WO2008013305A1 - Stainless steel sheet for parts and process for manufacturing the same - Google Patents

Stainless steel sheet for parts and process for manufacturing the same Download PDF

Info

Publication number
WO2008013305A1
WO2008013305A1 PCT/JP2007/064910 JP2007064910W WO2008013305A1 WO 2008013305 A1 WO2008013305 A1 WO 2008013305A1 JP 2007064910 W JP2007064910 W JP 2007064910W WO 2008013305 A1 WO2008013305 A1 WO 2008013305A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
stainless steel
less
cold rolling
parts
Prior art date
Application number
PCT/JP2007/064910
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhiko Adachi
Masaru Abe
Kazuyoshi Fujisawa
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to CN2007800276522A priority Critical patent/CN101490298B/en
Priority to JP2008526850A priority patent/JP4475352B2/en
Priority to EP07791595.7A priority patent/EP2048256B1/en
Publication of WO2008013305A1 publication Critical patent/WO2008013305A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0452Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment with application of tension
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0252Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with application of tension

Definitions

  • the present invention relates to a stainless steel plate processed as an industrial product and a method for producing the same, and in particular, has high strength, high fatigue characteristics and excellent workability, and further has high flatness and low residual stress.
  • the present invention relates to a stainless steel plate for parts and a manufacturing method thereof. That is, the present invention relates to a stainless steel plate that exhibits excellent performance in many products and parts manufactured from a stainless steel plate or a steel strip (hereinafter sometimes collectively referred to as “stainless steel plate”), and its It relates to a manufacturing method.
  • the present invention relates to a stainless steel plate suitable for a wide variety of parts used in industrial products, which is highly accurate and complicated as products become smaller, lighter, and more complicated.
  • a wide variety of parts are used inside and outside various industrial products such as automobiles, home appliances, IT equipment, and mobile phones.
  • materials for each part there are a wide variety of materials for each part, but many metal materials are used, and stainless steel is often used.
  • Many of these parts made of stainless steel are manufactured from stainless steel plates by methods such as pressing and etching.
  • the stainless steel plate is formed into a predetermined shape using a die after being made into a predetermined size by cutting I ", blanking or the like.
  • a typical example is the ability to list panel parts.
  • Panel parts are used in many industrial products and may be used in many parts of a product.
  • there are many types of panel parts which are roughly divided into dish panels and plate panels. Specific examples include washers inserted between bolts and nuts, small dish panels used under mobile phone buttons, gaskets used in automobiles and motorcycles, and methanol packing.
  • etching a pattern is formed on the surface of the plate by a photoresist method, and a part of the material is corroded and removed (etched) by chemical means such as dipping in acid or spraying to cope with the pattern. It is to obtain a shape. Etching is difficult to press There are many applications to the processing of precision parts that are difficult, for example. This includes, for example, small parts such as the paper used for fixing magnetic heads, printer paper feed gears, shadow masks for conventional TVs that have an extremely large number of small holes, and meshes for printed circuit board printing. The power of S
  • Formability Complicating parts ⁇ With higher precision, it is necessary to process more complex shapes with high precision, so excellent formability is required. In general, the formability is proportional to the elongation (ductility) of the material, and the strength and elongation are in conflict (incompatible), and both high strength and excellent formability are required.
  • Etching performance Similarly, as parts become more complex and highly accurate, excellent etching performance is required to obtain a smooth machined surface free from defects such as locally generated holes (etching pits).
  • Residual stress When taken from a relatively large material (relative to the part), the part is released from surrounding constraints and changes shape due to the release of residual stress. In other words, the parts do not show the prescribed shape, and the defect rate when assembled into a product (which is smaller and lighter) increases (yield decreases). For this reason, the force S is required that the residual stress is low and stable.
  • the above-mentioned parts and the like are metastable like SUS301 and SUS304.
  • Stenai K ⁇ stainless steel has been used.
  • the transformation from the ⁇ parent phase to the hard martensite phase (processing-induced martensite ( ⁇ ′) transformation) can be caused by processing at room temperature.
  • This processing is usually performed by cold rolling, and the strength can be adjusted by adjusting the rolling reduction of the cold rolling.
  • Patent Document 1 discloses the fatigue characteristics due to the limitation of the dimensions of the compounds that are the starting points of fracture.
  • Patent Document 2 discloses an improvement in etching properties by limiting the distribution of compounds that serve as starting points of etching pits (holes).
  • Patent Document 3 discloses improvement of formability and fatigue characteristics by refining crystal grains!
  • Patent Document 4 and Patent Document 5 disclose a TA (Tension-Annealing) process as an improvement of the series of manufacturing steps. In this method, heating is performed at a relatively low temperature while applying tension within a range in which the performance after temper rolling is not significantly changed, and flatness improvement and residual stress reduction can be performed simultaneously.
  • Patent Document 6 and Patent Document 7 describe a stainless steel manufacturing method having a temper annealing method and a high-performance metastable ⁇ obtained by the temper annealing method. A stainless steel sheet is disclosed. The outline of the process is shown in Fig. 6.
  • a stainless steel material having a predetermined composition is softened by temper annealing of a material that has been work-hardened by cold rolling to a product sheet thickness, and the performance is adjusted.
  • the material becomes a mixed structure of the recrystallized grains and the unrecrystallized portion that remains affected by the pre-processing, and it is possible to achieve both high strength and high ductility by optimizing the ratio.
  • transformation from work-induced martensite ( ⁇ ') phase to austenite ( ⁇ ) parent phase this is referred to as "reverse transformation"
  • recovery and recrystallization occur, resulting in residual stress. Reduced.
  • Patent Documents 8 to 10 the rolling conditions and heat treatment conditions of the stainless steel plate as the material are specified, and transition and martensite are introduced into the crystal grains to increase the etching rate in the crystal grains.
  • An increasing stainless steel sheet for photoetching is disclosed. This means that the smoothness of the etched surface is improved by making the etching rate in the crystal grains equal to that of the crystal grain boundaries.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-290449
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-273586
  • Patent Document 3 Japanese Patent Laid-Open No. 5-279802
  • Patent Document 4 Japanese Patent Laid-Open No. 10-34237
  • Patent Document 5 JP 2001-226718
  • Patent Document 6 Japanese Patent No. 3603726
  • Patent Document 7 Japanese Patent Application Laid-Open No. 2002-194506
  • Patent Document 8 Japanese Patent Laid-Open No. 2005-314772
  • Patent Document 9 JP-A-2005-320586
  • Patent Document 10 Japanese Unexamined Patent Application Publication No. 2005-320587 Disclosure of the invention
  • the manufacturing method has the same problem, and it has been an object to adopt a method for manufacturing a stainless steel plate that can solve the above-described problem.
  • the conventional manufacturing method and the manufacturing methods of Patent Document 4 and Patent Document 5 have a limit in achieving both high strength and high ductility of the material.
  • shape correction becomes difficult and the plate shape tends to deteriorate.
  • strain relief annealing took a long time and became a factor that hindered productivity.
  • the plate thickness and hardness are different, and the amount used may be relatively small, these problems become prominent, resulting in a significant increase in product cost.
  • Patent Document 6 and Patent Document 7 have problems for coping with further improvement in workability by promoting the tendency to reduce the size and weight of products and parts, and expanding the variety of products. It was.
  • the present invention provides a stainless steel plate capable of improving workability (formability, etching property) and fatigue characteristics while having good strength and ductility, and a method for producing the stainless steel plate. Let it be an issue. Furthermore, another object is to stably supply the stainless steel plate of the present invention at low cost and industrially by the method for producing the stainless steel plate. Means for solving the problem
  • the performance is improved by the structure having the ⁇ mixed structure.
  • the recrystallization part in the mixed structure has the effect of strengthening by grain refinement and the suppression of non-uniform deformation at the grain boundary due to the increase in density, while the non-recrystallized part in the mixed structure has work hardening and reverse transformation.
  • the deformation progresses uniformly and the formability (ductility) is improved.
  • the etching property can be considered, and it is considered that the etched surface becomes uniform due to the refinement of crystal grains and the increase in the single structure of the ⁇ parent phase. As a result, the non-uniform portion that becomes the starting point of fatigue fracture disappears, and the fatigue characteristics after molding and after etching are improved.
  • the final cold rolling can pulverize and refine the compound by increasing the reduction ratio. This is one of the advantages of performance adjustment as a separate process (temper annealing), and temper rolling is inevitably performed at a predetermined processing rate for performance adjustment.
  • the invention as described in claim 1 is the entire stainless steel is taken as 100 mass%, 0.1 to C 01-0. 08 mass 0/0, Si and 0. 1 2. 0 weight 0/0, Mn and 3.0 mass 0/0 or less, the Cr 10. 0-20. 0 wt 0/0, Ni 3. 0-12. 0 wt 0/0, N and 0.02 -0. containing each ingredient 24 mass 0/0, and the formula wherein is contained the values of the mass% of each component is substituted
  • the invention described in claim 2 is the whole stainless steel is taken as 100 mass%, 0.1 to C 01-0. 08 mass 0/0, Si and 0. 1 2. 0 weight 0/0, Mn and 3.0 mass 0/0 or less, the Cr 10. 0 to 20. 0 wt 0/0, Ni of 3.0 to 12.0 mass 0/0, N and 0.02 to 0. 24 wt 0/0, and Nb, Ti, and containing each component at least one of 0.5 mass% or less selected from V, and the hydrated Formula that substitutes the mass% value of each component
  • Md 500-458 (C + N) -9 (Si + Mn)-14Cr-20Ni- 65Nb- 27Ti- 61V Md value of 0 ⁇ 80 is satisfied, the balance is unavoidable chemical composition
  • the internal diameter of the compound having a maximum diameter of 20 m or more among the compounds formed by each component is 30 or less per 5 g of the stainless steel mass, and the metal structure of the entire stainless steel is The problem is solved by providing a stainless steel sheet for parts, which is a mixed structure of recrystallized grains and non-recrystallized parts.
  • the invention described in claim 3 is characterized in that the average grain size of recrystallized grains of the stainless steel sheet for parts described in claim 1 or 2 is 10 m or less. To do.
  • the invention described in claim 4 is characterized in that the mixed structure of the stainless steel sheet for parts described in claim 3 is an austenitic phase of 70 mass% or more.
  • the invention described in claim 5 is the entire stainless steel is taken as 100 mass%, 0.1 to C 01-0. 08 mass 0/0, Si and 0. 1 2. 0 weight 0/0, Mn and 3.0 mass 0/0 or less, the Cr 10. 0-20. 0 wt 0/0, Ni 3. 0-12. 0 wt 0/0, N and 0.02 -0. containing each ingredient 24 mass 0/0, and the formula wherein is contained the values of the mass% of each component is substituted
  • a first cold rolling step (S1) in which a material having a chemical composition with an Md value of 0 to 80 and a balance of inevitable impurities is cold-rolled at least once (S1)
  • the first annealing step (S2) arranged after the first cold rolling step in combination with the hot rolling step, and the final rolling provided on the subsequent step side of the first annealing step, with a reduction rate of 20%
  • the second cold rolling step (S3) in which the total rolling reduction with the first cold rolling is 60% or more, and the material after the second cold rolling step is 650 to 1000 ° C.
  • a second annealing step (S4) in which the material is held at 300 seconds or less and tempered by applying a tensile strength of 0.2% or less of the material at the held temperature. Solve the problem.
  • the invention described in claim 6 is the entire stainless steel is taken as 100 mass%, 0.1 to C 01-0. 08 mass 0/0, Si and 0. 1 2. 0 weight 0/0, Mn and 3.0 mass 0/0 or less, the Cr 10. 0 to 20. 0 wt 0/0, Ni of 3.0 to 12.0 mass 0/0, N and 0.02 to 0. 24 wt 0/0, and Nb, Ti, and containing each component at least one of 0.5 mass% or less selected from V, and the hydrated Formula that substitutes the mass% value of each component
  • the invention described in claim 7 is the material at a temperature where the tension in the second annealing step of the method for manufacturing a stainless steel sheet for parts according to claim 5 or 6 is maintained. 0. 40% or less of 2% yield strength.
  • the invention described in claim 8 is further adjusted after the second annealing step (S4) in the method for manufacturing a stainless steel plate for parts according to any one of claims 5 to 7. It is characterized by applying quality rolling.
  • the present invention it is possible to provide a stainless steel plate and a method for manufacturing the same that can manufacture a wide variety of parts with high accuracy and high reliability.
  • FIG. 1 is a diagram for explaining one embodiment of the flow of the production method of the present invention.
  • FIG. 2 is a graph showing an example of the relationship between the temperature of a material and the 0 ⁇ 2% proof stress.
  • FIG. 4 The surface of the bent portion in the case of No. 4 and No. 28 of this example is shown enlarged. It is a photograph.
  • FIG. 5 is a diagram for explaining one example of a conventional method for producing a stainless steel plate.
  • FIG. 6 is a view for explaining another example of a conventional method for producing a stainless steel plate.
  • the stainless steel plate of the present invention will be described.
  • the stainless steel sheet of the present invention is characterized by its composition and structure, Md value, and the mode of the underlying compound. Each will be described below.
  • the component contained in this invention and its content are demonstrated.
  • the main component of the stainless steel plate of the present invention is Fe, and the contents shown below show the ratio when the entire stainless steel plate is 100 mass%.
  • C The content of C is set to 0.01 to 0.08 mass%.
  • C is one of the cheap and effective interstitial solid solution strengthening elements. The effect of strengthening the solid solution by adding 0.1% by mass or more is exhibited. On the other hand, the upper limit is 0.08% by mass. This is because C is a strong ⁇ -stabilizing element, and excessive addition suppresses the processing-induced martensite ( ⁇ ') transformation that is necessary.
  • ⁇ ' processing-induced martensite
  • a more preferable range of the C content is 0.02-0.07% by mass.
  • Si content should be 0 .;!-2.0 mass%.
  • Si is an effective solid solution strengthening element.
  • the reason why the lower limit is set to 0.1% by mass or more is that this increases the high-temperature strength and facilitates acquisition of the above-mentioned mixed structure, which is a feature of the present invention.
  • the upper limit was set to 2.0% by mass because Si is also a ferri ( ⁇ ) stabilizing element, and excessive addition increases the ⁇ and phase remaining during temper annealing.
  • a more preferable range of the Si content is 0.2 to 1.8% by mass.
  • Mn The Mn content is 3.0 mass% or less.
  • Mn is a ⁇ -stabilizing element and is added in consideration of the balance with other elements. The reason why the content is 3.0% by mass or less is that when it is added excessively, ⁇ and compatibility S cannot be obtained. In addition, inclusions and the like may be formed, which may deteriorate workability and corrosion resistance.
  • a more preferable range of the Mn content is 2.6% by mass or less.
  • the content of Cr is 10.0 to 20.0 mass%.
  • Cr is one of the basic alloy elements of stainless steel. The reason why the content is 10.0% by mass or more is to obtain the necessary corrosion resistance.
  • the upper limit was set to 20.0% by mass because Cr is an ⁇ -stabilizing element, and excessive addition increases the ⁇ ′ phase remaining after temper annealing.
  • a more preferred range of Cr content is 13. 0-19. 0 wt 0/0.
  • Ni The Ni content is 3.0 to 12.0% by mass.
  • Ni is one of the basic alloy elements of stainless steel and is the most effective gamma stabilizing element.
  • the reason why the lower limit is set to 3.0% by mass is that it is indispensable for obtaining a stable ⁇ phase at room temperature.
  • the upper limit is set to 12.0% by mass because it is necessary to cause the ⁇ ′ transformation within a predetermined range.
  • a more preferable range of the Ni content is 3.5-11. 5% by mass.
  • N is 0.02 to 0.25% by mass.
  • N is one of the effective interstitial solid-solution strengthening elements like C, and it has the ability to form a solid solution without forming a compound up to a higher temperature than C. That is, it is the main reinforcing element of the present invention. From this point of view, the lower limit was set to 0.02 mass%. The upper limit is set to 0.25% by mass because when it is added excessively, the hot workability is deteriorated and the production of the plate may be hindered.
  • N like C, is one of the powerful ⁇ -stabilizing elements, and it also depends on suppressing ⁇ ′ transformation.
  • Nb The content of Nb is 0.50 mass% or less. Nb precipitates Nb compounds that are relatively stable and finely dispersed even at high temperatures, making it easy to obtain a mixed structure, and recrystallized grains can be refined by suppressing grain growth.
  • the upper limit is set to 0.50% by mass because excessive addition forms a coarse compound and lowers the ductility of the material. Moreover, since it is an expensive substance, an upper limit is set from the viewpoint of cost.
  • a more preferable range of Nb is 0.45% by mass or less.
  • Ti content is 0.50 mass% or less. Ti is considered to have the same effect as Nb. In other words, the precipitation of Ti compound facilitates the acquisition of the mixed structure, and the recrystallized grains can be refined. In addition, it is thought to form compounds more easily than Nb.
  • the upper limit is set to 0.50% by mass because excessive addition forms a coarse compound and lowers the ductility of the material.
  • the Ti content is more preferably 0.45% by mass or less
  • V The content of V is 0.50 mass% or less. V has the same effect as Nb and Ti.
  • the precipitation of the V compound facilitates the acquisition of the mixed structure and refines the recrystallized grains.
  • the upper limit is set to 0.50% by mass because excessive addition forms a coarse compound and lowers the ductility of the material.
  • a more preferable range of the V content is 0.001% by mass or more and 0.45% by mass or less.
  • elements added from an industrial aspect such as Ca, A1 or REM (rare earth metal) used as a deoxidizer during melting, and B, which is expected to improve hot workability, are required.
  • the total amount may be 0.3% by mass or less.
  • each of Cu and Mo, which are inevitable may be contained in an amount of 0.4% by mass or less.
  • Cu and Mo act as elements for adjusting the ⁇ stability in the present invention.
  • inevitable impurities in a normal composition may be included.
  • the Md value is calculated according to the formula (1) or formula (2) in the present invention, and the value is 0 to 80 ° C.
  • formula (2) is used. If neither is added, it is calculated using equation (1).
  • the symbols C, N, Si, M in the formula For n, Cr, Ni, Nb, Ti, and V, the content (% by mass) of the corresponding component is substituted.
  • Md 500-458 (C + N) — 9 (Si + Mn) — 14Cr— 20Ni ⁇ ⁇ ⁇ (1)
  • Md value It is expressed in units of C and indicates the ease with which processing-induced martensite ( ⁇ ') transformation occurs.
  • the present invention targets metastable ⁇ stainless steel and utilizes the ⁇ ′ transformation, so it is necessary to control the ⁇ ′ transformation. Therefore, the optimum Md value for this purpose was set to 0 to 80 ° C. More preferably, it is 10-70 degreeC.
  • the stainless steel plate of the present invention in the compounds contained in the stainless steel plate, those having a maximum diameter of 20 m or more are inherent in 30 or less per 5 g of the mass of the stainless steel plate. As a result, the occurrence of defects due to the compound can be reduced. That is, it is considered that the material has excellent moldability, and the probability that a coarse compound exists in the vicinity of the surface becomes extremely small. In the case of pressing, unevenness and minute cracks due to a large difference in deformability between the two (material and coarse compound) are improved. In the case of the etching process, the occurrence of local defects such as compound exposure due to the difference in corrosion resistance, and further, holes (etch pits) due to dropping off is eradicated. As a result, the surface of the machined part becomes smooth and the fatigue characteristics are improved. This local defect is considered to be detected by measuring the maximum roughness of the surface of the processed part.
  • the material structure of the stainless steel sheet of the present invention is a “mixed structure” defined by a mixed structure of recrystallized grains and unrecrystallized parts that remain affected by pre-processing. As a result, it is possible to achieve both high strength and high ductility, as well as high flatness and low residual stress.
  • the mixed structure may have a ⁇ phase force of 70 area% or more. By forming the ⁇ phase as the main structure, formability and fatigue characteristics are further improved. More preferably, it is 80 area% or more.
  • the various properties are excellent. Further, it is possible to provide a stainless steel sheet that can improve workability (formability, etching property) and fatigue characteristics.
  • the grain size of recrystallization may be 10 m or less. This further improves the formability and fatigue characteristics resulting from the refinement of crystal grains. More preferably, it is 6 m or less.
  • the method for producing a stainless steel plate of the present invention comprises a first cold rolling step (S 1) that is at least one cold rolling step, and a first cold rolling step (S1 ) And at least one first annealing step (S2), a second cold rolling step (S3), and a second annealing step (S4) that is annealing for tempering. is there.
  • S 1 first cold rolling step
  • S1 first cold rolling step
  • S2 at least one first annealing step
  • S3 a second cold rolling step
  • S4 second annealing step
  • the first cold rolling step (S1) a material that has been hot-worked by adding the above-described components is supplied. This process is performed mainly for the purpose of bringing the dimensions of the material closer to the steel sheet that is finally obtained. Therefore, the rolling may be performed several times, not necessarily once. Specifically, if the total rolling reduction with the second cold rolling performed later is 60% or more, preferably 70% or more, more preferably 80% or more, most preferably 90%. That's it.
  • This is a process that is combined with the first cold rolling process (S1), and is a process mainly intended to impart softening and ductility of the material. Therefore, the conditions are not particularly limited as long as the annealing process is performed normally. The conditions are determined by the material to be supplied and the form of the steel sheet finally obtained.
  • the second cold rolling step (S3) is a step that is arranged after the first cold rolling step (S1) and the first annealing step (S2) and performs the final cold rolling.
  • the thickness is reduced to the final thickness of the stainless steel plate.
  • the thickness reduction is 20% or more in terms of rolling reduction, and the total rolling reduction with the first cold rolling is 60% or more. This reduces the rolling reduction by 20 This is because a sufficient work-induced martensite ( ⁇ ′) phase can be obtained by setting the content to at least%. Furthermore, this makes it possible to refine crystal grains. Preferably it is 30% or more.
  • the total reduction ratio of the first cold rolling and the second cold rolling was set to 60% or more.
  • the compound was finely pulverized to obtain a coarse compound of 20 inches or more.
  • the number of can be reduced. This makes it possible to reduce the maximum diameter of the compound and reduce the number of coarse compounds of 20 m or more. At this time, cold rolling using a small-diameter work roll is preferable because the effect of crushing coarse compounds is high.
  • the second annealing step (S4) is the final annealing step, and this determines the material aspect of the stainless steel plate that can be finally obtained. Specifically, in this step, the annealing temperature was set to 650 to 1000 ° C, and the holding time was set to 300 seconds or less. This is specified from the viewpoints of adjusting the mechanical properties of the material and also affecting the metal structure of the material, such as crystal grain growth, and the production efficiency. This makes it possible to obtain a stainless steel plate that is efficient and has high flatness and low residual stress.
  • the annealing temperature is set and tension is applied to the material.
  • the magnitude of the tension is less than 0.2% resistance of the material at the annealing temperature. More preferably, it is 40% or less of the 0.2% proof stress.
  • the reverse transformation is adjusted by applying tension to the material at such a size. Accordingly, fine recrystallized grains are included in the material, and the material can have a mixed structure with a high proportion of ⁇ phase. As a result, the obtained stainless steel sheet is given a well-balanced strength and ductility, and both high flatness and low residual stress can be achieved.
  • Figure 2 shows a graph showing an example of the relationship between the temperature of the material and the 0.2% proof stress value of the material. For example, the tension is determined and applied according to FIG.
  • temper rolling can be performed after the second annealing for the purpose of increasing the strength, etc., as long as the effect of the inclusion distribution and the mixed structure exhibiting high performance can be maintained. It is.
  • the stainless steel plate for parts of the present invention can be produced. That is, it is possible to produce and provide a stainless steel plate that can improve the caloric properties (formability, etching property) and fatigue properties while making the above various properties excellent. According to the production method, the stainless steel sheet of the present invention can be supplied inexpensively and industrially stably.
  • the present invention is not limited to the examples.
  • a stainless steel plate corresponding to the present invention and a stainless steel plate not corresponding to the present invention were manufactured and subjected to various evaluations.
  • Table 1 shows the composition of the specimens. Among each component, those outside the scope of the present invention are marked with “*” for the content number.
  • a stainless steel plate was manufactured according to each manufacturing condition for each of the materials having the compositions shown in Tables 1 to 1.
  • Table 2 shows the main conditions in the manufacturing process.
  • Test steel Manufacturing process Inclusion miniaturization measures 1st and 2nd cold 2nd cold rolling 2nd annealing process
  • temper rolling was performed to a thickness of 0.2 mm, and each hardness specification defined in JI S G 4313 was used. Then, straightening with a tension leveler, 500 ° C heating, and strain relief annealing for 300 seconds were performed.
  • the work rolls used in the cold rolling were those with a diameter of 200 mm.
  • Test pieces were collected from the 0.2 mm-thick thin plate obtained as described above, and various characteristics were investigated and compared.
  • Crystal grain size Regarding the cross section of the sample parallel to the rolling direction (R. D.), the structure after embedding, polishing and etching was observed using an optical microscope and SEM. In addition, a thin film was formed and the structure was observed using a transmission electron microscope (TEM). Then, a photograph of an average structure was taken in each, and the crystal grain size was measured from the photograph. This also determined whether the tissue was a mixed tissue.
  • the crystal grain size is No .;! To No. 26 is the value of recrystallized grains after temper annealing,
  • ⁇ phase ratio A diffraction pattern was measured on the surface of the plate using an X-ray diffractometer, and the ratio of the negative phase and the ⁇ 'phase was calculated from the integrated intensity ratio of each phase peak.
  • Hardness The surface of the plate was measured at a load of 9.8 mm using a Micro'Vickers hardness tester.
  • Elongation Samples taken in parallel with the rolling direction (R. D.) and measured for an IS-3 ⁇ test piece were measured using an Instron type tester.
  • Rate of increase (%) 100 X (Ry after bending, Ry before processing) / (Ry before processing).
  • Fatigue properties Using a swing-type plane bending tester, the fatigue limit (the upper limit of the stress that can withstand 107 repeated bendings) in a material that has not been bent was clarified. Next, the test specimens whose surface roughness was used for the measurement bending were repeatedly bent at a stress of 90% of the fatigue limit of the material, and the presence or absence of cracks after 107 repeated bendings was investigated. The case of cracking was evaluated as X, and the case of cracking force was evaluated as ⁇ .
  • Plate warpage In this example, flatness was evaluated by plate warpage. The method is to measure the height of the rising warp by hanging the test piece of 500mm in length taken parallel to R.D. before and after temper annealing or shape correction + strain relief annealing.
  • Decrease rate (%) 100 X (warp after treatment warp before treatment) / warp before treatment
  • Wood yield fi ⁇ ⁇ * (26) 30 Comparative example As can be seen from Table 3, No. satisfying the conditions of the production method of the present invention; With respect to 17, all compounds having a maximum diameter of 20 m or more were 30 or less, and a mixed tissue could be obtained. On the other hand, in each of No. 18 to No. 32, there was a problem that the number of compounds having a maximum diameter of 3 ⁇ 40 m or more was 30 or more, or the structure was not a mixed structure. It appears prominently.
  • FIG. 3 shows the relationship between hardness and elongation based on the results of the examples.
  • Table 4 and Figure 3 As can be seen, No. 1 to No. 17 which is an example of the present invention has higher strength and higher ductility than any of No. 18 to No. 32 which are comparative examples.
  • the increase rate of the maximum value of the surface roughness after bending is all 60% or less, and the improvement of formability is exhibited by the progress of uniform deformation.
  • Figure 4 shows a photograph of the surface before and after bending and the surface roughness (Ry) at that time.
  • the invention example (No. 4) and the comparative example (No. 28) are shown for a flat plate, a bending radius of 2 mm, and a bending radius of 0.5 mm.
  • These photos and the value of Ry can also see the effect of the present invention.
  • in the case of flat plates when stainless steel plates are subjected to force bending, which has almost the same surface roughness, a large difference appears in the surface roughness.
  • the bending fatigue characteristics of the present invention are also good. As a result, excellent fatigue characteristics can be maintained even after bending. In other words, by optimizing the distribution of the compound in addition to the mixed structure, uniform deformation progresses and defects that occur during bending are reduced. As a result, it is considered that the excellent formability and high fatigue strength were maintained.
  • the processed surface has a tendency that the maximum value of the surface roughness is reduced and defects such as etching pits are reduced, and the processed surface is smoothed compared to before processing. That is, according to the present invention, the workability including the etching property can be improved, and the high V and fatigue strength can be maintained even in the processed parts.
  • the plate warpage and the residual stress also decreased by 70% or more with respect to the residual stress whose increase rate was small. Therefore, the present invention has a significant effect on such characteristics!
  • No. 2, No. 11, and No. 12 have a relatively high temper annealing temperature, so that the recrystallized grain size exceeds 10 ⁇ m.
  • the applied tension exceeds 40% of the 0.2% proof stress, so the ratio of the ⁇ phase of the mixed structure is less than 70%.
  • the grain growth is suppressed by adding Nb, Ti, and V. Can be further improved, and No. 7, For No. 8, it can be improved by reducing the applied tension as in No. 10.
  • No. l to No. 18, No. 20 to No. 22, and No. 26 to No. 32, in which the measures for inclusion miniaturization were implemented, included in the present invention the number of inclusions having a maximum diameter of 20 or more
  • No. 10 using the floating of inclusions and a small-diameter work roll shows the best balance between strength and ductility and workability among the examples of the present invention.
  • the comparative example is inferior in balance between strength and ductility as compared with the inventive example as described above.
  • No. 18 to No. 21 fall within the scope of the present invention in terms of component content and Md value, but No. 18 and No. 19 have a maximum diameter of 20 due to insufficient rolling reduction. More than 30 compounds over m were generated. As a result, good characteristics cannot be obtained due to the absence of a mixed structure.
  • the temper annealing temperature was outside the range of the production method of the present invention, so a mixed structure was not formed, and the workability and fatigue characteristics were both equal to or lower than those of conventional materials. In other comparative examples, the material does not satisfy the required composition, and the performance is not improved.
  • Table 5 shows the characteristic adjustment results of the material obtained by subjecting the No. 2 material to temper rolling at a reduction rate of 10% and 20%.
  • No. 2-a is when the temper rolling is applied to the No. 2 material at a reduction rate of 10%
  • No. 2-b is the same when the reduction rate is 20%. As a result, it is confirmed that the same material retains excellent properties even after temper rolling.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)

Abstract

The invention provides a stainless steel sheet which has excellent strength and ductility and is improved in workability (formability and etchability) and fatigue characteristics and a process for manufacturing the stainless steel sheet. Further, the invention ensures industrial and stable supply of the stainless steel sheet at a low cost. A stainless steel sheet which contains by mass C: 0.01 to 0.08%, Si: 0.1 to 2.0%, Mn: 3.0% or below, Cr: 10.0 to 20.0%, Ni: 3.0 to 12.0% and N: 0.02 to 0.24% when the whole amount of the stainless steel is taken as 100% by mass and has an Md value of 0 to 80 as defined by the formula: Md=500-458(C+N)-9(Si+Mn)-14Cr-20Ni and in which compounds formed from the above components and having maximum diameters of 20μm or above reside in an amount of at most 30 pieces per 5g by mass of the stainless steel and the metal structure of the whole of the stainless steel is a mixed structure composed of recrystallized grains and unrecrystallized parts.

Description

明 細 書  Specification
部品用ステンレス鋼板及びその製造方法  Stainless steel sheet for parts and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、工業製品として加工等されるステンレス鋼板及びその製造方法に関し、 詳しくは高強度、高疲労特性及び優れた加工性を有し、さらには高平坦度、低残留 応力である部品用ステンレス鋼板とその製造方法に関する。すなわち、本発明は、ス テンレス鋼板又は鋼帯 (以降、総称して「ステンレス鋼板」と記載することがある。)から 製造される多くの製品、部品で優れた性能を発揮するステンレス鋼板及びその製造 方法に関する。特に製品の小型 ·軽量化にともない高精度 ·複雑化する、工業製品 内に組み込まれて使用される多種多様の部品に適するステンレス鋼板及びその製 造方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a stainless steel plate processed as an industrial product and a method for producing the same, and in particular, has high strength, high fatigue characteristics and excellent workability, and further has high flatness and low residual stress. The present invention relates to a stainless steel plate for parts and a manufacturing method thereof. That is, the present invention relates to a stainless steel plate that exhibits excellent performance in many products and parts manufactured from a stainless steel plate or a steel strip (hereinafter sometimes collectively referred to as “stainless steel plate”), and its It relates to a manufacturing method. In particular, the present invention relates to a stainless steel plate suitable for a wide variety of parts used in industrial products, which is highly accurate and complicated as products become smaller, lighter, and more complicated.
背景技術  Background art
[0002] 自動車、家電製品、 IT機器、携帯電話等の各種工業製品には、多種多様な部品 がその内外に使用されている。各部品の材料も多種多様であるが金属材料が多く適 用され、その中でもステンレス鋼が用いられている場合が多い。これらステンレス鋼を 材料とした部品の多くは、プレス加工やエッチング加工等の方法によりステンレス鋼 板から製作される。  [0002] A wide variety of parts are used inside and outside various industrial products such as automobiles, home appliances, IT equipment, and mobile phones. There are a wide variety of materials for each part, but many metal materials are used, and stainless steel is often used. Many of these parts made of stainless steel are manufactured from stainless steel plates by methods such as pressing and etching.
[0003] 例えば、プレス加工の場合、該ステンレス鋼板を切肖 I」、プランキング等により所定寸 法とした後、金型を用いて所定の形状に成形する。その代表的なものとしてパネ部品 を挙げること力 sできる。パネ部品は多くの工業製品に使用され、また、 1つの製品中の 多くの部位に用いられていることもある。また、パネ部品の種類も多ぐ形状により皿 パネと板パネに大別される。具体的にはボルトとナットの間に挿入されるワッシャー、 携帯電話ボタン下で使用される小型皿パネ、自動車やオートバイに使用されるガス ケッ卜、メタノレパッキン等を挙げること力 Sできる。  [0003] For example, in the case of press working, the stainless steel plate is formed into a predetermined shape using a die after being made into a predetermined size by cutting I ", blanking or the like. A typical example is the ability to list panel parts. Panel parts are used in many industrial products and may be used in many parts of a product. In addition, there are many types of panel parts, which are roughly divided into dish panels and plate panels. Specific examples include washers inserted between bolts and nuts, small dish panels used under mobile phone buttons, gaskets used in automobiles and motorcycles, and methanol packing.
[0004] 一方、エッチング加工は板表面にフォトレジスト法でパターンを形成し、酸に浸漬、 スプレーで吹き付ける等の化学的手段により素材の一部を腐食、除去 (エッチング)し 、パターンに対応する形状を得るというものである。エッチング加工はプレス加工が困 難であるような例えば精密部品の加工への適用が多い。これには例えば磁気ヘッド 固定に使用されるジンノ^レ (パネ)、プリンター紙送り用歯車等の小型部品、極めて多 数の小さな孔を開ける従来型 TVのシャドーマスク、プリント基板印刷用メッシュ等を 挙げること力 Sでさる。 On the other hand, in the etching process, a pattern is formed on the surface of the plate by a photoresist method, and a part of the material is corroded and removed (etched) by chemical means such as dipping in acid or spraying to cope with the pattern. It is to obtain a shape. Etching is difficult to press There are many applications to the processing of precision parts that are difficult, for example. This includes, for example, small parts such as the paper used for fixing magnetic heads, printer paper feed gears, shadow masks for conventional TVs that have an extremely large number of small holes, and meshes for printed circuit board printing. The power of S
[0005] このようなステンレス鋼を用いた部品において、近年における部品の小型 ·軽量化 及び複雑化'高精度化の傾向が進み、次のような各種特性がさらに必要とされてきて いる。  [0005] In these parts using stainless steel, in recent years, there has been a tendency for the parts to be smaller, lighter, more complex and more accurate, and the following various characteristics have been further required.
•強度:パネ部品では応力が付与されること、他に構造体の側面を持つ部品も多ぐ 小型軽量化 (による剛性の低下)に対して、素材には高強度が必要とされる。  • Strength: For panel parts, stress is applied, and there are many other parts that have the side of the structure.
•成形性:部品の複雑化 ·高精度化にともない、より複雑な形状を高精度に加工する ことを要するため、優れた成形性が必要とされる。一般的には、成形性は材料の伸び (延性)に比例し、強度と伸びが対立 (両立しない)関係にあり、高強度と優れた成形性 の両立が必要とされる。  • Formability: Complicating parts · With higher precision, it is necessary to process more complex shapes with high precision, so excellent formability is required. In general, the formability is proportional to the elongation (ductility) of the material, and the strength and elongation are in conflict (incompatible), and both high strength and excellent formability are required.
•エッチング性:同様に部品の複雑化 ·高精度化にともない、局所的に発生する孔 (ェ ツチングピット)等の欠陥が無い、平滑な加工面を得るために優れたエッチング性が 要求される。  • Etching performance: Similarly, as parts become more complex and highly accurate, excellent etching performance is required to obtain a smooth machined surface free from defects such as locally generated holes (etching pits).
•疲労特性:パネ部品では繰り返し変動応力が負荷される場合も多ぐ小型 ·軽量化 に伴い変形量が増加することから優れた疲労特性が要求される。また、素材段階で 優れるものの、成形により大きく劣化する場合が多ぐ部品として優れ、高い信頼性を 有することが必要とされる。  • Fatigue characteristics: Panel parts are often subjected to repeated fluctuating stress, and the amount of deformation increases with the reduction in size and weight. Moreover, although it is excellent at the material stage, it is required to be excellent as a part that is often greatly deteriorated by molding and to have high reliability.
•平坦度:高精度 ·複雑化を続ける部品の形状を安定獲得し、小型 ·軽量化する製品 への組込み時の不良率を下げる (歩留りを上昇する)ため、板形状に優れ、高い平坦 度を安定して有することが必要とされる。  • Flatness: High accuracy • Stablely acquires the shape of parts that continue to become more complex, and lowers the defect rate (increases the yield) when incorporated in products that are smaller and lighter. Must be stable.
•残留応力: (部品に対して)比較的大きな素材から採取した場合、部品は周囲の拘束 から解放され、残留する応力の解放により形状が変化する。すなわち、部品は所定 の形状を示さず、(小型 ·軽量化する)製品への組込み時の不良率が上がる (歩留りが 下がる)。このため、残留応力が低ぐ安定していること力 S必要とされる。  • Residual stress: When taken from a relatively large material (relative to the part), the part is released from surrounding constraints and changes shape due to the release of residual stress. In other words, the parts do not show the prescribed shape, and the defect rate when assembled into a product (which is smaller and lighter) increases (yield decreases). For this reason, the force S is required that the residual stress is low and stable.
[0006] 従来において、以上のような部品等には SUS301や SUS304のような準安定ォー ステナイ K γ )系ステンレス鋼が使用されてきた。該オーステナイト系ステンレス鋼で は室温で加工することにより、 γ母相から硬質なマルテンサイト相への変態(加工誘 起マルテンサイト(α ' )変態)を生じさせることができる。これにより、ある程度の延性 を有しつつ、強度の高いステンレス鋼板を得ることが可能である。この加工は通常冷 間圧延により行われ、該冷間圧延の圧下率を調整することによる強度調整が可能で ある。延性を有しつつ高強度が得られるのは、加工誘起マルテンサイト(α ' )変態で 当該部分のみが硬化することにより局所的な変形が抑制され、軟質な未変態部(γ 部)に変形が伝播し、全体が均一に変形して高い伸びを示すことによる。これは TRI Ρ効果とレ、われて!/、る。このような特徴から準安定オーステナイト( γ )系ステンレス鋼 は JIS規格 (IIS G 4313)においてバネ用ステンレス鋼帯としても分類されている。 [0006] Conventionally, the above-mentioned parts and the like are metastable like SUS301 and SUS304. Stenai Kγ) stainless steel has been used. In the austenitic stainless steel, the transformation from the γ parent phase to the hard martensite phase (processing-induced martensite (α ′) transformation) can be caused by processing at room temperature. As a result, it is possible to obtain a stainless steel plate having high strength while having a certain degree of ductility. This processing is usually performed by cold rolling, and the strength can be adjusted by adjusting the rolling reduction of the cold rolling. High strength is obtained while having ductility because only the part is hardened by the transformation-induced martensite (α ') transformation, and local deformation is suppressed, and deformation into a soft untransformed part (γ part). Is propagated, and the whole is uniformly deformed to show high elongation. This is the TRI Ρ effect. Because of these features, metastable austenitic (γ) stainless steel is also classified as a stainless steel strip for springs in the JIS standard (IIS G 4313).
[0007] また、これらステンレス鋼の疲労特性に関しては特許文献 1に破壊の起点となる化 合物の寸法の限定によるものが開示されている。また、特許文献 2にはエッチング性 の改善に関して、エッチングピット (孔)の起点となる化合物の分布の限定によるものが 開示されている。さらに、特許文献 3には、結晶粒微細化による成形性および疲労特 性の改善に関して示されて!/、る。  [0007] Further, regarding the fatigue properties of these stainless steels, Patent Document 1 discloses the fatigue characteristics due to the limitation of the dimensions of the compounds that are the starting points of fracture. Patent Document 2 discloses an improvement in etching properties by limiting the distribution of compounds that serve as starting points of etching pits (holes). Further, Patent Document 3 discloses improvement of formability and fatigue characteristics by refining crystal grains!
[0008] これら準安定オーステナイト ( γ )系ステンレス鋼の製造工程につ!/、て説明すると、 概ね図 5に示すような工程を有するものである。すなわち、溶製された铸塊は熱間圧 延及び必要に応じて焼鈍した後、図 5に示したように、冷間圧延と焼鈍を繰返して所 定板厚へ減厚される。次いで、調質圧延、形状矯正、歪取のための歪取焼鈍がなさ れる。これらのうち、調質圧延では製品板厚に減厚すると同時に、加工硬化により性 能調整をすることができる。調質圧延が終了した時点で製品板厚にて目標性能が得 られるように所定板厚への減厚がなされている。その後、性能を大きく変化させない 範囲で、形状矯正による平坦度改善、歪取のための歪取焼鈍で残留応力低減がな される。  [0008] The production process of these metastable austenitic (γ) stainless steels is generally described as having a process as shown in FIG. In other words, the molten ingot is hot-rolled and annealed as necessary, and then cold-rolled and annealed as shown in Fig. 5 to reduce the thickness to a predetermined thickness. Next, temper rolling, shape correction, and strain relief annealing for strain relief are performed. Of these, temper rolling can reduce the thickness to the product sheet thickness, and at the same time adjust the performance by work hardening. When the temper rolling is completed, the thickness is reduced to the specified thickness so that the target performance can be obtained with the product thickness. After that, within the range that does not change the performance significantly, the residual stress is reduced by the flatness improvement by shape correction and the strain relief annealing for strain relief.
[0009] さらにこれら一連の製造工程を改善したものとして、特許文献 4及び特許文献 5に は、 TA(Tension— Annealing)処理が開示されている。これは調質圧延後の性能を 大きく変化させない範囲にて張力を付与しつつ比較的低温で加熱するというもので あり、平坦度改善と残留応力低減を同時に行うことができる。 [0010] さらに、他の製造方法の一つとして、特許文献 6及び特許文献 7には、調質焼鈍法 を有するステンレス鋼の製造方法及び該調質焼鈍法で得られる高性能な準安定 γ 系ステンレス鋼板が開示されている。その工程の概略を図 6に示す。これは所定の組 成を有するステンレス素材について製品板厚への冷間圧延により加工硬化した材料 を調質焼鈍にて軟化させるとともに性能を調整するというものである。これにより、材 料は再結晶粒と前加工の影響を残した未再結晶部との混合組織となり、その割合の 適正化で高強度と高延性とを両立させることができる。さらに、調質焼鈍時には加工 誘起マルテンサイト( α ' )相からオーステナイト( γ )母相への変態 (これを「逆変態」と 記載する。)、回復及び再結晶が起こり、これにより残留応力が低減される。加えて、 逆変態は体積変化をともなうので、張力付与により軟化を調整し、比較的容易かつ 短時間での性能調整及び形状矯正も可能である。すなわち、製品内部に組込まれ て使用される部品の素材に適する高性能材料を合理的かつ安定して製造することが できる。 [0009] Further, Patent Document 4 and Patent Document 5 disclose a TA (Tension-Annealing) process as an improvement of the series of manufacturing steps. In this method, heating is performed at a relatively low temperature while applying tension within a range in which the performance after temper rolling is not significantly changed, and flatness improvement and residual stress reduction can be performed simultaneously. [0010] Further, as another manufacturing method, Patent Document 6 and Patent Document 7 describe a stainless steel manufacturing method having a temper annealing method and a high-performance metastable γ obtained by the temper annealing method. A stainless steel sheet is disclosed. The outline of the process is shown in Fig. 6. This means that a stainless steel material having a predetermined composition is softened by temper annealing of a material that has been work-hardened by cold rolling to a product sheet thickness, and the performance is adjusted. As a result, the material becomes a mixed structure of the recrystallized grains and the unrecrystallized portion that remains affected by the pre-processing, and it is possible to achieve both high strength and high ductility by optimizing the ratio. Furthermore, during temper annealing, transformation from work-induced martensite ( α ') phase to austenite (γ) parent phase (this is referred to as "reverse transformation"), recovery and recrystallization occur, resulting in residual stress. Reduced. In addition, since reverse transformation is accompanied by volume change, softening can be adjusted by applying tension, and performance adjustment and shape correction can be performed relatively easily in a short time. That is, it is possible to reasonably and stably manufacture a high-performance material suitable for a material of a part that is incorporated in a product and used.
[0011] また、特許文献 8〜; 10には、素材であるステンレス鋼板の圧延条件及び熱処理条 件を特定し、結晶粒内に転移やマルテンサイトを導入して結晶粒内のエッチング速 度を増加させるフォトエッチング加工用ステンレス鋼板が開示されている。これは当 該結晶粒内のエッチング速度を結晶粒界と同等にする等により、エッチング面の平 滑性が向上されるというものである。  [0011] In Patent Documents 8 to 10, the rolling conditions and heat treatment conditions of the stainless steel plate as the material are specified, and transition and martensite are introduced into the crystal grains to increase the etching rate in the crystal grains. An increasing stainless steel sheet for photoetching is disclosed. This means that the smoothness of the etched surface is improved by making the etching rate in the crystal grains equal to that of the crystal grain boundaries.
[0012] 特許文献 1 :特開 2005— 290449号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2005-290449
特許文献 2:特開 2000— 273586号公報  Patent Document 2: Japanese Patent Laid-Open No. 2000-273586
特許文献 3:特開平 5— 279802号公報  Patent Document 3: Japanese Patent Laid-Open No. 5-279802
特許文献 4 :特開平 10— 34237号公報  Patent Document 4: Japanese Patent Laid-Open No. 10-34237
特許文献 5 :特開 2001— 226718号公報  Patent Document 5: JP 2001-226718
特許文献 6:特許第 3603726号公報  Patent Document 6: Japanese Patent No. 3603726
特許文献 7:特開 2002— 194506号公報  Patent Document 7: Japanese Patent Application Laid-Open No. 2002-194506
特許文献 8 :特開 2005— 314772号公報  Patent Document 8: Japanese Patent Laid-Open No. 2005-314772
特許文献 9:特開 2005— 320586号公報  Patent Document 9: JP-A-2005-320586
特許文献 10 :特開 2005— 320587号公報 発明の開示 Patent Document 10: Japanese Unexamined Patent Application Publication No. 2005-320587 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] しかし、近年における部品の小型 ·軽量化及び精密 ·高精度化の傾向に対応するこ とのできるステンレス鋼板が必要とされ、上記した各特性の更なる向上が課題であつ た。特許文献 1〜3に示した各発明についても限界があり、さらなる性能向上が要求 されていた。特にバネ材においては、製品として加工された後の疲労特性の向上及 び小型化された部品を精度良く加工することのできる加工性 (成形性及びエッチング 性)向上が課題であった。  [0013] However, a stainless steel plate capable of responding to the recent trend of miniaturization, weight reduction, precision, and accuracy of parts is required, and further improvement of the above-described characteristics has been a problem. Each invention shown in Patent Documents 1 to 3 has a limit and further performance improvement has been demanded. For spring materials in particular, improvement of fatigue characteristics after being processed as a product and improvement of workability (formability and etching property) capable of processing a miniaturized part with high accuracy were problems.
[0014] 製造方法についても同様の課題を有しており、上記課題を解決し得るステンレス鋼 板を製造する方法を採用することが課題とされていた。ところが、従来の製造方法や 特許文献 4及び特許文献 5の製造方法では、素材の高強度と高延性の両立には限 界があった。加えて、素材はより薄ぐ高強度化しているので形状矯正が困難となり、 板形状が悪化する傾向にあった。また、歪取焼鈍が長時間化し生産性を阻害する要 因となっていた。さらには、部品が多種多用で板厚、硬さも異なり、かつ使用量が比 較的少量にとどまる場合もあることから、これら問題が顕著となり、製品コストの大幅な 上昇を招いていた。  [0014] The manufacturing method has the same problem, and it has been an object to adopt a method for manufacturing a stainless steel plate that can solve the above-described problem. However, the conventional manufacturing method and the manufacturing methods of Patent Document 4 and Patent Document 5 have a limit in achieving both high strength and high ductility of the material. In addition, since the material is thinner and stronger, shape correction becomes difficult and the plate shape tends to deteriorate. In addition, strain relief annealing took a long time and became a factor that hindered productivity. In addition, since many parts are used, the plate thickness and hardness are different, and the amount used may be relatively small, these problems become prominent, resulting in a significant increase in product cost.
[0015] 特許文献 6及び特許文献 7に記載の製造方法では、製品、部品の小型 ·軽量化の 傾向の促進、品種の拡大等によるさらなる加工性の向上に対応するための課題を有 していた。  [0015] The manufacturing methods described in Patent Document 6 and Patent Document 7 have problems for coping with further improvement in workability by promoting the tendency to reduce the size and weight of products and parts, and expanding the variety of products. It was.
[0016] 特許文献 8〜; 10に記載のフォトエッチング加工用ステンレス鋼板では、エッチング の平滑度は得られるものの、必ずしも良好な強度及び延性、疲労特性を備えるとは いえな力、つた。これにより、さらなる性能向上が必要である課題を有していた。  [0016] The stainless steel plates for photoetching described in Patent Documents 8 to 10 have a strength that is not necessarily provided with good strength, ductility, and fatigue properties, although etching smoothness can be obtained. Thus, there is a problem that further performance improvement is necessary.
[0017] そこで本発明は、良好な強度及び延性を備えつつ、加工性 (成形性、エッチング性 )及び疲労特性を向上させることのできるステンレス鋼板及び該ステンレス鋼板の製 造方法を提供することを課題とする。さらには、当該ステンレス鋼板の製造方法により 上記本発明のステンレス鋼板を安価かつ工業的に安定供給することも課題とする。 課題を解決するための手段  [0017] Therefore, the present invention provides a stainless steel plate capable of improving workability (formability, etching property) and fatigue characteristics while having good strength and ductility, and a method for producing the stainless steel plate. Let it be an issue. Furthermore, another object is to stably supply the stainless steel plate of the present invention at low cost and industrially by the method for producing the stainless steel plate. Means for solving the problem
[0018] 本発明者らは、鋭意検討の結果、上記課題を解決するため次のような知見等を得 て本発明を完成させた。すなわち、従来のステンレス鋼板及びその製造方法では得 られなかったステンレス鋼板の特性向上のための混合組織(高延性の再結晶組織と 高強度の加工誘起マルテンサイト相が残存する未再結晶組織との混合である組織) を得ることを検討した。そして、そのための、一連の圧延加工における最終圧延率や 材料組成の影響について詳細に調査した。その結果、後述するような混合組織を有 するステンレス鋼板及びその製造方法により加工性及び疲労特性等も向上させるこ とができることがわかった。 [0018] As a result of intensive studies, the present inventors have obtained the following knowledge and the like in order to solve the above problems. The present invention has been completed. That is, a mixed structure for improving the properties of a stainless steel sheet that could not be obtained by a conventional stainless steel sheet and its manufacturing method (a recrystallized structure of high ductility and an unrecrystallized structure in which a high-strength work-induced martensite phase remains) To obtain a tissue that is mixed). To that end, we investigated in detail the effects of the final rolling rate and material composition in a series of rolling processes. As a result, it was found that workability and fatigue characteristics can be improved by a stainless steel plate having a mixed structure as described later and its manufacturing method.
[0019] 詳しくは、次のような知見に基づくものである。 [0019] The details are based on the following knowledge.
ω混合組織を有する構造により性能が向上する。これは、混合組織における再結 晶部では結晶粒微細化による強化と密度上昇による粒界での不均一変形の抑制の 効果があり、一方、混合組織における未再結晶部では加工硬化と逆変態した γ相か らの加工誘起 α '変態による TRIP効果がある。これにより、材料はそれらの複合効果 力 高強度を維持することができる。加えて、均一に変形が進展し、成形性 (延性)が 向上する。また、エッチング性に関しても同様に考えることができ、結晶粒微細化及 び γ母相という単一構造の増加によりエッチング加工面が均一になると考えられる。 その結果、疲労破壊の起点となる不均一な部分が消滅し、成形後及びエッチング加 ェ後の疲労特性が向上する。 The performance is improved by the structure having the ω mixed structure. This is because the recrystallization part in the mixed structure has the effect of strengthening by grain refinement and the suppression of non-uniform deformation at the grain boundary due to the increase in density, while the non-recrystallized part in the mixed structure has work hardening and reverse transformation. There is a TRIP effect due to the processing-induced α 'transformation from the γ phase. This allows the materials to maintain their combined effect strength and strength. In addition, the deformation progresses uniformly and the formability (ductility) is improved. Similarly, the etching property can be considered, and it is considered that the etched surface becomes uniform due to the refinement of crystal grains and the increase in the single structure of the γ parent phase. As a result, the non-uniform portion that becomes the starting point of fatigue fracture disappears, and the fatigue characteristics after molding and after etching are improved.
[0020] (b)材料組成等の各種条件を適正化するとともに、ステンレス鋼板の混合組織及び 内在する化合物の分布を調整することにより、材料の加工性、疲労特性を向上させる こと力 Sできる。具体的には、混合組織に加え、質量 5gあたりに内在する最大径 20 m以上の化合物を 30個以下とすることにより、加工によって顕在化する欠陥が観察さ れなくなり、加工部表面が平滑となる。これにより加工前に対して 90%以上の疲労強 度が加工後にも維持される。疲労破壊が該欠陥への応力集中により発生することか ら、同強度の向上はこの欠陥を減らすことにより達成されると考える。  [0020] (b) It is possible to improve the workability and fatigue characteristics of the material by optimizing various conditions such as the material composition and adjusting the mixed structure of the stainless steel plate and the distribution of the underlying compound. Specifically, in addition to the mixed structure, by reducing the number of compounds with a maximum diameter of 20 m or more per mass of 5 g to 30 or less, defects that are manifested by processing are not observed, and the surface of the processed part becomes smooth. Become. As a result, the fatigue strength of 90% or more is maintained after machining. Since fatigue failure occurs due to stress concentration on the defect, we believe that the same strength improvement can be achieved by reducing this defect.
[0021] (c)製造方法については、製造時においてステンレス鋼板に与えられる張力力 該 ステンレス鋼板の組織中の γ相からなる再結晶粒の割合を変化させたり、未再結晶 部における γ相の割合を変化させたりする。これは、調質焼鈍を有する製造方法を 適用した場合に、体積変化をともなう α ' (加工誘起マルテンサイト)相から γ母相へ の逆変態が調質焼鈍時の張力によって制御されることによる。該張力の付与により軟 化が緩やかになることから、張力の増加は逆変態を抑制して残存する α ' (加工誘起 マルテンサイト)量を増加させるものと考えられる。すなわち、該張力によってステンレ ス鋼の金属組織を制御することができる。 [0021] (c) Regarding the production method, the tensile force applied to the stainless steel plate during production is changed, or the ratio of the recrystallized grains composed of the γ phase in the structure of the stainless steel plate is changed, or the γ phase in the unrecrystallized portion Change the ratio. This is because, when a production method with temper annealing is applied, from the α ′ (work-induced martensite) phase with volume change to the γ matrix. This is because the reverse transformation of is controlled by the tension during temper annealing. Since the softening is moderated by the application of the tension, it is considered that the increase in the tension suppresses the reverse transformation and increases the amount of α ′ (processing induced martensite) remaining. That is, the metal structure of the stainless steel can be controlled by the tension.
[0022] ただし一方で、張力が過大な場合、未再結晶部の Ί相が冷却中に α '相に変態す ることがわかった。これは未再結晶部中の γ相が残存する加工歪に加え、張力の影 響により冷却中に所定温度以下で加工誘起によるマルテンサイト変態( α ' )が生じる ためと考えられる。従って、負荷する張力も逆変態が考慮された所定の範囲でおこな われなければならない。 [0022] However other hand, if the tension is too large, I phase of non-recrystallized portion is found you to transform to alpha 'phase during cooling. This is thought to be due to work-induced martensitic transformation (α ') occurring below the specified temperature during cooling due to the influence of tension, in addition to the work strain in which the γ phase remains in the unrecrystallized part. Therefore, the tension to be applied must be performed within a predetermined range in consideration of reverse transformation.
[0023] (d)また、製造方法について、最終的な冷間圧延は圧下率を大きくとることで化合 物を粉砕し、微細化する事が可能である。これは性能調整を別工程 (調質焼鈍)とす る利点の一つであり、調質圧延では性能調整のために所定の加工率での実施が必 要不可避となるからである。  [0023] (d) As for the manufacturing method, the final cold rolling can pulverize and refine the compound by increasing the reduction ratio. This is one of the advantages of performance adjustment as a separate process (temper annealing), and temper rolling is inevitably performed at a predetermined processing rate for performance adjustment.
[0024] 以下、本発明につ!/、て説明する。  [0024] Hereinafter, the present invention will be described.
[0025] 請求の範囲第 1項に記載の発明は、ステンレス鋼の全体を 100質量%としたときに 、 Cを 0. 01—0. 08質量0 /0、 Siを 0. 1— 2. 0質量0 /0、 Mnを 3. 0質量0 /0以下、 Crを 10. 0—20. 0質量0 /0、Niを 3. 0—12. 0質量0 /0、 Nを 0. 02—0. 24質量0 /0で各成 分を含有し、かつ、該含有された前記各成分の質量%の値が代入される式 [0025] The invention as described in claim 1 is the entire stainless steel is taken as 100 mass%, 0.1 to C 01-0. 08 mass 0/0, Si and 0. 1 2. 0 weight 0/0, Mn and 3.0 mass 0/0 or less, the Cr 10. 0-20. 0 wt 0/0, Ni 3. 0-12. 0 wt 0/0, N and 0.02 -0. containing each ingredient 24 mass 0/0, and the formula wherein is contained the values of the mass% of each component is substituted
Md= 500-458(C + N)- 9(Si + Mn)- 14Cr- 20Ni  Md = 500-458 (C + N) -9 (Si + Mn) -14Cr-20Ni
で表される Md値が 0〜80を満足し、残部が不可避的不純物である化学組成を有し 、各成分により形成された化合物のうち最大径が 20 m以上である該化合物の内在 量がステンレス鋼の質量 5gあたりに 30個以下であり、さらに該ステンレス鋼全体の金 属組織が再結晶粒及び未再結晶部の混合組織であること特徴とする部品用ステンレ ス鋼板を提供することにより前記課題を解決する。  The compound having a chemical composition in which the Md value represented by the formula 0 to 80 is satisfied, and the balance is an unavoidable impurity, and the maximum amount of the compound formed by each component is 20 m or more. By providing a stainless steel sheet for parts, wherein the number of stainless steel is 30 or less per 5 g of stainless steel, and the metal structure of the entire stainless steel is a mixed structure of recrystallized grains and non-recrystallized parts. The problem is solved.
[0026] 請求の範囲第 2項に記載の発明は、ステンレス鋼の全体を 100質量%としたときに 、 Cを 0. 01—0. 08質量0 /0、 Siを 0. 1— 2. 0質量0 /0、 Mnを 3. 0質量0 /0以下、 Crを 10. 0〜20. 0質量0 /0、 Niを 3. 0~12. 0質量0 /0、 Nを 0. 02〜0. 24質量0 /0、及び Nb、 Ti、 Vから選ばれる 1種以上を 0. 5質量%以下で各成分を含有し、かつ、該含 有された前記各成分の質量%の値が代入される式 [0026] The invention described in claim 2 is the whole stainless steel is taken as 100 mass%, 0.1 to C 01-0. 08 mass 0/0, Si and 0. 1 2. 0 weight 0/0, Mn and 3.0 mass 0/0 or less, the Cr 10. 0 to 20. 0 wt 0/0, Ni of 3.0 to 12.0 mass 0/0, N and 0.02 to 0. 24 wt 0/0, and Nb, Ti, and containing each component at least one of 0.5 mass% or less selected from V, and the hydrated Formula that substitutes the mass% value of each component
Md= 500-458(C + N)- 9(Si + Mn)- 14Cr- 20Ni- 65Nb- 27Ti- 61V で表される Md値が 0〜80を満足し、残部が不可避的不純物である化学組成を有し 、各成分により形成された化合物のうち最大径が 20 m以上である該化合物の内在 量がステンレス鋼の質量 5gあたりに 30個以下であり、さらに該ステンレス鋼全体の金 属組織が再結晶粒と未再結晶部の混合組織であること特徴とする部品用ステンレス 鋼板を提供することにより前記課題を解決する。  Md = 500-458 (C + N) -9 (Si + Mn)-14Cr-20Ni- 65Nb- 27Ti- 61V Md value of 0 ~ 80 is satisfied, the balance is unavoidable chemical composition And the internal diameter of the compound having a maximum diameter of 20 m or more among the compounds formed by each component is 30 or less per 5 g of the stainless steel mass, and the metal structure of the entire stainless steel is The problem is solved by providing a stainless steel sheet for parts, which is a mixed structure of recrystallized grains and non-recrystallized parts.
[0027] 請求の範囲第 3項に記載の発明は、請求の範囲第 1項又は第 2項に記載の部品用 ステンレス鋼板の再結晶粒の平均粒径は 10 m以下であることを特徴とする。  [0027] The invention described in claim 3 is characterized in that the average grain size of recrystallized grains of the stainless steel sheet for parts described in claim 1 or 2 is 10 m or less. To do.
[0028] 請求の範囲第 4項に記載の発明は、請求の範囲第 3項に記載の部品用ステンレス 鋼板の混合組織が 70質量%以上のオーステナイト相であることを特徴とする。  [0028] The invention described in claim 4 is characterized in that the mixed structure of the stainless steel sheet for parts described in claim 3 is an austenitic phase of 70 mass% or more.
[0029] 請求の範囲第 5項に記載の発明は、ステンレス鋼の全体を 100質量%としたときに 、 Cを 0. 01—0. 08質量0 /0、 Siを 0. 1— 2. 0質量0 /0、 Mnを 3. 0質量0 /0以下、 Crを 10. 0—20. 0質量0 /0、Niを 3. 0—12. 0質量0 /0、 Nを 0. 02—0. 24質量0 /0で各成 分を含有し、かつ、該含有された前記各成分の質量%の値が代入される式 [0029] The invention described in claim 5 is the entire stainless steel is taken as 100 mass%, 0.1 to C 01-0. 08 mass 0/0, Si and 0. 1 2. 0 weight 0/0, Mn and 3.0 mass 0/0 or less, the Cr 10. 0-20. 0 wt 0/0, Ni 3. 0-12. 0 wt 0/0, N and 0.02 -0. containing each ingredient 24 mass 0/0, and the formula wherein is contained the values of the mass% of each component is substituted
Md= 500-458(C + N)- 9(Si + Mn)- 14Cr- 20Ni  Md = 500-458 (C + N) -9 (Si + Mn) -14Cr-20Ni
で表される Md値が 0〜80を満足し、残部が不可避的不純物である化学組成を有す る素材を少なくとも 1回冷間圧延する第一冷間圧延工程 (S1)と、第一冷間圧延工程 と組して該第一冷間圧延工程後に配置される第一焼鈍工程(S2)と、第一焼鈍工程 の後工程側に具備される最後の圧延であり、圧下率が 20%以上、かつ第一冷間圧 延との合計の圧下率が 60%以上となる第二冷間圧延工程(S3)と、第二冷間圧延ェ 程後の前記素材を 650〜; 1000°Cで 300秒以下で保持するとともに、該保持された 温度における素材の 0. 2%耐カ以下で張力を与えて調質する第二焼鈍工程 (S4)と を有する部品用ステンレス鋼板製造方法により前記課題を解決する。  A first cold rolling step (S1) in which a material having a chemical composition with an Md value of 0 to 80 and a balance of inevitable impurities is cold-rolled at least once (S1), The first annealing step (S2) arranged after the first cold rolling step in combination with the hot rolling step, and the final rolling provided on the subsequent step side of the first annealing step, with a reduction rate of 20% The second cold rolling step (S3) in which the total rolling reduction with the first cold rolling is 60% or more, and the material after the second cold rolling step is 650 to 1000 ° C. And a second annealing step (S4) in which the material is held at 300 seconds or less and tempered by applying a tensile strength of 0.2% or less of the material at the held temperature. Solve the problem.
[0030] 請求の範囲第 6項に記載の発明は、ステンレス鋼の全体を 100質量%としたときに 、 Cを 0. 01—0. 08質量0 /0、 Siを 0. 1— 2. 0質量0 /0、 Mnを 3. 0質量0 /0以下、 Crを 10. 0〜20. 0質量0 /0、 Niを 3. 0~12. 0質量0 /0、 Nを 0. 02〜0. 24質量0 /0、及び Nb、 Ti、 Vから選ばれる 1種以上を 0. 5質量%以下で各成分を含有し、かつ、該含 有された前記各成分の質量%の値が代入される式 [0030] The invention described in claim 6 is the entire stainless steel is taken as 100 mass%, 0.1 to C 01-0. 08 mass 0/0, Si and 0. 1 2. 0 weight 0/0, Mn and 3.0 mass 0/0 or less, the Cr 10. 0 to 20. 0 wt 0/0, Ni of 3.0 to 12.0 mass 0/0, N and 0.02 to 0. 24 wt 0/0, and Nb, Ti, and containing each component at least one of 0.5 mass% or less selected from V, and the hydrated Formula that substitutes the mass% value of each component
Md= 500-458(C + N)- 9(Si + Mn)- 14Cr- 20Ni- 65Nb- 27Ti- 61V で表される Md値が 0〜80を満足し、残部が不可避的不純物である化学組成を有す る素材を少なくとも 1回冷間圧延する第一冷間圧延工程 (S1)と、第一冷間圧延工程 と組して該第一冷間圧延工程後に配置される第一焼鈍工程(S2)と、第一焼鈍工程 の後工程側に具備される最後の圧延であり、圧下率が 20%以上、かつ第一冷間圧 延との合計の圧下率が 60%以上となる第二冷間圧延工程(S3)と、第二冷間圧延ェ 程後の素材を 650〜; 1000°Cで 300秒以下で保持するとともに、該保持された温度 における素材の 0. 2%耐カ以下で張力を与えて調質する第二焼鈍工程 (S4)とを有 する部品用ステンレス鋼板製造方法を提供することにより前記課題を解決する。  Md = 500-458 (C + N) -9 (Si + Mn)-14Cr-20Ni- 65Nb- 27Ti- 61V Md value of 0 ~ 80 is satisfied, the balance is unavoidable chemical composition A first cold rolling step (S1) for cold rolling a material having at least once, and a first annealing step arranged after the first cold rolling step in combination with the first cold rolling step ( S2) is the final rolling provided on the post-process side of the first annealing process, and the second rolling reduction ratio is 20% or more and the total rolling reduction ratio with the first cold rolling is 60% or more. Holds the material after the cold rolling step (S3) and the second cold rolling process from 650 to; at 300 ° C for 300 seconds or less, and at the same temperature, less than 0.2% resistance to the material. The above-mentioned problems are solved by providing a method for producing a stainless steel sheet for parts, which includes a second annealing step (S4) in which tension is applied to perform tempering.
[0031] 請求の範囲第 7項に記載の発明は、請求の範囲第 5項又は第 6項に記載の部品用 ステンレス鋼板製造方法の第二焼鈍工程の張力が、保持された温度における素材 の 0. 2%耐力の 40%以下であることを特徴とする。  [0031] The invention described in claim 7 is the material at a temperature where the tension in the second annealing step of the method for manufacturing a stainless steel sheet for parts according to claim 5 or 6 is maintained. 0. 40% or less of 2% yield strength.
[0032] 請求の範囲第 8項に記載の発明は、請求の範囲第 5項〜第 7項のいずれか一項に 記載の部品用ステンレス鋼板製造方法における第二焼鈍工程 (S4)後さらに調質圧 延を施すことを特徴とする。  [0032] The invention described in claim 8 is further adjusted after the second annealing step (S4) in the method for manufacturing a stainless steel plate for parts according to any one of claims 5 to 7. It is characterized by applying quality rolling.
発明の効果  The invention's effect
[0033] 本発明によれば、多種多様な部品を精度よぐ高い信頼性を有して製造することの できるステンレス鋼板及びその製造方法を提供することができる。特に、本発明では 成形性及び成形後の疲労特性に優れ、信頼性の高いステンレス鋼板を安価に、 つ工業的に安定して提供することが可能となる。また、最近の環境問題にも対応し、 小型化 ·軽量化による資源の有効活用をさらに進めることも可能である。  [0033] According to the present invention, it is possible to provide a stainless steel plate and a method for manufacturing the same that can manufacture a wide variety of parts with high accuracy and high reliability. In particular, according to the present invention, it is possible to provide a stainless steel plate that is excellent in formability and fatigue characteristics after forming and is highly reliable at low cost and industrially stably. In addition, in response to recent environmental problems, it is possible to further promote the effective use of resources by reducing the size and weight.
図面の簡単な説明  Brief Description of Drawings
[0034] [図 1]本発明の製造方法の流れの 1態様を説明するための図である。  FIG. 1 is a diagram for explaining one embodiment of the flow of the production method of the present invention.
[図 2]素材の温度と 0 · 2 %耐力との関係の 1例を示すグラフである。  FIG. 2 is a graph showing an example of the relationship between the temperature of a material and the 0 · 2% proof stress.
[図 3]本実施例により得られた結果をもとに作成したステンレス鋼板の硬度と伸びとの  [Fig. 3] The hardness and elongation of the stainless steel plate prepared based on the results obtained in this example.
[図 4]本実施例の No. 4及び No. 28の場合における曲げ部の表面を拡大して示した 写真である。 [FIG. 4] The surface of the bent portion in the case of No. 4 and No. 28 of this example is shown enlarged. It is a photograph.
[図 5]従来のステンレス鋼板の製造方法の 1つの例を説明するための図である。  FIG. 5 is a diagram for explaining one example of a conventional method for producing a stainless steel plate.
[図 6]従来のステンレス鋼板の製造方法の他の例を説明するための図である。  FIG. 6 is a view for explaining another example of a conventional method for producing a stainless steel plate.
符号の説明  Explanation of symbols
[0035] S1 第一冷間圧延工程 [0035] S1 First cold rolling process
S2 第一焼鈍工程  S2 First annealing process
S3 第二冷間圧延工程  S3 Second cold rolling process
S4 第二焼鈍工程  S4 Second annealing process
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0036] 本発明の上記した作用及び利得は、次に説明する発明を実施するための最良の 形態から明らかにされる。 [0036] The above-described operation and gain of the present invention will become apparent from the best mode for carrying out the invention described below.
[0037] 以下、本発明の最良の形態、及びその好ましい範囲等について説明する。 [0037] The best mode of the present invention and preferred ranges thereof will be described below.
(1)ステンレスま岡板  (1) Stainless steel plate
はじめに本発明のステンレス鋼板について説明する。上述したように本発明のステ ンレス鋼板では、その組成並びに組織、 Md値、及び内在する化合物の態様に特徴 を有するものである。以下に各々について説明する。  First, the stainless steel plate of the present invention will be described. As described above, the stainless steel sheet of the present invention is characterized by its composition and structure, Md value, and the mode of the underlying compound. Each will be described below.
[0038] (1 1)成分  [0038] (1 1) component
本発明に含有される成分及びその含有量について説明する。本発明のステンレス 鋼板の主成分は Feであり、以下に示す含有量は、ステンレス鋼板全体を 100質量% としたときの割合を示すものである。  The component contained in this invention and its content are demonstrated. The main component of the stainless steel plate of the present invention is Fe, and the contents shown below show the ratio when the entire stainless steel plate is 100 mass%.
[0039] - C : Cの含有量は、 0. 01-0. 08質量%とする。 Cは安価かつ有効な侵入型固 溶強化元素の一つである。 0. 01質量%以上含有させる固溶強化の作用が発揮され る。一方、上限値は、 0. 08質量%である。これは、 Cは強力な γ安定化元素であり、 過度の添加は必要となる加工誘起マルテンサイト ( α ' )変態を抑制してしまうことによ る。また、調質焼鈍を含む製造方法の場合には、調質焼鈍時に Cr C化合物に代  [0039]-C: The content of C is set to 0.01 to 0.08 mass%. C is one of the cheap and effective interstitial solid solution strengthening elements. The effect of strengthening the solid solution by adding 0.1% by mass or more is exhibited. On the other hand, the upper limit is 0.08% by mass. This is because C is a strong γ-stabilizing element, and excessive addition suppresses the processing-induced martensite (α ') transformation that is necessary. In addition, in the case of a manufacturing method including temper annealing, a Cr C compound is substituted during temper annealing.
23 6  23 6
表される粒界への粗大な炭化物の析出を招き、加工性や耐食性を劣化させるからで ある。 C含有量のさらに好ましい範囲は、 0. 02-0. 07質量%である。  This is because coarse carbides are precipitated at the grain boundaries represented, and the workability and corrosion resistance are deteriorated. A more preferable range of the C content is 0.02-0.07% by mass.
[0040] - Si : Siの含有量は 0.;!〜 2. 0質量%とする。 Siは有効な固溶強化元素である。 下限値を 0. 1質量%以上としたのは、これにより高温強度を上昇させ、本発明の特 徴である上述の混合組織の獲得が容易となるからである。上限値を 2. 0質量%とし たのは、 Siはフェライ Κ α )安定化元素でもあり、過度の添加は調質焼鈍時に残存す る α,相を増加させるからである。 Si含有量のさらに好ましい範囲は、 0. 2〜; 1. 8質 量%である。 [0040]-Si: Si content should be 0 .;!-2.0 mass%. Si is an effective solid solution strengthening element. The reason why the lower limit is set to 0.1% by mass or more is that this increases the high-temperature strength and facilitates acquisition of the above-mentioned mixed structure, which is a feature of the present invention. The upper limit was set to 2.0% by mass because Si is also a ferri (α) stabilizing element, and excessive addition increases the α and phase remaining during temper annealing. A more preferable range of the Si content is 0.2 to 1.8% by mass.
[0041] .Mn : Mnの含有量は 3. 0質量%以下とする。 Mnは γ安定化元素であり、他の 元素とのバランスを考えて添加される。含有量を 3. 0質量%以下としたのは、過度に 添加した場合、 α,相力 S得られなくなることによる。また、介在物等を形成し、加工性 や耐食性を劣化させる場合があるからである。 Mn含有量のさらに好ましい範囲は、 2 . 6質量%以下である。  [0041] .Mn: The Mn content is 3.0 mass% or less. Mn is a γ-stabilizing element and is added in consideration of the balance with other elements. The reason why the content is 3.0% by mass or less is that when it is added excessively, α and compatibility S cannot be obtained. In addition, inclusions and the like may be formed, which may deteriorate workability and corrosion resistance. A more preferable range of the Mn content is 2.6% by mass or less.
[0042] - Cr: Crの含有量は 10. 0— 20. 0質量%である。 Crはステンレス鋼の基本合金 元素の一つである。含有量を 10. 0質量%以上としたのは必要な耐食性を得るため である。上限値を 20. 0質量%としたのは、 Crが α安定化元素であり、過度の添加は 調質焼鈍後に残存する α '相を増加することによる。 Cr含有量のさらに好ましい範囲 は 13. 0—19. 0質量0 /0である。 [0042]-Cr: The content of Cr is 10.0 to 20.0 mass%. Cr is one of the basic alloy elements of stainless steel. The reason why the content is 10.0% by mass or more is to obtain the necessary corrosion resistance. The upper limit was set to 20.0% by mass because Cr is an α-stabilizing element, and excessive addition increases the α ′ phase remaining after temper annealing. A more preferred range of Cr content is 13. 0-19. 0 wt 0/0.
[0043] .Ni : Niの含有量は 3. 0〜12. 0質量%である。 Niもステンレス鋼の基本合金元 素の一つであり、最も有効な γ安定化元素である。下限値を 3. 0質量%としたのは、 室温で安定した γ相を得るために必要不可欠であることによる。上限値を 12. 0質量 %としたのは、所定の範囲で α '変態を起こす必要があるからである。 Ni含有量のさ らに好ましい範囲は、 3. 5-11. 5質量%である。 [0043] Ni: The Ni content is 3.0 to 12.0% by mass. Ni is one of the basic alloy elements of stainless steel and is the most effective gamma stabilizing element. The reason why the lower limit is set to 3.0% by mass is that it is indispensable for obtaining a stable γ phase at room temperature. The upper limit is set to 12.0% by mass because it is necessary to cause the α ′ transformation within a predetermined range. A more preferable range of the Ni content is 3.5-11. 5% by mass.
[0044] .N : Nの含有量は、 0. 02〜0. 25質量%である。 Nは Cと同様に有効な侵入型 固溶強化元素の一つであり、 Cに比べてより高温まで化合物を形成すること無く固溶 すること力 Sできる。すなわち、本発明の主要な強化元素である。かかる観点から、下 限値を 0. 02質量%とした。上限値を 0. 25質量%としたのは、過度に添加した場合 、熱間での加工性を劣化させ、板の製造を阻害する虞があるからである。また、 Nは Cと同様に強力な γ安定化元素の一つであり、 α '変態を抑制することにもよる。 Ν含 有量のさらに好ましい範囲は 0. 04-0. 20%で、更に好ましい範囲は 0. 08-0. 0 2%で、最も好ましい範囲は 0. 10-0. 20質量%である。 [0045] .Nb : Nbの含有量は 0. 50質量%以下である。 Nbは高温でも比較的安定かつ微 細分散した Nb化合物を析出して混合組織の獲得を容易にし、粒成長抑制により再 結晶粒を微細化することができる。上限値を 0. 50質量%としたのは、過度の添加は 粗大な化合物を形成し、材料の延性を低下させることによる。また、高価な物質であり 、コストの観点からも上限値を設けた。 Nbのさらに好ましい範囲は、 0. 45質量%以 下である。 [0044] The content of N: N is 0.02 to 0.25% by mass. N is one of the effective interstitial solid-solution strengthening elements like C, and it has the ability to form a solid solution without forming a compound up to a higher temperature than C. That is, it is the main reinforcing element of the present invention. From this point of view, the lower limit was set to 0.02 mass%. The upper limit is set to 0.25% by mass because when it is added excessively, the hot workability is deteriorated and the production of the plate may be hindered. N, like C, is one of the powerful γ-stabilizing elements, and it also depends on suppressing α ′ transformation. A more preferable range of the content is 0.04-0.20%, a more preferable range is 0.08-0.02%, and a most preferable range is 0.10-0.20% by mass. [0045] Nb: The content of Nb is 0.50 mass% or less. Nb precipitates Nb compounds that are relatively stable and finely dispersed even at high temperatures, making it easy to obtain a mixed structure, and recrystallized grains can be refined by suppressing grain growth. The upper limit is set to 0.50% by mass because excessive addition forms a coarse compound and lowers the ductility of the material. Moreover, since it is an expensive substance, an upper limit is set from the viewpoint of cost. A more preferable range of Nb is 0.45% by mass or less.
[0046] -Ti : Tiの含有量は、 0. 50質量%以下である。 Tiは Nbと同様の効果を有すると 考えられる。すなわち、 Ti化合物の析出により混合組織の獲得を容易にし、再結晶 粒を微細化することができる。さらに、 Nbよりも容易に化合物を形成すると考えられる 。上限値を 0. 50質量%としたのは、過度の添加は粗大な化合物を形成し、材料の 延性を低下させることによる。 Ti含有量はさらに好ましくは、 0. 45質量%以下である [0046] -Ti: The Ti content is 0.50 mass% or less. Ti is considered to have the same effect as Nb. In other words, the precipitation of Ti compound facilitates the acquisition of the mixed structure, and the recrystallized grains can be refined. In addition, it is thought to form compounds more easily than Nb. The upper limit is set to 0.50% by mass because excessive addition forms a coarse compound and lowers the ductility of the material. The Ti content is more preferably 0.45% by mass or less
Yes
[0047] -V: Vの含有量は 0. 50質量%以下である。 Vは Nb、Tiと同様の効果を有する。  [0047] -V: The content of V is 0.50 mass% or less. V has the same effect as Nb and Ti.
すなわち、 V化合物の析出により混合組織の獲得を容易にし、再結晶粒を微細化す る。上限値を 0. 50質量%としたのは、過度の添加は粗大な化合物を形成し、材料の 延性を低下させることによる。 V含有量のさらに好ましい範囲は、 0. 001質量%以上 、 0. 45質量%以下である。  That is, the precipitation of the V compound facilitates the acquisition of the mixed structure and refines the recrystallized grains. The upper limit is set to 0.50% by mass because excessive addition forms a coarse compound and lowers the ductility of the material. A more preferable range of the V content is 0.001% by mass or more and 0.45% by mass or less.
[0048] 上記成分以外に工業的側面から添加される元素、例えば溶製時脱酸剤として使用 される Ca、 A1あるいは REM (希土類金属)、熱間加工性の改善が見込まれる Bを必 要に応じて合計量で 0. 3質量%以下となるように含有してもよい。さらにスクラップを 原料とする場合、不可避的となる Cu、 Moの各々を 0. 4質量%以下で含有してもよ い。 Cu、 Moは本発明においては γ安定度の調整元素として作用する。また、通常 の組成における不可避的不純物が含まれても良い。  [0048] In addition to the above components, elements added from an industrial aspect, such as Ca, A1 or REM (rare earth metal) used as a deoxidizer during melting, and B, which is expected to improve hot workability, are required. Depending on the content, the total amount may be 0.3% by mass or less. In addition, when scrap is used as a raw material, each of Cu and Mo, which are inevitable, may be contained in an amount of 0.4% by mass or less. Cu and Mo act as elements for adjusting the γ stability in the present invention. In addition, inevitable impurities in a normal composition may be included.
[0049] (1 2) Μ 直  [0049] (1 2) Nao Tsuji
Md値は、本発明において式(1)又は式(2)で表される式により計算され、その値が 0〜80°Cであるものとする。ここで、不可避的不純物としてではない上記 Nb、 Ti、 V 力も選ばれる少なくともいずれ力、 1つが添加された場合には式(2)を用いる。いずれ も添加されない場合には式(1)を用いて計算される。また、式中の記号 C、 N、 Si、 M n、 Cr、 Ni、 Nb、 Ti、 Vは、それぞれ対応する成分の含有量(質量%)が代入される。 The Md value is calculated according to the formula (1) or formula (2) in the present invention, and the value is 0 to 80 ° C. Here, if at least one of the Nb, Ti, and V forces, which are not unavoidable impurities, is selected, formula (2) is used. If neither is added, it is calculated using equation (1). Also, the symbols C, N, Si, M in the formula For n, Cr, Ni, Nb, Ti, and V, the content (% by mass) of the corresponding component is substituted.
Md = 500-458 (C + N)— 9 (Si + Mn)— 14Cr— 20Ni · · · (1)  Md = 500-458 (C + N) — 9 (Si + Mn) — 14Cr— 20Ni · · · (1)
Md = 500-458 (C + N)— 9 (Si + Mn)— 14Cr— 20Ni  Md = 500-458 (C + N) — 9 (Si + Mn) — 14Cr— 20Ni
- 65Nb- 27Ti- 61V · · · (2)  -65Nb- 27Ti- 61V (2)
Md値は。 Cの単位で表され、加工誘起マルテンサイト( α ' )変態の起こり易さを示す ものである。式は、 γ単相の材料に 30%の引張変形を与えた時、全体の 50%が α ' 相に変態する温度(30°C)を本発明における一連の実験結果に基づレ、て定式化した ものである。本発明は上述のとおり、準安定 γ系ステンレス鋼を対象とし、 α '変態の 活用するものであるため、 α '変態を制御することが必要ある。そこでこのために最適 な Md値を 0〜80°Cとした。さらに好ましくは、 10〜70°Cである。  Md value. It is expressed in units of C and indicates the ease with which processing-induced martensite (α ') transformation occurs. Based on the results of a series of experiments in the present invention, the temperature (30 ° C) at which 50% of the whole transforms into the α 'phase when 30% tensile deformation is applied to the γ single phase material. It is a formulation. As described above, the present invention targets metastable γ stainless steel and utilizes the α ′ transformation, so it is necessary to control the α ′ transformation. Therefore, the optimum Md value for this purpose was set to 0 to 80 ° C. More preferably, it is 10-70 degreeC.
[0050] (1 3)化合物の態様 [0050] (1 3) Compound Embodiment
本発明のステンレス鋼板では、該ステンレス鋼板に含有される化合物において、そ の最大径が 20 m以上ものは、当該ステンレス鋼板の質量 5gあたりに 30個以下で 内在するものである。これにより、化合物に起因する欠陥の発生を減少させることが できる。すなわち、素材が優れた成形性を有すると共に、粗大化合物が表面近傍に 存在する確立が極端に小さくなると考えられる。プレス加工の場合、両者 (素材と粗大 化合物)の変形能の大きな差に起因する凹凸、微少な割れが改善される。また、エツ チング加工の場合、耐食性の違いに起因する化合物露出、更には脱落による孔 (ェ ツチピット)等の局所的な欠陥の発生が撲滅される。これにより、部品は加工部表面が 平滑となり、疲労特性が向上する。また、この局所的欠陥は同加工部表面の最大粗 さの測定により検出されると考える。  In the stainless steel plate of the present invention, in the compounds contained in the stainless steel plate, those having a maximum diameter of 20 m or more are inherent in 30 or less per 5 g of the mass of the stainless steel plate. As a result, the occurrence of defects due to the compound can be reduced. That is, it is considered that the material has excellent moldability, and the probability that a coarse compound exists in the vicinity of the surface becomes extremely small. In the case of pressing, unevenness and minute cracks due to a large difference in deformability between the two (material and coarse compound) are improved. In the case of the etching process, the occurrence of local defects such as compound exposure due to the difference in corrosion resistance, and further, holes (etch pits) due to dropping off is eradicated. As a result, the surface of the machined part becomes smooth and the fatigue characteristics are improved. This local defect is considered to be detected by measuring the maximum roughness of the surface of the processed part.
[0051] (1 4)組織の態様 [0051] (1 4) Aspect of organization
本発明のステンレス鋼板の材料組織は、再結晶粒と前加工の影響を残す未再結晶 部の混合した組織で定義される「混合組織」である。これにより高強度と高延性を両 立すること力 Sできるとともに、高平坦度化、低残留応力化も可能となる。また、混合組 織は 70面積%以上の γ相力、らなる構造としてもよい。該 γ相を主要な構造とすること によりさらに成形性、疲労特性が向上する。さらに好ましくは、 80面積%以上である。  The material structure of the stainless steel sheet of the present invention is a “mixed structure” defined by a mixed structure of recrystallized grains and unrecrystallized parts that remain affected by pre-processing. As a result, it is possible to achieve both high strength and high ductility, as well as high flatness and low residual stress. The mixed structure may have a γ phase force of 70 area% or more. By forming the γ phase as the main structure, formability and fatigue characteristics are further improved. More preferably, it is 80 area% or more.
[0052] 以上のようなステンレス鋼板とすることにより、各種特性について優れたものとしつ つ、加工性(成形性、エッチング性)及び疲労特性を向上させることのできるステンレ ス鋼板を提供することができる。また、これに加えて、再結晶の粒径を 10 m以下と してもよい。これにより、結晶粒微細化に起因する成形性、疲労特性がさらに向上す る。さらに好ましくは、 6 m以下である。 [0052] By using the stainless steel plate as described above, the various properties are excellent. Further, it is possible to provide a stainless steel sheet that can improve workability (formability, etching property) and fatigue characteristics. In addition, the grain size of recrystallization may be 10 m or less. This further improves the formability and fatigue characteristics resulting from the refinement of crystal grains. More preferably, it is 6 m or less.
[0053] (2)ステンレス鋼板の製造方法 [0053] (2) Manufacturing method of stainless steel sheet
次に、本発明のステンレス鋼板の製造方法の 1つの実施形態について説明する。 本発明のステンレス鋼板の製造方法は、図 1に示したように、少なくとも 1回以上の冷 間圧延工程である第一冷間圧延工程(S 1)と、該第一冷間圧延工程(S1)と組となる 少なくとも 1回の第一焼鈍工程 (S2)と、第二冷間圧延工程 (S3)と、調質を目的とし た焼鈍である第二焼鈍工程(S4)とを備えるものである。以下に各々について説明す  Next, one embodiment of the method for producing a stainless steel plate of the present invention will be described. As shown in FIG. 1, the method for producing a stainless steel plate of the present invention comprises a first cold rolling step (S 1) that is at least one cold rolling step, and a first cold rolling step (S1 ) And at least one first annealing step (S2), a second cold rolling step (S3), and a second annealing step (S4) that is annealing for tempering. is there. Each is described below
[0054] (2— 1)第一冷間圧延工程 (S1) [0054] (2-1) First cold rolling process (S1)
第一冷間圧延工程(S1)には、上述した成分が添加され熱間加工された素材が供 給される。本工程では、主に素材の寸法を最終的に得られる鋼板に近づけることを 目的におこなうものである。従って、必ずしも 1回である必要はなぐ数回に及ぶ圧延 が行われても良い。具体的には、後で実施される第二冷間圧延との合計の圧下率が 60%以上、好ましくは 70%以上、更に好ましくは 80%以上であれば良ぐ最も好まし くは 90%以上である。  In the first cold rolling step (S1), a material that has been hot-worked by adding the above-described components is supplied. This process is performed mainly for the purpose of bringing the dimensions of the material closer to the steel sheet that is finally obtained. Therefore, the rolling may be performed several times, not necessarily once. Specifically, if the total rolling reduction with the second cold rolling performed later is 60% or more, preferably 70% or more, more preferably 80% or more, most preferably 90%. That's it.
[0055] (2— 2)第一焼鈍工程(S2)  [0055] (2-2) First annealing step (S2)
これは、上記第一冷間圧延工程(S1)と組となる工程であり、主に素材の軟化と延 性を付与することを目的とする工程である。従って、通常行われる焼鈍工程であれば その条件は特に限定されるものではない。当該条件は、供給される素材及び最終的 に得られる鋼板の態様によって決められるものである。  This is a process that is combined with the first cold rolling process (S1), and is a process mainly intended to impart softening and ductility of the material. Therefore, the conditions are not particularly limited as long as the annealing process is performed normally. The conditions are determined by the material to be supplied and the form of the steel sheet finally obtained.
[0056] (2— 3)第二冷間圧延工程(S3)  [0056] (2-3) Second cold rolling process (S3)
第二冷間圧延工程 (S3)は、上記第一冷間圧延工程 (S1)及び第一焼鈍工程 (S2 )後に配置され、最後の冷間圧延をする工程である。第二冷間圧延工程(S3)では、 最終的に得るステンレス鋼板の板厚まで減厚する。このとき減厚は、圧下率で 20% 以上、かつ第一冷間圧延との合計の圧下率が 60%以上である。これは圧下率を 20 %以上とすることにより十分な加工誘起マルテンサイト( α ' )相を得ることができるか らである。さらにはこれにより結晶粒の微細化もできる。好ましくは 30%以上である。 また、第一冷間圧延と第二冷間圧延との合計の圧下率が 60%以上としたのは、圧下 率を大きくとることによって、化合物を微細に粉砕し、 20 in以上の粗大な化合物の 数を減らすことができる。これにより、当該化合物の最大径を小さくし、 20 m以上の 粗大な化合物の数を減らすことが可能となる。この時、小径のワークロールを用いて 冷間圧延する方が、粗大な化合物を破砕する効果が高いので、好ましい。 The second cold rolling step (S3) is a step that is arranged after the first cold rolling step (S1) and the first annealing step (S2) and performs the final cold rolling. In the second cold rolling step (S3), the thickness is reduced to the final thickness of the stainless steel plate. At this time, the thickness reduction is 20% or more in terms of rolling reduction, and the total rolling reduction with the first cold rolling is 60% or more. This reduces the rolling reduction by 20 This is because a sufficient work-induced martensite (α ′) phase can be obtained by setting the content to at least%. Furthermore, this makes it possible to refine crystal grains. Preferably it is 30% or more. In addition, the total reduction ratio of the first cold rolling and the second cold rolling was set to 60% or more. By increasing the reduction ratio, the compound was finely pulverized to obtain a coarse compound of 20 inches or more. The number of can be reduced. This makes it possible to reduce the maximum diameter of the compound and reduce the number of coarse compounds of 20 m or more. At this time, cold rolling using a small-diameter work roll is preferable because the effect of crushing coarse compounds is high.
[0057] (2— 4)第二焼鈍工程(S4)  [0057] (2-4) Second annealing step (S4)
第二焼鈍工程(S4)は、最後の焼鈍工程でありこれにより最終的に得ることのできる ステンレス鋼板の材質的な態様が決まる。具体的には、本工程では焼鈍温度を 650 〜; 1000°C、保持時間を 300秒以下とした。これは、材料の機械的性質を調整すると ともに、結晶粒の成長等の素材の金属組織に与える影響と製造効率との観点から規 定されたものである。これにより効率的であるとともに、高平坦度、低残留応力である ステンレス鋼板を得ることができる。  The second annealing step (S4) is the final annealing step, and this determines the material aspect of the stainless steel plate that can be finally obtained. Specifically, in this step, the annealing temperature was set to 650 to 1000 ° C, and the holding time was set to 300 seconds or less. This is specified from the viewpoints of adjusting the mechanical properties of the material and also affecting the metal structure of the material, such as crystal grain growth, and the production efficiency. This makes it possible to obtain a stainless steel plate that is efficient and has high flatness and low residual stress.
[0058] さらに、第二焼鈍工程(S4)では、上記焼鈍温度にされるとともに、素材に張力が付 与される。張力の大きさは焼鈍温度における素材の 0. 2%耐カ以下である。さらに好 ましくは該 0. 2%耐力の 40%以下である。かかる大きさで素材に張力を負荷すること により、逆変態が調整される。従って、素材に微細な再結晶粒が含まれるようになると ともに、該素材を γ相の割合が高い混合組織を有するものとすることができる。これに より、得られるステンレス鋼板にバランスの良い強度と延性が付与され、高平坦度、低 残留応力を両立することもできる。図 2に素材の温度と、該素材の 0. 2%耐力の値と の関係の例を示すグラフを表した。張力は例えば該図 2によって決められて負荷され  [0058] Further, in the second annealing step (S4), the annealing temperature is set and tension is applied to the material. The magnitude of the tension is less than 0.2% resistance of the material at the annealing temperature. More preferably, it is 40% or less of the 0.2% proof stress. The reverse transformation is adjusted by applying tension to the material at such a size. Accordingly, fine recrystallized grains are included in the material, and the material can have a mixed structure with a high proportion of γ phase. As a result, the obtained stainless steel sheet is given a well-balanced strength and ductility, and both high flatness and low residual stress can be achieved. Figure 2 shows a graph showing an example of the relationship between the temperature of the material and the 0.2% proof stress value of the material. For example, the tension is determined and applied according to FIG.
[0059] 介在物を微細化する方法としては、溶製時に粗大介在物の浮上分離を強化するの ための手段が講じられることが好ましい。これには、溶湯の加熱保持時間を延長する ことによって粗大な介在物を浮上分離させる方法がある。その他に小径のロールで 上記第一冷間圧延工程 (S 1 )及び第二冷間圧延工程 (S2)を行うことによって粗大な 介在物を微細に破砕する方法を挙げることができる。また、前記 2つの方法を組み合 わせても良ぐステンレス鋼板に含有される最大径が 20 以上の化合物力 当該 ステンレス鋼板の質量 5gあたりに 30個以下に低減できる方法であれば良い。 [0059] As a method for refining inclusions, it is preferable to take measures for enhancing floating separation of coarse inclusions during melting. This includes a method in which coarse inclusions are floated and separated by extending the heating and holding time of the molten metal. In addition, there can be mentioned a method of finely crushing coarse inclusions by performing the first cold rolling step (S 1) and the second cold rolling step (S 2) with a small-diameter roll. In addition, the above two methods are combined. A compound strength with a maximum diameter of 20 or more contained in a stainless steel plate that can be added is acceptable as long as it can be reduced to 30 or less per 5 g of the mass of the stainless steel plate.
さらに、本発明が高性能化を発現する介在物分布および混合組織による効果を維 持できる範囲であれば、強度を高める等の目的で、上記第二焼鈍後に調質圧延を施 すことも可能である。  Furthermore, temper rolling can be performed after the second annealing for the purpose of increasing the strength, etc., as long as the effect of the inclusion distribution and the mixed structure exhibiting high performance can be maintained. It is.
[0060] このような部品用ステンレス鋼板製造方法により、本発明の部品用ステンレス鋼板 を製造すること力できる。すなわち、上記各種特性について優れたものとしつつ、カロ ェ性 (成形性、エッチング性)及び疲労特性を向上させることのできるステンレス鋼板 を製造して提供することができる。そして本製造方法によれば、上記本発明のステン レス鋼板を安価かつ工業的に安定供給することが可能である。  [0060] With such a method for producing a stainless steel plate for parts, the stainless steel plate for parts of the present invention can be produced. That is, it is possible to produce and provide a stainless steel plate that can improve the caloric properties (formability, etching property) and fatigue properties while making the above various properties excellent. According to the production method, the stainless steel sheet of the present invention can be supplied inexpensively and industrially stably.
実施例  Example
[0061] 次に実施例によりさらに詳しく説明する。ただし、本発明は本実施例に限定されるも のではない。実施例では、本発明に該当するステンレス鋼板及び本発明には該当し ないステンレス鋼板をそれぞれ製造し各種評価をおこなったものである。  [0061] Next, the embodiment will be described in more detail. However, the present invention is not limited to the examples. In the examples, a stainless steel plate corresponding to the present invention and a stainless steel plate not corresponding to the present invention were manufactured and subjected to various evaluations.
[0062] (i)供試材の製造  [0062] (i) Manufacture of test materials
供試材の組成を表 1に示した。各成分のうち本発明の範囲外のものについてはそ の含有量の数字に対して「 *」を付した。  Table 1 shows the composition of the specimens. Among each component, those outside the scope of the present invention are marked with “*” for the content number.
[0063] [表 1] [0063] [Table 1]
組成 (質 ¾) d 備考 鋼 c Si Mn Cr Ni N Nb Ti V (¾) a 0.021 0.23 0.25 18.46 4.62 0.203 く 0.001 <0.001 く 0.001 42.2 - b 0.025 0.48 1.28 17.08 6.83 0.118 <0.001 く 0.001 く 0.001 42.9 - c 0.054 0.52 1.21 13.03 10.60 0.116 く 0.001 く 0.001 <0.001 12.2 - d 0.027 0.49 1.27 17.09 6.87 0.110 0.295 く 0.001 く 0.001 25.6 - e 0.026 0.50 1.25 17.14 6.88 0.119 く 0.001 0.282 く 0.001 32.7 - f 0.024 0.52 1.29 17.02 6.94 0.121 く 0.001 <0.001 0.276 23.4 - g 0.127* 0.53 1.12 25.01* 2.0 0.042* く 0.001 く 0.001 く 0.001 17.4* -Composition (Quality ¾) d Remark Steel c Si Mn Cr Ni N Nb Ti V (¾) a 0.021 0.23 0.25 18.46 4.62 0.203 0.001 <0.001 0.001 42.2-b 0.025 0.48 1.28 17.08 6.83 0.118 <0.001 0.001 0.001 42.9- c 0.054 0.52 1.21 13.03 10.60 0.116 0.001 0.001 <0.001 12.2-d 0.027 0.49 1.27 17.09 6.87 0.110 0.295 0.001 0.001 25.6-e 0.026 0.50 1.25 17.14 6.88 0.119 0.001 0.282 0.001 32.7-f 0.024 0.52 1.29 17.02 6.94 0.121 0.001 <0.001 0.276 23.4-g 0.127 * 0.53 1.12 25.01 * 2.0 0.042 * 0.001 0.001 0.001 17.4 *-
0.124* 3.29* 1.16 17.41 6.99 0.289* く 0.001 く 0.001 <0.001 -112.7* - i 0.024 0.52 1.19 17.11 7.01 0.124 0.694* く 0.001 く 0.001 -8.0* - j 0.021 0.49 1.31 17.14 6.91 0.127 く 0.001 0.596* く 0.001 21.8* - k 0.118* 0.61 1.12 17.09 7.04 0.060 0.002 0.001 0.001 22.6 SUS301鋼0.124 * 3.29 * 1.16 17.41 6.99 0.289 * 0.001 <0.001 -112.7 *-i 0.024 0.52 1.19 17.11 7.01 0.124 0.694 * 0.001 0.001 -8.0 *-j 0.021 0.49 1.31 17.14 6.91 0.127 0.001 0.596 * 0.001 21.8 *-k 0.118 * 0.61 1.12 17.09 7.04 0.060 0.002 0.001 0.001 22.6 SUS301 steel
I 0.060 0.58 0.83 18.36 8.24 0.050 0.003 0.001 0.001 1 .8 SUS304鋼 I 0.060 0.58 0.83 18.36 8.24 0.050 0.003 0.001 0.001 1.8 Stainless steel 304
Md = 500-458(C + N) -9(Si + n) -14Cr-20Ni  Md = 500-458 (C + N) -9 (Si + n) -14Cr-20Ni
又は  Or
Md=500-458(C + N)-9(Si + Mn)-14Cr-20Ni-65Nb-27Ti~61V  Md = 500-458 (C + N) -9 (Si + Mn) -14Cr-20Ni-65Nb-27Ti ~ 61V
[0064] 表 1に a〜lに示した組成を有する各素材について各製造条件に従ってステンレス 鋼板を製造した。表 2に製造工程における主要な条件を示した。  [0064] A stainless steel plate was manufactured according to each manufacturing condition for each of the materials having the compositions shown in Tables 1 to 1. Table 2 shows the main conditions in the manufacturing process.
[0065] [表 2] [0065] [Table 2]
供試鋼 製造工程 介在物微小化対策 第一と第二冷 第二冷間圧延 第二焼鈍工程Test steel Manufacturing process Inclusion miniaturization measures 1st and 2nd cold 2nd cold rolling 2nd annealing process
No. 間圧延の合 No.
鋼 加熱時間 小径ロー 圧下率 ;皿度 張力 計の圧下率 時間  Steel Heating time Small diameter Low Rolling ratio : Dish degree Tension meter rolling ratio Time
の延長 ル使用 (%) (*) (°C) (秒) (%) (%) (*) (° C) (seconds) (%)
1 a 実施 - 95 50 800 30 301 a Implementation-95 50 800 30 30
2 b 実施 - 95 50 S00 30 302 b Implementation-95 50 S00 30 30
3 b 実施 - 95 30 800 30 303 b Implementation-95 30 800 30 30
4 b 実施 - 95 50 800 30 304 b Implementation-95 50 800 30 30
5 b 実施 - 95 70 800 30 305 b Implementation-95 70 800 30 30
6 b 実施 95 50 800 180 306 b Implementation 95 50 800 180 30
7 b 実施 95 50 800 30 507 b Implementation 95 50 800 30 50
8 b 実施 - 95 50 800 30 708 b Implementation-95 50 800 30 70
9 b 実施 - 95 60 700 30 309 b Implementation-95 60 700 30 30
10 b 実施 実施 95 70 800 30 3010 b Implemented Implemented 95 70 800 30 30
1 1 c 実施 - 95 30 900 30 301 1 c Implementation-95 30 900 30 30
12 c 実施 - 95 50 900 30 3012 c Implementation-95 50 900 30 30
13 c 実施 - 95 50 800 30 3013 c Implementation-95 50 800 30 30
14 d 実施 - 80 50 900 30 3014 d Implementation-80 50 900 30 30
1 5 d 実施 - 80 50 800 30 301 5 d Implementation-80 50 800 30 30
16 e 実施 - 80 50 900 30 3016 e Implementation-80 50 900 30 30
17 f - 実施 80 50 900 30 3017 f-Implementation 80 50 900 30 30
18 b 実施 - 55* 10* 700 30 3018 b Implementation-55 * 10 * 700 30 30
19 b - - 50* 10* 800 30 3019 b--50 * 10 * 800 30 30
20 b 実施 - 95 50 1100* 30 3020 b Implementation-95 50 1100 * 30 30
21 b 実施 - 95 50 800 * 30 3021 b Implementation-95 50 800 * 30 30
* *
22 g 実施 - 80 50 900 30 30 22 g implemented-80 50 900 30 30
23 - - 80 50 800 30 3023--80 50 800 30 30
. * *
24 1 - - 80 50 800 30 30 24 1--80 50 800 30 30
. * *
25 J - - 80 50 800 30 30 25 J--80 50 800 30 30
26 k * 施 80 50 S00 30 3026 k * out 80 50 S00 30 30
27 k * 実施 - 調質圧延、形状強制 歪取焼鈍 500¾、300秒27 k * Implementation-temper rolling, forced shape, straightening annealing 500¾, 300 seconds
28 k * 実施 - - 調質圧延、形状強制 歪取焼鈍 500¾、300秒28 k * Implementation--Temper rolling, forced shape, straightening annealing 500¾, 300 seconds
29 k * 実施 - - 調質圧延、形状強制 歪取焼鈍 500°C、300秒29 k * Implementation--Temper rolling, forced shape, straightening annealing 500 ° C, 300 seconds
30 1* 実施 - - 調質圧延、形状強制 歪取焼鈍 500°C、300秒30 1 * Implementation--Temper rolling, forced shape deformation annealing 500 ° C, 300 seconds
31 r 実施 調質圧延、形状強制 歪取焼鈍 500°C、300秒31 r Perform Temper rolling, forced shape, Straightening annealing 500 ° C, 300 seconds
32 r 実施 - 調質圧延、形状強制 歪取焼鈍 500°C、 300秒 表 2を参照しつつ製造方法について詳しく説明する。表 2において本発明の範囲 外となるものについては、「*」を付した。冷間圧延にいたるまでの工程は各製造条 件において共通する。具体的には、小型铸塊を溶製し、切削加工、熱間圧延、焼鈍 、脱スケーノレ (酸洗净)を ifつた。また表 2ίこ No. l ~No. 16、 No. 18、 No. 20〜No . 22、 No. 26〜No. 32で示した例については、介在物微細化対策として、溶製時 に粗大介在物の浮上分離強化のために溶湯の加熱保持時間を延長した。 32 r Execution-Temper rolling, shape forced strain relief annealing 500 ° C, 300 seconds With reference to Table 2, the production method will be described in detail. In Table 2, “*” is given to those outside the scope of the present invention. The process up to cold rolling is common to all manufacturing conditions. Specifically, small ingots are melted and cut, hot rolled, and annealed. , If descaling (pickling). In addition, the examples shown in Table 2 (No. l to No. 16, No. 18, No. 20 to No. 22, and No. 26 to No. 32) are coarse at the time of melting as countermeasures for the refinement of inclusions. The heating and holding time of the melt was extended to enhance the floating separation of inclusions.
[0067] このようにして得られた素材につき No. l ~No. 26で示した鋼材については、一部 を切削加工および酸洗により板厚調整した後、第一冷間圧延及び焼鈍、さらに表 2 に示した条件で第二冷間圧延及び第二焼鈍をおこなった。板厚は最終的に 0. 2m mとした。ここで、 No. 10及び No. 17で示した例については、介在物微細化対策と して冷間圧延に使用するロール径をそれ以外で使用した直径 200mmワークロール に対して、直径 60mmの小径ワークロールを使用した。 [0067] For the steel materials indicated as No. 1 to No. 26 for the materials obtained in this way, a part of the steel materials was adjusted by cutting and pickling, and then the first cold rolling and annealing, Second cold rolling and second annealing were performed under the conditions shown in Table 2. The plate thickness was finally 0.2 mm. Here, in the examples shown in No. 10 and No. 17, the roll diameter used for cold rolling as a countermeasure for inclusion miniaturization is 60 mm in diameter compared to the 200 mm diameter work roll used elsewhere. A small diameter work roll was used.
[0068] 一方、 No. 27〜No32の例では、表 2に示したように厚さ 0. 2mmに調質圧延し、 JI S G 4313において規定される各硬度仕様とした。そしてその後、テンションレベラ 一による形状矯正、 500°C加熱、 300秒保持での歪取焼鈍をおこなった。なお、冷 延圧延時のワークロールは直径 200mmのものを使用した。 On the other hand, in the examples of No. 27 to No. 32, as shown in Table 2, temper rolling was performed to a thickness of 0.2 mm, and each hardness specification defined in JI S G 4313 was used. Then, straightening with a tension leveler, 500 ° C heating, and strain relief annealing for 300 seconds were performed. The work rolls used in the cold rolling were those with a diameter of 200 mm.
[0069] 以上のようにして得られた厚さ 0. 2mmの薄板より試験片を採取し、諸特性を調査、 比較した。 [0069] Test pieces were collected from the 0.2 mm-thick thin plate obtained as described above, and various characteristics were investigated and compared.
[0070] (ii)評価項目及びその評価方法  [0070] (ii) Evaluation item and evaluation method
以下に評価項目とその評価方法を説明する。  Evaluation items and evaluation methods will be described below.
化合物分布: はじめに 5gの試料を採取し、 10%臭素メタノール溶液により母材部 を腐食除去した。その後、所定寸法の孔のフィルタを通して残留物を抽出し、該残留 物を走査型電子顕微鏡(SEM : Scanning Electron Microscope)を用いて観察 し、その最大径が 20 a m以上の化合物の総数を得た。  Compound distribution: First, a 5 g sample was taken, and the base metal part was removed by corrosion with a 10% bromine methanol solution. Thereafter, the residue was extracted through a filter having a predetermined size, and the residue was observed using a scanning electron microscope (SEM) to obtain a total number of compounds having a maximum diameter of 20 am or more. .
[0071] 結晶粒径: 試料について圧延方向(R. D. )に平行な断面について、埋込、研磨 、エッチング後の組織を光学顕微鏡、及び SEMを用いて観察した。また、薄膜を作 成し、透過型電子顕微鏡(TEM : Transmission Electron Microscope)を用い て組織を観察した。そして、各々において平均的な組織の写真を撮影し、該写真より 結晶粒径を測定した。また、これにより組織が混合組織であるかの判断も行った。  [0071] Crystal grain size: Regarding the cross section of the sample parallel to the rolling direction (R. D.), the structure after embedding, polishing and etching was observed using an optical microscope and SEM. In addition, a thin film was formed and the structure was observed using a transmission electron microscope (TEM). Then, a photograph of an average structure was taken in each, and the crystal grain size was measured from the photograph. This also determined whether the tissue was a mixed tissue.
[0072] なお、結晶粒径は No.;!〜 No. 26については調質焼鈍後の再結晶粒の値、 No.  [0072] The crystal grain size is No .;! To No. 26 is the value of recrystallized grains after temper annealing,
27〜No. 32については第二焼鈍工程後のィ直を示す。ここで No. 27〜No. 32につ いては調質圧延により変形して展伸粒となるため、表 3中には括弧で記載した。また27 to No. 32 indicate the straightness after the second annealing step. Here, No. 27 to No. 32 In Table 3, since it is deformed by temper rolling and becomes expanded, it is shown in parentheses in Table 3. Also
、歪取焼鈍による粒径変化は無いと仮定した。 It was assumed that there was no change in particle size due to strain relief annealing.
[0073] γ相比率: 板表面について、 X線回折装置を用いて回折パターンを測定し、各相 ピークの積分強度比により Ί相、 α '相の割合を算出した。 [0073] γ phase ratio: A diffraction pattern was measured on the surface of the plate using an X-ray diffractometer, and the ratio of the negative phase and the α 'phase was calculated from the integrated intensity ratio of each phase peak.
[0074] 硬度: 板表面について、マイクロ'ビッカース硬度計を用いて 9. 8Νの荷重で測定 した。 [0074] Hardness: The surface of the plate was measured at a load of 9.8 mm using a Micro'Vickers hardness tester.
[0075] 伸び: 圧延方向(R. D. )に平行に採取し IS— 3Β号試験片について、インスト ロン型試験機を用いて測定した。  [0075] Elongation: Samples taken in parallel with the rolling direction (R. D.) and measured for an IS-3Β test piece were measured using an Instron type tester.
[0076] 表面粗さ: R. D.に垂直に採取した短冊状試験片の曲げ半径 2mmにおける直 角曲げ前後の曲げ外周部表面について、レーザー顕微鏡を用いて表面粗さの最大 高さ (Ry)を測定し、 [0076] Surface roughness: The maximum height (Ry) of the surface roughness was measured using a laser microscope on the surface of the outer periphery of the strip-shaped specimen taken perpendicular to the RD before and after the square bending at a bending radius of 2 mm. And
増加率(%) = 100 X (曲げ加工後の Ry 加工前の Ry) / (加工前の Ry) により評価した。  Rate of increase (%) = 100 X (Ry after bending, Ry before processing) / (Ry before processing).
[0077] 疲労特性: 両振り式平面曲げ試験機を用いて、曲げ加工を施していない素材で の疲労限度 (107回繰返し曲げに耐える応力の上限値)を明らかにした。次いで、上 記表面粗さを測定の曲げに用いた試験片に対し、素材の疲労限度の 90%の応力に て繰返し曲げを施し、 107回繰返し曲げ後の割れ有無を調査した。割れた場合を X 、割れな力 た場合を〇で評価した。  [0077] Fatigue properties: Using a swing-type plane bending tester, the fatigue limit (the upper limit of the stress that can withstand 107 repeated bendings) in a material that has not been bent was clarified. Next, the test specimens whose surface roughness was used for the measurement bending were repeatedly bent at a stress of 90% of the fatigue limit of the material, and the presence or absence of cracks after 107 repeated bendings was investigated. The case of cracking was evaluated as X, and the case of cracking force was evaluated as ○.
[0078] 板反り: 本実施例においては、板反りにより平坦度を評価した。その方法は、調質 焼鈍又は、形状矯正 +歪取焼鈍の前後に R. D.に平行に採取した長さ 500mmの 試験片について、 目視にて吊下げでの浮上り反りの高さを測定し、  Plate warpage: In this example, flatness was evaluated by plate warpage. The method is to measure the height of the rising warp by hanging the test piece of 500mm in length taken parallel to R.D. before and after temper annealing or shape correction + strain relief annealing.
減少率(%) = 100 X (処理後反り 処理前反り)/処理前反り  Decrease rate (%) = 100 X (warp after treatment warp before treatment) / warp before treatment
により評価した。  It was evaluated by.
[0079] 残留応力: 調質焼鈍、又は形状矯正 +歪取焼鈍の前後に採取した試験片につい て、 X線応力測定装置を用いて、板表面での R. D.での残留応力を測定し、 減少率(%) = 100 X (処理後応力 処理前応力)/処理前応力  [0079] Residual stress: For specimens collected before and after temper annealing or shape correction + strain relief annealing, the residual stress at RD on the plate surface was measured using an X-ray stress measurement device, and decreased. Rate (%) = 100 X (post-treatment stress pre-treatment stress) / pre-treatment stress
により評価した。  It was evaluated by.
[0080] (iii)結果 次に結果について説明する。はじめに得られたステンレス鋼板の組織 ·構造につい てその結果を説明する。表 3に結果を示す。 [0080] (iii) Results Next, the results will be described. First, the structure and structure of the obtained stainless steel sheet will be explained. Table 3 shows the results.
[表 3] [Table 3]
化合物 組織 ·構造 Compound Organization / Structure
鋼 最大怪 20 m以上 再結晶粒径 r相比率 備考 Steel Maximum monster 20 m or more Recrystallized grain size r Phase ratio Remarks
の化合物総数 (個) 租徵  Total number of compounds (pieces)
(%)  (%)
a 8 混合 2 98 本発明例 b 6 混合 1 1 99 本発明例 b 10 混合 4 95 本発明例 b 6 混合 3 95 本発明例 b 8 混台 2 99 本発明例 b 6 混合 5 96 本発明例 b 6 混合 2 66 本発明例 b 6 2 57 本発明例 b 6 m ≤2 84 本発明例 b 0 混合 2 98 本発明例  a 8 Mix 2 98 Invention Example b 6 Mix 1 1 99 Invention Example b 10 Mix 4 95 Invention Example b 6 Mix 3 95 Invention Example b 8 Mixer 2 99 Invention Example b 6 Mix 5 96 Invention Example b 6 Mixing 2 66 Invention Example b 6 2 57 Invention Example b 6 m ≤2 84 Invention Example b 0 Mixing 2 98 Invention Example
c 13 昆 CI 14 100 本発明例 c 13 KON CI 14 100 Invention example
c 4 12 96 本発明例 c 4 4 93 本発明例 d 1 1 4 94 本発明例 d 1 1 itXi 2 92 本発明例  c 4 12 96 Invention Example c 4 4 93 Invention Example d 1 1 4 94 Invention Example d 1 1 itXi 2 92 Invention Example
e 9 3 94 本発明例 f 24 3 96 本発明例 b 26 未再結晶 * (無) 99 比較例 b 42* 混合 16 91 比較例 b 6 再結晶 22 100 比較例 b 6 未冉 晶 -(無) 7 比較例  e 9 3 94 Invention Example f 24 3 96 Invention Example b 26 Non-recrystallized * (None) 99 Comparative Example b 42 * Mixed 16 91 Comparative Example b 6 Recrystallized 22 100 Comparative Example b 6 Uncrystallized-(None) 7 Comparison example
*  *
g 18 (無) 0 比較例 h * 32 * 混合 14 100 比較例 g 18 (None) 0 Comparative example h * 32 * Mixed 14 100 Comparative example
. *  *
1 50 * 混合 ≤2 96 比較例  1 50 * Mix ≤2 96 Comparative Example
. *  *
J 34 * 混合 <2 97 比較例 k * 12 得 16 100 比較例 k * 13 土 B * J 34 * Mix <2 97 Comparative Example k * 12 Obtained 16 100 Comparative Example k * 13 Soil B *
木冉 g (24) 30 比較例  Kiso g (24) 30 Comparative example
8 未 結 (24) 10 比較例 8 Not connected (24) 10 Comparative example
10 未再 (24) 3 比較例10 Not re-read (24) 3 Comparative example
8 未再齄晶 * (26) 60 比較例8 Not recrystallized * (26) 60 Comparative example
16 未再 ¾¾3曰日 (26} 42 比較例16 Not regenerated ¾¾3 days (26} 42 Comparative Example
20 土 20 Sat
木得 fi±曰 * (26) 30 比較例 表 3からわかるように、本発明の製造方法の条件を満たした No.;!〜 No. 17に関しては、最大径が 20 m以上の化合物はいずれも 30個以下であり、組織も 混合組織を得ることができた。一方、 No. 18〜No. 32においては、いずれも最大径 力 ¾0 m以上の化合物が 30個以上となる、又は組織が混合組織とならないという不 具合が生じ、本発明の製造方法の効果が顕著に現れている。 Wood yield fi ± 曰 * (26) 30 Comparative example As can be seen from Table 3, No. satisfying the conditions of the production method of the present invention; With respect to 17, all compounds having a maximum diameter of 20 m or more were 30 or less, and a mixed tissue could be obtained. On the other hand, in each of No. 18 to No. 32, there was a problem that the number of compounds having a maximum diameter of ¾0 m or more was 30 or more, or the structure was not a mixed structure. It appears prominently.
[0083] 次に、得られたステンレス鋼板の各種特性について説明する。表 4に結果を示す。  Next, various characteristics of the obtained stainless steel plate will be described. Table 4 shows the results.
[0084] [表 4] [0084] [Table 4]
表面粗さ增加 Increased surface roughness
硬度 伸び 板反り増 残留応力 調質記号 Hardness Elongation Increase in sheet warpage Residual stress Tempering symbol
率(%) 曲げ疲  Rate (%) Bending fatigue
加率 増加率 (JIS G 備考 労特性  Addition rate Increase rate (JIS G Remarks Labor characteristics
(%) ( %) 4313)  (%) (%) 4313)
(Hv) (%) エッチンク" 曲げ  (Hv) (%) Etching
370 43.6 -83 47 o - 84 -82 - 本発明例 370 43.6 -83 47 o-84 -82-Example of the present invention
31 1 46.6 -48 54 o -92 -94 - 本発明例31 1 46.6 -48 54 o -92 -94-Example of the present invention
382 42.4 -76 44 o -83 -81 - 本発明例382 42.4 -76 44 o -83 -81-Example of the present invention
396 42.9 -78 40 o -82 -82 - 本発明例396 42.9 -78 40 o -82 -82-Example of the present invention
404 38.2 -81 36 o -79 -81 - 本発明例404 38.2 -81 36 o -79 -81-Example of the present invention
361 46.8 -77 48 o -86 -88 - 本発明例361 46.8 -77 48 o -86 -88-Example of the present invention
399 33.9 -81 52 o -89 -86 - 本発明例399 33.9 -81 52 o -89 -86-Example of the present invention
402 32.9 -81 53 o -92 -84 - 本発明例402 32.9 -81 53 o -92 -84-Example of the present invention
443 31.9 -86 52 o -81 -82 - 本発明例443 31.9 -86 52 o -81 -82-Example of the present invention
398 46.3 -90 30 o -82 -84 - 本発明例398 46.3 -90 30 o -82 -84-Example of the present invention
297 48.6 -41 59 o -92 -93 - 本発明例297 48.6 -41 59 o -92 -93-Example of the present invention
302 43.7 -54 55 〇 - 90 -94 - 本発明例302 43.7 -54 55 ○-90 -94-Example of the present invention
339 49.8 -80 41 o -87 -84 - 本発明例339 49.8 -80 41 o -87 -84-Example of the present invention
329 52.8 -54 42 o -87 -92 - 本発明例329 52.8 -54 42 o -87 -92-Example of the present invention
401 39.5 -88 33 0 -84 -86 - 本発明例401 39.5 -88 33 0 -84 -86-Example of the present invention
376 45.3 -89 38 0 -85 -89 ― 本発明例376 45.3 -89 38 0 -85 -89 ― Example of the present invention
382 41.7 -84 36 o -88 -84 - 本発明例382 41.7 -84 36 o -88 -84-Example of the present invention
21 1 48.2 148 392 X -82 -83 - 比較例21 1 48.2 148 392 X -82 -83-Comparative example
283 39.5 169 319 X -85 -84 - 比較例283 39.5 169 319 X -85 -84-Comparative example
192 51.8 81 218 X -96 -98 一 比較例192 51.8 81 218 X -96 -98
461 1 5.8 75 462 X -36 -39 - 比較例461 1 5.8 75 462 X -36 -39-Comparative example
328 1 6.4 -48 296 X 13 -46 - 比較例328 1 6.4 -48 296 X 13 -46-Comparative example
520 4.1 189 892{ X ) X -46 -54 - 比較例520 4.1 189 892 {X) X -46 -54-Comparative Example
472 13.6 198 394 X -92 -91 - 比較例472 13.6 198 394 X -92 -91-Comparative Example
468 12.8 207 491{x) X -90 -93 - 比較例468 12.8 207 491 (x) X -90 -93-Comparative example
246 32.5 169 277 X -96 -94 - 比較例246 32.5 169 277 X -96 -94-Comparative Example
340 34.2 79 221 X -40 -38 301 -1 /2H 比較例340 34.2 79 221 X -40 -38 301 -1 / 2H Comparative example
389 24.5 24 24S X -36 -34 301 -3/4H 比較例389 24.5 24 24S X -36 -34 301 -3 / 4H Comparative example
473 8.9 64 324 X -31 -18 301-H 比較例473 8.9 64 324 X -31 -18 301-H Comparative example
295 30.8 48 205 X -42 -42 304 - 1 /2H 比較例295 30.8 48 205 X -42 -42 304-1 / 2H Comparative example
354 18.4 36 274 X -38 -45 304-3/4H 比較例354 18.4 36 274 X -38 -45 304-3 / 4H Comparative example
394 7.2 50 358 X -42 -40 304-H 比較例 実施例の結果に基づく硬度と伸びとの関係を図 3に示した。表 4及び図 3 力、らわかるように、本発明例である No. l~No. 17では、比較例である No. 18〜No . 32のいずれよりも高強度及び高延性である。 394 7.2 50 358 X -42 -40 304-H Comparative Example FIG. 3 shows the relationship between hardness and elongation based on the results of the examples. Table 4 and Figure 3 As can be seen, No. 1 to No. 17 which is an example of the present invention has higher strength and higher ductility than any of No. 18 to No. 32 which are comparative examples.
[0086] また、本発明例は曲げ加工後の表面粗さの最大値の増加率がいずれも 60%以下 となり、均一変形の進行により成形性の向上があらわれている。図 4は、曲げ加工前 後における表面の写真及びそのときの表面粗さ(Ry)を示したものである。具体的に は、発明例(No. 4)及び比較例(No. 28)について平板、曲げ半径 2mm及び曲げ 半径 0. 5mmの場合のそれぞれについて示している。これら写真及び Ryの値力、らも 本発明の効果を見ることができる。特に、平板では、いずれのステンレス鋼板もほぼ 同じ表面粗さである力 曲げ加工を加えるとその表面粗さに大きな差が現れる。  [0086] Further, in the examples of the present invention, the increase rate of the maximum value of the surface roughness after bending is all 60% or less, and the improvement of formability is exhibited by the progress of uniform deformation. Figure 4 shows a photograph of the surface before and after bending and the surface roughness (Ry) at that time. Specifically, the invention example (No. 4) and the comparative example (No. 28) are shown for a flat plate, a bending radius of 2 mm, and a bending radius of 0.5 mm. These photos and the value of Ry can also see the effect of the present invention. In particular, in the case of flat plates, when stainless steel plates are subjected to force bending, which has almost the same surface roughness, a large difference appears in the surface roughness.
[0087] さらに表 4において曲げ疲労特性も本発明は良好である。これにより、曲げ加工後 においても優れた疲労特性を維持することができる。すなわち、混合組織に加えて内 在する化合物分布の適正化により、均一な変形の進展、曲げ加工時に発生する欠 陥が減る。これにより、優れた成形性を示し、高い疲労強度を維持することできたと考 X_られる。  [0087] Further, in Table 4, the bending fatigue characteristics of the present invention are also good. As a result, excellent fatigue characteristics can be maintained even after bending. In other words, by optimizing the distribution of the compound in addition to the mixed structure, uniform deformation progresses and defects that occur during bending are reduced. As a result, it is considered that the excellent formability and high fatigue strength were maintained.
[0088] 一方、エッチング性に関しても、加工面は表面粗さの最大値が減少してエッチング ピット等の欠陥が減り、加工前に比べて逆に平滑化する傾向にある。すなわち、本発 明によってはエッチング性を含めた加工性も向上させることができ、加工部品でも高 V、疲労強度を維持することができる。  On the other hand, with respect to the etching property, the processed surface has a tendency that the maximum value of the surface roughness is reduced and defects such as etching pits are reduced, and the processed surface is smoothed compared to before processing. That is, according to the present invention, the workability including the etching property can be improved, and the high V and fatigue strength can be maintained even in the processed parts.
[0089] さらには板反り及び残留応力も増加率が小さぐ残留応力については 70%以上も 減少した。従って、本発明にお!/、てはかかる特性に関しても大幅な効果が認められる [0089] Furthermore, the plate warpage and the residual stress also decreased by 70% or more with respect to the residual stress whose increase rate was small. Therefore, the present invention has a significant effect on such characteristics!
Yes
[0090] 本発明例の中では、 No. 2、 No. 11、及び No. 12では、調質焼鈍温度が比較的 高いので、再結晶粒径が 10〃 mを越える。また、 No. 7、 No. 8については、付与す る張力が 0. 2%耐力の 40%を越えるので、混合組織の γ相の比率が 70%より小さく なる。これにより、比較例よりは優れたステンレス鋼板を得ることができるものの、本発 明例の中では強度と延性のバランスが劣る傾向にある。これらについて、 No. 2、 No . 11、及び No. 12に対して (ま、 No. 14、 No. 16、及び No. 17のように、 Nb、 Ti、 V の添加により粒成長抑制をすることができさらなる改善か可能である。また、 No. 7、 No. 8対しては No. 10のように付与張力を小さくすることにより改善することができる[0090] Among the examples of the present invention, No. 2, No. 11, and No. 12 have a relatively high temper annealing temperature, so that the recrystallized grain size exceeds 10 μm. For No. 7 and No. 8, the applied tension exceeds 40% of the 0.2% proof stress, so the ratio of the γ phase of the mixed structure is less than 70%. As a result, although a stainless steel plate superior to the comparative example can be obtained, the balance between strength and ductility tends to be inferior in the present invention. For these, compared to No. 2, No. 11, and No. 12 (as in No. 14, No. 16, and No. 17, the grain growth is suppressed by adding Nb, Ti, and V. Can be further improved, and No. 7, For No. 8, it can be improved by reducing the applied tension as in No. 10.
Yes
[0091] 介在物微細化対策を実施した No. l~No. 18、 No. 20〜No. 22、 No. 26〜No . 32は、最大径が 20 以上の介在物個数が本発明の範囲内であり、特に介在物 の浮上と小径ワークロールを使用した No. 10は、本発明例の中で最良の強度と延 性とのバランス及び加工性を示す。  [0091] No. l to No. 18, No. 20 to No. 22, and No. 26 to No. 32, in which the measures for inclusion miniaturization were implemented, included in the present invention the number of inclusions having a maximum diameter of 20 or more In particular, No. 10 using the floating of inclusions and a small-diameter work roll shows the best balance between strength and ductility and workability among the examples of the present invention.
[0092] 一方、比較例は上述のように本発明例に比べて強度と延性のバランスに劣る。具体 的には No. 18〜No. 21は成分の含有量、及び Md値は本発明の範囲に該当する ものであるが、 No. 18及び No. 19は圧下率不足のために最大径 20 m以上の化 合物が 30個以上発生した。その結果、混合組織の未形成により良好な特性を得られ ていない。また、 No. 20及び No. 21は調質焼鈍温度が本発明の製造方法の範囲 外であるために混合組織が形成されず、加工性、疲労特性ともに従来材と同等以下 であった。他の比較例についても材料が必要組成を満たしておらず、高性能化しな い。  On the other hand, the comparative example is inferior in balance between strength and ductility as compared with the inventive example as described above. Specifically, No. 18 to No. 21 fall within the scope of the present invention in terms of component content and Md value, but No. 18 and No. 19 have a maximum diameter of 20 due to insufficient rolling reduction. More than 30 compounds over m were generated. As a result, good characteristics cannot be obtained due to the absence of a mixed structure. In No. 20 and No. 21, the temper annealing temperature was outside the range of the production method of the present invention, so a mixed structure was not formed, and the workability and fatigue characteristics were both equal to or lower than those of conventional materials. In other comparative examples, the material does not satisfy the required composition, and the performance is not improved.
[0093] さらに、 No. 2の材料に 10%、 20%の圧下率にて調質圧延を施した材料の特性調 查結果を表 5に示す。表 5において、 No. 2— aは、 No. 2の材料に 10%の圧下率に て調質圧延を施した場合、 No. 2— bは同じく 20%の圧下率の場合である。その結 果、同材は調質圧延後も優れた特性を維持してレ、ること力 S確認される。  [0093] Further, Table 5 shows the characteristic adjustment results of the material obtained by subjecting the No. 2 material to temper rolling at a reduction rate of 10% and 20%. In Table 5, No. 2-a is when the temper rolling is applied to the No. 2 material at a reduction rate of 10%, and No. 2-b is the same when the reduction rate is 20%. As a result, it is confirmed that the same material retains excellent properties even after temper rolling.
[0094] [表 5]  [0094] [Table 5]
Figure imgf000028_0001
Figure imgf000028_0001
[0095] 以上、現時点において、最も実践的でありかつ、好ましいと思われる実施形態に関 連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限 定されるものではなぐ請求の範囲および明細書全体から読み取れる発明の要旨或 いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う、部品用ステ ンレス鋼板及びその製造方法も本発明の技術的範囲に包含されるものとして理解さ れなければならない。 [0095] While the present invention has been described with reference to the most practical and preferred embodiments at the present time, the present invention is limited to the embodiments disclosed herein. However, the present invention can be changed as appropriate without departing from the spirit or concept of the invention which can be read from the claims and the entire specification. It is to be understood that the stainless steel plate and the manufacturing method thereof are included in the technical scope of the present invention.

Claims

請求の範囲 The scope of the claims
[1] ステンレス鋼の全体を 100質量%としたときに、 Cを 0· 01—0. 08質量%、 Siを 0· 1— 2. 0質量0 /0、 Mnを 3. 0質量0 /0以下、 Crを 10. 0—20. 0質量0 /0、 Niを 3. 0—1 2. 0質量%、 Nを 0. 02〜0. 24質量%で各成分を含有し、かつ、該含有された前記 各成分の質量%の値が代入される式 [1] The entire stainless steel is taken as 100 mass%, a C 0-01-0. 08 wt%, 0 · 1 2. 0 mass 0/0, Mn and Si 3. 0 mass 0 / 0 or less, the Cr 10. 0-20. 0 mass 0/0, Ni 3. 0-1 2. 0 wt%, and containing each component N in 0.02 to 0.24 wt%, and, Formula in which the value of mass% of each contained component is substituted
Md= 500-458(C + N)- 9(Si + Mn)- 14Cr- 20Ni  Md = 500-458 (C + N) -9 (Si + Mn) -14Cr-20Ni
で表される Md値が 0〜80を満足し、残部が不可避的不純物である化学組成を有し 前記各成分により形成された化合物のうち最大径が 20 a m以上である該化合物の 内在量が前記ステンレス鋼の質量 5gあたりに 30個以下であり、さらに該ステンレス鋼 全体の金属組織が再結晶粒及び未再結晶部の混合組織であること特徴とする部品 用ステンレス鋼板。  A compound having a chemical composition in which the Md value represented by 0 to 80 is satisfied, and the balance is an inevitable impurity, and the maximum amount of the compound formed by the components is 20 am or more. 30 or less per 5 g of the mass of the stainless steel, and the metal structure of the stainless steel as a whole is a mixed structure of recrystallized grains and non-recrystallized parts.
[2] ステンレス鋼の全体を 100質量%としたときに、 Cを 0· 01—0. 08質量%、 Siを 0· 1— 2. 0質量0 /0、 Mnを 3. 0質量0 /0以下、 Crを 10. 0—20. 0質量0 /0、 Niを 3. 0—1 2. 0質量%、Nを0. 02—0. 24質量%、及び Nb、Ti、 Vから選ばれる 1種以上を 0. 5質量%以下で各成分を含有し、かつ、該含有された前記各成分の質量%の値が代 入される式 [2] The entire stainless steel is taken as 100 mass%, a C 0-01-0. 08 wt%, 0 · 1 2. 0 mass 0/0, Mn and Si 3. 0 mass 0 / 0 or less, selected the Cr 10. 0-20. 0 mass 0/0, Ni 3. 0-1 2. 0 wt%, the N 0. 02-0. 24 wt%, and Nb, Ti, from the V A formula in which each component is contained in an amount of 0.5% by mass or less, and the mass% value of each component contained is substituted.
Md= 500-458(C + N)- 9(Si + Mn)- 14Cr- 20Ni- 65Nb- 27Ti- 61V で表される Md値が 0〜80を満足し、残部が不可避的不純物である化学組成を有し 前記各成分により形成された化合物のうち最大径が 20 a m以上である該化合物の 内在量が前記ステンレス鋼の質量 5gあたりに 30個以下であり、さらに該ステンレス鋼 全体の金属組織が再結晶粒と未再結晶部の混合組織であること特徴とする部品用ス テンレスま岡板。  Md = 500-458 (C + N) -9 (Si + Mn)-14Cr-20Ni- 65Nb- 27Ti- 61V The compound having the maximum diameter of 20 am or more among the compounds formed by the respective components is 30 or less per 5 g of the mass of the stainless steel, and the metal structure of the entire stainless steel is Stainless steel plate for parts, characterized by a mixed structure of recrystallized grains and non-recrystallized parts.
[3] 前記再結晶粒の平均粒径は 10 m以下であることを特徴とする請求の範囲第 1項 又は第 2項に記載の部品用ステンレス鋼板。  [3] The stainless steel sheet for parts according to claim 1 or 2, wherein the recrystallized grains have an average grain size of 10 m or less.
[4] 前記混合組織が 70質量%以上のオーステナイト相であることを特徴とする請求の 範囲第 3項に記載の部品用ステンレス鋼板。 [4] The stainless steel sheet for parts according to claim 3, wherein the mixed structure is an austenite phase of 70% by mass or more.
[5] ステンレス鋼の全体を 100質量%としたときに、 Cを 0· 01—0. 08質量%、 Siを 0· 1— 2. 0質量0 /0、 Mnを 3. 0質量0 /0以下、 Crを 10. 0—20. 0質量0 /0、 Niを 3. 0—1 2. 0質量%、 Nを 0. 02〜0. 24質量%で各成分を含有し、かつ、該含有された前記 各成分の質量%の値が代入される式 [5] the whole stainless steel is taken as 100 mass%, a C 0-01-0. 08 wt%, 0 · 1 2. 0 mass 0/0, Mn and Si 3. 0 mass 0 / 0 or less, the Cr 10. 0-20. 0 mass 0/0, Ni 3. 0-1 2. 0 wt%, and containing each component N in 0.02 to 0.24 wt%, and, Formula in which the value of mass% of each contained component is substituted
Md= 500-458(C + N)- 9(Si + Mn)- 14Cr- 20Ni  Md = 500-458 (C + N) -9 (Si + Mn) -14Cr-20Ni
で表される Md値が 0〜80を満足し、残部が不可避的不純物である化学組成を有す る素材を少なくとも 1回冷間圧延する第一冷間圧延工程と、前記第一冷間圧延工程 と組して該第一冷間圧延工程後に配置される第一焼鈍工程と、前記第一焼鈍工程 の後工程側に具備される最後の圧延であり、圧下率が 20%以上、かつ前記第一冷 間圧延との合計の圧下率が 60%以上となる第二冷間圧延工程と、前記第二冷間圧 延工程後の前記素材を 650〜; 1000°Cで 300秒以下で保持するとともに、該保持さ れた温度における前記素材の 0. 2%耐カ以下で張力を与えて調質する第二焼鈍ェ 程と、を有する部品用ステンレス鋼板製造方法。  A first cold rolling step in which a material having a chemical composition in which the Md value represented by the formula is 0 to 80 and the balance is an inevitable impurity is cold-rolled at least once, and the first cold rolling A first annealing step disposed after the first cold rolling step in combination with a step, and a final rolling provided on the subsequent step side of the first annealing step, and a reduction rate of 20% or more and Holds the material after the second cold rolling process in which the total rolling reduction with the first cold rolling is 60% or more and the second cold rolling process from 650 to 1000 ° C for 300 seconds or less And a second annealing step in which the material is tempered by applying a tension at 0.2% resistance or less of the material at the held temperature.
[6] ステンレス鋼の全体を 100質量0 /0としたときに、 Cを 0· 01—0. 08質量0 /0、 Siを 0· 1— 2. 0質量0 /0、 Mnを 3. 0質量0 /0以下、 Crを 10. 0—20. 0質量0 /0、 Niを 3. 0—1 2. 0質量%、Nを0. 02—0. 24質量%、及び Nb、Ti、 Vから選ばれる 1種以上を 0. 5質量%以下で各成分を含有し、かつ、該含有された前記各成分の質量%の値が代 入される式 [6] the whole stainless steel is taken as 100 mass 0/0, the C 0-01-0. 08 mass 0/0, Si 0 - 1 2.0 mass 0/0, Mn 3. 0 weight 0/0 or less, the Cr 10. 0-20. 0 wt 0/0, Ni 3. 0-1 2.0 mass%, a N 0. 02-0. 24 wt%, and Nb, Ti A formula in which each component is contained at 0.5% by mass or less of one or more selected from V, and the value of mass% of each of the contained components is substituted
Md = 500-458(C + N)- 9(Si + Mn)- 14Cr- 20Ni- 65Nb- 27Ti- 61V で表される Md値が 0〜80を満足し、残部が不可避的不純物である化学組成を有す る素材を少なくとも 1回冷間圧延する第一冷間圧延工程と、前記第一冷間圧延工程 と組して該第一冷間圧延工程後に配置される第一焼鈍工程と、前記第一焼鈍工程 の後工程側に具備される最後の圧延であり、圧下率が 20%以上、かつ前記第一冷 間圧延との合計の圧下率が 60%以上となる第二冷間圧延工程と、前記第二冷間圧 延工程後の前記素材を 650〜; 1000°Cで 300秒以下で保持するとともに、該保持さ れた温度における前記素材の 0. 2%耐カ以下で張力を与えて調質する第二焼鈍ェ 程と、を有する部品用ステンレス鋼板製造方法。  Md = 500-458 (C + N) -9 (Si + Mn)-14Cr-20Ni- 65Nb- 27Ti- 61V A first cold rolling step of cold rolling a material having at least one time, a first annealing step arranged after the first cold rolling step in combination with the first cold rolling step, and The second cold rolling process, which is the last rolling provided on the post-process side of the first annealing process, in which the rolling reduction is 20% or more and the total rolling reduction with the first cold rolling is 60% or more. And holding the material after the second cold rolling process at 650 to; 300 ° C. or less at 1000 ° C. and maintaining a tension of 0.2% or less of the material at the held temperature. A method for producing a stainless steel sheet for parts, comprising: a second annealing step for imparting and tempering.
[7] 前記第二焼鈍工程の前記張力が、前記保持された温度における前記素材の 0. 2 %耐力の 40%以下であることを特徴とする請求の範囲第 5項又は第 6項に記載の部 品用ステンレス鋼板製造方法。 [7] The tension in the second annealing step is 0.2 of the material at the held temperature. The method for producing a stainless steel sheet for parts according to claim 5 or 6, wherein the% proof stress is 40% or less.
前記第二焼鈍工程後、さらに調質圧延を施すことを特徴とする請求の範囲第 5項 〜第 7項のいずれか一項に記載の部品用ステンレス鋼板製造方法。  The method for producing a stainless steel sheet for parts according to any one of claims 5 to 7, further comprising temper rolling after the second annealing step.
PCT/JP2007/064910 2006-07-28 2007-07-30 Stainless steel sheet for parts and process for manufacturing the same WO2008013305A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800276522A CN101490298B (en) 2006-07-28 2007-07-30 Stainless steel sheet for parts and process for manufacturing the same
JP2008526850A JP4475352B2 (en) 2006-07-28 2007-07-30 Stainless steel sheet for parts and manufacturing method thereof
EP07791595.7A EP2048256B1 (en) 2006-07-28 2007-07-30 Stainless steel sheet for parts and process for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-206250 2006-07-28
JP2006206250 2006-07-28

Publications (1)

Publication Number Publication Date
WO2008013305A1 true WO2008013305A1 (en) 2008-01-31

Family

ID=38981613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064910 WO2008013305A1 (en) 2006-07-28 2007-07-30 Stainless steel sheet for parts and process for manufacturing the same

Country Status (4)

Country Link
EP (1) EP2048256B1 (en)
JP (1) JP4475352B2 (en)
CN (1) CN101490298B (en)
WO (1) WO2008013305A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009219306A (en) * 2008-03-12 2009-09-24 Jfe Steel Corp Rotor for high-speed motor and method of manufacturing the same
WO2014030607A1 (en) * 2012-08-20 2014-02-27 新日鐵住金株式会社 Stainless steel sheet and method for producing same
JP2018149587A (en) * 2017-03-15 2018-09-27 日立金属株式会社 Manufacturing method of steel strip
JP2019502816A (en) * 2015-12-23 2019-01-31 ポスコPosco Stainless steel for separator plate of polymer fuel cell with improved hydrophilicity and contact resistance and method for producing the same
JP2020041204A (en) * 2018-09-13 2020-03-19 日鉄日新製鋼株式会社 Stainless steel and manufacturing method therefor
WO2020071534A1 (en) * 2018-10-04 2020-04-09 日本製鉄株式会社 Austenitic stainless steel sheet and method for producing same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT513014A2 (en) * 2012-05-31 2013-12-15 Berndorf Band Gmbh Metal strip and method for producing a surface-polished metal strip
JP5960809B2 (en) * 2012-09-04 2016-08-02 新日鐵住金株式会社 Stainless steel sheet for precision machining and manufacturing method thereof
CN106148849A (en) * 2015-03-23 2016-11-23 江苏锦明不锈钢新材料有限公司 A kind of high-strength stainless steel
WO2017203311A1 (en) * 2016-05-24 2017-11-30 Arcelormittal Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts
WO2017203315A1 (en) 2016-05-24 2017-11-30 Arcelormittal Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279802A (en) 1991-03-11 1993-10-26 Nisshin Steel Co Ltd Stainless steel for spring excellent in fatigue characteristic in formed part as well as in spring characteristic and its production
JPH1034237A (en) 1996-07-30 1998-02-10 Sumitomo Metal Ind Ltd Production of cold rolling stainless steel sheet with excellent flatness
WO2000014292A1 (en) * 1998-09-04 2000-03-16 Sumitomo Metal Industries, Ltd. Stainless steel for engine gasket and production method therefor
JP2000273586A (en) 1999-03-23 2000-10-03 Nippon Steel Corp Stainless extra-thin foil
JP2001226718A (en) 2000-02-10 2001-08-21 Sumitomo Metal Ind Ltd Method for producing stainless steel sheet excellent in flatness after etching
JP2001247938A (en) * 2000-03-03 2001-09-14 Sumitomo Metal Ind Ltd Austenitic stainless steel sheet for electronic equipment component
JP2002173742A (en) * 2000-12-04 2002-06-21 Nisshin Steel Co Ltd High strength austenitic stainless steel strip having excellent shape flatness and its production method
JP2002194506A (en) 2000-12-25 2002-07-10 Sumitomo Metal Ind Ltd Stainless steel sheet and production method for the same
JP2005290449A (en) 2004-03-31 2005-10-20 Sumitomo Metal Ind Ltd Fine inclusion-containing stainless steel and its production method
JP2005314772A (en) 2004-04-30 2005-11-10 Nippon Yakin Kogyo Co Ltd Stainless steel sheet to be photo-etched and manufacturing method therefor
JP2005320586A (en) 2004-05-10 2005-11-17 Nippon Yakin Kogyo Co Ltd Stainless steel sheet for photoetching and its production method
JP2005320587A (en) 2004-05-10 2005-11-17 Nippon Yakin Kogyo Co Ltd Stainless steel sheet for photoetching and its production method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5407493A (en) * 1993-03-08 1995-04-18 Nkk Corporation Stainless steel sheet and method for producing thereof
JP3696552B2 (en) * 2001-04-12 2005-09-21 日新製鋼株式会社 Soft stainless steel plate with excellent workability and cold forgeability

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279802A (en) 1991-03-11 1993-10-26 Nisshin Steel Co Ltd Stainless steel for spring excellent in fatigue characteristic in formed part as well as in spring characteristic and its production
JPH1034237A (en) 1996-07-30 1998-02-10 Sumitomo Metal Ind Ltd Production of cold rolling stainless steel sheet with excellent flatness
WO2000014292A1 (en) * 1998-09-04 2000-03-16 Sumitomo Metal Industries, Ltd. Stainless steel for engine gasket and production method therefor
JP2000273586A (en) 1999-03-23 2000-10-03 Nippon Steel Corp Stainless extra-thin foil
JP2001226718A (en) 2000-02-10 2001-08-21 Sumitomo Metal Ind Ltd Method for producing stainless steel sheet excellent in flatness after etching
JP3603726B2 (en) 2000-03-03 2004-12-22 住友金属工業株式会社 Austenitic stainless steel sheet for electronic components
JP2001247938A (en) * 2000-03-03 2001-09-14 Sumitomo Metal Ind Ltd Austenitic stainless steel sheet for electronic equipment component
JP2002173742A (en) * 2000-12-04 2002-06-21 Nisshin Steel Co Ltd High strength austenitic stainless steel strip having excellent shape flatness and its production method
JP2002194506A (en) 2000-12-25 2002-07-10 Sumitomo Metal Ind Ltd Stainless steel sheet and production method for the same
JP2005290449A (en) 2004-03-31 2005-10-20 Sumitomo Metal Ind Ltd Fine inclusion-containing stainless steel and its production method
JP2005314772A (en) 2004-04-30 2005-11-10 Nippon Yakin Kogyo Co Ltd Stainless steel sheet to be photo-etched and manufacturing method therefor
JP2005320586A (en) 2004-05-10 2005-11-17 Nippon Yakin Kogyo Co Ltd Stainless steel sheet for photoetching and its production method
JP2005320587A (en) 2004-05-10 2005-11-17 Nippon Yakin Kogyo Co Ltd Stainless steel sheet for photoetching and its production method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009219306A (en) * 2008-03-12 2009-09-24 Jfe Steel Corp Rotor for high-speed motor and method of manufacturing the same
WO2014030607A1 (en) * 2012-08-20 2014-02-27 新日鐵住金株式会社 Stainless steel sheet and method for producing same
JP5843019B2 (en) * 2012-08-20 2016-01-13 新日鐵住金株式会社 Stainless steel sheet and its manufacturing method
KR101620252B1 (en) * 2012-08-20 2016-05-12 신닛테츠스미킨 카부시키카이샤 Stainless steel sheet and method for producing same
JP2019502816A (en) * 2015-12-23 2019-01-31 ポスコPosco Stainless steel for separator plate of polymer fuel cell with improved hydrophilicity and contact resistance and method for producing the same
US10991954B2 (en) 2015-12-23 2021-04-27 Posco Stainless steel for polymer fuel cell separation plate having improved hydrophilicity and contact resistance and method for manufacturing same
JP2018149587A (en) * 2017-03-15 2018-09-27 日立金属株式会社 Manufacturing method of steel strip
JP2020041204A (en) * 2018-09-13 2020-03-19 日鉄日新製鋼株式会社 Stainless steel and manufacturing method therefor
JP7116648B2 (en) 2018-09-13 2022-08-10 日鉄ステンレス株式会社 Stainless steel plate and manufacturing method thereof
WO2020071534A1 (en) * 2018-10-04 2020-04-09 日本製鉄株式会社 Austenitic stainless steel sheet and method for producing same
JPWO2020071534A1 (en) * 2018-10-04 2021-09-02 日本製鉄株式会社 Austenitic stainless steel sheet and its manufacturing method
JP7165202B2 (en) 2018-10-04 2022-11-02 日本製鉄株式会社 Austenitic stainless steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
CN101490298B (en) 2011-11-16
JPWO2008013305A1 (en) 2009-12-17
EP2048256B1 (en) 2021-11-10
EP2048256A4 (en) 2016-07-13
EP2048256A1 (en) 2009-04-15
JP4475352B2 (en) 2010-06-09
CN101490298A (en) 2009-07-22

Similar Documents

Publication Publication Date Title
WO2008013305A1 (en) Stainless steel sheet for parts and process for manufacturing the same
JP5056985B2 (en) Austenitic stainless steel sheet and manufacturing method thereof
KR100977600B1 (en) The ferritic stainless steel plate having low orange peel and exhibiting excellent formability, and method for producing the same
WO2013133259A1 (en) Ferrite-austenite 2-phase stainless steel plate having low in-plane anisotropy and method for producing same
JP2010059452A (en) Cold-rolled steel sheet and producing method therefor
JP2004360003A (en) Ferritic stainless steel sheet superior in press formability and fabrication quality, and manufacturing method therefor
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
JP4858286B2 (en) Full hard cold rolled steel sheet
WO2016035235A1 (en) Material for cold-rolled stainless steel sheets
JP5347600B2 (en) Austenitic stainless steel and method for producing austenitic stainless steel sheet
CN110062814A (en) Low alloy steel plate with excellent intensity and ductility
JP2010133028A (en) Method for manufacturing high-strength low-specific gravity steel sheet excellent in ductility
JP5407591B2 (en) Cold-rolled steel sheet, manufacturing method thereof, and backlight chassis
JP5453747B2 (en) Stainless cold-rolled steel sheet excellent in punching processability and manufacturing method thereof
JP2005029889A (en) High strength low specific gravity steel sheet excellent in ductility, and its production method
JP3603726B2 (en) Austenitic stainless steel sheet for electronic components
JP4166657B2 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP5534112B2 (en) Hot-rolled steel sheet for cold rolling material and manufacturing method thereof
JP5282456B2 (en) A material for stainless cold-rolled steel sheet capable of suppressing the occurrence of roping and ear cracking and its manufacturing method
JP2007239035A (en) Cold rolled steel sheet with excellent strain aging resistance, excellent surface roughing resistance and small in-plane anisotropy, and its manufacturing method
JP5644148B2 (en) Stainless cold-rolled steel sheet with excellent surface appearance after processing and method for producing the same
JP2012201924A (en) Stainless steel sheet and method for producing the same
KR20110075408A (en) Ferritic stainless steel and method for manufacturing the same
JP4498912B2 (en) Austenitic stainless steel sheet with excellent overhang formability and method for producing the same
JP2007204788A (en) Method for manufacturing steel sheet for battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780027652.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791595

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008526850

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007791595

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)