WO2013133259A1 - Ferrite-austenite 2-phase stainless steel plate having low in-plane anisotropy and method for producing same - Google Patents

Ferrite-austenite 2-phase stainless steel plate having low in-plane anisotropy and method for producing same Download PDF

Info

Publication number
WO2013133259A1
WO2013133259A1 PCT/JP2013/055945 JP2013055945W WO2013133259A1 WO 2013133259 A1 WO2013133259 A1 WO 2013133259A1 JP 2013055945 W JP2013055945 W JP 2013055945W WO 2013133259 A1 WO2013133259 A1 WO 2013133259A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferrite
phase
stainless steel
austenite
crystal orientation
Prior art date
Application number
PCT/JP2013/055945
Other languages
French (fr)
Japanese (ja)
Inventor
濱田 純一
石丸 詠一朗
Original Assignee
新日鐵住金ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金ステンレス株式会社 filed Critical 新日鐵住金ステンレス株式会社
Priority to KR1020147020498A priority Critical patent/KR20140105849A/en
Priority to CN201380006653.4A priority patent/CN104471092B/en
Publication of WO2013133259A1 publication Critical patent/WO2013133259A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the present invention relates to a duplex stainless steel sheet composed of a ferrite phase and an austenite phase with small anisotropy during processing, and a method for producing the same.
  • a duplex stainless steel sheet composed of a ferrite phase and an austenite phase is excellent in corrosion resistance and has a fine structure, so it has high strength and excellent fatigue resistance, and is widely used in chemical plants and the like.
  • the duplex stainless steel sheet has lower ductility than austenitic stainless steel, cracks may occur during press forming, and improvement in workability is desired.
  • the conventional representative duplex stainless steel has a high Ni and Mo content represented by SUS329J4L (25% Cr-7% Ni-3% Mo-0.1% N). Recently, however, an alloy-saving ferritic / austenitic duplex stainless steel with reduced Ni content and no Mo has been developed and applied to various fields (see, for example, Patent Document 1). In such a reduced Ni and Mo-containing steel, the amount of austenite is adjusted and the corrosion resistance is secured by adding Mn and N.
  • This reduced Ni and Mo-containing steel is SUS304 (18% Cr-8% Ni) and SUS316 (18% Cr-10% Ni-2% Mo) are also expected to be substituted.
  • press formability becomes a problem.
  • press formability there is an index called in-plane anisotropy.
  • in-plane anisotropy When the in-plane anisotropy is large, there is a problem that the shape of the flange remaining portion of the molded product is not constant, or a portion called an ear at the end of the molded product is wavy (so-called earring becomes large). If this problem occurs, the yield at the time of molding is remarkably deteriorated, and the non-uniformity of the shape of the molded product is likely to occur. Therefore, it is desired that the in-plane anisotropy is small.
  • the ferrite-austenitic duplex stainless steel sheet has a very large in-plane anisotropy and has a problem in the formability of the thin steel sheet.
  • the in-plane anisotropy is an r-value in-plane anisotropy
  • ⁇ r expressed by the following equation (1) is an index.
  • ⁇ r
  • r 0 in the formula (1) is an r value in a direction parallel to the rolling direction
  • r 90 is an r value in a direction perpendicular to the rolling direction
  • r 45 is an r value in a 45 ° direction with respect to the rolling direction. Value.
  • r values are Rankford values (plastic strain ratio), and are measured by a method according to JIS Z2254.
  • ⁇ r plastic strain ratio
  • Patent Document 1 discloses a method in which a molten steel of ferrite / austenite duplex stainless steel is directly cast into a thin plate to produce a steel plate having no difference in mechanical properties between the rolling direction and the width direction and having no anisotropy. This is a method of manufacturing a thin plate directly from molten steel by omitting hot rolling, and is different from a general manufacturing method manufactured through hot rolling as in the present invention. Patent Document 1 is a technique for reducing the difference in strength and elongation between the rolling direction and the width direction, and is not a technique related to the in-plane anisotropy of the r value as in the present invention.
  • An object of the present invention is to provide a ferrite-austenitic duplex stainless steel sheet having a small r-value in-plane anisotropy and excellent press formability, and a method for producing the same, with particular attention to the crystal orientation strength of the ferrite phase. To do.
  • the present inventors investigated in detail the r value of the duplex stainless steel sheet and the expression of its in-plane anisotropy. And as a result of repeating various examinations in order to achieve this purpose, the following knowledge was obtained.
  • the r value and the in-plane anisotropy of the duplex stainless steel in which the ferrite phase and the austenite phase are mixed depend on the crystal orientation strength (texture structure) of the ferrite phase.
  • the crystal orientation intensity is the diffraction intensity measured by the X-ray diffraction method, and specifically, is the ratio of the diffraction intensity to the diffraction intensity of the random sample.
  • the crystal orientation strength is the ratio of the diffraction intensity to the diffraction intensity when the crystal orientation is random (non-oriented crystal) and indicates the degree of orientation.
  • the crystal orientation strength is also called an X-ray random intensity ratio of a specific crystal orientation.
  • the maximum strength of the crystal orientation of the product plate (the maximum value of the crystal orientation strength) is increased.
  • the r value in the specific direction near 45 ° with respect to the rolling direction
  • the r value in the rolling direction and the width direction is low.
  • the amount of Ni is reduced, the amount of N or Mn is increased, the austenite phase as the second phase is hardened, and the fraction of the austenite phase is optimized.
  • the maximum strength of the crystal orientation of the ferrite phase is reduced during the cold rolling process.
  • it has been found that it is effective to adjust the cold rolling reduction ratio and the annealing temperature that is, it has been newly found that it is possible to weaken the maximum strength of the crystal orientation of the ferrite phase in the cold rolling process.
  • the balance consists of Fe and inevitable impurities,
  • the in-plane anisotropy is characterized in that the austenite phase ratio is 40 to 90% in area ratio, the maximum strength of the crystal orientation of the ferrite phase is 10 or less, and the hardness ratio of the austenite phase to the ferrite phase is 1.1 or more.
  • Small ferrite and austenitic duplex stainless steel sheet are characterized in that the austenite phase ratio is 40 to 90% in area ratio, the maximum strength of the crystal orientation of the ferrite phase is 10 or less, and the hardness ratio of the austenite phase to the ferrite phase is 1.1 or more.
  • the annealing step a step of cold-rolling the ferrite-austenitic duplex stainless steel having the component composition described in (1) or (2) above, and a subsequent annealing step;
  • the rolling reduction is 90% or less
  • the annealing temperature is set to 1000 to 1100 ° C.
  • the cooling rate to 500 ° C. is set to 5 ° C./sec or more
  • the in-plane is maintained for 5 seconds or more in the temperature range of 400 to 500 ° C. in the cooling process.
  • ferrite-austenite duplex stainless steel sheet has a large in-plane anisotropy and has a problem in press formability.
  • a thin steel sheet of a ferrite-austenitic duplex stainless steel sheet with small in-plane anisotropy can be obtained.
  • the unit “%” of the content of the component means mass%.
  • the C content exceeds 0.10%, the moldability and corrosion resistance are remarkably deteriorated, so the upper limit of the C content is 0.10%.
  • C is an element necessary for stably generating an austenite phase, increasing the hardness difference between the austenite phase and the ferrite phase, and suppressing an increase in crystal orientation strength. If the amount of C is less than 0.001%, it is difficult to obtain a two-phase structure. For this reason, it is desirable that the lower limit of the C amount be 0.001%. Further, considering the refining cost and weldability, the C content is preferably 0.02 to 0.05%.
  • Si is an element useful as a deoxidizer, but if the Si content exceeds 1.0%, the hot workability deteriorates and it is difficult to manufacture. For this reason, the amount of Si shall be 1.0% or less. However, since 0.01% or more of Si is necessary for deoxidation, the lower limit of the Si amount is set to 0.01%. Further, considering the refining cost, oxidation resistance, and corrosion resistance, the Si content is preferably 0.3% to 0.8%.
  • Mn is an element added as a deoxidizer. Further, 2% or more of Mn is added in order to stably generate the austenite phase and increase the hardness difference between the austenite phase and the ferrite phase to suppress the increase in the maximum strength of the crystal orientation. If the Mn content exceeds 10%, the corrosion resistance is remarkably deteriorated, so the upper limit of the Mn content is 10%. Further, considering the oxidation resistance and pickling properties during production, the Mn content is preferably 3.0 to 6.0%. *
  • the upper limit of P content is 0.05%.
  • the amount of P is preferably 0.02 to 0.04%.
  • Ni is an element that stably generates an austenite phase, and the lower limit of the Ni content is 0.1%. However, since the alloy cost is high, the upper limit of Ni content is set to 3.0% or less. However, excessively reducing the amount of Ni may lead to deterioration of corrosion resistance, so the amount of Ni is preferably 0.5 to 3.0%.
  • the upper limit of the Cr amount is set to 30.0%. Further, considering the manufacturability, the Cr content is desirably 17.0 to 25.0%.
  • N improves the corrosion resistance of duplex stainless steel. Further, N stably generates the austenite phase, increases the hardness difference between the austenite phase and the ferrite phase, and suppresses the increase in the maximum strength of the crystal orientation. For this reason, 0.05% or more of N is added. On the other hand, if the amount of N exceeds 0.30%, it becomes extremely hard and castability and hot workability deteriorate. For this reason, the upper limit of the N amount is set to 0.30%. Further, considering the suppression of the weldability and the development of the ferrite phase texture to a specific crystal orientation, the N content is preferably 0.10 to 0.30%. The N amount is more preferably more than 0.15 to 0.30%.
  • Mo is an element that contributes to the improvement of corrosion resistance and high-temperature strength, and if necessary, 0.1% or more of Mo may be added. If the amount of Mo is less than 0.1%, the effect of improving the corrosion resistance and the high temperature strength cannot be obtained sufficiently. However, since Mo is an element that generates ferrite, an austenite phase is not sufficiently generated when the amount of Mo exceeds 1.0%. Therefore, the Mo amount is set to 0.1 to 1.0%. Considering the alloy cost and manufacturability, the Mo amount is preferably 0.1 to 0.5%.
  • 0.1 to 3.0% of Cu may be added as necessary. If the amount of Cu is less than 0.1%, the effect of improving the corrosion resistance cannot be obtained sufficiently. If the amount of Cu exceeds 3.0%, the effect of improving the corrosion resistance is saturated and the effect of controlling the phase ratio of the austenite phase is also saturated. In consideration of hot workability, the amount of Cu is preferably 0.1 to 2.0%.
  • B is an element that segregates at the grain boundaries and improves hot workability, and 0.0005% or more of B may be added as necessary. If the amount of B is less than 0.0005%, the effect of improving hot workability cannot be sufficiently obtained. However, since B is an element that generates ferrite, if the amount of B exceeds 0.0100%, an austenite phase is not sufficiently generated. Therefore, the B content is set to 0.0005 to 0.0100%. Further, considering the intergranular corrosion, the B content is preferably 0.0005 to 0.0030%.
  • Al can be used as a deoxidizer. Moreover, Al improves oxidation resistance and corrosion resistance. For this reason, 0.01 to 0.5% Al may be added as necessary. If the amount of Al is less than 0.01%, the effect of improving oxidation resistance and corrosion resistance cannot be obtained sufficiently. If the Al content exceeds 0.5%, the effect of improving oxidation resistance and corrosion resistance is saturated. In consideration of toughness, the Al content is preferably 0.01 to 0.10%.
  • Ti is an element that forms N and TiN and is effective in refining the structure of the weld and cast structure. Ti is an element that improves the corrosion resistance. Therefore, 0.005 to 0.30% Ti may be added as necessary. If the amount of Ti is less than 0.005%, the effect of refining the welded portion and the structure of the cast structure is not sufficiently exhibited. If the amount of Ti exceeds 0.30%, the effect is saturated and it causes surface flaws in the manufacturing process of the steel sheet. Considering the alloy cost and toughness, the Ti amount is preferably 0.005 to 0.15%.
  • Nb is an element having an effect similar to that of Ti and improving the strength, and 0.005 to 0.30% Nb may be added as necessary. If the amount of Nb is less than 0.005%, the effect of refining the welded portion and the structure of the cast structure is not sufficiently exhibited. If the amount of Nb exceeds 0.30%, the effect is saturated. Considering the alloy cost and toughness, the Nb content is preferably 0.005 to 0.15%.
  • Zr is also an element that has a similar effect to Ti and Nb and improves the oxidation resistance, and 0.005 to 0.30% Zr may be added if necessary. If the amount of Zr is less than 0.005%, the effect of refining the welded portion and the structure of the cast structure is not sufficiently exhibited, and the effect of improving the oxidation resistance is not sufficiently exhibited. If the amount of Zr exceeds 0.30%, the effect is saturated. Considering the alloy cost and toughness, the Zr content is preferably 0.005 to 0.15%. In addition, when the amount of Zr exceeds 0.15%, the toughness tends to decrease.
  • Sn is an element that improves corrosion resistance, and 0.05 to 0.50% Sn may be added as necessary. If the amount of Sn is less than 0.05%, the effect of improving the corrosion resistance is not sufficiently exhibited. If the amount of Sn exceeds 0.50%, the effect is saturated. In consideration of hot workability and weldability, the Sn content is preferably 0.05 to 0.20%.
  • W is an element that improves corrosion resistance and heat resistance, and 0.1 to 2.0% of W may be added as necessary. When the amount of W is less than 0.1%, the effect of improving the corrosion resistance and heat resistance is not sufficiently exhibited. If the amount of W exceeds 2.0%, the effect is saturated. In consideration of alloy costs and toughness, the W content is preferably 0.1 to 1.0%.
  • Mg is an element used as a deoxidizer. Mg is an element effective for refinement of the welded part and the cast structure. Therefore, 0.0002 to 0.0100% Mg may be added as necessary. If the amount of Mg is less than 0.0002%, the effect of refining the welded portion and the structure of the cast structure is not sufficiently exhibited. If the amount of Mg exceeds 0.0100%, the effect is saturated. Considering manufacturability, the amount of Mg is preferably 0.0002 to 0.0020%.
  • Ca combines with S to improve hot workability, 0.0005 to 0.0100% Ca may be added as necessary.
  • the Ca content is less than 0.0005%, the effect of improving hot workability is not sufficiently exhibited. If the Ca content exceeds 0.0100%, the effect is saturated.
  • the Ca content is preferably 0.0005 to 0.0010%.
  • the crystals of the ferrite phase and austenite phase develop in a specific crystal orientation.
  • Crystals having developed a specific crystal orientation affect the properties of the steel sheet.
  • the degree of development to a specific crystal orientation is proportional to the crystal orientation strength measured by X-ray diffraction method, neutron diffraction method or the like.
  • the crystal orientation intensity is a ratio of the diffraction intensity to the diffraction intensity of a random sample, and is also referred to as an X-ray random intensity ratio of a specific crystal orientation.
  • the crystal orientation strength obtained by the X-ray diffraction method is defined. FIG.
  • duplex stainless steel sheets (invention steel and comparative steel) having different in-plane anisotropies.
  • duplex stainless steel sheets were 1.0 mm thick cold-rolled / annealed plates, manufactured under conditions of a cold-rolling reduction ratio of 78% and an annealing temperature of 1050 ° C. Texture was measured by the following method. First, the steel plate was mechanically polished and electrolytically polished to reveal the central region of the plate thickness. Using an X-ray diffractometer (manufactured by Rigaku Denki Kogyo Co., Ltd.), positive electrode dot diagrams of (200), (310), and (211) in the central region of the plate thickness were measured using Mo-K ⁇ rays. A three-dimensional crystal orientation density function was obtained from these positive dot diagrams using the spherical harmonic function method.
  • the crystal orientation intensity is the ratio of the diffraction intensity to the diffraction intensity of the random sample.
  • the crystal orientation (rolling orientation) of the ferrite phase parallel to the rolling direction is ⁇ 100 ⁇ ⁇ 011>, ⁇ 211 ⁇ ⁇ 011>.
  • crystals are remarkably developed in the ⁇ 100 ⁇ ⁇ 011> and ⁇ 211 ⁇ ⁇ 011> orientations, which are the rolling orientations of the ferrite phase, and the maximum strength of the crystal orientation (crystal orientation The maximum intensity) is as high as 18. Further, ⁇ r indicating the in-plane anisotropy of the r value is as high as 1.34, and the press formability is inferior.
  • FIG. 2 shows the relationship between the maximum strength of the crystal orientation of the ferrite phase and ⁇ r. When the maximum intensity is 10 or less, ⁇ r is 0.5 or less.
  • the maximum strength of the crystal orientation of the ferrite phase is defined as 10 or less.
  • the lower limit value of the maximum strength of the crystal orientation of the ferrite phase is 1 in the random state.
  • ⁇ r is preferably low, but if ⁇ r is 0.5 or less, there is no problem with the shape during pressing. For this reason, in this embodiment, ⁇ r is defined as 0.5 or less. ⁇ r is more preferably 0.4 or less.
  • the maximum intensity of crystal orientation is the maximum value among the crystal orientation strengths of all crystal orientations.
  • the in-plane anisotropy is the r value in-plane anisotropy, and ⁇ r represented by the following formula (1) is used as an index.
  • ⁇ r
  • r 0 in the formula (1) is an r value in a direction parallel to the rolling direction
  • r 90 is an r value in a direction perpendicular to the rolling direction
  • r 45 is an r value in a 45 ° direction with respect to the rolling direction. Value.
  • These r values are Rankford values (plastic strain ratio), and are measured by a method according to JIS Z2254. When ⁇ r is large, it means that the in-plane anisotropy is large. Therefore, a smaller ⁇ r value is desired from the above viewpoint.
  • the austenite phase ratio (area ratio) of the ferrite-austenite duplex stainless steel is also an element that reduces the in-plane anisotropy.
  • the austenite phase precipitates as a second phase in the hot rolling step, and the amount of precipitation changes depending on the temperature.
  • the crystal orientation strength (texture) of the ferrite phase is controlled by cold rolling, and the crystal orientation characteristics (texture) are maintained even after cold rolling and annealing. I found a new technical idea to develop anisotropy.
  • a specific crystal orientation of the ferrite phase develops rapidly due to rolling deformation (development of the rolling texture). In this case, the maximum strength of the crystal orientation becomes stronger by the subsequent heat treatment (development of recrystallized texture).
  • the ferrite phase of the parent phase is softer than the austenite phase of the second phase.
  • the ferrite phase is subjected to extremely nonuniform deformation from the hard austenite phase.
  • the present inventors measured the hardness of the austenite phase and the ferrite phase in detail by the nanoindentation method. As a result, it was found that the anisotropy becomes small when the hardness of the austenite phase is 1.1 times or more the hardness of the ferrite phase.
  • the hardness ratio of the austenite phase to the ferrite phase is desirably 1.2 or more.
  • the hardness ratio exceeds 2.0, the austenite phase is markedly hardened, and cracks occur at the interface between the ferrite phase and the austenite phase during molding.
  • the upper limit of the hardness ratio is desirably 2.0.
  • the present inventors also investigated the austenite phase ratio (austenite phase fraction (area fraction)).
  • Cold-rolled sheets having the same composition as the steel of the present invention shown in FIG. 1 were prepared, and the annealing temperature was adjusted at 950 ° C. to 1150 ° C. to prepare samples having various austenite phase ratios.
  • the annealing temperature of the cold-rolled sheet was changed from 950 ° C. to 1150 ° C.
  • the austenite phase rate and ⁇ r of the obtained sample were measured.
  • the austenite phase ratio was measured with a ferrite meter, it may be obtained by an image analysis device, an EBSP analysis device, or the like.
  • the sample prepared at an annealing temperature of 1100 ° C. had an austenite phase ratio of 40%.
  • the sample prepared at an annealing temperature of 1000 ° C. had an austenite phase ratio of 90%.
  • FIG. 3 shows the relationship between the austenite phase ratio and the in-plane anisotropy ( ⁇ r).
  • ⁇ r the in-plane anisotropy
  • the austenite phase ratio increases excessively, it undergoes excessive nonuniform deformation from the austenite phase during the cold rolling process, and the texture of the ferrite phase after cold rolling annealing develops.
  • the austenite phase ratio is 40 to 90%. Further, when the in-plane anisotropy is stably reduced and the strength and ductility are taken into consideration, the austenite phase ratio is preferably 50 to 80%, and more preferably 60 to 80%.
  • the method for producing a steel sheet according to the present embodiment includes steps of steelmaking, hot rolling, pickling, cold rolling, annealing and pickling.
  • steelmaking a method in which steel containing the essential components and components added as necessary is melted in a converter or an electric furnace, followed by secondary refining is suitably applied.
  • the molten steel is made into a slab according to a known casting method (continuous casting).
  • the slab is heated to a predetermined temperature and hot-rolled to a predetermined plate thickness by continuous rolling.
  • hot rolling a slab is rolled by a hot rolling mill composed of a plurality of stands and then wound.
  • the casting and hot rolling conditions are not particularly defined, and may be appropriately selected according to the components.
  • the rolling reduction of cold rolling is 90% or less.
  • FIG. 4 shows the relationship between the rolling reduction and ⁇ r.
  • the rolling reduction exceeds 90%, ⁇ r exceeds 0.5 and the in-plane anisotropy increases.
  • the strain in the cold rolling becomes excessively large, the maximum strength of the crystal orientation of the ferrite phase rapidly increases (crystals develop significantly in the rolling orientation). This is thought to increase the in-plane anisotropy.
  • the rolling reduction of cold rolling is desirably 30 to 80%. Other conditions in the cold rolling (roll diameter, number of passes, rolling temperature, etc.) are not particularly defined, and may be appropriately selected according to productivity.
  • Annealing after cold rolling is performed to adjust the austenite phase ratio.
  • the heating temperature for annealing is set to 1100 ° C. or less.
  • the heating temperature for annealing is set to 1000 ° C. or higher.
  • the heating temperature (annealing temperature) for annealing is set to 1000 to 1100 ° C.
  • the annealing temperature is desirably 1020 to 1075 ° C.
  • the cooling rate to 500 degreeC shall be 5 degrees C / sec or more.
  • the cooling rate exceeds 500 ° C./sec, the shape of the steel sheet is remarkably deteriorated, so the upper limit of the cooling rate is set to 500 ° C./sec.
  • the cooling rate is preferably 10 to 50 ° C./sec, and the cooling method may be appropriately selected such as air-water cooling or water cooling.
  • the temperature is maintained for 5 seconds or longer in the temperature range of 400 to 500 ° C. during the cooling process.
  • N is concentrated in the austenite phase.
  • the holding time exceeds 500 seconds, the productivity is remarkably deteriorated, so the upper limit of the holding time is set to 500 seconds.
  • the holding time is desirably 60 sec or less.
  • the manufacturing method in other processes is not particularly defined, but the thickness of the hot rolled sheet, the annealing atmosphere of the cold rolled sheet, etc. may be selected as appropriate. Further, temper rolling or tension leveler may be applied after cold rolling and annealing. Furthermore, the thickness of the product may be selected according to the required thickness of the member (processed member).
  • Steel No. 1 to 10 ferritic-austenitic duplex stainless steel sheets have steel components in the range specified in the present embodiment, and the austenite phase rate and the maximum strength of the crystal orientation of the ferrite phase are in the range specified in the present embodiment. Satisfied. Further, ⁇ r which is an anisotropy index is 0.5 or less, and the in-plane anisotropy is small. On the other hand, Steel No. 11 is steel corresponding to SUS329J4L, and the amounts of Ni and Mo are out of the range defined in the present embodiment. Further, the austenite phase ratio is low, and the maximum strength of the crystal orientation of the ferrite phase is remarkably high. For this reason, ⁇ r is more than 0.5 and the anisotropy is large.
  • Steel No. of the present invention example Steel samples having the same steel composition as 1 to 4 were used to produce steel samples by changing the cold rolling reduction ratio and the annealing conditions of the cold rolled sheet, and ⁇ r, crystal orientation strength, and austenite phase ratio were determined by the methods described above. It was measured. Table 4 shows the obtained results.
  • the steel sample No. of the present invention example. 101 to 104 were manufactured under the conditions defined in this embodiment. These steel sample Nos. 101 to 104 have small ⁇ r and small in-plane anisotropy. For this reason, the press formability was good.
  • the steel sample No. Nos. 105 to 110 were manufactured under conditions where the cold rolling reduction ratio, the cold rolled sheet annealing temperature, and the cooling rate deviated from the ranges defined in the present embodiment. Steel sample No. of these comparative examples. 105 to 110 have large ⁇ r and large in-plane anisotropy. For this reason, there was a problem in press formability.
  • the ferrite-austenitic duplex stainless steel sheet of this embodiment has a small in-plane anisotropy of r value and excellent press formability. For this reason, the ferrite-austenitic duplex stainless steel sheet of this embodiment is suitably applied to a press-formed product that requires excellent corrosion resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

This ferrite austenite 2-phase stainless steel plate comprises, by mass%, C: 0.001-0.10%, Si: 0.01-1.0%, Mn: 2-10%, P < 0.05%, Ni: 0.1-3.0%, Cr: 15.0-30.0%, and N: 0.05-0.30%, with the remainder being Fe and inevitable impurities. The austenite phase percentage is 40-90% by surface area percentage, the maximum strength of the crystal orientation of the ferrite phase is 10 or less, and the hardness ratio of the austenite phase to the ferrite phase is 1.1 or greater.

Description

面内異方性が小さいフェライト・オーステナイト2相ステンレス鋼板およびその製造方法Ferrite-austenitic duplex stainless steel sheet with small in-plane anisotropy and method for producing the same
 本発明は、加工時の異方性が小さいフェライト相とオーステナイト相からなる2相ステンレス鋼板およびその製造方法に関する。
 本願は、2012年3月9日に、日本に出願された特願2012-52876号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a duplex stainless steel sheet composed of a ferrite phase and an austenite phase with small anisotropy during processing, and a method for producing the same.
This application claims priority based on Japanese Patent Application No. 2012-52876 filed in Japan on March 9, 2012, the contents of which are incorporated herein by reference.
 フェライト相とオーステナイト相からなる2相ステンレス鋼板は、耐食性に優れているとともに、微細組織であるため、高強度で、かつ耐疲労特性に優れており、化学プラントなど広範囲に使用されている。しかし、2相ステンレス鋼板は、延性がオーステナイト系ステンレス鋼に比べて低いため、プレス成形時に割れが発生する場合が有り、加工性の向上が要望されている。 A duplex stainless steel sheet composed of a ferrite phase and an austenite phase is excellent in corrosion resistance and has a fine structure, so it has high strength and excellent fatigue resistance, and is widely used in chemical plants and the like. However, since the duplex stainless steel sheet has lower ductility than austenitic stainless steel, cracks may occur during press forming, and improvement in workability is desired.
 従来の代表的な2相ステンレス鋼は、SUS329J4L(25%Cr-7%Ni-3%Mo-0.1%N)に代表される高Ni、Mo含有であった。しかし最近では、Ni量が低減されたり、Moを含有しない省合金フェライト・オーステナイト2相ステンレス鋼が開発され、種々の分野に適用されつつある(例えば、特許文献1参照)。このような省Ni、Mo含有鋼では、MnやNを添加することによって、オーステナイト量の調整や耐食性の確保がなされており、この省Ni、Mo含有鋼は、SUS304(18%Cr-8%Ni)やSUS316(18%Cr-10%Ni-2%Mo)の代替としても期待されている。 The conventional representative duplex stainless steel has a high Ni and Mo content represented by SUS329J4L (25% Cr-7% Ni-3% Mo-0.1% N). Recently, however, an alloy-saving ferritic / austenitic duplex stainless steel with reduced Ni content and no Mo has been developed and applied to various fields (see, for example, Patent Document 1). In such a reduced Ni and Mo-containing steel, the amount of austenite is adjusted and the corrosion resistance is secured by adding Mn and N. This reduced Ni and Mo-containing steel is SUS304 (18% Cr-8% Ni) and SUS316 (18% Cr-10% Ni-2% Mo) are also expected to be substituted.
 一方、薄鋼板を種々の形状に成形加工し、各種部品に適用する際、プレス成形性が課題となる。このプレス成形性の中で面内異方性と呼ばれる指標がある。面内異方性が大きい場合、成形品のフランジ残り部の形状が一定にならなかったり、成形品端部の耳と呼ばれる部分が波打つ問題(いわゆるイヤリングが大きくなる問題)が生じる。この問題が生じると、成形時の歩留まりが著しく悪くなり、かつ成形品の形状の不均一性が生じ易くなるため、面内異方性は小さいことが望まれている。 On the other hand, when a thin steel sheet is formed into various shapes and applied to various parts, press formability becomes a problem. Among the press formability, there is an index called in-plane anisotropy. When the in-plane anisotropy is large, there is a problem that the shape of the flange remaining portion of the molded product is not constant, or a portion called an ear at the end of the molded product is wavy (so-called earring becomes large). If this problem occurs, the yield at the time of molding is remarkably deteriorated, and the non-uniformity of the shape of the molded product is likely to occur. Therefore, it is desired that the in-plane anisotropy is small.
 フェライト・オーステナイト2相ステンレス鋼板は、非特許文献1に記載されているように、極めて面内異方性が大きく、薄鋼板の成形性に問題があった。なお、ここでの面内異方性は、r値の面内異方性であり、次式(1)で表わされるΔrが指標となる。
 Δr=|(r0+r90)/2-r45| ・・・・ 式(1)
 ここで、式(1)中のr0は圧延方向に対して平行方向のr値、r90は圧延方向に対して直角方向のr値、r45は圧延方向に対して45°方向のr値である。これらr値は、ランクフォード値(塑性ひずみ比)であり、JIS Z2254で準拠される方法で測定される。Δrが大きい場合、面内異方性が大きいことを意味するため、上記の観点からΔr値は小さい方が望まれる。
As described in Non-Patent Document 1, the ferrite-austenitic duplex stainless steel sheet has a very large in-plane anisotropy and has a problem in the formability of the thin steel sheet. Here, the in-plane anisotropy is an r-value in-plane anisotropy, and Δr expressed by the following equation (1) is an index.
Δr = | (r 0 + r 90 ) / 2−r 45 | Formula (1)
Here, r 0 in the formula (1) is an r value in a direction parallel to the rolling direction, r 90 is an r value in a direction perpendicular to the rolling direction, and r 45 is an r value in a 45 ° direction with respect to the rolling direction. Value. These r values are Rankford values (plastic strain ratio), and are measured by a method according to JIS Z2254. When Δr is large, it means that the in-plane anisotropy is large. Therefore, a smaller Δr value is desired from the above viewpoint.
 特許文献1には、フェライト・オーステナイト2相ステンレス鋼の溶鋼を直接薄板鋳造し、圧延方向と幅方向の機械的性質に差が無く異方性の無い鋼板を製造する方法が開示されている。これは、熱間圧延を省略して、溶鋼から直接薄板を製造する方法であり、本発明のように熱間圧延を経て製造される一般的な製造方法とは異なる。また、特許文献1は、圧延方向と幅方向の強度や伸びの差を小さくする技術であり、本発明のようにr値の面内異方性に関する技術ではなかった。 Patent Document 1 discloses a method in which a molten steel of ferrite / austenite duplex stainless steel is directly cast into a thin plate to produce a steel plate having no difference in mechanical properties between the rolling direction and the width direction and having no anisotropy. This is a method of manufacturing a thin plate directly from molten steel by omitting hot rolling, and is different from a general manufacturing method manufactured through hot rolling as in the present invention. Patent Document 1 is a technique for reducing the difference in strength and elongation between the rolling direction and the width direction, and is not a technique related to the in-plane anisotropy of the r value as in the present invention.
特開平1-53705号公報JP-A-1-53705
 本発明は、特にフェライト相の結晶方位強度に着目し、r値の面内異方性が小さく、プレス成形性に優れたフェライト・オーステナイト2相ステンレス鋼板およびその製造方法を提供することを課題とする。 An object of the present invention is to provide a ferrite-austenitic duplex stainless steel sheet having a small r-value in-plane anisotropy and excellent press formability, and a method for producing the same, with particular attention to the crystal orientation strength of the ferrite phase. To do.
 上記課題を解決するために、本発明者等は2相ステンレス鋼板のr値およびその面内異方性の発現性について詳細に調査した。そして、かかる目的を達成すべく種々の検討を重ねた結果、以下の知見を得た。 In order to solve the above-mentioned problems, the present inventors investigated in detail the r value of the duplex stainless steel sheet and the expression of its in-plane anisotropy. And as a result of repeating various examinations in order to achieve this purpose, the following knowledge was obtained.
 フェライト相とオーステナイト相が混在する2相ステンレス鋼のr値およびその面内異方性は、フェライト相の結晶方位強度(集合組織)によって左右される。ここで、結晶方位強度とは、X線回折法により測定された回折強度であり、詳細には、ランダムサンプルの回折強度に対する回折強度の比である。このため、結晶方位強度は、結晶の配向がランダムな場合(配向していない結晶)の回折強度に対する回折強度の比であり、配向の度合いを示す。結晶方位強度は、特定の結晶方位のX線ランダム強度比とも言う。従来の2相ステンレス鋼では、フェライトの結晶は圧延方向に平行な結晶方位(圧延方位)に顕著に発達する。このため、製品板の結晶方位の最大強度(結晶方位強度の最大値)が強くなる。この場合、特定方向(圧延方向に対して45°近傍)のr値が高く、圧延方向や幅方向のr値が低くなる。一方、成分および製法を調整することによって、冷延後の冷延板および製品の結晶方位の最大強度を弱め、面内異方性の低減化を実現した。具体的には、Ni量を低減し、NやMnの量を高めて、第2相であるオーステナイト相を硬質化させ、かつオーステナイト相の分率を適正化させる。これにより、冷延過程でフェライト相の結晶方位の最大強度が低減することを見出した。その際、冷延圧下率と焼鈍温度を調整することが有効であることを見出し、すなわち、冷延過程でフェライト相の結晶方位の最大強度を弱めることが可能となることを新たに見出した。また、その後の焼鈍においても、結晶方位の最大強度を小さい値で維持させることを実現した。以上により、材質特性としてr値の面内異方性が小さい製品を提供することを可能とした。 The r value and the in-plane anisotropy of the duplex stainless steel in which the ferrite phase and the austenite phase are mixed depend on the crystal orientation strength (texture structure) of the ferrite phase. Here, the crystal orientation intensity is the diffraction intensity measured by the X-ray diffraction method, and specifically, is the ratio of the diffraction intensity to the diffraction intensity of the random sample. For this reason, the crystal orientation strength is the ratio of the diffraction intensity to the diffraction intensity when the crystal orientation is random (non-oriented crystal) and indicates the degree of orientation. The crystal orientation strength is also called an X-ray random intensity ratio of a specific crystal orientation. In the conventional duplex stainless steel, ferrite crystals develop significantly in a crystal orientation (rolling orientation) parallel to the rolling direction. For this reason, the maximum strength of the crystal orientation of the product plate (the maximum value of the crystal orientation strength) is increased. In this case, the r value in the specific direction (near 45 ° with respect to the rolling direction) is high, and the r value in the rolling direction and the width direction is low. On the other hand, by adjusting the components and the production method, the maximum strength of the crystal orientation of the cold-rolled sheet and product after cold rolling was weakened, and the in-plane anisotropy was reduced. Specifically, the amount of Ni is reduced, the amount of N or Mn is increased, the austenite phase as the second phase is hardened, and the fraction of the austenite phase is optimized. As a result, it has been found that the maximum strength of the crystal orientation of the ferrite phase is reduced during the cold rolling process. At that time, it has been found that it is effective to adjust the cold rolling reduction ratio and the annealing temperature, that is, it has been newly found that it is possible to weaken the maximum strength of the crystal orientation of the ferrite phase in the cold rolling process. In addition, it was possible to maintain the maximum strength of the crystal orientation at a small value in the subsequent annealing. As described above, it is possible to provide a product having a small in-plane anisotropy of r value as a material characteristic.
 本発明は上記知見に基づいて完成したもので、その発明の要旨を以下に示す。 The present invention has been completed based on the above findings, and the gist of the invention is shown below.
 (1)質量%にて、
 C:0.001~0.10%、
 Si:0.01~1.0%、
 Mn:2~10%、
 P≦0.05%、
 Ni:0.1~3.0%、
 Cr:15.0~30.0%、及び
 N:0.05~0.30%を含有し、
 残部がFeおよび不可避的不純物からなり、
 オーステナイト相率が面積率で40~90%、フェライト相の結晶方位の最大強度が10以下、フェライト相に対するオーステナイト相の硬度比が1.1以上であることを特徴とする面内異方性が小さいフェライト・オーステナイト2相ステンレス鋼板。
(1) In mass%,
C: 0.001 to 0.10%,
Si: 0.01 to 1.0%,
Mn: 2 to 10%,
P ≦ 0.05%,
Ni: 0.1 to 3.0%,
Cr: 15.0 to 30.0%, and N: 0.05 to 0.30%,
The balance consists of Fe and inevitable impurities,
The in-plane anisotropy is characterized in that the austenite phase ratio is 40 to 90% in area ratio, the maximum strength of the crystal orientation of the ferrite phase is 10 or less, and the hardness ratio of the austenite phase to the ferrite phase is 1.1 or more. Small ferrite and austenitic duplex stainless steel sheet.
 (2)さらに、質量%にて、
 Mo:0.1~1.0%、
 Cu:0.1~3.0%、
 B:0.0005~0.0100%、
 Al:0.01~0.5%、
 Ti:0.005~0.30%、
 Nb:0.005~0.30%、
 Zr:0.005~0.30%、
 Sn:0.05~0.50%、
 W:0.1~2.0%、
 Mg:0.0002~0.0100%、及び
 Ca:0.0005~0.0100%から選択される1種以上を含有することを特徴とする上記(1)または(2)記載の面内異方性が小さいフェライト・オーステナイト2相ステンレス鋼板。
(2) Furthermore, in mass%,
Mo: 0.1 to 1.0%,
Cu: 0.1 to 3.0%,
B: 0.0005 to 0.0100%,
Al: 0.01 to 0.5%,
Ti: 0.005 to 0.30%,
Nb: 0.005 to 0.30%,
Zr: 0.005 to 0.30%,
Sn: 0.05 to 0.50%,
W: 0.1-2.0%,
The in-plane difference according to (1) or (2) above, which contains at least one selected from Mg: 0.0002 to 0.0100% and Ca: 0.0005 to 0.0100% Ferritic austenitic duplex stainless steel sheet with low isotropic properties.
 (3)面内異方性の指標である次式(1)で表されるΔrが0.5以下であることを特徴とする上記(1)又は(2)に記載の面内異方性が小さいフェライト・オーステナイト2相ステンレス鋼板。
 Δr=|(r0+r90)/2-r45| ・・・・ 式(1)
 ここで、rは圧延方向に対して平行方向のr値、r90は圧延方向に対して直角方向のr値、r45は圧延方向に対して45°方向のr値である。
(3) In-plane anisotropy according to (1) or (2) above, wherein Δr represented by the following formula (1), which is an index of in-plane anisotropy, is 0.5 or less: Ferritic / austenitic duplex stainless steel sheet with small size.
Δr = | (r 0 + r 90 ) / 2−r 45 | Formula (1)
Here, r 0 is an r value parallel to the rolling direction, r 90 is an r value perpendicular to the rolling direction, and r 45 is an r value 45 ° to the rolling direction.
 (4)上記(1)又は(2)に記載の成分組成を有するフェライト・オーステナイト2相ステンレス鋼を冷延する工程と、その後の焼鈍工程を有し、
 前記冷延の工程では、圧下率を90%以下とし、
 前記焼鈍工程では、焼鈍温度を1000~1100℃とし、500℃までの冷却速度を5℃/sec以上とし、冷却過程の400~500℃の温度域で5sec以上保持することを特徴とする面内異方性が小さいフェライト・オーステナイト2相ステンレス鋼板の製造方法。
(4) a step of cold-rolling the ferrite-austenitic duplex stainless steel having the component composition described in (1) or (2) above, and a subsequent annealing step;
In the cold rolling step, the rolling reduction is 90% or less,
In the annealing step, the annealing temperature is set to 1000 to 1100 ° C., the cooling rate to 500 ° C. is set to 5 ° C./sec or more, and the in-plane is maintained for 5 seconds or more in the temperature range of 400 to 500 ° C. in the cooling process. A method for producing a ferritic / austenitic duplex stainless steel sheet with low anisotropy.
 従来、フェライト・オーステナイト2相ステンレス鋼板は、面内異方性が大きくプレス成形性に問題があった。これに対して、本発明の一態様によると、面内異方性の小さいフェライト・オーステナイト2相ステンレス鋼板の薄鋼板が得られる。本発明の一態様に係るフェライト・オーステナイト2相ステンレス鋼板を、家電、建築、自動車など種々の分野において成形用途として適用することで、環境対策や部品の低コスト化などに大きな効果が得られる。 Conventionally, ferrite-austenite duplex stainless steel sheet has a large in-plane anisotropy and has a problem in press formability. On the other hand, according to one aspect of the present invention, a thin steel sheet of a ferrite-austenitic duplex stainless steel sheet with small in-plane anisotropy can be obtained. By applying the ferrite-austenitic duplex stainless steel sheet according to one embodiment of the present invention as a forming application in various fields such as home appliances, architecture, and automobiles, a great effect can be obtained for environmental measures and cost reduction of parts.
本発明鋼と比較鋼の集合組織と面内異方性(Δr)を示す図である。It is a figure which shows the texture and in-plane anisotropy ((DELTA) r) of this invention steel and a comparison steel. フェライト相の結晶方位の最大強度と面内異方性(Δr)の関係を示す図である。It is a figure which shows the relationship between the maximum intensity | strength of the crystal orientation of a ferrite phase, and in-plane anisotropy ((DELTA) r). オーステナイト相率(γ相率)と面内異方性(Δr)の関係を示す図である。It is a figure which shows the relationship between an austenite phase rate (gamma phase rate) and in-plane anisotropy ((DELTA) r). 冷延圧下率と面内異方性(Δr)の関係を示す図である。It is a figure which shows the relationship between cold rolling reduction and in-plane anisotropy ((DELTA) r).
 以下、本実施形態を詳細に説明する。
 まず、本実施形態のフェライト・オーステナイト2相ステンレス鋼板の化学成分の限定理由について説明する。ここで、成分の含有量の単位「%」は質量%を意味する。
Hereinafter, this embodiment will be described in detail.
First, the reasons for limiting the chemical components of the ferrite-austenitic duplex stainless steel sheet of this embodiment will be described. Here, the unit “%” of the content of the component means mass%.
 C量が0.10%超では、成形性と耐食性を著しく劣化するため、C量の上限を0.10%とする。Cは、オーステナイト相を安定的に生成させ、オーステナイト相とフェライト相との硬度差を大きくして結晶方位強度の上昇を抑制するために必要な元素である。C量が0.001%未満では、2相組織が得られにくい。このため、C量の下限を0.001%とすることが望ましい。更に、精錬コスト、溶接性を考慮するとC量は0.02~0.05%が望ましい。 If the C content exceeds 0.10%, the moldability and corrosion resistance are remarkably deteriorated, so the upper limit of the C content is 0.10%. C is an element necessary for stably generating an austenite phase, increasing the hardness difference between the austenite phase and the ferrite phase, and suppressing an increase in crystal orientation strength. If the amount of C is less than 0.001%, it is difficult to obtain a two-phase structure. For this reason, it is desirable that the lower limit of the C amount be 0.001%. Further, considering the refining cost and weldability, the C content is preferably 0.02 to 0.05%.
 Siは、脱酸剤としても有用な元素であるが、Si量が1.0%超では、熱間加工性が劣化し、製造し難くなる。このため、Si量を1.0%以下とする。しかしながら、脱酸のためには0.01%以上のSiが必要であるため、Si量の下限を0.01%とする。更に、精錬コスト、耐酸化性、耐食性を考慮すると、Si量は0.3%~0.8%が望ましい。 Si is an element useful as a deoxidizer, but if the Si content exceeds 1.0%, the hot workability deteriorates and it is difficult to manufacture. For this reason, the amount of Si shall be 1.0% or less. However, since 0.01% or more of Si is necessary for deoxidation, the lower limit of the Si amount is set to 0.01%. Further, considering the refining cost, oxidation resistance, and corrosion resistance, the Si content is preferably 0.3% to 0.8%.
 Mnは、脱酸剤として添加される元素である。またオーステナイト相を安定的に生成させ、オーステナイト相とフェライト相との硬度差を大きくして結晶方位の最大強度の上昇を抑制するために、2%以上のMnを添加する。Mn量が10%超では、耐食性が著しく劣化するため、Mn量の上限を10%とする。更に、耐酸化性や製造時の酸洗性を考慮すると、Mn量は3.0~6.0%が望ましい。  Mn is an element added as a deoxidizer. Further, 2% or more of Mn is added in order to stably generate the austenite phase and increase the hardness difference between the austenite phase and the ferrite phase to suppress the increase in the maximum strength of the crystal orientation. If the Mn content exceeds 10%, the corrosion resistance is remarkably deteriorated, so the upper limit of the Mn content is 10%. Further, considering the oxidation resistance and pickling properties during production, the Mn content is preferably 3.0 to 6.0%. *
 Pは、不純物として含有され、製造時の熱間加工性を劣化させるため、P量の上限を0.05%とする。但し、過度にP量を低減することは、精錬コストの増加につながるため、P量は0.02~0.04%が望ましい。 P is contained as an impurity, and deteriorates hot workability during production, so the upper limit of P content is 0.05%. However, excessively reducing the amount of P leads to an increase in refining costs, so the amount of P is preferably 0.02 to 0.04%.
 Niは、オーステナイト相を安定的に生成させる元素であり、Ni量の下限を0.1%とする。しかし、合金コストが高いため、Ni量の上限を3.0%以下とする。但し、過度にNi量を低減することは、耐食性の劣化につながる場合があるため、Ni量は0.5~3.0%が望ましい。 Ni is an element that stably generates an austenite phase, and the lower limit of the Ni content is 0.1%. However, since the alloy cost is high, the upper limit of Ni content is set to 3.0% or less. However, excessively reducing the amount of Ni may lead to deterioration of corrosion resistance, so the amount of Ni is preferably 0.5 to 3.0%.
 耐食性や耐酸化性を確保するためにCrを15.0%以上添加する。一方、多量のCrを添加することは合金コストの増加につながるため、Cr量の上限を30.0%とする。更に、製造性を考慮すると、Cr量は17.0~25.0%が望ましい。 Add 15.0% or more of Cr to ensure corrosion resistance and oxidation resistance. On the other hand, since adding a large amount of Cr leads to an increase in alloy cost, the upper limit of the Cr amount is set to 30.0%. Further, considering the manufacturability, the Cr content is desirably 17.0 to 25.0%.
 Nは、2相ステンレス鋼の耐食性を向上させる。またNは、オーステナイト相を安定的に生成させ、オーステナイト相とフェライト相との硬度差を大きくして結晶方位の最大強度の上昇を抑制する。このため、Nを0.05%以上添加する。一方、N量が0.30%超では、著しく硬質化するとともに、鋳造性や熱間加工性が悪くなる。このため、N量の上限を0.30%とする。更に、溶接性やフェライト相の集合組織の特定の結晶方位への発達の抑制を考慮すると、N量は0.10~0.30%が望ましい。N量は、さらに好ましくは0.15超~0.30%である。 N improves the corrosion resistance of duplex stainless steel. Further, N stably generates the austenite phase, increases the hardness difference between the austenite phase and the ferrite phase, and suppresses the increase in the maximum strength of the crystal orientation. For this reason, 0.05% or more of N is added. On the other hand, if the amount of N exceeds 0.30%, it becomes extremely hard and castability and hot workability deteriorate. For this reason, the upper limit of the N amount is set to 0.30%. Further, considering the suppression of the weldability and the development of the ferrite phase texture to a specific crystal orientation, the N content is preferably 0.10 to 0.30%. The N amount is more preferably more than 0.15 to 0.30%.
 Moは、耐食性や高温強度の向上に寄与する元素であり、必要に応じて0.1%以上のMoを添加してもよい。Mo量が0.1%未満では、耐食性と高温強度を向上させる効果が十分に得られない。但し、Moはフェライトを生成する元素であるため、Mo量が1.0%超では、オーステナイト相が十分に生成しない。このため、Mo量を0.1~1.0%とする。合金コストや製造性を考慮すると、Mo量は0.1~0.5%が望ましい。 Mo is an element that contributes to the improvement of corrosion resistance and high-temperature strength, and if necessary, 0.1% or more of Mo may be added. If the amount of Mo is less than 0.1%, the effect of improving the corrosion resistance and the high temperature strength cannot be obtained sufficiently. However, since Mo is an element that generates ferrite, an austenite phase is not sufficiently generated when the amount of Mo exceeds 1.0%. Therefore, the Mo amount is set to 0.1 to 1.0%. Considering the alloy cost and manufacturability, the Mo amount is preferably 0.1 to 0.5%.
 耐食性やオーステナイト相の相率を制御するために、必要に応じて0.1~3.0%のCuを添加してもよい。Cu量が0.1%未満では、耐食性を向上させる効果が十分に得られない。Cu量が3.0%超では、耐食性を向上させる効果が飽和し、かつオースナイト相の相率を制御する効果も飽和する。熱間加工性を考慮するとCu量は0.1~2.0%が望ましい。 In order to control the corrosion resistance and the phase ratio of the austenite phase, 0.1 to 3.0% of Cu may be added as necessary. If the amount of Cu is less than 0.1%, the effect of improving the corrosion resistance cannot be obtained sufficiently. If the amount of Cu exceeds 3.0%, the effect of improving the corrosion resistance is saturated and the effect of controlling the phase ratio of the austenite phase is also saturated. In consideration of hot workability, the amount of Cu is preferably 0.1 to 2.0%.
 Bは、粒界に偏析して熱間加工性を向上させる元素であり、必要に応じて0.0005%以上のBを添加してもよい。B量が0.0005%未満では、熱間加工性を向上させる効果が十分に得られない。但し、Bはフェライトを生成する元素であるため、B量が0.0100%超では、オーステナイト相が十分生成しない。このため、B量を0.0005~0.0100%とする。更に、粒界腐食性を考慮すると、B量は0.0005~0.0030%が望ましい。 B is an element that segregates at the grain boundaries and improves hot workability, and 0.0005% or more of B may be added as necessary. If the amount of B is less than 0.0005%, the effect of improving hot workability cannot be sufficiently obtained. However, since B is an element that generates ferrite, if the amount of B exceeds 0.0100%, an austenite phase is not sufficiently generated. Therefore, the B content is set to 0.0005 to 0.0100%. Further, considering the intergranular corrosion, the B content is preferably 0.0005 to 0.0030%.
 Alは、脱酸剤として活用出来る。またAlは、耐酸化性や耐食性を向上させる。このため、必要に応じて0.01~0.5%のAlを添加してもよい。Al量が0.01%未満では、耐酸化性や耐食性を向上させる効果が十分に得られない。Al量が0.5%超では、耐酸化性や耐食性を向上させる効果が飽和する。靭性を考慮すると、Al量は0.01~0.10%が望ましい。 Al can be used as a deoxidizer. Moreover, Al improves oxidation resistance and corrosion resistance. For this reason, 0.01 to 0.5% Al may be added as necessary. If the amount of Al is less than 0.01%, the effect of improving oxidation resistance and corrosion resistance cannot be obtained sufficiently. If the Al content exceeds 0.5%, the effect of improving oxidation resistance and corrosion resistance is saturated. In consideration of toughness, the Al content is preferably 0.01 to 0.10%.
 Tiは、NとTiNを形成して溶接部および鋳造組織の組織微細化に有効な元素である。またTiは、耐食性を向上する元素である。このため、必要に応じて0.005~0.30%のTiを添加してもよい。Ti量が0.005%未満では、溶接部および鋳造組織の組織を微細化する効果が十分に発現しない。Ti量が0.30%超では、その効果は飽和するとともに、鋼板の製造工程において表面疵の発生原因となる。合金コストや靭性を考慮すると、Ti量は0.005~0.15%が望ましい。 Ti is an element that forms N and TiN and is effective in refining the structure of the weld and cast structure. Ti is an element that improves the corrosion resistance. Therefore, 0.005 to 0.30% Ti may be added as necessary. If the amount of Ti is less than 0.005%, the effect of refining the welded portion and the structure of the cast structure is not sufficiently exhibited. If the amount of Ti exceeds 0.30%, the effect is saturated and it causes surface flaws in the manufacturing process of the steel sheet. Considering the alloy cost and toughness, the Ti amount is preferably 0.005 to 0.15%.
 Nbは、Tiと類似の作用があるとともに強度を向上させる元素であり、必要に応じて0.005~0.30%のNbを添加してもよい。Nb量が0.005%未満では、溶接部および鋳造組織の組織を微細化する効果が十分に発現しない。Nb量が0.30%超では、その効果は飽和する。合金コストや靭性を考慮すると、Nb量は0.005~0.15%が望ましい。 Nb is an element having an effect similar to that of Ti and improving the strength, and 0.005 to 0.30% Nb may be added as necessary. If the amount of Nb is less than 0.005%, the effect of refining the welded portion and the structure of the cast structure is not sufficiently exhibited. If the amount of Nb exceeds 0.30%, the effect is saturated. Considering the alloy cost and toughness, the Nb content is preferably 0.005 to 0.15%.
 Zrも、TiやNbと類似の作用があるとともに耐酸化性を向上させる元素であり、必要に応じて0.005~0.30%のZrを添加してもよい。Zr量が0.005%未満では、溶接部および鋳造組織の組織を微細化する効果が十分に発現せず、耐酸化性を向上させる効果も十分に発現しない。Zr量が0.30%超では、その効果は飽和する。合金コストや靭性を考慮すると、Zr量は0.005~0.15%が望ましい。なお、Zr量が0.15%を超えると、靱性が低下する傾向にある。 Zr is also an element that has a similar effect to Ti and Nb and improves the oxidation resistance, and 0.005 to 0.30% Zr may be added if necessary. If the amount of Zr is less than 0.005%, the effect of refining the welded portion and the structure of the cast structure is not sufficiently exhibited, and the effect of improving the oxidation resistance is not sufficiently exhibited. If the amount of Zr exceeds 0.30%, the effect is saturated. Considering the alloy cost and toughness, the Zr content is preferably 0.005 to 0.15%. In addition, when the amount of Zr exceeds 0.15%, the toughness tends to decrease.
 Snは、耐食性を向上させる元素であり、必要に応じて0.05~0.50%Snを添加してもよい。Sn量が0.05%未満では、耐食性を向上させる効果が十分に発現しない。Sn量が0.50%超では、その効果は飽和する。熱間加工性や溶接性を考慮すると、Sn量は0.05~0.20%が望ましい。 Sn is an element that improves corrosion resistance, and 0.05 to 0.50% Sn may be added as necessary. If the amount of Sn is less than 0.05%, the effect of improving the corrosion resistance is not sufficiently exhibited. If the amount of Sn exceeds 0.50%, the effect is saturated. In consideration of hot workability and weldability, the Sn content is preferably 0.05 to 0.20%.
 Wは、耐食性や耐熱性を向上させる元素であり、必要に応じて0.1~2.0%のWを添加してもよい。W量が0.1%未満では、耐食性や耐熱性を向上させる効果が十分に発現しない。W量が2.0%超では、その効果は飽和する。合金コストや靭性を考慮すると、W量は0.1~1.0%が望ましい。 W is an element that improves corrosion resistance and heat resistance, and 0.1 to 2.0% of W may be added as necessary. When the amount of W is less than 0.1%, the effect of improving the corrosion resistance and heat resistance is not sufficiently exhibited. If the amount of W exceeds 2.0%, the effect is saturated. In consideration of alloy costs and toughness, the W content is preferably 0.1 to 1.0%.
 Mgは、脱酸剤として活用される元素である。またMgは、溶接部および鋳造組織の組織微細化に有効な元素である。このため、必要に応じて0.0002~0.0100%のMgを添加してもよい。Mg量が0.0002%未満では、溶接部および鋳造組織の組織を微細化する効果が十分に発現しない。Mg量が0.0100%超では、その効果は飽和する。製造性を考慮すると、Mg量は0.0002~0.0020%が望ましい。 Mg is an element used as a deoxidizer. Mg is an element effective for refinement of the welded part and the cast structure. Therefore, 0.0002 to 0.0100% Mg may be added as necessary. If the amount of Mg is less than 0.0002%, the effect of refining the welded portion and the structure of the cast structure is not sufficiently exhibited. If the amount of Mg exceeds 0.0100%, the effect is saturated. Considering manufacturability, the amount of Mg is preferably 0.0002 to 0.0020%.
 Caは、Sと結合して熱間加工性を向上させるため、必要に応じて0.0005~0.0100%のCaを添加してもよい。Ca量が0.0005%未満では、熱間加工性を向上させる効果が十分に発現しない。Ca量が0.0100%超では、その効果は飽和する。耐食性を考慮すると、Ca量は0.0005~0.0010%が望ましい。 Since Ca combines with S to improve hot workability, 0.0005 to 0.0100% Ca may be added as necessary. When the Ca content is less than 0.0005%, the effect of improving hot workability is not sufficiently exhibited. If the Ca content exceeds 0.0100%, the effect is saturated. In consideration of corrosion resistance, the Ca content is preferably 0.0005 to 0.0010%.
 次に、本実施形態のポイントとなるフェライト相の結晶方位強度について説明する。 Next, the crystal orientation strength of the ferrite phase that is the point of this embodiment will be described.
 圧延および熱処理によって、フェライト相およびオーステナイト相の結晶は、特定の結晶方位に発達する。特定の結晶方位が発達した結晶は、鋼板の特性に影響を及ぼす。特定の結晶方位への発達の度合い(配向の度合い)は、X線回折法、中性子回折法などにより測定された結晶方位強度に比例する。ここで、結晶方位強度とは、ランダムサンプルの回折強度に対する回折強度の比であり、特定の結晶方位のX線ランダム強度比とも言う。結晶方位強度の測定には種々の方法があるが、本実施形態では、X線回折法によって得られる結晶方位強度を規定する。図1は、異なる面内異方性を有する2相ステンレス鋼板(本発明鋼と比較鋼)のフェライト相の集合組織を示す。これら2相ステンレス鋼板は、厚さ1.0mmの冷延・焼鈍板であり、冷延圧下率が78%であり、焼鈍温度が1050℃である条件で製造された。集合組織は、以下の方法により測定された。まず鋼板に対して機械研磨と電解研磨を施して、板厚の中心領域を現出させた。X線回折装置(理学電機工業株式会社製)を使用し、Mo-Kα線を用いて、板厚の中心領域の(200)、(310)、および(211)の正極点図を測定した。これら正極点図から球面調和関数法を用いて3次元結晶方位密度関数を得た。 By rolling and heat treatment, the crystals of the ferrite phase and austenite phase develop in a specific crystal orientation. Crystals having developed a specific crystal orientation affect the properties of the steel sheet. The degree of development to a specific crystal orientation (degree of orientation) is proportional to the crystal orientation strength measured by X-ray diffraction method, neutron diffraction method or the like. Here, the crystal orientation intensity is a ratio of the diffraction intensity to the diffraction intensity of a random sample, and is also referred to as an X-ray random intensity ratio of a specific crystal orientation. There are various methods for measuring the crystal orientation strength. In this embodiment, the crystal orientation strength obtained by the X-ray diffraction method is defined. FIG. 1 shows the texture of the ferrite phase of duplex stainless steel sheets (invention steel and comparative steel) having different in-plane anisotropies. These duplex stainless steel sheets were 1.0 mm thick cold-rolled / annealed plates, manufactured under conditions of a cold-rolling reduction ratio of 78% and an annealing temperature of 1050 ° C. Texture was measured by the following method. First, the steel plate was mechanically polished and electrolytically polished to reveal the central region of the plate thickness. Using an X-ray diffractometer (manufactured by Rigaku Denki Kogyo Co., Ltd.), positive electrode dot diagrams of (200), (310), and (211) in the central region of the plate thickness were measured using Mo-Kα rays. A three-dimensional crystal orientation density function was obtained from these positive dot diagrams using the spherical harmonic function method.
 図1は、Bunge法により表された3次元集合組織であり、結晶方位強度が等高線で見ることが出来る断面(φ2=45°断面)である。ここで、結晶方位強度は、ランダムサンプルの回折強度に対する回折強度の比である。図1のうち、圧延方向に平行なフェライト相の結晶方位(圧延方位)は、{100}<011>、{211}<011>である。図1の比較鋼の集合組織では、フェライト相の圧延方位である{100}<011>、{211}<011>の方位に結晶が顕著に発達しており、結晶方位の最大強度(結晶方位強度の最大値)は18と高い。またr値の面内異方性を示すΔrが1.34と高く、プレス成形性が劣る。 FIG. 1 is a three-dimensional texture represented by the Bunge method, and is a cross section (φ2 = 45 ° cross section) in which the crystal orientation strength can be seen with contour lines. Here, the crystal orientation intensity is the ratio of the diffraction intensity to the diffraction intensity of the random sample. In FIG. 1, the crystal orientation (rolling orientation) of the ferrite phase parallel to the rolling direction is {100} <011>, {211} <011>. In the texture of the comparative steel of FIG. 1, crystals are remarkably developed in the {100} <011> and {211} <011> orientations, which are the rolling orientations of the ferrite phase, and the maximum strength of the crystal orientation (crystal orientation The maximum intensity) is as high as 18. Further, Δr indicating the in-plane anisotropy of the r value is as high as 1.34, and the press formability is inferior.
 一方、図1の本発明鋼の集合組織では、上記の圧延方位への結晶の発達が抑制されており、結晶方位の最大強度(結晶方位強度の最大値)が8であり比較鋼よりも低い。また、Δrは0.38であり、異方性が小さいことが分かる。以上の結果より、r値の面内異方性が、母相であるフェライト相の集合組織によって左右されること、及び特定の集合組織の発達を抑制することによって異方性を有効に低減できることがわかる。図2は、フェライト相の結晶方位の最大強度とΔrの関係を示す。最大強度が10以下のとき、Δrが0.5以下となる。このため、本実施形態では、フェライト相の結晶方位の最大強度を10以下と規定する。フェライト相の結晶方位の最大強度の下限値は、ランダム状態の1である。Δrは、低い方が望ましいが、Δrが0.5以下であれば、プレス時の形状に関する問題は生じない。このため、本実施形態では、Δrを0.5以下と規定する。Δrは、更に望ましくは0.4以下である。
 なお、結晶方位の最大強度は、全ての結晶方位の結晶方位強度のうちの最大値である。(200)、(310)、及び(211)の正極点図を測定し、これら3つの正極点図から3次元結晶方位密度関数を得ると、全ての結晶方位の結晶方位強度に関する情報が得られる。
On the other hand, in the texture of the steel of the present invention shown in FIG. 1, the growth of crystals in the rolling orientation is suppressed, and the maximum strength of crystal orientation (maximum value of crystal orientation strength) is 8, which is lower than that of the comparative steel. . Further, Δr is 0.38, which shows that anisotropy is small. From the above results, the in-plane anisotropy of the r value depends on the texture of the ferrite phase that is the parent phase, and the anisotropy can be effectively reduced by suppressing the development of a specific texture. I understand. FIG. 2 shows the relationship between the maximum strength of the crystal orientation of the ferrite phase and Δr. When the maximum intensity is 10 or less, Δr is 0.5 or less. For this reason, in this embodiment, the maximum strength of the crystal orientation of the ferrite phase is defined as 10 or less. The lower limit value of the maximum strength of the crystal orientation of the ferrite phase is 1 in the random state. Δr is preferably low, but if Δr is 0.5 or less, there is no problem with the shape during pressing. For this reason, in this embodiment, Δr is defined as 0.5 or less. Δr is more preferably 0.4 or less.
The maximum intensity of crystal orientation is the maximum value among the crystal orientation strengths of all crystal orientations. By measuring the positive dot diagrams of (200), (310), and (211) and obtaining a three-dimensional crystal orientation density function from these three positive electrode dot diagrams, information on the crystal orientation strength of all crystal orientations can be obtained. .
 面内異方性は、r値の面内異方性であり、公知の次式(1)で表わされるΔrが指標となる。
 Δr=|(r0+r90)/2-r45| ・・・・ 式(1)
 ここで、式(1)中のr0は圧延方向に対して平行方向のr値、r90は圧延方向に対して直角方向のr値、r45は圧延方向に対して45°方向のr値である。これらr値は、ランクフォード値(塑性ひずみ比)であり、JIS Z2254で準拠される方法で測定される。Δrが大きい場合、面内異方性が大きいことを意味するため、上記の観点からΔr値は小さい方が望まれる。
The in-plane anisotropy is the r value in-plane anisotropy, and Δr represented by the following formula (1) is used as an index.
Δr = | (r 0 + r 90 ) / 2−r 45 | Formula (1)
Here, r 0 in the formula (1) is an r value in a direction parallel to the rolling direction, r 90 is an r value in a direction perpendicular to the rolling direction, and r 45 is an r value in a 45 ° direction with respect to the rolling direction. Value. These r values are Rankford values (plastic strain ratio), and are measured by a method according to JIS Z2254. When Δr is large, it means that the in-plane anisotropy is large. Therefore, a smaller Δr value is desired from the above viewpoint.
 本実施形態では、フェライト・オーステナイト2相ステンレス鋼のオーステナイト相率(面積率)についても、面内異方性を低減する要素となる。オーステナイト相は、第2相として熱延工程にて析出し、温度によってその析出量は変化する。本実施形態では、フェライト相の結晶方位強度(集合組織)を冷間圧延にて制御し、かつ冷間圧延及び焼鈍の後もその結晶方位特性(集合組織)を維持することによって、低い面内異方性を発現させるという新しい技術思想を見出した。オーステナイト相が無い場合、またはオーステナイト相とフェライト相の硬度差が小さい場合、圧延変形によりフェライト相の特定の結晶方位が急激に発達する(圧延集合組織の発達)。この場合、その後の熱処理によっても結晶方位の最大強度は強くなる(再結晶集合組織の発達)。 In this embodiment, the austenite phase ratio (area ratio) of the ferrite-austenite duplex stainless steel is also an element that reduces the in-plane anisotropy. The austenite phase precipitates as a second phase in the hot rolling step, and the amount of precipitation changes depending on the temperature. In this embodiment, the crystal orientation strength (texture) of the ferrite phase is controlled by cold rolling, and the crystal orientation characteristics (texture) are maintained even after cold rolling and annealing. I found a new technical idea to develop anisotropy. When there is no austenite phase or when the hardness difference between the austenite phase and the ferrite phase is small, a specific crystal orientation of the ferrite phase develops rapidly due to rolling deformation (development of the rolling texture). In this case, the maximum strength of the crystal orientation becomes stronger by the subsequent heat treatment (development of recrystallized texture).
 一方、本実施形態の鋼組成の場合、母相のフェライト相は、第2相のオーステナイト相に比べて軟質である。このため、冷延工程においてロールにより拘束された状態で変形を受ける場合、フェライト相は、硬質なオーステナイト相から極めて不均一な変形を受ける。本発明者等は、オーステナイト相とフェライト相の硬度をナノインデンテーション法で詳細に測定した。その結果、オーステナイト相の硬度がフェライト相の硬度の1.1倍以上の場合に異方性が小さくなることを見出した。変形過程で硬質なオーステナイト相から母相のフェライト相に不均一歪が多く導入されるため、結晶方位回転が局所的にかつ不均一に生じる。このため、特定の結晶方位の発達が抑制され、これにより異方性が小さくなると考えられる。小さい面内異方性を安定化させるためには、フェライト相に対するオーステナイト相の硬度比は1.2以上が望ましい。硬度比が2.0超になると、オーステナイト相が著しく硬化した状態となり、成形加工時にフェライト相とオーステナイト相の界面で割れが生じる。このため、硬度比の上限は2.0が望ましい。 On the other hand, in the case of the steel composition of the present embodiment, the ferrite phase of the parent phase is softer than the austenite phase of the second phase. For this reason, when receiving deformation in a state of being constrained by a roll in the cold rolling process, the ferrite phase is subjected to extremely nonuniform deformation from the hard austenite phase. The present inventors measured the hardness of the austenite phase and the ferrite phase in detail by the nanoindentation method. As a result, it was found that the anisotropy becomes small when the hardness of the austenite phase is 1.1 times or more the hardness of the ferrite phase. Since a large amount of non-uniform strain is introduced from the hard austenite phase to the ferrite phase of the parent phase during the deformation process, crystal orientation rotation occurs locally and non-uniformly. For this reason, it is considered that the development of a specific crystal orientation is suppressed, thereby reducing the anisotropy. In order to stabilize the small in-plane anisotropy, the hardness ratio of the austenite phase to the ferrite phase is desirably 1.2 or more. When the hardness ratio exceeds 2.0, the austenite phase is markedly hardened, and cracks occur at the interface between the ferrite phase and the austenite phase during molding. For this reason, the upper limit of the hardness ratio is desirably 2.0.
 また、本発明者等は、オーステナイト相率(オーステナイト相の分率(面積分率))についても調査した。図1の本発明鋼と同一の組成を有する冷延板を用意し、焼鈍温度を950℃~1150℃で調整して、種々のオーステナイト相率を有する試料を作製した。なお、オーステナイト相率を変化させるために、冷延板の焼鈍温度を950℃から1150℃に変化させた。得られた試料のオーステナイト相率とΔrを測定した。ここで、オーステナイト相率は、フェライトメーターで測定したが、画像解析装置やEBSP解析装置などにより求めても良い。1100℃の焼鈍温度で作製された試料のオーステナイト相率は40%であった。1000℃の焼鈍温度で作製された試料のオーステナイト相率は90%であった。 In addition, the present inventors also investigated the austenite phase ratio (austenite phase fraction (area fraction)). Cold-rolled sheets having the same composition as the steel of the present invention shown in FIG. 1 were prepared, and the annealing temperature was adjusted at 950 ° C. to 1150 ° C. to prepare samples having various austenite phase ratios. In order to change the austenite phase ratio, the annealing temperature of the cold-rolled sheet was changed from 950 ° C. to 1150 ° C. The austenite phase rate and Δr of the obtained sample were measured. Here, although the austenite phase ratio was measured with a ferrite meter, it may be obtained by an image analysis device, an EBSP analysis device, or the like. The sample prepared at an annealing temperature of 1100 ° C. had an austenite phase ratio of 40%. The sample prepared at an annealing temperature of 1000 ° C. had an austenite phase ratio of 90%.
 図3は、オーステナイト相率と面内異方性(Δr)の関係を示す。図3に示すように、オーステナイト相率が40%以上90%以下のとき、Δrが0.5以下となる。このため、オーステナイト相率の下限を40%とし、上限を90%とする。このように、面内異方性を小さくし、かつ小さい面内異方性を安定化させる作用は、オーステナイト相率(面積分率)によっても影響を受けることを見出した。オーステナイト相率が過度に増加すると、冷延過程でオーステナイト相から過度な不均一な変形を受け、冷延焼鈍後のフェライト相の集合組織が発達する。このため、異方性が大きくなると考えられる。従って、オーステナイト相率は40~90%とする。更に安定的に面内異方性を小さくし、かつ強度や延性も考慮すると、オーステナイト相率は、好ましくは50~80%であり、さらに好ましくは60~80%である。 FIG. 3 shows the relationship between the austenite phase ratio and the in-plane anisotropy (Δr). As shown in FIG. 3, when the austenite phase ratio is 40% or more and 90% or less, Δr is 0.5 or less. For this reason, the minimum of an austenite phase rate shall be 40%, and an upper limit shall be 90%. Thus, it has been found that the effect of reducing the in-plane anisotropy and stabilizing the small in-plane anisotropy is also affected by the austenite phase ratio (area fraction). When the austenite phase ratio increases excessively, it undergoes excessive nonuniform deformation from the austenite phase during the cold rolling process, and the texture of the ferrite phase after cold rolling annealing develops. For this reason, it is thought that anisotropy becomes large. Therefore, the austenite phase ratio is 40 to 90%. Further, when the in-plane anisotropy is stably reduced and the strength and ductility are taken into consideration, the austenite phase ratio is preferably 50 to 80%, and more preferably 60 to 80%.
 次に、製造方法について説明する。
 本実施形態の鋼板の製造方法は、製鋼-熱間圧延-酸洗-冷間圧延-焼鈍・酸洗の各工程からなる。製鋼においては、前記必須成分および必要に応じて添加される成分を含有する鋼を、転炉あるいは電炉で溶製し、続いて2次精錬を行う方法が好適に適用される。溶製した溶鋼は、公知の鋳造方法(連続鋳造)に従ってスラブとする。スラブは、所定の温度に加熱され、所定の板厚に連続圧延で熱間圧延される。熱間圧延では、スラブは、複数スタンドからなる熱間圧延機で圧延され、次いで巻き取られる。本実施形態では、鋳造および熱間圧延条件を特に規定せず、成分に応じて適宜選択すれば良い。
Next, a manufacturing method will be described.
The method for producing a steel sheet according to the present embodiment includes steps of steelmaking, hot rolling, pickling, cold rolling, annealing and pickling. In steelmaking, a method in which steel containing the essential components and components added as necessary is melted in a converter or an electric furnace, followed by secondary refining is suitably applied. The molten steel is made into a slab according to a known casting method (continuous casting). The slab is heated to a predetermined temperature and hot-rolled to a predetermined plate thickness by continuous rolling. In hot rolling, a slab is rolled by a hot rolling mill composed of a plurality of stands and then wound. In the present embodiment, the casting and hot rolling conditions are not particularly defined, and may be appropriately selected according to the components.
 熱間圧延後は、熱延板焼鈍を施しても省略しても良く、酸洗処理し、その後、冷間圧延が施される。冷間圧延においては、冷延の圧下率を90%以下とする。図4は、圧下率とΔrの関係を示す。圧下率が90%を超えると、Δrが0.5超になり、面内異方性が大きくなる。冷延での歪が過度に大きくなると、フェライト相の結晶方位の最大強度が急激に高くなる(圧延方位に結晶が顕著に発達する)。これにより面内異方性が大きくなると考えられる。更に、延性や生産性を考慮すると、冷延の圧下率は30~80%が望ましい。冷間圧延における他の条件(ロール径、パス数、圧延温度等)は特に規定されず、生産性に応じて適宜選択すれば良い。 After hot rolling, it may be subjected to hot-rolled sheet annealing or may be omitted, and pickled, and then cold-rolled. In cold rolling, the rolling reduction of cold rolling is 90% or less. FIG. 4 shows the relationship between the rolling reduction and Δr. When the rolling reduction exceeds 90%, Δr exceeds 0.5 and the in-plane anisotropy increases. When the strain in the cold rolling becomes excessively large, the maximum strength of the crystal orientation of the ferrite phase rapidly increases (crystals develop significantly in the rolling orientation). This is thought to increase the in-plane anisotropy. Further, considering the ductility and productivity, the rolling reduction of cold rolling is desirably 30 to 80%. Other conditions in the cold rolling (roll diameter, number of passes, rolling temperature, etc.) are not particularly defined, and may be appropriately selected according to productivity.
 冷間圧延後の焼鈍は、オーステナイト相率の調整のために施される。オーステナイト相率を40%以上とするために焼鈍の加熱温度を1100℃以下とする。オーステナイト相率を90%以下とするために焼鈍の加熱温度を1000℃以上とする。但し、過度な高温度での焼鈍は、逆にオーステナイト相率を減少させ、結晶粒を粗大化させる。このため、フェライト相の結晶方位の最大強度の増加をもたらす。従って、焼鈍の加熱温度(焼鈍温度)は1000~1100℃とする。更に、延性や靭性の観点から、焼鈍温度は1020~1075℃が望ましい。また、加熱後の冷却速度が遅すぎると、冷却過程でCr炭窒化物が析出し、靭性や耐食性が劣化する。このため、500℃までの冷却速度を5℃/sec以上とする。冷却速度が500℃/sec超では、鋼板形状が著しく劣化するため、冷却速度の上限を500℃/secとする。なお、生産性や酸洗性を考慮すると、冷却速度は10~50℃/secが望ましく、冷却方法は、気水冷却、水冷など適宜選択すれば良い。 Annealing after cold rolling is performed to adjust the austenite phase ratio. In order to set the austenite phase ratio to 40% or more, the heating temperature for annealing is set to 1100 ° C. or less. In order to set the austenite phase ratio to 90% or less, the heating temperature for annealing is set to 1000 ° C. or higher. However, annealing at an excessively high temperature conversely decreases the austenite phase ratio and coarsens the crystal grains. For this reason, the maximum strength of the crystal orientation of the ferrite phase is increased. Therefore, the heating temperature (annealing temperature) for annealing is set to 1000 to 1100 ° C. Further, from the viewpoint of ductility and toughness, the annealing temperature is desirably 1020 to 1075 ° C. On the other hand, if the cooling rate after heating is too slow, Cr carbonitride precipitates during the cooling process, and toughness and corrosion resistance deteriorate. For this reason, the cooling rate to 500 degreeC shall be 5 degrees C / sec or more. When the cooling rate exceeds 500 ° C./sec, the shape of the steel sheet is remarkably deteriorated, so the upper limit of the cooling rate is set to 500 ° C./sec. In consideration of productivity and pickling properties, the cooling rate is preferably 10 to 50 ° C./sec, and the cooling method may be appropriately selected such as air-water cooling or water cooling.
 オーステナイト相の硬度をフェライト相の硬度の1.1倍にするためには、Nをオーステナイト中に濃化させてオーステナイト相を硬質化する必要がある。本実施形態では、冷却過程の400~500℃の温度域において5sec以上保持する。これにより、オーステナイト相にNを濃化させる。但し、保持時間が500sec超の場合、生産性を著しく劣化させるため、保持時間の上限を500secとする。更に、生産性を考慮すると、保持時間は60sec以下が望ましい。 In order to increase the hardness of the austenite phase to 1.1 times the hardness of the ferrite phase, it is necessary to harden the austenite phase by concentrating N in the austenite. In this embodiment, the temperature is maintained for 5 seconds or longer in the temperature range of 400 to 500 ° C. during the cooling process. Thereby, N is concentrated in the austenite phase. However, when the holding time exceeds 500 seconds, the productivity is remarkably deteriorated, so the upper limit of the holding time is set to 500 seconds. Furthermore, in consideration of productivity, the holding time is desirably 60 sec or less.
 他工程の製造方法については特に規定しないが、熱延板の厚さ、冷延板の焼鈍雰囲気などは適宜選択すれば良い。また、冷延・焼鈍後に調質圧延やテンションレベラーを付与しても構わない。更に、製品の板厚についても、要求される部材(加工後の部材)の厚さに応じて選択すれば良い。 The manufacturing method in other processes is not particularly defined, but the thickness of the hot rolled sheet, the annealing atmosphere of the cold rolled sheet, etc. may be selected as appropriate. Further, temper rolling or tension leveler may be applied after cold rolling and annealing. Furthermore, the thickness of the product may be selected according to the required thickness of the member (processed member).
 表1に示す成分組成の鋼を溶製してスラブに鋳造し、スラブを熱間圧延して厚さ3.5mmの熱延コイルとした。その後、熱延コイルを焼鈍・酸洗し、圧下率78%で冷間圧延して冷延板とした。次いで冷延板を焼鈍した。焼鈍工程では、冷延板を1050℃に加熱し、次いで500℃までの冷却速度が10℃/secの条件で冷却した。焼鈍後、酸洗を施して製品板とした。このようにして得られた製品板について、先述した方法でΔr、結晶方位の最大強度、およびオーステナイト相率の測定を行なった。 Steel with the component composition shown in Table 1 was melted and cast into a slab, and the slab was hot-rolled to form a hot-rolled coil having a thickness of 3.5 mm. Thereafter, the hot-rolled coil was annealed and pickled, and cold-rolled at a reduction rate of 78% to obtain a cold-rolled sheet. The cold rolled sheet was then annealed. In the annealing step, the cold-rolled sheet was heated to 1050 ° C., and then cooled at a cooling rate of 10 ° C./sec to 500 ° C. After annealing, pickling was performed to obtain a product plate. The product plate thus obtained was measured for Δr, maximum crystal orientation strength, and austenite phase ratio by the methods described above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 鋼No.1~10のフェライト・オーステナイト2相ステンレス鋼板は、本実施形態で規定された範囲の鋼成分を有し、オーステナイト相率、フェライト相の結晶方位の最大強度が本実施形態で規定された範囲を満足する。また異方性の指標であるΔrが0.5以下であり、面内異方性が小さい。
 一方、鋼No.11は、SUS329J4Lに相当する鋼であり、Ni及びMoの量が本実施形態で規定された範囲から外れている。またオーステナイト相率が低く、かつフェライト相の結晶方位の最大強度が著しく高い。このため、Δrが0.5超であり異方性が大きい。
Steel No. 1 to 10 ferritic-austenitic duplex stainless steel sheets have steel components in the range specified in the present embodiment, and the austenite phase rate and the maximum strength of the crystal orientation of the ferrite phase are in the range specified in the present embodiment. Satisfied. Further, Δr which is an anisotropy index is 0.5 or less, and the in-plane anisotropy is small.
On the other hand, Steel No. 11 is steel corresponding to SUS329J4L, and the amounts of Ni and Mo are out of the range defined in the present embodiment. Further, the austenite phase ratio is low, and the maximum strength of the crystal orientation of the ferrite phase is remarkably high. For this reason, Δr is more than 0.5 and the anisotropy is large.
 鋼No.12のC量、鋼No.14のMn量、および鋼No.17のN量は、本実施形態で規定された範囲の下限よりも少ない。C、Mn、及びNは、オーステナイト生成元素であるため、鋼No.12、14、及び17のオーステナイト相率とフェライト相の結晶方位の最大強度が本実施形態で規定された範囲外となった。このため、Δrが大きい。 Steel No. No. 12 C, steel no. 14 Mn, and steel No. The N amount of 17 is less than the lower limit of the range defined in the present embodiment. Since C, Mn, and N are austenite-forming elements, The austenite phase ratios of 12, 14, and 17 and the maximum strength of the crystal orientation of the ferrite phase were out of the range defined in this embodiment. For this reason, Δr is large.
 鋼No.13のSi量、鋼No.16のCr量、鋼No.18のMo量、鋼No.20のB量、鋼No.21のAl量、鋼No.25のSn量、及び鋼No.26のW量は、本実施形態で規定された範囲の上限よりも多い。Si、Cr、Mo、B、Al、Sn、及びWはフェライト生成元素であるため、鋼No.13、16、18、20、21、25、及び26では、フェライト相率が多くなった。このため、フェライト相は圧延方位に顕著に発達し、Δrが大きい。 Steel No. No. 13 Si amount, steel no. No. 16 Cr, steel no. No. 18 Mo amount, steel no. B amount of 20 steel No. No. 21 Al amount, steel no. Sn amount of 25, and steel No. The W amount of 26 is larger than the upper limit of the range defined in the present embodiment. Since Si, Cr, Mo, B, Al, Sn, and W are ferrite-forming elements, steel Nos. In 13, 16, 18, 20, 21, 25, and 26, the ferrite phase ratio increased. For this reason, a ferrite phase develops notably in the rolling direction and Δr is large.
 鋼No.15のNi量と鋼No.19のCu量は、本実施形態で規定された範囲の上限よりも多い。Ni及びCuは、オーステナイト生成元素であるため、鋼No.15、19では、オーステナイト相率が過度に多くなり、フェライト相の結晶方位の最大強度が本実施形態で規定された範囲外となった。このため、Δrが大きい。
 鋼No.22のTi量、鋼No.23のNb量、及び鋼No.24のZrの量が、本実施形態で規定された範囲の上限よりも多い。このため、鋼No.22~24では、Ti、Nb、及びZrが、オーステナイト生成元素であるCやNと結合し、オーステナイトの生成が抑制され、オーステナイト相率が低下した。このため、Δrが大きい。
Steel No. 15 Ni and steel No. 15 The amount of 19 Cu is larger than the upper limit of the range defined in the present embodiment. Since Ni and Cu are austenite-forming elements, steel No. In 15 and 19, the austenite phase ratio increased excessively, and the maximum strength of the crystal orientation of the ferrite phase was out of the range defined in the present embodiment. For this reason, Δr is large.
Steel No. 22 Ti amount, steel No. Nb amount of 23 and steel No. The amount of 24 Zr is larger than the upper limit of the range defined in the present embodiment. For this reason, steel no. In Nos. 22 to 24, Ti, Nb, and Zr were combined with C and N, which are austenite generating elements, and austenite generation was suppressed, and the austenite phase ratio was lowered. For this reason, Δr is large.
 本発明例の鋼No.1~4と同一の鋼組成を有する鋼を用いて、冷延圧下率と冷延板の焼鈍条件を変えて鋼試料を製造し、先述した方法でΔr、結晶方位強度、およびオーステナイト相率を測定した。得られた結果を表4に示す。 Steel No. of the present invention example Steel samples having the same steel composition as 1 to 4 were used to produce steel samples by changing the cold rolling reduction ratio and the annealing conditions of the cold rolled sheet, and Δr, crystal orientation strength, and austenite phase ratio were determined by the methods described above. It was measured. Table 4 shows the obtained results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、本発明例の鋼試料No.101~104は、本実施形態で規定された条件で製造された。これら本発明例の鋼試料No.101~104は、Δrが小さく、面内異方性が小さい。このため、プレス成形性は良好であった。これに対して、比較例の鋼試料No.105~110は、冷延圧下率、冷延板焼鈍温度、および冷却速度が本実施形態で規定された範囲から外れる条件で製造された。これら比較例の鋼試料No.105~110は、Δrが大きく、面内異方性が大きい。このため、プレス成形性に問題があった。 As shown in Table 4, the steel sample No. of the present invention example. 101 to 104 were manufactured under the conditions defined in this embodiment. These steel sample Nos. 101 to 104 have small Δr and small in-plane anisotropy. For this reason, the press formability was good. In contrast, the steel sample No. Nos. 105 to 110 were manufactured under conditions where the cold rolling reduction ratio, the cold rolled sheet annealing temperature, and the cooling rate deviated from the ranges defined in the present embodiment. Steel sample No. of these comparative examples. 105 to 110 have large Δr and large in-plane anisotropy. For this reason, there was a problem in press formability.
 本実施形態のフェライト・オーステナイト2相ステンレス鋼板は、r値の面内異方性が小さく、プレス成形性に優れる。このため、本実施形態のフェライト・オーステナイト2相ステンレス鋼板は、優れた耐食性が要求されるプレス成形品に好適に適用される。 The ferrite-austenitic duplex stainless steel sheet of this embodiment has a small in-plane anisotropy of r value and excellent press formability. For this reason, the ferrite-austenitic duplex stainless steel sheet of this embodiment is suitably applied to a press-formed product that requires excellent corrosion resistance.

Claims (4)

  1.  質量%にて、
     C:0.001~0.10%、
     Si:0.01~1.0%、
     Mn:2~10%、
     P≦0.05%、
     Ni:0.1~3.0%、
     Cr:15.0~30.0%、及び
     N:0.05~0.30%を含有し、
     残部がFeおよび不可避的不純物からなり、
     オーステナイト相率が面積率で40~90%、フェライト相の結晶方位の最大強度が10以下、フェライト相に対するオーステナイト相の硬度比が1.1以上であることを特徴とする面内異方性が小さいフェライト・オーステナイト2相ステンレス鋼板。
    In mass%
    C: 0.001 to 0.10%,
    Si: 0.01 to 1.0%,
    Mn: 2 to 10%,
    P ≦ 0.05%,
    Ni: 0.1 to 3.0%,
    Cr: 15.0 to 30.0%, and N: 0.05 to 0.30%,
    The balance consists of Fe and inevitable impurities,
    The in-plane anisotropy is characterized in that the austenite phase ratio is 40 to 90% in area ratio, the maximum strength of the crystal orientation of the ferrite phase is 10 or less, and the hardness ratio of the austenite phase to the ferrite phase is 1.1 or more. Small ferrite and austenitic duplex stainless steel sheet.
  2.  さらに、質量%にて、
     Mo:0.1~1.0%、
     Cu:0.1~3.0%、
     B:0.0005~0.0100%、
     Al:0.01~0.5%、
     Ti:0.005~0.30%、
     Nb:0.005~0.30%、
     Zr:0.005~0.30%、
     Sn:0.05~0.50%、
     W:0.1~2.0%、
     Mg:0.0002~0.0100%、及び
     Ca:0.0005~0.0100%から選択される1種以上を含有することを特徴とする請求項1に記載の面内異方性が小さいフェライト・オーステナイト2相ステンレス鋼板。
    Furthermore, in mass%,
    Mo: 0.1 to 1.0%,
    Cu: 0.1 to 3.0%,
    B: 0.0005 to 0.0100%,
    Al: 0.01 to 0.5%,
    Ti: 0.005 to 0.30%,
    Nb: 0.005 to 0.30%,
    Zr: 0.005 to 0.30%,
    Sn: 0.05 to 0.50%,
    W: 0.1-2.0%,
    The in-plane anisotropy according to claim 1, containing at least one selected from Mg: 0.0002 to 0.0100% and Ca: 0.0005 to 0.0100% Ferritic / austenitic duplex stainless steel sheet.
  3.  面内異方性の指標である次式(1)で表されるΔrが0.5以下であることを特徴とする請求項1又は2に記載の面内異方性が小さいフェライト・オーステナイト2相ステンレス鋼板。
     Δr=|(r+r90)/2-r45| ・・・・ 式(1)
     ここで、rは圧延方向に対して平行方向のr値、r90は圧延方向に対して直角方向のr値、r45は圧延方向に対して45°方向のr値である。
    The ferrite austenite 2 having small in-plane anisotropy according to claim 1 or 2, wherein Δr represented by the following formula (1), which is an index of in-plane anisotropy, is 0.5 or less. Phase stainless steel sheet.
    Δr = | (r 0 + r 90 ) / 2−r 45 | (1)
    Here, r 0 is an r value parallel to the rolling direction, r 90 is an r value perpendicular to the rolling direction, and r 45 is an r value 45 ° to the rolling direction.
  4.  請求項1又は2に記載の成分組成を有するフェライト・オーステナイト2相ステンレス鋼を冷延する工程と、その後の焼鈍工程を有し、
     前記冷延の工程では、圧下率を90%以下とし、
     前記焼鈍工程では、焼鈍温度を1000~1100℃とし、500℃までの冷却速度を5℃/sec以上とし、冷却過程の400~500℃の温度域で5sec以上保持することを特徴とする面内異方性が小さいフェライト・オーステナイト2相ステンレス鋼板の製造方法。
    A step of cold-rolling a ferrite-austenitic duplex stainless steel having the component composition according to claim 1 or 2, and a subsequent annealing step,
    In the cold rolling step, the rolling reduction is 90% or less,
    In the annealing step, the annealing temperature is set to 1000 to 1100 ° C., the cooling rate to 500 ° C. is set to 5 ° C./sec or more, and the in-plane is maintained for 5 seconds or more in the temperature range of 400 to 500 ° C. in the cooling process. A method for producing a ferritic / austenitic duplex stainless steel sheet with low anisotropy.
PCT/JP2013/055945 2012-03-09 2013-03-05 Ferrite-austenite 2-phase stainless steel plate having low in-plane anisotropy and method for producing same WO2013133259A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147020498A KR20140105849A (en) 2012-03-09 2013-03-05 Ferrite-austenite 2-phase stainless steel plate having low in-plane anisotropy and method for producing same
CN201380006653.4A CN104471092B (en) 2012-03-09 2013-03-05 The small ferrite austenite two-phase stainless steel plate of intra-face anisotropy and its manufacture method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-052876 2012-03-09
JP2012052876A JP5869922B2 (en) 2012-03-09 2012-03-09 Ferrite-austenitic duplex stainless steel sheet with small in-plane anisotropy and method for producing the same

Publications (1)

Publication Number Publication Date
WO2013133259A1 true WO2013133259A1 (en) 2013-09-12

Family

ID=49116734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055945 WO2013133259A1 (en) 2012-03-09 2013-03-05 Ferrite-austenite 2-phase stainless steel plate having low in-plane anisotropy and method for producing same

Country Status (5)

Country Link
JP (1) JP5869922B2 (en)
KR (1) KR20140105849A (en)
CN (1) CN104471092B (en)
TW (1) TWI519653B (en)
WO (1) WO2013133259A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135554A1 (en) * 2017-01-23 2018-07-26 Jfeスチール株式会社 Ferritic/austenitic duplex stainless steel plate
EP3556892A4 (en) * 2016-12-13 2019-10-23 Posco Low alloy steel sheet having excellent strength and ductility
WO2020130060A1 (en) * 2018-12-21 2020-06-25 日鉄ステンレス株式会社 Cr-based stainless steel having excellent hydrogen embrittlement resistance

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101410363B1 (en) * 2012-09-05 2014-06-27 한국기계연구원 Method of manufacturing duplex stainless steel using post heat treatment
ES2769782T3 (en) * 2013-12-13 2020-06-29 Outokumpu Oy Method for producing high strength duplex stainless steel
JP6758179B2 (en) * 2014-03-03 2020-09-23 日鉄ステンレス株式会社 Ferrite-austenitic two-phase stainless steel sheet with excellent polishability and its manufacturing method
CN104593681A (en) * 2015-01-22 2015-05-06 李树春 High-chromium nickel-free antibacterial dual-phase stainless steel
CN106011689B (en) * 2015-03-30 2019-05-03 新日铁住金不锈钢株式会社 Two phase stainless steel containing Ozone Water
CN105543714B (en) * 2015-12-25 2017-06-13 东北大学 A kind of two phase stainless steel strip and its near-net forming preparation method
US10793930B2 (en) 2016-02-17 2020-10-06 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic-austenitic two-phase stainless steel material and method for manufacturing same
WO2017209431A1 (en) * 2016-05-31 2017-12-07 주식회사 포스코 Austenitic stainless steel having improved corrosion-resistance and workability and method for producing same
CN105925917B (en) * 2016-07-01 2017-10-31 东北大学 A kind of high indole ni-type two phase stainless steel strip and preparation method thereof
KR101820526B1 (en) * 2016-08-10 2018-01-22 주식회사 포스코 Lean duplex stainless steel having excellent bending workability
CN106834963B (en) * 2016-12-16 2018-08-24 安徽宝恒新材料科技有限公司 A kind of anti-bacteria stainless steel and preparation method thereof
JP6811112B2 (en) * 2017-02-09 2021-01-13 日鉄ステンレス株式会社 Ferrite Duplex Stainless Steel Sheet and Its Manufacturing Method
CN108690907A (en) * 2017-04-07 2018-10-23 中国科学院金属研究所 A kind of heat treatment process of two phase stainless steel
CN107460414A (en) * 2017-07-31 2017-12-12 温州蓝天管件阀门有限公司 A kind of high-performance stainless steel
KR101952818B1 (en) * 2017-09-25 2019-02-28 주식회사포스코 Low alloy steel sheet with high strength and ductility and method of manufacturing same
CN108004485A (en) * 2017-11-02 2018-05-08 南京工程学院 Antibacterial duplex stainless steel of the composite nanoparticle containing silver-colored zinc and preparation method thereof
JP7262176B2 (en) * 2018-03-30 2023-04-21 日鉄ステンレス株式会社 Ferritic and Austenitic Duplex Stainless Steel Sheets and Pipes
CN109355485A (en) * 2018-11-19 2019-02-19 重庆大学 A kind of preparation method of High-strength high-plasticity ferrite austenite dual phase steel
CN109440014B (en) * 2019-01-14 2021-02-19 东北大学 Low-chromium low-nickel duplex stainless steel and preparation method thereof
CN109576591B (en) * 2019-02-12 2020-03-31 鞍钢股份有限公司 700 MPa-grade cold-rolled corrosion-resistant dual-phase steel and manufacturing method thereof
CN109628840B (en) * 2019-02-12 2020-03-31 鞍钢股份有限公司 550 MPa-grade cold-rolled corrosion-resistant dual-phase steel and manufacturing method thereof
EP4253587A1 (en) 2020-11-30 2023-10-04 NIPPON STEEL Stainless Steel Corporation Dual phase stainless steel plate and dual phase stainless hot-rolled plate, and method for manufacturing dual phase stainless steel plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035782A (en) * 2007-08-02 2009-02-19 Nippon Steel & Sumikin Stainless Steel Corp Ferritic-austenitic stainless steel with excellent corrosion resistance and workability, and its manufacturing method
JP2009197326A (en) * 2008-01-22 2009-09-03 Nippon Steel & Sumikin Stainless Steel Corp Ferrite-austenite stainless steel sheet for structural member excellent in workability and impact-absorbing property, and method for production thereof
JP2010121162A (en) * 2008-11-19 2010-06-03 Nisshin Steel Co Ltd Method for manufacturing nickel-saving type hot-rolled austenitic stainless steel sheet, slab and hot-rolled steel sheet
JP2011184792A (en) * 2010-02-12 2011-09-22 Nippon Steel & Sumikin Stainless Steel Corp Ferritic-austenitic stainless steel sheet having excellent press formability, and method for producing the same
JP2011208244A (en) * 2010-03-30 2011-10-20 Nippon Steel & Sumikin Stainless Steel Corp Ferritic-austenitic stainless steel sheet to be press-formed causing small earring, and method for manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2172574B1 (en) * 2007-08-02 2019-01-23 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic-austenitic stainless steel excellent in corrosion resistance and workability and process for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035782A (en) * 2007-08-02 2009-02-19 Nippon Steel & Sumikin Stainless Steel Corp Ferritic-austenitic stainless steel with excellent corrosion resistance and workability, and its manufacturing method
JP2009197326A (en) * 2008-01-22 2009-09-03 Nippon Steel & Sumikin Stainless Steel Corp Ferrite-austenite stainless steel sheet for structural member excellent in workability and impact-absorbing property, and method for production thereof
JP2010121162A (en) * 2008-11-19 2010-06-03 Nisshin Steel Co Ltd Method for manufacturing nickel-saving type hot-rolled austenitic stainless steel sheet, slab and hot-rolled steel sheet
JP2011184792A (en) * 2010-02-12 2011-09-22 Nippon Steel & Sumikin Stainless Steel Corp Ferritic-austenitic stainless steel sheet having excellent press formability, and method for producing the same
JP2011208244A (en) * 2010-03-30 2011-10-20 Nippon Steel & Sumikin Stainless Steel Corp Ferritic-austenitic stainless steel sheet to be press-formed causing small earring, and method for manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3556892A4 (en) * 2016-12-13 2019-10-23 Posco Low alloy steel sheet having excellent strength and ductility
WO2018135554A1 (en) * 2017-01-23 2018-07-26 Jfeスチール株式会社 Ferritic/austenitic duplex stainless steel plate
JP6384638B1 (en) * 2017-01-23 2018-09-05 Jfeスチール株式会社 Ferritic / austenitic duplex stainless steel sheet
US11142814B2 (en) 2017-01-23 2021-10-12 Jfe Steel Corporation Ferritic-austenitic duplex stainless steel sheet
WO2020130060A1 (en) * 2018-12-21 2020-06-25 日鉄ステンレス株式会社 Cr-based stainless steel having excellent hydrogen embrittlement resistance
JPWO2020130060A1 (en) * 2018-12-21 2021-10-14 日鉄ステンレス株式会社 Cr-based stainless steel sheet with excellent hydrogen embrittlement resistance
JP7121142B2 (en) 2018-12-21 2022-08-17 日鉄ステンレス株式会社 Cr-based stainless steel sheet with excellent resistance to hydrogen embrittlement

Also Published As

Publication number Publication date
TW201348465A (en) 2013-12-01
JP5869922B2 (en) 2016-02-24
JP2013185231A (en) 2013-09-19
CN104471092A (en) 2015-03-25
KR20140105849A (en) 2014-09-02
CN104471092B (en) 2018-01-02
TWI519653B (en) 2016-02-01

Similar Documents

Publication Publication Date Title
WO2013133259A1 (en) Ferrite-austenite 2-phase stainless steel plate having low in-plane anisotropy and method for producing same
CN102639742B (en) Austenite stainless steel plate and manufacture method thereof
JP5116265B2 (en) Austenitic stainless rolled steel sheet excellent in strength and ductility and method for producing the same
JP6141828B2 (en) Production and utilization of ferritic and austenitic stainless steels
JP2011117024A (en) Fine grained austenitic stainless steel sheet exhibiting excellent stress corrosion cracking resistance and processability
JP2013147705A (en) Ferritic stainless steel wire rod and steel wire, and method for producing them
WO2008013305A1 (en) Stainless steel sheet for parts and process for manufacturing the same
JP5308726B2 (en) Austenitic stainless steel sheet for press forming having a fine grain structure and method for producing the same
CN107058866B (en) Ferrito-martensite cold-rolled biphase steel and preparation method thereof
JP6811112B2 (en) Ferrite Duplex Stainless Steel Sheet and Its Manufacturing Method
JP2002332549A (en) Ferritic stainless steel strip having excellent shape fixability on forming and production method therefor
JPH01172524A (en) Production of complex phase structure chromium stainless strip having excellent corrosion resistance and high ductility and strength
CN104726789A (en) Low-nickel containing stainless steels
JPWO2014157146A1 (en) Austenitic stainless steel sheet and method for producing high-strength steel using the same
JP2006022369A (en) LOW Ni AUSTENITIC STAINLESS STEEL HAVING EXCELLENT BULGING PROPERTY AND RUST GENERATION RESISTANCE
JP2016113670A (en) Ferritic stainless steel and method for producing the same
JP6361402B2 (en) Duplex stainless steel for spring and method for producing the same
JP2002332548A (en) Ferritic stainless steel strip having excellent shape fixability on forming and production method therefor
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP5233428B2 (en) Ferritic stainless steel sheet excellent in deep drawability and method for producing the same
JP6111109B2 (en) Low Ni austenitic stainless steel sheet with excellent age hardening characteristics and method for producing the same
JP4841308B2 (en) High-strength nonmagnetic stainless steel sheet and method for producing the same
JP5921352B2 (en) Ferritic stainless steel sheet with excellent ridging resistance and method for producing the same
JP6809325B2 (en) Duplex stainless steel shaped steel and its manufacturing method
US20190177814A1 (en) Lean duplex stainless steel having excellent bending processability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13758128

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20147020498

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13758128

Country of ref document: EP

Kind code of ref document: A1