of the present invention is that, in a high damping member manufactured by processing a steel plate by press working or the like, the average grain size of the steel plate in a state manufactured in the member is set to 30 μm or more and the grain boundary is reduced and the hardest The Vickers hardness of the part is set to 120 or less to reduce residual stress and distortion in the crystal grains, to facilitate the domain wall movement in the steel sheet, and to convert the vibration energy into the domain wall movement energy, thereby reducing the vibration damping ability of the steel sheet. It has a high attenuation performance such as an improved low noise performance.

平均結晶粒径が30μm未満では、磁壁移動の障害となる結晶粒界が多いため、優れた高減衰性能が得られない。   When the average crystal grain size is less than 30 μm, there are many crystal grain boundaries that hinder domain wall movement, and thus excellent high damping performance cannot be obtained.

また、最も硬い部位のビッカース硬度が120を超えると、磁壁移動の障害となる結晶粒内の転位密度が高くなるため、優れた高減衰性能が得られない。   On the other hand, if the Vickers hardness of the hardest part exceeds 120, the dislocation density in the crystal grains that hinders domain wall movement increases, so that excellent high damping performance cannot be obtained.

本発明に用いる鋼板としては、熱延鋼板や冷延鋼板などを用いることができる。例えば、厳しい深絞り加工の必要な部材に従来より用いられていたJIS G 3131のSPHDまたはSPHEグレードの熱延鋼板やJIS G 3141のSPCDまたはSPCEグレードの冷延鋼板などを用いることができるが、特に、質量%で、C:0.050%以下、Si:1.0%未満、Mn:0.05〜0.5%、P:0.04%以下、S:0.03%以下、Al:1.0%以下、N:0.005%以下を含有する鋼板が、次の理由で好ましい。   As the steel sheet used in the present invention, a hot rolled steel sheet, a cold rolled steel sheet, or the like can be used. For example, JIS G 3131 SPHD or SPHE grade hot-rolled steel sheet or JIS G 3141 SPCD or SPCE grade cold-rolled steel sheet, which has been conventionally used for members that require severe deep drawing, can be used. In particular, in mass%, C: 0.050% or less, Si: less than 1.0%, Mn: 0.05 to 0.5%, P: 0.04% or less, S: 0.03% or less, Al: 1.0% or less, N: 0.005% or less A steel sheet is preferred for the following reasons.

C:Cは、炭化物を形成して粒成長を阻害するので、磁壁移動を妨げる粒界を低減できない。それゆえ、C量は0.050質量%以下とする。また、加工性向上の観点から、C量は0.005質量%以下とすることが好ましい。   Since C: C forms carbides and inhibits grain growth, it cannot reduce grain boundaries that hinder domain wall movement. Therefore, the C content is 0.050 mass% or less. From the viewpoint of improving workability, the C content is preferably 0.005% by mass or less.

Si:Siは、固溶強化元素であるが、過度の添加は製造性や加工性を阻害する。それゆえ、Si量は1.0質量%未満とする。より好ましくは0.5質量%以下、さらに好ましくは0.3質量%以下である。   Si: Si is a solid solution strengthening element, but excessive addition inhibits manufacturability and workability. Therefore, the Si content is less than 1.0% by mass. More preferably, it is 0.5 mass% or less, More preferably, it is 0.3 mass% or less.

Mn:Mnは、硫化物を形成して熱間脆性を改善する元素であり、また固溶強化元素である。それゆえ、Mn量は0.05質量%以上とすることが好ましい。一方、多量に添加すると加工性が劣化したり、コスト増を招く。それゆえ、Mn量の上限は0.5質量%とする。   Mn: Mn is an element that forms sulfides and improves hot brittleness, and is a solid solution strengthening element. Therefore, the Mn content is preferably 0.05% by mass or more. On the other hand, if added in a large amount, the workability deteriorates and the cost increases. Therefore, the upper limit of the Mn amount is 0.5% by mass.

P:Pは、固溶強化元素であるが、その量が0.04質量%を超えると加工性が劣化する。それゆえ、P量の上限は0.04質量%とする。   P: P is a solid solution strengthening element, but if its amount exceeds 0.04% by mass, the workability deteriorates. Therefore, the upper limit of the P content is 0.04% by mass.

S:S量が0.03質量%を超えると硫化物が形成され、粒成長を著しく障害する。それゆえ、S量は0.03質量%以下、好ましくは0.01質量%以下、より好ましくは0.005質量%以下、さらに好ましくは0.003質量%未満とする。   If the S: S content exceeds 0.03% by mass, sulfides are formed and the grain growth is significantly hindered. Therefore, the amount of S is 0.03% by mass or less, preferably 0.01% by mass or less, more preferably 0.005% by mass or less, and still more preferably less than 0.003% by mass.

Al:Alは、脱酸元素であるが、過度の添加は製造性を阻害し、コスト増を招く。それゆえ、Al量は1.0質量%以下とすることが好ましい。また、AlNを形成して粒成長を著しく阻害する元素であるため、Al量は0.004質量%以下とすることがさらに好ましい。   Al: Al is a deoxidizing element, but excessive addition inhibits manufacturability and causes an increase in cost. Therefore, the Al content is preferably 1.0% by mass or less. Further, since it is an element that forms AlN and significantly inhibits grain growth, the Al content is more preferably 0.004% by mass or less.

N:N量が0.005質量%を超えると、析出物を形成して粒成長の障害となる。それゆえ、N量は0.005質量%以下、好ましくは0.003%質量以下とするが、少ないほど好ましい。   When the N: N amount exceeds 0.005 mass%, precipitates are formed and hinder grain growth. Therefore, the N content is 0.005% by mass or less, preferably 0.003% by mass or less.

上記した元素以外の残部は、Feおよび不可避的不純物とすることが好ましい。なお、固溶Nを低減して時効性を改善するため、さらにBを0.0001〜0.0030質量%添加してもよい。これは、B量が0.0001質量%未満では、耐時効性向上の効果が小さく、0.0030質量%を超えると、鋳造性が劣化して製造コスト増を招くためである。また、さらにCやNを析出物として固定して深絞り性を向上させる観点から、C量を0.005質量%以下とし、Si、Mn、P、S、Al、N量に関しては上記した範囲として、さらに、Tiを0.01〜0.06質量%含有させるとともに、二次加工脆性の向上の観点から、Bを0.0001〜0.0030質量%添加してもよい。これは、Ti量が0.01質量%未満では、軟質で遅時効性が十分でなく、Ti量が0.06質量%を超えると、コスト増を招き、また、B量が0.0001質量%未満では、耐二次加工脆性が十分でなく、B量が0.0030質量%を超えると、鋳造性が劣化してコスト増を招くためである。   The balance other than the above elements is preferably Fe and inevitable impurities. In order to improve the aging property by reducing the solid solution N, 0.0001 to 0.0030 mass% of B may be further added. This is because if the amount of B is less than 0.0001% by mass, the effect of improving the aging resistance is small, and if it exceeds 0.0030% by mass, the castability deteriorates and the manufacturing cost increases. Further, from the viewpoint of further improving the deep drawability by fixing C and N as precipitates, the C amount is 0.005 mass% or less, and the Si, Mn, P, S, Al, N amount as the above range, Furthermore, while adding 0.01 to 0.06 mass% of Ti, 0.0001 to 0.0030 mass% of B may be added from the viewpoint of improving secondary work brittleness. This is because when the Ti content is less than 0.01% by mass, the soft and slow aging property is insufficient, and when the Ti content exceeds 0.06% by mass, the cost increases. When the B content is less than 0.0001% by mass, This is because the next processing brittleness is not sufficient, and if the B content exceeds 0.0030 mass%, the castability deteriorates and the cost increases.

本発明である高減衰部材は、上記のような規格や成分組成を満足する鋼板を所望の形状に加工後、500℃以上の温度範囲で熱処理することにより製造できるが、これは、500℃以上の熱処理により、粒成長が起こって粒界が低減するとともに、結晶粒内の残留応力や歪が低減して、磁壁移動が容易になったことによると考えられる。   The high damping member of the present invention can be produced by processing a steel sheet satisfying the above-mentioned standards and composition into a desired shape and then heat-treating it in a temperature range of 500 ° C. or higher. This heat treatment is considered to be due to the fact that grain growth occurs and grain boundaries are reduced, residual stress and strain in the crystal grains are reduced, and domain wall movement is facilitated.

なお、本発明で用いる鋼板としては、予め、すなわち所望の形状に加工する前の鋼板として、平均結晶粒径を30μmとしておくことが、加工後の熱処理条件によらず、平均結晶粒径30μm以上を確保できるため、好ましい。   As the steel sheet used in the present invention, the average crystal grain size is set to 30 μm in advance, that is, as the steel sheet before being processed into a desired shape, regardless of the heat treatment conditions after processing, the average crystal grain size is 30 μm or more. Can be ensured.

また、CやAl量を低減し、具体的には、上記したようにC≦0.005質量%、Al≦0.004質量%とすることにより優れた結晶粒成長性を確保し、所望の形状に加工後に施す熱処理を600℃以上とすれば、該熱処理段階で平均結晶粒径を30μm以上、あるいはさらに50μm以上にできるため、好ましい。すなわち、質量%で、C:0.005%以下、Si:1.0%未満、Mn:0.05〜0.5%、P:0.04%以下、S:0.03%以下、Al:0.004%以下、N:0.005%以下を含有し、残部Feおよび不可避的不純物からなる組成を有し、所望の形状に加工後に600℃以上の温度範囲で熱処理して、高減衰部材とすることが好ましい。   Also, by reducing the amount of C and Al, specifically, as described above, C ≦ 0.005 mass%, Al ≦ 0.004 mass% to ensure excellent crystal grain growth, after processing into the desired shape It is preferable that the heat treatment to be performed is 600 ° C. or higher because the average crystal grain size can be 30 μm or more, or even 50 μm or more in the heat treatment stage. That is, in mass%, C: 0.005% or less, Si: less than 1.0%, Mn: 0.05 to 0.5%, P: 0.04% or less, S: 0.03% or less, Al: 0.004% or less, N: 0.005% or less In addition, it is preferable to have a composition composed of the remaining Fe and inevitable impurities and heat-treat in a temperature range of 600 ° C. or higher after processing into a desired shape to obtain a high attenuation member.

なお、上記において、所望の形状に加工後に施す熱処理の温度が910℃を超えるとエネルギーコストが著しく増大するので、熱処理は910℃以下で行うことが望ましい。また、本発明においては、加工後の熱処理により脆性の改善も図られるが、過度の粗粒化は脆性の問題を引き起こす恐れがあるため、平均結晶粒径は2000μm以下にすることが好ましい。   In the above, since the energy cost is remarkably increased when the temperature of the heat treatment performed after processing into a desired shape exceeds 910 ° C., the heat treatment is desirably performed at 910 ° C. or less. In the present invention, brittleness can be improved by heat treatment after processing. However, since excessive coarsening may cause brittleness problems, the average crystal grain size is preferably 2000 μm or less.

本発明である高減衰部材の製造方法は、深絞り加工や曲げ加工によって製造される部材に対し、特に効果的である。また、製造コストの観点から、使用する鋼板としては、板厚が1.6〜6.0mm程度の熱延鋼板が好ましい。   The method for manufacturing a high damping member according to the present invention is particularly effective for a member manufactured by deep drawing or bending. From the viewpoint of production cost, the steel sheet to be used is preferably a hot rolled steel sheet having a thickness of about 1.6 to 6.0 mm.

ここで、本発明に用いる熱延鋼板の製造方法の一例を示す。なお、該熱延鋼板の製造方法はこの例示に限定されるものではない。すなわち、本発明に用いる熱延鋼板は、上記の成分を有する鋼を、1200℃未満の加熱温度で加熱後、700℃以上の仕上温度で熱間圧延し、560℃以上の巻取温度で巻取り、酸洗などでスケール除去して製造される。なお、加熱温度が1000℃未満では、700℃以上の仕上温度の確保が困難になり、1200℃以上では、微量不純物が固溶し、巻取り時に微細に析出して熱処理時の粒成長を阻害し易くなるため、加熱温度は1000℃以上1200℃未満とすることが好ましい。より好ましくは1000℃以上1150℃以下である。仕上温度を700℃以上としたのは、それより低い温度では板形状が劣化しやすいためである。また、巻取温度を560℃以上としたのは、それより低い温度では、加工後に行う熱処理時にAlNなどの微細な析出物が生成して、粒成長を阻害しやすいためである。   Here, an example of the manufacturing method of the hot-rolled steel plate used for this invention is shown. In addition, the manufacturing method of this hot-rolled steel plate is not limited to this illustration. That is, the hot-rolled steel sheet used in the present invention is a steel having the above components heated at a heating temperature of less than 1200 ° C, hot-rolled at a finishing temperature of 700 ° C or higher, and wound at a winding temperature of 560 ° C or higher. It is manufactured by removing the scale by picking and pickling. If the heating temperature is less than 1000 ° C, it will be difficult to secure a finishing temperature of 700 ° C or higher. If the heating temperature is 1200 ° C or higher, trace impurities will form a solid solution and precipitate finely during winding to inhibit grain growth during heat treatment. Therefore, the heating temperature is preferably 1000 ° C. or higher and lower than 1200 ° C. More preferably, it is 1000 ° C. or higher and 1150 ° C. or lower. The reason why the finishing temperature is set to 700 ° C. or more is that the plate shape tends to deteriorate at a lower temperature. The reason why the coiling temperature is set to 560 ° C. or more is that at a temperature lower than that, fine precipitates such as AlN are generated during the heat treatment performed after the processing, and the grain growth is easily inhibited.

また、上記巻取り後、あるいはさらにスケール除去後の熱延鋼板は、熱延鋼板の結晶を大きくして、平均結晶粒径30μm以上、あるいはさらに50μm以上とするため、さらに650〜900℃程度で焼鈍を施すことが好ましい。上記焼鈍における焼鈍温度が650℃未満では粒成長に対する効果が小さく、900℃超えではその効果が飽和する傾向にあり、コストアップとなるだけだからである。該焼鈍における焼鈍温度の制御により、熱延板の平均結晶粒径を、所望の値とすることが容易である。ここで、該焼鈍後は酸洗などによりスケール除去を行うことが好ましい。なお、スケール除去後の熱延鋼板を用い雰囲気を非酸化性雰囲気に調整してスケール発生の問題がない条件で焼鈍した場合は、焼鈍後の酸洗は省略できる。   In addition, the hot-rolled steel sheet after the above winding or after further scale removal is to further increase the crystal of the hot-rolled steel sheet to an average crystal grain size of 30 μm or more, or even 50 μm or more. It is preferable to perform annealing. This is because if the annealing temperature in the annealing is less than 650 ° C., the effect on the grain growth is small, and if it exceeds 900 ° C., the effect tends to be saturated, which only increases the cost. By controlling the annealing temperature in the annealing, it is easy to set the average crystal grain size of the hot-rolled sheet to a desired value. Here, it is preferable to remove the scale by pickling after the annealing. In addition, when the atmosphere is adjusted to a non-oxidizing atmosphere using the hot-rolled steel sheet after removing the scale and annealing is performed under conditions that do not cause a problem of scale generation, pickling after annealing can be omitted.

また、熱間圧延では製造が困難な1.6mm未満の板厚の場合や、特に表面の美麗さが要求される場合には、製造コストは上昇するものの、冷延鋼板を用いることが好ましい。本発明に用いる冷延鋼板は、特に限定するものではないが、上記の成分を有し、上記の製造方法で製造された熱延鋼板を母材とし、80%以下の冷間圧延率で圧延し、800℃以上の焼鈍温度で焼鈍することにより製造できる。ここで、冷間圧延率を80%以下、焼鈍温度を800℃以下としたのは、冷間圧延率が80%を超える、または焼鈍温度が800℃未満の場合は、焼鈍後に細粒組織となり、加工後に施す熱処理後に30μm以上の粒径を得ることが困難となりやすいためである。なお、冷間圧延率は、80%以下の範囲で、所望の板厚に合わせて適宜設定すればよい。また、焼鈍温度は、900℃を超えると、製造に困難を伴いやすく、製造コストが極度に上昇するため、900℃以下とすることが好ましい。   Further, when the thickness is less than 1.6 mm, which is difficult to manufacture by hot rolling, or particularly when the surface is required to be beautiful, it is preferable to use a cold-rolled steel sheet, although the manufacturing cost increases. Although the cold-rolled steel sheet used in the present invention is not particularly limited, the hot-rolled steel sheet having the above components and manufactured by the above manufacturing method is used as a base material, and rolled at a cold rolling rate of 80% or less. And it can manufacture by annealing at the annealing temperature of 800 degreeC or more. Here, the cold rolling rate is set to 80% or less and the annealing temperature is set to 800 ° C. or less. When the cold rolling rate exceeds 80% or the annealing temperature is less than 800 ° C., a fine grain structure is formed after annealing. This is because it is difficult to obtain a particle size of 30 μm or more after the heat treatment performed after the processing. In addition, what is necessary is just to set a cold rolling rate suitably according to desired plate | board thickness in the range of 80% or less. In addition, if the annealing temperature exceeds 900 ° C., it tends to be difficult to manufacture and the manufacturing cost is extremely increased.

本発明の高減衰部材は、鋼板を加工後熱処理するだけで製造されるので、他部材との溶接や、塗装焼付けを問題なく行うことができる。   Since the high attenuation member of the present invention is manufactured by simply heat-treating a steel plate, it can be welded to other members or baked without any problems.

表1に示す本発明範囲内の成分を有する鋼スラブを、1100℃の加熱温度に再加熱し、930℃の仕上温度で熱間圧延し、600℃の巻取温度で巻取り、酸洗して板厚3.6mmのSPHE相当の熱延鋼板を製造した。また、さらに得られた熱延鋼板の一部に700℃×1時間の熱延板焼鈍を施した。なお、熱延板焼鈍を施さない熱延ままの鋼板および熱延板焼鈍後の鋼板の圧延方向板厚断面について組織観察し、JIS G 0551に記載の切断法により平均結晶粒径を求めた。熱延ままの鋼板の平均結晶粒径は25μm、熱延板焼鈍後の鋼板の平均結晶粒径は43μmであった。   Steel slabs having components within the scope of the present invention shown in Table 1 are reheated to a heating temperature of 1100 ° C, hot-rolled at a finishing temperature of 930 ° C, wound up at a winding temperature of 600 ° C, and pickled A hot rolled steel sheet equivalent to SPHE with a thickness of 3.6 mm was manufactured. Further, a part of the obtained hot-rolled steel sheet was subjected to hot-rolled sheet annealing at 700 ° C. for 1 hour. In addition, the structure was observed in the thickness direction cross section in the rolling direction of the as-rolled steel sheet not subjected to hot-rolled sheet annealing and the steel sheet after hot-rolled sheet annealing, and the average crystal grain size was determined by the cutting method described in JIS G 0551. The average crystal grain size of the hot-rolled steel sheet was 25 μm, and the average crystal grain size of the steel sheet after hot-rolled sheet annealing was 43 μm.

そして、高減衰部材(本実施例では低騒音部材)としての加工条件をシミュレートするため、熱延ままの鋼板および熱延板焼鈍後の鋼板から66mmφの円板を打ち抜き、33mmφの平底パンチで絞り加工を行い(絞り比:2)、カップ状試料No.1〜9を作製した。そして、カップ状試料No.1〜9を表2に示す条件で熱処理し、JIS A 1409に基づき、カップ状試料をインパクトハンマー(PCB PIEZOTRONICS社製、型番086B01)により2.0〜2.5Nrmsの範囲内の加振力で叩いたときの残響時間T60を測定し、減衰率法に基づき、次式より損失係数ηを求めた。
η=2.2/(T60・f0)
ここで、f0はカップ状試料の固有振動数で3.5kHzである。
And in order to simulate the processing conditions as a high damping member (low noise member in this example), a 66 mmφ disc was punched from the hot rolled steel plate and the hot rolled steel plate, and a 33 mmφ flat bottom punch was used. Drawing was performed (drawing ratio: 2), and cup-shaped samples No. 1 to 9 were produced. Then, the cup-shaped samples No. 1 to 9 were heat-treated under the conditions shown in Table 2, and based on JIS A 1409, the cup-shaped samples were within the range of 2.0 to 2.5 Nrms with an impact hammer (PCB PIEZOTRONICS, model number 086B01). The reverberation time T 60 when struck with an excitation force was measured, and the loss factor η was calculated from the following equation based on the attenuation rate method.
η = 2.2 / (T 60・ f 0 )
Here, f 0 is the natural frequency of the cup-shaped sample and is 3.5 kHz.

また、残響時間測定後のカップ状試料を、カップ高さ方向(絞り方向)に面対称となるように切断し、切断した試料の一方についてカップ高さ方向に対称となる1/2部分について、切断面の組織観察および試験力4.9N(500g)のビッカース硬度測定を、カップの頂点から10mmピッチで等間隔にカップ縁方向に実施した。測定した箇所(5箇所)のうち最も硬度が高くなる部分をカップ状試料の最も硬い部位のビッカース硬度とした。なお、これら観察した5箇所の結晶粒径の平均を求め、カップ状試料の平均結晶粒径とした。   In addition, the cup-shaped sample after the reverberation time measurement was cut so as to be plane symmetric in the cup height direction (drawing direction), and about one half of the cut sample, which is symmetric in the cup height direction, Observation of the structure of the cut surface and measurement of Vickers hardness at a test force of 4.9 N (500 g) were carried out in the direction of the cup edge at equal intervals from the top of the cup at a pitch of 10 mm. Of the measured locations (5 locations), the portion with the highest hardness was defined as the Vickers hardness of the hardest portion of the cup-shaped sample. The average of the crystal grain sizes at these five observed positions was obtained and used as the average crystal grain size of the cup-shaped sample.

結果を表2に示す。本発明法で熱処理した試料No.4、5および8、9は平均結晶粒径が30μm以上で、ビッカース硬度が120以下であり、損失係数ηが0.001以上と高減衰能を有し、低騒音性能に優れていることがわかる。特に、平均結晶粒径が50μm以上の試料No.5、9では、より高い損失係数ηが得られ、より優れた高減衰能を有して低騒音性能が図られていることがわかる。   The results are shown in Table 2. Samples Nos. 4, 5, and 8 and 9 heat-treated by the method of the present invention have an average crystal grain size of 30 μm or more, a Vickers hardness of 120 or less, a loss factor η of 0.001 or more, a high damping capacity, and a low noise It turns out that it is excellent in performance. In particular, it can be seen that Samples Nos. 5 and 9 having an average crystal grain size of 50 μm or more have a higher loss factor η and have a higher noise reduction performance and a lower noise performance.

表3に示す化学成分を有する鋼スラブを、1100℃の加熱温度に再加熱し、910℃の仕上温度で熱間圧延し、700℃の巻取温度で巻取り、酸洗して板厚3.2mmの熱延鋼板を製造した。また、得られた熱延鋼板の一部に800℃×2時間の熱延板焼鈍を施した。そして、実施例1と同様に、カップ状試料へ加工し、熱延板焼鈍を行わなかった試料は850℃で3時間の熱処理を施し、熱延板焼鈍を行った試料は500℃で3時間の熱処理を施して、試料No.10〜17を作製し、平均結晶粒径、ビッカース硬度および損失係数ηの測定を行った。なお、加工前の熱延鋼板についても実施例1と同様に平均結晶粒径を求めた。   The steel slab having the chemical composition shown in Table 3 was reheated to a heating temperature of 1100 ° C, hot-rolled at a finishing temperature of 910 ° C, wound up at a winding temperature of 700 ° C, pickled and washed to a thickness of 3.2. mm hot rolled steel sheet was produced. A part of the obtained hot-rolled steel sheet was subjected to hot-rolled sheet annealing at 800 ° C. for 2 hours. And like Example 1, the sample processed into a cup-shaped sample and not subjected to hot-rolled sheet annealing was subjected to heat treatment at 850 ° C. for 3 hours, and the sample subjected to hot-rolled sheet annealing was subjected to 500 ° C. for 3 hours. The sample Nos. 10 to 17 were prepared by performing the heat treatment, and the average crystal grain size, Vickers hardness, and loss factor η were measured. Note that the average crystal grain size of the hot-rolled steel sheet before processing was determined in the same manner as in Example 1.

結果を表3に示す。試料No.10〜15および18〜21を用いた場合は、損失係数ηが高く、高減衰能を有して低騒音化が実現されていることがわかる。一方、制振性を向上させるために、Alを5.6%添加した試料No.16、17は、素材である熱延鋼板の伸びがそれぞれ30%、31%しかなく、カップ成形時に破断し、カップ状試料への加工ができなかった。 The results are shown in Table 3 . In the case of using the specimen No.10~15 and 18 to 21, it can be seen that the loss factor η is high, and low noise can be realized with a high damping capacity. On the other hand, sample Nos. 16 and 17 to which 5.6% Al was added in order to improve vibration damping had only 30% and 31% elongation of the hot-rolled steel sheet, respectively. It was not possible to process the sample.

実施例1にて作製したカップ状試料No.1とカップ状試料No.4に、図1に示すようにカップの内側(カップ縁から5mmの位置)に歪みゲージを貼り付けて、インパクトハンマー(PCB PIEZOTRONICS社製、型番086B01)により加振力を変えてカップの外側を叩いて加振し、各加振力における最大歪み量を測定した。 The Ca-up like sample No.1 and mosquito-up like sample No.4 prepared in Example 1, Paste a strain gauge on the inside (the position of 5mm from the cup edge) of the cup, as shown in FIG. 1 The impact force (PCB PIEZOTRONICS, model number 086B01) was used to change the excitation force, hit the outside of the cup and vibrate, and the maximum amount of strain at each excitation force was measured.

結果を表4、図2に示す。カップ状試料No.4は、カップ状試料No.1に比べて、同程度の加振力で叩いても最大歪み量が小さく、優れた低振動特性を有することが分かる。 The results are shown in Table 4 and FIG . Ca-up like sample No.4, compared to mosquito-up like sample No.1, be tapped excitation force comparable small maximum distortion amount found to have excellent low vibration characteristics.

表5に示す化学成分を有する鋼スラブを、1100℃の温度に再加熱し、910℃の仕上温度で熱間圧延し、700℃の巻取温度で巻取り、酸洗して板厚3.6mmの熱延鋼板を製造した。この熱延鋼板を1.0mmまで冷間圧延した後に、700℃あるいは850℃で1分間の焼鈍を施し、1%調質圧延を行った。この冷延鋼板から、実施例1と同様にカップ状試料へ加工し、500℃で3時間の熱処理を施して試料No.22、23を作製し、平均結晶粒径、ビッカース硬度および損失係数ηの測定を行った。なお、加工前の冷延鋼板についても、実施例1と同様に平均結晶粒径を求めた。   Steel slab having the chemical composition shown in Table 5 is reheated to a temperature of 1100 ° C, hot-rolled at a finishing temperature of 910 ° C, wound up at a winding temperature of 700 ° C, pickled and washed with a thickness of 3.6 mm The hot rolled steel sheet was manufactured. The hot-rolled steel sheet was cold-rolled to 1.0 mm, annealed at 700 ° C or 850 ° C for 1 minute, and temper rolled at 1%. From this cold-rolled steel sheet, it was processed into a cup-shaped sample in the same manner as in Example 1, and subjected to a heat treatment at 500 ° C. for 3 hours to prepare Sample No. 22 and 23, and the average crystal grain size, Vickers hardness and loss factor η Was measured. For the cold rolled steel sheet before processing, the average crystal grain size was determined in the same manner as in Example 1.

結果を表5に示す。本発明例であるNo.23は損失係数が高く高減衰能を有しているが、焼鈍温度が低く、結晶粒径の小さいNo.22は、損失係数が低くなっている。   The results are shown in Table 5. No. 23, which is an example of the present invention, has a high loss coefficient and a high damping capacity, but No. 22 having a low annealing temperature and a small crystal grain size has a low loss coefficient.

歪みゲージを貼り付けたカップ状試料を示す図である。It is a figure which shows the cup-shaped sample which affixed the strain gauge. 加振力と最大歪み量との関係を示す図である。It is a figure which shows the relationship between an exciting force and the largest distortion amount.

Claims (7)

質量%で、C:0.050%以下、Si:1.0%未満、Mn:0.05〜0.5%、P:0.04%以下、S:0.03%以下、Al:1.0%以下、N:0.005%以下、B:0.0001〜0.0030%を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼板を加工後、熱処理して製造された部材において、鋼板の平均結晶粒径が30μm以上で、最も硬い部位のビッカース硬度が120以下であることを特徴とする損失係数ηが0.001以上である減衰能に優れた部材。 In mass%, C: 0.050% or less, Si: less than 1.0%, Mn: 0.05 to 0.5%, P: 0.04% or less, S: 0.03% or less, Al: 1.0% or less, N: 0.005% or less, B: 0.0001 In a member manufactured by heat-treating a steel plate having a composition comprising ~ 0.0030% and the balance Fe and inevitable impurities , the average crystal grain size of the steel plate is 30 μm or more and the Vickers hardness of the hardest part is A member excellent in damping ability having a loss coefficient η of 0.001 or more, characterized by being 120 or less. 質量%で、C:0.005%以下、Si:1.0%未満、Mn:0.05〜0.5%、P:0.04%以下、S:0.03%以下、Al:1.0%以下、N:0.005%以下、Ti:0.01〜0.06%、B:0.0001〜0.0030%を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼板を加工後、熱処理して製造された部材において、鋼板の平均結晶粒径が30μm以上で、最も硬い部位のビッカース硬度が120以下であることを特徴とする損失係数ηが0.001以上である減衰能に優れた部材。 In mass%, C: 0.005% or less, Si: less than 1.0%, Mn: 0.05 to 0.5%, P: 0.04% or less, S: 0.03% or less, Al: 1.0% or less, N: 0.005% or less, Ti: 0.01 In a member produced by processing a steel sheet having a composition comprising -0.06%, B: 0.0001-0.0030%, the balance Fe and inevitable impurities , and heat-treated , the average grain size of the steel sheet is 30 μm or more, A member excellent in damping ability having a loss coefficient η of 0.001 or more, characterized in that the Vickers hardness of the hardest part is 120 or less. 上記鋼板の平均結晶粒径が50μm以上であることを特徴とする請求項1または2に記載の減衰能に優れた部材。 3. The member having excellent damping capacity according to claim 1, wherein the steel sheet has an average crystal grain size of 50 μm or more. 質量%で、C:0.050%以下、Si:1.0%未満、Mn:0.05〜0.5%、P:0.04%以下、S:0.03%以下、Al:1.0%以下、N:0.005%以下、B:0.0001〜0.0030%を含有し、残部Feおよび不可避的不純物からなる組成を有し、平均結晶粒径が30μm以上である鋼板であって、所望の形状に加工後に500℃以上の温度範囲で熱処理して損失係数ηが0.001以上である減衰能に優れた部材として使用されることを特徴とする鋼板。 In mass%, C: 0.050% or less, Si: less than 1.0%, Mn: 0.05 to 0.5%, P: 0.04% or less, S: 0.03% or less, Al: 1.0% or less, N: 0.005% or less , B: 0.0001 It is a steel sheet containing ~ 0.0030% , having a composition composed of the balance Fe and inevitable impurities, and having an average crystal grain size of 30 μm or more, and heat-treated in a temperature range of 500 ° C. or more after processing into a desired shape A steel sheet characterized by being used as a member excellent in damping capacity having a loss coefficient η of 0.001 or more . 質量%で、C:0.005%以下、Si:1.0%未満、Mn:0.05〜0.5%、P:0.04%以下、S:0.03%以下、Al:1.0%以下、N:0.005%以下、Ti:0.01〜0.06%、B:0.0001〜0.0030%を含有し、残部Feおよび不可避的不純物からなる組成を有し、平均結晶粒径が30μm以上である鋼板であって、所望の形状に加工後に500℃以上の温度範囲で熱処理して損失係数ηが0.001以上である減衰能に優れた部材として使用されることを特徴とする鋼板。 In mass%, C: 0.005% or less, Si: less than 1.0%, Mn: 0.05 to 0.5%, P: 0.04% or less, S: 0.03% or less, Al: 1.0% or less, N: 0.005% or less, Ti: 0.01 -0.06%, B: 0.0001-0.0030%, having a composition composed of the balance Fe and inevitable impurities, and having an average crystal grain size of 30 μm or more, 500 ° C. or higher after processing into a desired shape A steel sheet characterized by being used as a member excellent in damping ability having a loss coefficient η of 0.001 or more when heat-treated in the above temperature range. 平均結晶粒径が50μm以上であることを特徴とする請求項4または5に記載の鋼板。 6. The steel sheet according to claim 4, wherein the average crystal grain size is 50 μm or more. 請求項4ないし6のいずれかに記載の鋼板を、所望の形状に加工後、500℃以上の温度範囲で熱処理することを特徴とする損失係数ηが0.001以上である減衰能に優れた部材の製造方法。 A steel sheet according to any one of claims 4 to 6 , after being processed into a desired shape, heat-treated in a temperature range of 500 ° C or higher, a member having an excellent damping ability having a loss coefficient η of 0.001 or higher Production method.
JP2007297403A 2006-12-08 2007-11-16 Member having excellent damping ability, method for producing the same, and steel sheet used as member having excellent damping ability Expired - Fee Related JP5303908B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2007297403A JP5303908B2 (en) 2006-12-08 2007-11-16 Member having excellent damping ability, method for producing the same, and steel sheet used as member having excellent damping ability
KR1020097011158A KR101100050B1 (en) 2006-12-08 2007-12-05 Member excelling in damping capacity, process for producing the same and steel sheet employed as member excelling in damping capacity
PCT/JP2007/073897 WO2008072645A1 (en) 2006-12-08 2007-12-05 Member excelling in damping capacity, process for producing the same and steel sheet employed as member excelling in damping capacity
CN2012105875104A CN103074541A (en) 2006-12-08 2007-12-05 Member excellent in damping capacity, method for producing the same, and steel sheet employed as member excellent in damping capacity
MYPI20092319A MY148256A (en) 2006-12-08 2007-12-05 Member excellent in damping capacity, process for producing the same, and steel sheet employed as member excellent in damping capacity
SG2011089950A SG177187A1 (en) 2006-12-08 2007-12-05 Member excellent in damping capacity, method for producing the same, and steel sheet employed as member excellent in damping capacity
CN200780045442.6A CN101553589B (en) 2006-12-08 2007-12-05 The parts that damping capacity is excellent and manufacture method thereof and the steel plate used as the parts that damping capacity is excellent

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006331784 2006-12-08
JP2006331784 2006-12-08
JP2007297403A JP5303908B2 (en) 2006-12-08 2007-11-16 Member having excellent damping ability, method for producing the same, and steel sheet used as member having excellent damping ability

Publications (2)

Publication Number Publication Date
JP2008163453A JP2008163453A (en) 2008-07-17
JP5303908B2 true JP5303908B2 (en) 2013-10-02

Family

ID=39693293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007297403A Expired - Fee Related JP5303908B2 (en) 2006-12-08 2007-11-16 Member having excellent damping ability, method for producing the same, and steel sheet used as member having excellent damping ability

Country Status (5)

Country Link
JP (1) JP5303908B2 (en)
KR (1) KR101100050B1 (en)
CN (2) CN101553589B (en)
MY (1) MY148256A (en)
SG (1) SG177187A1 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106324A (en) * 1977-02-28 1978-09-16 Nisshin Steel Co Ltd Method of producing steel product having good oscillating damping property
JPS6372830A (en) 1987-08-27 1988-04-02 Kawasaki Steel Corp Manufacture of cold rolled steel sheet having single ferrite phase-mixed grain structure, superior artificial age hardenability and deep drawability
JPH03285017A (en) * 1990-03-30 1991-12-16 Nisshin Steel Co Ltd Production of resistance welded tube having high vibration damping property
JPH04143215A (en) * 1990-10-04 1992-05-18 Kawasaki Steel Corp Production of steel for welded structure having high vibration damping capacity
JPH05329506A (en) * 1992-05-28 1993-12-14 Nippon Steel Corp Production of vibration damping structure having high toughness
JPH06228639A (en) * 1993-02-02 1994-08-16 Nippon Steel Corp Production of steel sheet excellent in damping capacity
JP3386514B2 (en) * 1993-06-16 2003-03-17 川崎製鉄株式会社 Damping alloy steel sheet and method of manufacturing the same
JPH0790370A (en) * 1993-09-28 1995-04-04 Kawasaki Steel Corp Method for straightening fe-cu-al series steel sheet excellent in damping capacity
JPH08157946A (en) * 1994-11-30 1996-06-18 Kawasaki Steel Corp Production of steel member having high vibration damping capacity and high surface hardness
JPH0910495A (en) * 1995-06-30 1997-01-14 Matsushita Electric Ind Co Ltd Clothes dryer
JP2001107135A (en) 1999-10-06 2001-04-17 Nippon Steel Corp Method for producing high toughness high damping alloy
JP4023088B2 (en) * 2000-12-25 2007-12-19 住友金属工業株式会社 Soft magnetic steel sheet for electromagnet actuator parts and manufacturing method thereof
CN1165634C (en) * 2001-05-17 2004-09-08 大连金牛股份有限公司 Spring steel for vibration damping of high-speed train railway and its mfg. process

Also Published As

Publication number Publication date
SG177187A1 (en) 2012-01-30
CN103074541A (en) 2013-05-01
JP2008163453A (en) 2008-07-17
KR101100050B1 (en) 2011-12-29
KR20090086232A (en) 2009-08-11
CN101553589B (en) 2015-08-26
CN101553589A (en) 2009-10-07
MY148256A (en) 2013-03-29

Similar Documents

Publication Publication Date Title
JP4519505B2 (en) Ferritic stainless steel sheet having excellent formability and method for producing the same
JP5056985B2 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP4528137B2 (en) Manufacturing method of high strength and high ductility steel sheet with excellent hole expandability
JP6095619B2 (en) Austenitic stainless steel sheet and metal gasket
JP5125600B2 (en) Ferritic stainless steel with excellent high-temperature strength, steam oxidation resistance and workability
TWI758184B (en) Vostian iron-based stainless steel material, method for producing the same, and leaf spring
WO2008013305A1 (en) Stainless steel sheet for parts and process for manufacturing the same
KR101606946B1 (en) High-strength stainless steel material and process for production of the same
JP5347600B2 (en) Austenitic stainless steel and method for producing austenitic stainless steel sheet
JP4324226B1 (en) High-strength cold-rolled steel sheet with excellent yield stress, elongation and stretch flangeability
JP4589747B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties, its manufacturing method and strain relief annealing method
JP2003193202A (en) High elasticity metastable austenitic stainless steel sheet and production method therefor
JP2010138444A (en) Steel sheet with high proportion limit superior in bending workability and manufacturing method therefor
JP4105962B2 (en) Sulfuric acid dew-point corrosion steel cold-rolled steel sheet for air preheater heat transfer element and manufacturing method thereof
JPH05255813A (en) High strength alloy excellent in workability and damping capacity
JP5303908B2 (en) Member having excellent damping ability, method for producing the same, and steel sheet used as member having excellent damping ability
JP2001262234A (en) Method for producing ferritic stainless steel sheet for automotive exhaust system excellent in deep drawability
JP4561136B2 (en) Steel sheet for nitriding treatment
JP2014080676A (en) PRODUCTION METHOD OF Fe-Al BASED ALLOY BAND-STEEL
TWI773346B (en) Vostian iron-based stainless steel material, method for producing the same, and leaf spring
WO2008072645A1 (en) Member excelling in damping capacity, process for producing the same and steel sheet employed as member excelling in damping capacity
JP2012201924A (en) Stainless steel sheet and method for producing the same
JPH05105989A (en) High strength stainless cold rolled steel strip excellent in formability and fatigue property and giving high strength by aging treatment and manufacture thereof
JP3034590B2 (en) Manufacturing method of damping steel sheet with excellent workability
WO2023105947A1 (en) Austenitic stainless steel sheet, method for producing same, and sheet spring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5303908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees