JP2010121162A - Method for manufacturing nickel-saving type hot-rolled austenitic stainless steel sheet, slab and hot-rolled steel sheet - Google Patents
Method for manufacturing nickel-saving type hot-rolled austenitic stainless steel sheet, slab and hot-rolled steel sheet Download PDFInfo
- Publication number
- JP2010121162A JP2010121162A JP2008295205A JP2008295205A JP2010121162A JP 2010121162 A JP2010121162 A JP 2010121162A JP 2008295205 A JP2008295205 A JP 2008295205A JP 2008295205 A JP2008295205 A JP 2008295205A JP 2010121162 A JP2010121162 A JP 2010121162A
- Authority
- JP
- Japan
- Prior art keywords
- less
- slab
- hot
- formula
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000963 austenitic stainless steel Inorganic materials 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 229910000831 Steel Inorganic materials 0.000 title claims description 53
- 239000010959 steel Substances 0.000 title claims description 53
- 238000000034 method Methods 0.000 title abstract description 16
- 238000005098 hot rolling Methods 0.000 claims abstract description 76
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 16
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 14
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 11
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 11
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 10
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 9
- 229910000859 α-Fe Inorganic materials 0.000 claims description 88
- 229910001566 austenite Inorganic materials 0.000 claims description 35
- 239000000203 mixture Substances 0.000 claims description 27
- 238000010438 heat treatment Methods 0.000 claims description 26
- 239000000126 substance Substances 0.000 claims description 22
- 238000001816 cooling Methods 0.000 claims description 18
- 238000005266 casting Methods 0.000 claims description 15
- 238000005096 rolling process Methods 0.000 claims description 14
- 238000007711 solidification Methods 0.000 claims description 6
- 230000008023 solidification Effects 0.000 claims description 6
- 210000005069 ears Anatomy 0.000 claims description 2
- 238000005336 cracking Methods 0.000 abstract description 12
- 229910052802 copper Inorganic materials 0.000 abstract description 3
- 239000000463 material Substances 0.000 description 18
- 239000010949 copper Substances 0.000 description 12
- 230000007797 corrosion Effects 0.000 description 10
- 238000005260 corrosion Methods 0.000 description 10
- 229910001220 stainless steel Inorganic materials 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000005097 cold rolling Methods 0.000 description 8
- 238000000137 annealing Methods 0.000 description 7
- 239000010935 stainless steel Substances 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 4
- 229910000734 martensite Inorganic materials 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- 230000002411 adverse Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000005554 pickling Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000002436 steel type Substances 0.000 description 3
- 238000009628 steelmaking Methods 0.000 description 3
- 238000005482 strain hardening Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 208000009205 Tinnitus Diseases 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000010960 cold rolled steel Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000866 electrolytic etching Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
本発明は、熱間圧延での耳割れの発生を抑止したNi節約型オーステナイト系ステンレス熱延鋼板の製造方法、並びにその製造方法に供するための鋳造スラブおよび加熱スラブ、並びに熱延鋼板に関する。 The present invention relates to a method for manufacturing a Ni-saving austenitic stainless hot-rolled steel sheet that suppresses the occurrence of ear cracks during hot rolling, a cast slab and a heated slab for use in the manufacturing method, and a hot-rolled steel sheet.
SUS301、SUS304などに代表される加工硬化型の準安定オーステナイト系ステンレス鋼(いわゆる300系ステンレス鋼)は、その優れた製造性、耐食性、加工性などを活かして様々な用途に使用されている。オーステナイト系ステンレス鋼は一般にNiを多量に含有することから高価である。 Work hardening type metastable austenitic stainless steel (so-called 300 series stainless steel) represented by SUS301, SUS304 and the like is used for various applications by taking advantage of its excellent manufacturability, corrosion resistance, workability and the like. Austenitic stainless steel is expensive because it generally contains a large amount of Ni.
より低廉なオーステナイト系鋼が必要な用途では、Ni含有量を減らし、代わりにMn等のオーステナイト形成元素を多量に配合したSUS201、SUS202などのNi節減型オーステナイト系ステンレス鋼(いわゆる200系ステンレス鋼)、あるいはそれらをベースとした高Mnオーステナイト系鋼種が適用されることがある。特許文献1〜4には種々の高Mnオーステナイト系ステンレス鋼が記載されている。 In applications that require cheaper austenitic steels, Ni-reducing austenitic stainless steels such as SUS201 and SUS202 (so-called 200 series stainless steels) that contain a large amount of austenite-forming elements such as Mn instead are reduced. Alternatively, high Mn austenitic steel types based on them may be applied. Patent Documents 1 to 4 describe various high Mn austenitic stainless steels.
高Mnオーステナイト系鋼は、300系ステンレス鋼に比べ一般に耐食性、熱間加工性、成形性に劣る。また、多量のMnを含有するために製鋼工程では有害なMn酸化物の微細粒子(Mnヒューム)が発生し、環境対策が必要となる。冷間圧延、焼鈍、酸洗等の下工程ではMn含有量が高いことに起因して製品の表面品質低下が生じやすい。したがって、高Mnオーステナイト系鋼を300系ステンレス鋼の代替として適用するには、製造性や材料特性の面で問題が多い。 High Mn austenitic steel is generally inferior in corrosion resistance, hot workability and formability compared to 300 stainless steel. Further, since a large amount of Mn is contained, harmful Mn oxide fine particles (Mn fume) are generated in the steelmaking process, and environmental measures are required. In the lower processes such as cold rolling, annealing, pickling, etc., the surface quality of the product is likely to deteriorate due to the high Mn content. Therefore, there are many problems in terms of manufacturability and material characteristics when applying high Mn austenitic steel as an alternative to 300 stainless steel.
特許文献5、6にはMn量を低減したNi節減型のオーステナイト系ステンレス鋼が示されている。しかしこれらは強度あるいは加工性が低く、300系ステンレス鋼を代替できるほどの材料特性は得られていない。特許文献7には熱間加工性や耐食性がSUS304と同等であるMn量を比較的低減したNi節減型のオーステナイト系ステンレス鋼が示されている。しかし、そのMn含有量は3質量%以上であり、製造現場での環境劣化や製品の表面性状低下の問題を解消するためには、さらなるMn含有量の低減が望まれる。 Patent Documents 5 and 6 show Ni-saving austenitic stainless steel with a reduced amount of Mn. However, these materials have low strength or workability, and have not obtained material properties that can replace 300 series stainless steel. Patent Document 7 discloses Ni-saving austenitic stainless steel in which the amount of Mn, which has hot workability and corrosion resistance equivalent to SUS304, is relatively reduced. However, the Mn content is 3% by mass or more, and further reduction of the Mn content is desired in order to solve the problems of environmental degradation at the production site and the deterioration of the surface properties of the product.
発明者らの調査によれば、Ni節減型オーステナイト系ステンレス鋼において、Mn含有量を3%未満のレベルに低減すると熱間加工性が低下し、耳割れのない健全な熱延鋼板を得ることが非常に難しくなることが確認された。耳割れの発生は高品質の鋼板を安全に製造する上で問題となることがあり、耳割れの程度が大きい場合にはトリミングすることによる歩留低下を招くなど、製造コスト増大の要因となる。 According to the investigation by the inventors, in Ni-saving austenitic stainless steel, when the Mn content is reduced to a level of less than 3%, hot workability is lowered, and a healthy hot-rolled steel sheet without ear cracks is obtained. Was found to be very difficult. Occurrence of ear cracks can be a problem for the safe production of high-quality steel sheets, and if the degree of ear cracks is large, it can cause a decrease in yield due to trimming, which causes an increase in manufacturing costs. .
本発明は、Mn含有量を低減したNi節減型オーステナイト系ステンレス鋼において、熱間圧延での耳割れの発生を抑止する技術を提供するとともに、300系ステンレス鋼の代替として多くの用途で適用可能な耐食性および材料特性を具備した材料を提供しようというものである。 The present invention provides a technology for suppressing the occurrence of ear cracks in hot rolling in Ni-saving austenitic stainless steel with reduced Mn content, and can be applied in many applications as an alternative to 300-based stainless steel. It is an object to provide a material having excellent corrosion resistance and material characteristics.
上記目的は、質量%で、C:0.05%超えかつ下記(1)式を満たす範囲、Si:4%以下、Mn:0.5%以上3%未満、P:0.06%以下、S:0.005%以下、Ni:0.5%以上5%未満、Cr:16%超え19%以下、N:0.05%超えかつ下記(1)式を満たす範囲、Cu:0.8%以上3.5%以下、残部がFeおよび不可避的不純物であり、必要に応じてさらに下記(2)式で定義されるオーステナイト安定度指標Md30が0以上80以下、かつ下記(3)式で定義される積層欠陥エネルギー指標SFEが0以上40未満を満たす化学組成のスラブを加熱炉に装入し、1100〜1250℃かつオーステナイト単相温度域に保持することにより下記(A)の組織状態とする工程、
前記組織状態のスラブを加熱炉から取り出して、当該スラブに熱間圧延を施す工程、
を有するNi節約型オーステナイト系ステンレス熱延鋼板の製造方法によって達成される。
0.10≦C+0.5N≦0.25 …(1)
Md30=551−462(C+N)−9.2Si−8.1Mn−29(Ni+Cu)−13.7Cr …(2)
SFE=6.2Ni+18.6Cu+0.7Cr+3.2Mn−53 …(3)
ここで(1)〜(3)式の元素記号の箇所には質量%で表された当該元素の含有量値が代入される。
(A)スラブエッジの厚さ中央部表面からスラブ幅方向深さ100μm以内の領域において、δフェライト相の面積率が4%以下、δフェライト相の長径が上位20%の平均値で30μm以下である組織状態
スラブ厚さ中央部とは、スラブ厚さの15%に相当する厚さ方向中央領域である。
The above-mentioned purpose is in mass%, C: more than 0.05% and satisfying the following formula (1), Si: 4% or less, Mn: 0.5% or more and less than 3%, P: 0.06% or less, S: 0.005% or less, Ni: 0.5% or more and less than 5%, Cr: more than 16% and less than 19%, N: more than 0.05% and satisfying the following formula (1), Cu: 0.8 % To 3.5%, the balance being Fe and inevitable impurities, and if necessary, the austenite stability index Md 30 defined by the following formula (2) is 0 to 80 and the following formula (3) A slab having a chemical composition satisfying the stacking fault energy index SFE defined by ≦ 0 and less than 40 is charged into a heating furnace and maintained in a temperature range of 1100 to 1250 ° C. and an austenite single-phase temperature range (A) below. The process of
Taking out the slab in the textured state from the heating furnace, and subjecting the slab to hot rolling,
This is achieved by a method for producing a Ni-saving austenitic stainless hot-rolled steel sheet having:
0.10 ≦ C + 0.5N ≦ 0.25 (1)
Md 30 = 551-462 (C + N ) -9.2Si-8.1Mn-29 (Ni + Cu) -13.7Cr ... (2)
SFE = 6.2Ni + 18.6Cu + 0.7Cr + 3.2Mn-53 (3)
Here, the content value of the element expressed by mass% is substituted for the element symbol in the formulas (1) to (3).
(A) In the region within the depth of 100 μm in the slab width direction from the surface of the central part of the slab edge, the area ratio of the δ ferrite phase is 4% or less, and the major axis of the δ ferrite phase is 30 μm or less on average. A certain tissue state The central portion of the slab thickness is a central region in the thickness direction corresponding to 15% of the slab thickness.
加熱炉に装入する前の上記スラブとしては、下記(B)の組織状態を有する鋳造スラブを適用することがより好ましい。
(B)スラブエッジの厚さ中央部表面からスラブ幅方向深さ100μm以内の領域において、δフェライト相の面積率が15%以下、δフェライト相の長径が上位20%の平均値で60μm以下である組織状態
このような鋳造スラブを用いると、1100〜1250℃かつオーステナイト単相温度域に保持する時間を1〜5h程度とすることが可能になり、一般的な連続熱間圧延ラインにおける加熱炉が使用できる。つまり、非常に長時間の加熱保持を行う必要がなくなる。
As the slab before charging into the heating furnace, it is more preferable to apply a cast slab having the following structural state (B).
(B) In the region within 100 μm depth in the slab width direction from the surface of the central part of the slab edge, the area ratio of the δ ferrite phase is 15% or less, and the major axis of the δ ferrite phase is 60 μm or less on average. A certain structure state When such a cast slab is used, it becomes possible to make the time to hold | maintain in 1100-1250 degreeC and an austenite single phase temperature range about 1-5h, and the heating furnace in a general continuous hot rolling line Can be used. That is, it is not necessary to perform heating and holding for a very long time.
前記の組織状態を有する鋳造スラブは、所定組成に成分調整された溶鋼を、スラブ製造用モールドに注入して、スラブ厚さ中央部のスラブエッジ表面における凝固開始温度から1250℃までの平均冷却速度が50℃/min以上となるように鋳造する工程によって得ることができる。 The cast slab having the above-described structure state is obtained by injecting molten steel whose components are adjusted to a predetermined composition into a mold for manufacturing a slab, and an average cooling rate from the solidification start temperature to 1250 ° C. at the surface of the slab edge at the center of the slab thickness. Can be obtained by a casting process so that the temperature is 50 ° C./min or more.
また、本発明では、上記化学組成を有するスラブとして、熱間圧延工程の加熱炉に装入するための「鋳造スラブ」であって、前記(B)の組織状態であるものが提供される。また、その加熱炉中で1100〜1250℃かつオーステナイト単相温度域に保持されている「加熱スラブ」であって、前記(A)の組織状態であるものが提供される。 Moreover, in this invention, it is a "cast slab" for charging in the heating furnace of a hot rolling process as a slab which has the said chemical composition, Comprising: The thing which is the structure state of the said (B) is provided. In addition, there is provided a “heated slab” held in the heating furnace at 1100 to 1250 ° C. and in the austenite single-phase temperature range, which is in the textured state of (A).
さらに本発明では、上記化学組成を有し、熱間圧延を終えた段階の耳部無手入れの熱延鋼板であって、耳割れが観測されないNi節約型オーステナイト系ステンレス熱延鋼板が提供される。鋼板には鋼帯が含まれる。耳割れは、圧延中に板のエッジ(幅方向端部;「耳」と呼ばれる)に生じる割れである。ある圧延パスで耳割れが生じると、その後の圧延パスで板が伸びるのに伴って割れ幅が拡大し、場合によっては操業上のトラブルを招くこともある。耳割れ深さは、鋼板のエッジから割れ先端までの幅方向(圧延方向に対し直角方向)の距離である。本明細書では深さ1mm以下のエッジ欠陥は、耳割れとして扱わない。そのような微小なエッジ欠陥は本発明対象鋼において熱間圧延以降の工程に悪影響を与えない。すなわち本明細書でいう耳割れは深さ1mmを超えるものを意味する。 Furthermore, the present invention provides a Ni-saving austenitic stainless hot-rolled steel sheet having the above-mentioned chemical composition and a hot-rolled steel sheet that has no hot-rolling at the stage where hot rolling is finished, and no ear cracks are observed. . The steel sheet includes a steel strip. Ear cracks are cracks that occur at the edges (widthwise ends; called “ears”) of the plate during rolling. When an ear crack occurs in a certain rolling pass, the crack width increases as the plate extends in the subsequent rolling pass, and in some cases, operational troubles may be caused. The ear crack depth is the distance in the width direction (perpendicular to the rolling direction) from the edge of the steel sheet to the crack tip. In this specification, an edge defect having a depth of 1 mm or less is not treated as an ear crack. Such minute edge defects do not adversely affect the processes after hot rolling in the steel of the present invention. That is, the term “ear crack” as used herein means that the depth exceeds 1 mm.
本発明によれば、Ni節減型オーステナイト系ステンレス鋼において、「Mn含有量の低減」と「熱間圧延時の耳割れ抑止」とを両立させることが可能となり、健全な熱延鋼板(鋼帯)を安定して得ることができる。Mn含有量を低減したことにより製造現場での環境が改善され、鋼板の表面品質低下も抑制される。得られた鋼板は耐食性および機械的特性が良好であり、ばね、機械部品、ガスケットをはじめとする多くの用途で300系ステンレス鋼の代替として活用できると考えられ、製品のコストダウンに寄与しうる。 According to the present invention, in Ni-saving austenitic stainless steel, it is possible to achieve both “reduction of Mn content” and “inhibition of ear cracking during hot rolling”, and a healthy hot-rolled steel sheet (steel strip) ) Can be obtained stably. By reducing the Mn content, the environment at the manufacturing site is improved, and the surface quality of the steel sheet is also prevented from lowering. The obtained steel plate has good corrosion resistance and mechanical properties, and can be used as a substitute for 300 series stainless steel in many applications including springs, mechanical parts, and gaskets, and can contribute to cost reduction of products. .
発明者らはMn含有量を低減したNi節減型オーステナイト系ステンレス鋼において、熱間加工性を改善する手法を研究してきた。その結果、このような成分系ではオーステナイト素地中にδフェライトが分布した組織状態となりやすく、オーステナイト素地とδフェライトの界面が熱延耳割れの起点あるいは伝播経路として機能することが確かめられた。したがって、熱間圧延時にδフェライト相の存在量ができるだけ少なくなっていることが耳割れ防止には有利である。しかし、化学組成の調整だけでδフェライト量の低減を図ることは、限られた組成範囲に制限され、必ずしも得策ではない。 The inventors have studied a technique for improving hot workability in Ni-saving austenitic stainless steel with a reduced Mn content. As a result, it was confirmed that in such a component system, a δ ferrite was easily distributed in the austenite substrate, and the interface between the austenite substrate and δ ferrite functioned as a starting point or propagation path of hot-ear cracks. Therefore, it is advantageous for preventing ear cracks that the amount of δ ferrite phase is as small as possible during hot rolling. However, reducing the amount of δ ferrite only by adjusting the chemical composition is limited to a limited composition range and is not always a good idea.
種々検討の結果、熱間圧延に供する加熱スラブの内部全体についてδフェライト量を低減する必要はなく、熱間圧延時にひずみが作用しやすいスラブエッジ近傍の表層部だけについてδフェライト相の存在量およびサイズを低減することによって、熱間圧延での耳割れを安定して抑止できることがわかった。 As a result of various studies, it is not necessary to reduce the amount of δ ferrite for the entire inside of the heated slab to be subjected to hot rolling, and the amount of δ ferrite phase present only in the surface layer portion near the slab edge where strain is likely to act during hot rolling. It was found that by reducing the size, the ear cracks in hot rolling can be stably suppressed.
図1に、本発明に相当する鋳造スラブおよび加熱スラブ相当材の、スラブ長手方向(鋳造方向)およびスラブ幅方向に平行なスラブ厚さ中央部の断面についての金属組織を例示する。「スラブエッジセンター」とはスラブエッジの厚さ方向中心を意味する。図1に例示される鋼の化学組成は、質量%でC:0.12%、Si:0.5%、Mn:2.8%、Ni:2.3%、Cr:16.3%、Cu:2.8%、N:0.12%、残部Feおよび不可避的不純物である。ここで図1(b)の加熱スラブ相当材は、前記鋳造スラブから採取したサンプルをオーステナイト単相領域である1230℃で2h加熱した後、水中に急冷したものである。いずれもスラブ長手方向およびスラブ幅方向に平行なスラブ厚さ中央部の断面(すなわちスラブ広面に平行なスラブ厚さ中央部の断面)が観察できるように試料を樹脂に埋め込み、研磨およびNaOH水溶液による電解エッチングを施し、光学顕微鏡で観察したものである。 FIG. 1 illustrates a metal structure of a cross section of a slab thickness central portion parallel to a slab longitudinal direction (casting direction) and a slab width direction of a cast slab and a heated slab equivalent material corresponding to the present invention. The “slab edge center” means the center of the slab edge in the thickness direction. The chemical composition of the steel illustrated in FIG. 1 is as follows: C: 0.12%, Si: 0.5%, Mn: 2.8%, Ni: 2.3%, Cr: 16.3%. Cu: 2.8%, N: 0.12%, balance Fe and inevitable impurities. Here, the material corresponding to the heated slab shown in FIG. 1B is obtained by heating a sample collected from the cast slab at 1230 ° C., which is an austenite single phase region, for 2 hours and then rapidly cooling it in water. In either case, the sample was embedded in a resin so that the cross section of the slab thickness central part parallel to the slab longitudinal direction and the slab width direction (that is, the cross section of the slab thickness central part parallel to the slab wide surface) could be observed, polished and by NaOH aqueous solution Electrolytic etching was performed and observed with an optical microscope.
鋳造スラブ(図1(a))においては、スラブエッジ付近と幅方向内部とでδフェライト相の分布形態に違いが見られる。スラブエッジ付近では、鋳造時の冷却速度が大きいことから、内部よりもδフェライト相の量が少なく、サイズも小さい。このような鋳造スラブをオーステナイト単相領域で加熱した加熱スラブ(図1(b))においては、スラブエッジ付近でδフェライト相の量およびサイズがかなり低減している。 In the cast slab (FIG. 1A), there is a difference in the distribution form of the δ ferrite phase between the vicinity of the slab edge and the inside in the width direction. In the vicinity of the slab edge, the cooling rate at the time of casting is high, so the amount of δ ferrite phase is smaller than the inside and the size is also small. In such a heated slab (FIG. 1 (b)) in which the cast slab is heated in the austenite single phase region, the amount and size of the δ ferrite phase are considerably reduced in the vicinity of the slab edge.
発明者らは加熱スラブの組織状態と熱間加工性の関係を詳細に検討した結果、前述のように、本発明で対象とする鋼種の熱間圧延での耳割れは、オーステナイト素地とδフェライトの界面を起点として発生し、またオーステナイト素地とδフェライトの界面は亀裂の伝播経路となる。δフェライト量が少ないほど、またオーステナイト相とδフェライト相の界面面積が小さいほど、熱間圧延での耳割れ感受性が低くなる。δフェライト量はδフェライト相の体積率(断面観察における面積率)として表すことができ、オーステナイト相とδフェライト相の界面面積はδフェライト相の長径に大きく依存する。発明者らの検討によれば、熱間圧延前の加熱炉中で下記(A)の組織状態となっているとき、熱間圧延での耳割れが安定して顕著に抑止できることが明らかになった。
(A)スラブエッジの厚さ中央部表面からスラブ幅方向深さ100μm以内の領域において、δフェライト相の面積率が4%以下、δフェライト相の長径が上位20%の平均値で30μm以下である組織状態
本発明で対象とする化学組成(後述)の鋼においては、スラブエッジから100μmを超える内部のδフェライト形態は熱間圧延での耳割れにほとんど影響を及ぼさない。
As a result of detailed examination of the relationship between the structure of the heated slab and the hot workability, the inventors have found that the ear cracks in the hot rolling of the steel types targeted by the present invention are austenite and δ ferrite. The interface between the austenite substrate and the δ ferrite is a crack propagation path. The smaller the amount of δ ferrite and the smaller the interfacial area between the austenite phase and δ ferrite phase, the lower the ear cracking sensitivity in hot rolling. The amount of δ ferrite can be expressed as the volume ratio of the δ ferrite phase (area ratio in cross-sectional observation), and the interface area between the austenite phase and the δ ferrite phase greatly depends on the major axis of the δ ferrite phase. According to the study by the inventors, when the following (A) structure is obtained in the heating furnace before hot rolling, it becomes clear that the ear cracks in hot rolling can be stably suppressed remarkably. It was.
(A) In the region within the depth of 100 μm in the slab width direction from the surface of the central part of the slab edge, the area ratio of the δ ferrite phase is 4% or less, and the major axis of the δ ferrite phase is 30 μm or less on average. A certain structural state In the steel of the chemical composition (described later) targeted by the present invention, the internal δ ferrite form exceeding 100 μm from the slab edge has little influence on the ear cracks in hot rolling.
オーステナイト相とδフェライト相の界面で熱間割れが起こるメカニズムは不明な点も多いが、フェライト生成元素であるPおよびSがδフェライト相中に濃化し、熱間圧延前の加熱時および熱間圧延時にδフェライト相がオーステナイト相に変態する過程で、両者の界面にP、Sが偏析して界面結合力が低下し、その界面に熱延ひずみが蓄積されて割れに至るものと推察される。 The mechanism of hot cracking at the interface between the austenite phase and the δ ferrite phase is not clear, but the ferrite-forming elements P and S are concentrated in the δ ferrite phase and are heated before and after hot rolling. In the process of transformation of the δ ferrite phase to the austenite phase during rolling, it is assumed that P and S segregate at the interface between the two, the interface bond strength decreases, and hot rolling strain accumulates at the interface, leading to cracking. .
δフェライト相の面積率は、図1(b)に例示したようなスラブ長手方向およびスラブ幅方向に平行なスラブ厚さ中央部の断面についての金属組織において、δフェライト相の面積率を測定することによって求めることができる。δフェライト相の長径は、前記断面に現れている島状あるいは粒子状に見える個々のδフェライト相の最も長い部分の径をいう。断面観察は、スラブエッジ表面から100μm深さの領域を、スラブ長手方向について15mm以上の距離にわたって観察し、それらの領域中に観測されるδフェライト相のデータを採用する。前記領域の内外に跨って存在するδフェライト相については、面積率を算出する際には前記領域の内部に存在するδフェライト相の部分の面積だけを採用し、長径はそのδフェライト相の全体像から決定する。δフェライト相の長径の上位20%とは、測定対象のδフェライト相の総数をn個とし、n個の長径データを最大のものから降順に並べた場合の、1番目からn×0.2(小数点以下切り捨て)番目までのデータについての平均値をいう。
なお、この測定手法は(A)の組織状態と、後述の(B)、(C)の組織状態の判定において適用できる。ただし(C)の組織状態の判定においては上記において「スラブ」を「鋼板」と読み替えて適用すればよい。
As for the area ratio of the δ ferrite phase, the area ratio of the δ ferrite phase is measured in the metal structure of the cross section of the slab thickness central portion parallel to the slab longitudinal direction and the slab width direction as illustrated in FIG. Can be determined by The major axis of the δ ferrite phase refers to the diameter of the longest part of each δ ferrite phase that appears in the form of islands or particles appearing in the cross section. In cross-sectional observation, a region having a depth of 100 μm from the surface of the slab edge is observed over a distance of 15 mm or more in the longitudinal direction of the slab, and data of the δ ferrite phase observed in these regions is adopted. For the δ ferrite phase existing across the inside and outside of the region, when calculating the area ratio, only the area of the portion of the δ ferrite phase existing in the region is adopted, and the major axis is the entire δ ferrite phase. Determine from the image. The top 20% of the major axis of the δ ferrite phase means that the total number of δ ferrite phases to be measured is n, and the n major axis data are arranged in descending order from the largest, n × 0.2 from the first. It is the average value for the data up to (rounded down).
This measurement method can be applied to the determination of the tissue state of (A) and the tissue states of (B) and (C) described later. However, in the determination of the structure state of (C), “slab” may be replaced with “steel plate” in the above description.
上記(A)の組織状態を有する加熱スラブを得るためには、鋳造スラブを1100〜1250℃かつオーステナイト単相温度域に保持することが重要である。保持温度が1100℃を下回ると熱間圧延での仕上温度が低下して変形抵抗の増大を招きやすい。またスラブエッジ付近におけるδフェライト相の量およびサイズを前述の所定範囲にコントロールすることが難しくなる場合がある。1250℃を超えると固相線温度に接近する場合があり好ましくない。 In order to obtain a heated slab having the above-described (A) structure, it is important to maintain the cast slab at 1100 to 1250 ° C. and in the austenite single-phase temperature range. When the holding temperature is lower than 1100 ° C., the finishing temperature in hot rolling is lowered and the deformation resistance is likely to increase. In addition, it may be difficult to control the amount and size of the δ ferrite phase in the vicinity of the slab edge within the predetermined range. If it exceeds 1250 ° C., it may approach the solidus temperature, which is not preferable.
図2に、質量%でC:0.12%、Si:0.5%、Mn:2.8%、Ni:2.3%、Cr:15〜19%、Cu:2.8%、N:0.12%、残部Feの組成において、横軸にCr含有量を採った場合の計算により求めた平衡状態図を例示する。この場合、例えばbで示した領域で加熱保持するとδフェライト相が生成することから、スラブエッジ付近におけるδフェライト相の量およびサイズを上記所定の範囲に低減することが困難となる。したがって、例えば図2中にaで示したようなオーステナイト単相領域で加熱保持する必要がある。鋳造スラブのδフェライト存在形態に応じて加熱保持時間をコントロールすることにより、上述した所望の組織状態を得ることができる。なお、オーステナイト単相領域に長時間加熱しても、鋳造時に生じたδフェライト相を拡散によって完全に消失させることは一般に困難であり、通常、ある程度のδフェライト相が残留する。 In FIG. 2, C: 0.12% by mass, Si: 0.5%, Mn: 2.8%, Ni: 2.3%, Cr: 15-19%, Cu: 2.8%, N : An example of an equilibrium diagram obtained by calculation when the content of Cr is taken on the horizontal axis in the composition of 0.12% and the balance Fe. In this case, for example, when heated and held in the region indicated by b, a δ ferrite phase is generated. Therefore, it becomes difficult to reduce the amount and size of the δ ferrite phase in the vicinity of the slab edge to the predetermined range. Therefore, for example, it is necessary to heat and hold in the austenite single phase region as indicated by a in FIG. By controlling the heating and holding time according to the form of δ ferrite in the cast slab, the above-described desired structure state can be obtained. Even if the austenite single phase region is heated for a long time, it is generally difficult to completely eliminate the δ ferrite phase generated during casting by diffusion, and a certain amount of δ ferrite phase usually remains.
δフェライト相の存在量が多い鋳造スラブを用いた場合、上記(A)の組織状態を得るためには長時間の加熱が必要となる。そこで、熱間圧延時に大幅な加熱時間の延長を伴わないようにするためには、組織状態が好適に調整された鋳造スラブを適用することが有利となる。具体的には下記(B)の組織状態を持つ鋳造スラブを採用することが望ましいことがわかった。
(B)スラブエッジの厚さ中央部表面からスラブ幅方向深さ100μm以内の領域において、δフェライト相の面積率が15%以下、δフェライト相の長径が上位20%の平均値で60μm以下である組織状態
鋳造スラブにおいてスラブエッジ近傍のδフェライト相の量およびサイズがこの程度に低減されていれば、1100〜1250℃かつオーステナイト単相温度域での加熱時間を1〜5hとすることが可能となり、連続熱間圧延ラインの加熱炉が利用できる。
When a cast slab having a large amount of δ ferrite phase is used, heating for a long time is required in order to obtain the above-described microstructure (A). Therefore, in order not to significantly increase the heating time during hot rolling, it is advantageous to apply a cast slab whose structure is suitably adjusted. Specifically, it has been found desirable to employ a cast slab having the following structural state (B).
(B) In the region within 100 μm depth in the slab width direction from the surface of the central part of the slab edge, the area ratio of the δ ferrite phase is 15% or less, and the major axis of the δ ferrite phase is 60 μm or less on average. If the amount and size of the δ ferrite phase near the slab edge is reduced to this extent in a cast slab, the heating time at 1100 to 1250 ° C. and the austenite single phase temperature range can be set to 1 to 5 hours. Thus, a heating furnace of a continuous hot rolling line can be used.
上記(B)の組織状態を持つ鋳造スラブは、鋼の化学組成(δフェライト相の生成し易さ)に応じて、鋳造時の冷却速度をコントロールすることによって得ることができる。具体的には、後述の化学組成を有する溶鋼を、スラブ製造用モールドに注入して、スラブ厚さ中央部のスラブエッジ表面における凝固開始温度から1250℃までの平均冷却速度が所定値以上となるように鋳造すればよい。その所定値(平均冷却速度の下限)は鋼の化学組成(δフェライト相の生成し易さ)に応じて変動するが、本発明で規定する組成範囲全体において安定して上記(B)の組織状態を持つ鋳造スラブを得るためには、前記平均冷却速度を50℃/minとすることが好ましい。凝固開始温度から1250℃までの温度範囲は例えば図2に示されるように、δフェライト相が晶出する温度域を含む範囲である。この温度域を通過する時間を短くすることにより、δフェライト相の生成量を抑制することができる。鋳造速度に応じてモールドの水冷条件などを調整することにより鋳造時の冷却速度をコントロールすることが可能である。鋳造方法としては、連続鋳造や、扁平鋳型などを用いたバッチ式の鋳造法が好適な対象となる。 The cast slab having the above-described structure (B) can be obtained by controlling the cooling rate at the time of casting according to the chemical composition of the steel (ease of formation of δ ferrite phase). Specifically, molten steel having the chemical composition described below is poured into a mold for slab manufacturing, and the average cooling rate from the solidification start temperature to 1250 ° C. on the slab edge surface in the center of the slab thickness becomes a predetermined value or more. As long as it is cast. The predetermined value (lower limit of the average cooling rate) varies depending on the chemical composition of the steel (ease of formation of δ ferrite phase), but the structure of (B) above is stable over the entire composition range defined in the present invention. In order to obtain a cast slab having a state, the average cooling rate is preferably 50 ° C./min. The temperature range from the solidification start temperature to 1250 ° C. is a range including a temperature range where the δ ferrite phase crystallizes, as shown in FIG. 2, for example. By shortening the time for passing through this temperature range, the amount of δ ferrite phase produced can be suppressed. It is possible to control the cooling rate during casting by adjusting the water cooling conditions of the mold according to the casting rate. Suitable casting methods include continuous casting and batch casting using a flat mold.
熱間圧延は常法によって行うことができる。具体的には、前述(A)の組織状態に調整された加熱スラブを炉から取り出して、複数パスの熱間圧延を施し、例えば仕上圧延温度は900〜1050℃、巻取温度は400〜900℃とすればよい。発明者らの詳細な検討によれば、本発明で対象とする鋼種の場合、耳割れは熱間圧延率が60%以上の熱延パスにおいて生じる。その原因は、蓄積される熱延ひずみと、熱延によって変化していくδフェライト相の形態とのバランスにあると考えられる。すなわち、熱間圧延率が高くなるに伴って、熱延ひずみは増大し、δフェライト相も長径を増していく。このため、熱間圧延率の増大に伴って熱延割れ感受性も増大していく。しかし、熱間圧延率がさらに増大すると、δフェライト相は層状に伸ばされていくことによって、δフェライト相の形態に起因する熱延割れ感受性は減少に転じる。種々検討の結果、熱間圧延率が60〜70%のときにδフェライト相の形態に起因する熱延割れ感受性は最大になり、その後の熱延パスによって熱延ひずみに起因する熱延割れ感受性が増大しても、「熱延ひずみに起因する熱延割れ感受性」+「δフェライト相の形態に起因する熱延割れ感受性」で表されるトータルの熱延割れ感受性の増大速度は低下し、場合によっては減少するようになることも考えられる。したがって、60%以上の熱間圧延率に相当する最初の熱延パス(例えば圧延率66%など)を受けた直後のδフェライト相の形態が十分に熱延割れ感受性の低いものであれば、さらに熱間圧延を続けても、95%程度の熱間圧延率まで耳割れの発生を抑止することが可能となる。 Hot rolling can be performed by a conventional method. Specifically, the heated slab adjusted to the above-described textured state (A) is taken out of the furnace and subjected to a plurality of passes of hot rolling. For example, the finish rolling temperature is 900 to 1050 ° C., and the winding temperature is 400 to 900. It may be set to ° C. According to detailed studies by the inventors, in the case of the steel type targeted by the present invention, the ear cracks occur in a hot rolling pass with a hot rolling rate of 60% or more. The cause is considered to be the balance between the accumulated hot-rolling strain and the form of the δ ferrite phase that changes due to hot rolling. That is, as the hot rolling rate increases, the hot rolling strain increases and the δ ferrite phase also increases the major axis. For this reason, as the hot rolling rate increases, the hot-rolling cracking sensitivity also increases. However, when the hot rolling rate is further increased, the δ ferrite phase is stretched in layers, and the hot cracking susceptibility due to the form of the δ ferrite phase starts to decrease. As a result of various studies, when the hot rolling rate is 60 to 70%, the hot-rolling cracking susceptibility caused by the form of the δ ferrite phase is maximized, and the hot-rolling susceptibility caused by hot-rolling strain is increased by the subsequent hot-rolling pass. Even if increases, the increase rate of the total hot-rolling susceptibility expressed as “hot-rolling cracking susceptibility due to hot-rolling strain” + “hot-rolling cracking susceptibility due to the form of δ ferrite phase” decreases, In some cases, it may be reduced. Accordingly, if the form of the δ ferrite phase immediately after receiving the first hot rolling pass corresponding to a hot rolling rate of 60% or more (for example, 66% rolling rate) is sufficiently low in hot rolling cracking, Furthermore, even if hot rolling is continued, it becomes possible to suppress the occurrence of edge cracks up to a hot rolling rate of about 95%.
詳細に検討したところ、60%以上の熱間圧延率に相当する最初の熱延パスを受けた直後において、下記(C)の組織状態になっていれば、その後の圧延パスにおいてトータル熱延率が例えば95%になるまで熱間圧延を施しても耳割れは発生しないことがわかった。
(C)鋼板エッジ(耳)の厚さ中央部表面から板幅方向深さ100μm以内の領域において、δフェライト相の面積率が4%以下、δフェライト相の長径が上位20%の平均値で50μm以下となる組織状態
なお、深さが1mm以内のエッジ欠陥であれば、熱延ラインや冷延・焼鈍ラインにおいて操業上、問題とならない。
60%以上の熱間圧延率に相当する最初の熱延パスを受けた直後に上記(C)の組織状態を有している場合は、その後に熱延を継続して得られた熱延鋼板も、上記(C)を満たす組織状態を有している。
When examined in detail, immediately after receiving the first hot rolling pass corresponding to a hot rolling rate of 60% or more, if the following (C) microstructure is obtained, the total hot rolling rate in the subsequent rolling pass For example, it was found that even if hot rolling was performed until 95% reached 95%, no ear cracks occurred.
(C) In the region within the depth of 100 μm from the surface of the central part of the thickness of the steel sheet edge (ear), the area ratio of the δ ferrite phase is 4% or less, and the major axis of the δ ferrite phase is the average value of the top 20%. Structure state of 50 μm or less In addition, if the edge defect is 1 mm or less in depth, there is no problem in operation in a hot rolling line or a cold rolling / annealing line.
When it has the structure state of (C) immediately after receiving the first hot rolling pass corresponding to a hot rolling rate of 60% or more, the hot rolled steel sheet obtained by continuing hot rolling thereafter Has an organizational state satisfying the above (C).
熱間圧延後は一般的なオーステナイト系ステンレス冷延鋼板の製造方法に従って、「冷間圧延→必要に応じて中間焼鈍および冷間圧延→仕上焼鈍」の工程により例えば板厚0.1〜3mm程度の焼鈍鋼板とすることができる。その後、形状矯正や調質圧延を適宜施すことができる。 After hot rolling, according to a general method for producing austenitic stainless cold-rolled steel sheet, for example, a sheet thickness of about 0.1 to 3 mm is achieved by a process of “cold rolling → intermediate annealing and cold rolling → finish annealing as necessary”, for example. Annealed steel sheet can be used. Thereafter, shape correction and temper rolling can be appropriately performed.
以下、本発明で対象とする鋼の化学組成について説明する。鋼の成分元素についての「%」は特に断らない限り「質量%」を意味する。
C、Nは、加工誘起マルテンサイト相(α’相)を固溶強化するために有用な元素である。本発明で対象とする鋼では、Nの固溶強化に対する寄与はCの約半分である。種々検討の結果、成形加工により生成したα’相を固溶強化させてSUS301並みの優れた強度を得るためには、C、Nともそれぞれ0.05%以上の含有量を確保した上で、C+0.5Nが0.1以上となるようにCおよびNを含有させることが極めて有効である。ただし、C、Nの含有量が多くなると鋼材が硬化し、C+0.5Nが0.25を超えると加工性を阻害する場合があることがわかった。したがって本発明では下記(1)式を満たす範囲でCおよびNを含有させる。C含有量は0.12%以下とすることがより好ましく、N含有量は0.18%以下とすることがより好ましい。
0.10≦C+0.5N≦0.25 …(1)
ここで(1)式の元素記号の箇所には質量%で表された当該元素の含有量値が代入される。
Hereinafter, the chemical composition of the steel targeted in the present invention will be described. Unless otherwise specified, “%” for steel component elements means “mass%”.
C and N are useful elements for strengthening the solution-induced martensite phase (α ′ phase) by solid solution. In the steel targeted by the present invention, the contribution of N to solid solution strengthening is about half of C. As a result of various studies, in order to obtain an excellent strength comparable to that of SUS301 by solid solution strengthening of the α ′ phase generated by molding, after securing a content of 0.05% or more for both C and N, It is very effective to contain C and N so that C + 0.5N is 0.1 or more. However, it has been found that when the contents of C and N increase, the steel material hardens, and when C + 0.5N exceeds 0.25, workability may be hindered. Therefore, in this invention, C and N are contained in the range with which following (1) Formula is satisfy | filled. The C content is more preferably 0.12% or less, and the N content is more preferably 0.18% or less.
0.10 ≦ C + 0.5N ≦ 0.25 (1)
Here, the content value of the element expressed in mass% is substituted for the element symbol in the formula (1).
Siは、製鋼での脱酸に有効な元素であり、固溶強化にも寄与する。その作用を十分に得るためには0.3%以上のSi含有量を確保することがより効果的である。ただし、過剰に含有させると鋼が硬化し加工性低下を招く。またSiはフェライト生成元素であり、その作用はCrより小さいが、過剰に含有させると高温域でδフェライト相が生成しやすくなり、熱間加工性を十分に改善することが難しくなる。これらの弊害はSi含有量が4%を超えると顕著に現れる。したがってSi含有量は4%以下の範囲とする。 Si is an element effective for deoxidation in steel making and contributes to solid solution strengthening. In order to obtain the effect sufficiently, it is more effective to secure a Si content of 0.3% or more. However, if excessively contained, the steel is hardened and the workability is reduced. Si is a ferrite-forming element, and its action is smaller than that of Cr. However, if it is excessively contained, a δ ferrite phase is likely to be generated in a high temperature range, and it is difficult to sufficiently improve hot workability. These adverse effects are prominent when the Si content exceeds 4%. Therefore, the Si content is in the range of 4% or less.
Mnは、Niよりも安価であり、Niの機能を代替できる有用なオーステナイト形成元素である。Niを後述の範囲で節減する場合、Mnの含有量は0.5%以上を確保する必要がある。1%以上を確保することがより効果的であり、1.5%以上とすることが一層効果的である。一方、Mn含有量が多くなると製鋼工程における環境上の問題、鋼板の表面品質劣化の問題、介在物に起因する加工性低下や耐食性低下の問題などが生じやすい。このため本発明ではMn含有量を3%未満に制限する。 Mn is a useful austenite forming element that is less expensive than Ni and can replace the function of Ni. In the case where Ni is reduced within the range described later, the Mn content must be 0.5% or more. It is more effective to secure 1% or more, and it is more effective to set it to 1.5% or more. On the other hand, when the Mn content is increased, environmental problems in the steelmaking process, surface quality deterioration problems of the steel sheet, workability deterioration due to inclusions, and corrosion resistance deterioration problems are likely to occur. For this reason, in the present invention, the Mn content is limited to less than 3%.
P、Sは、原料から混入するが、その含有量は低いほど好ましい。製造性や、加工性その他の材料特性に多大な悪影響を及ぼさない範囲として、Pは0.06%以下、Sは0.005%以下の範囲で含有が許容される。 P and S are mixed from the raw material, but the lower the content, the better. As a range that does not have a great adverse effect on manufacturability, workability and other material properties, P is allowed to be contained in a range of 0.06% or less and S in a range of 0.005% or less.
Niは、オーステナイト系ステンレス鋼に必須の合金元素であるが、本発明ではコスト低減の観点からNi含有量をできるだけ節減する成分設計を行い、Ni含有量は5%未満の範囲とする。ただし、C、N、Mnの含有量を上記の範囲とした場合に良好な熱間加工性を得るためには、Ni含有量を0.5%以上確保する必要があり、1%以上とすることがより効果的である。 Ni is an essential alloying element for austenitic stainless steel, but in the present invention, a component design is performed to reduce the Ni content as much as possible from the viewpoint of cost reduction, and the Ni content is set to a range of less than 5%. However, in order to obtain good hot workability when the content of C, N, and Mn is in the above range, it is necessary to secure Ni content of 0.5% or more, and 1% or more. Is more effective.
Crは、ステンレス鋼の耐食性を担保する不動態皮膜の形成に必須の元素である。本発明では代替対象である従来の300系オーステナイト系ステンレス鋼に要求される耐食性を得るために、16%を超えるCr含有量を確保する。ただしCrはフェライト生成元素であり、図2に例示されるようにCr含有量が増大すると高温でδフェライト相+オーステナイト相(γ)共存領域が拡大しやすい。発明者らの検討によれば、熱間圧延時の加熱温度範囲においてγ単相領域を十分に確保するためには、Cr含有量を19%以下とすることが有利となる。したがって本発明ではCr含有量を16%超え19%以下の範囲とする。 Cr is an essential element for forming a passive film that ensures the corrosion resistance of stainless steel. In the present invention, in order to obtain the corrosion resistance required for the conventional 300 series austenitic stainless steel, which is an alternative object, a Cr content exceeding 16% is secured. However, Cr is a ferrite-forming element. As shown in FIG. 2, when the Cr content increases, the coexistence region of δ ferrite phase + austenite phase (γ) tends to expand at high temperatures. According to the study by the inventors, in order to sufficiently secure the γ single-phase region in the heating temperature range during hot rolling, it is advantageous to make the Cr content 19% or less. Accordingly, in the present invention, the Cr content is in the range of more than 16% and not more than 19%.
Cuは、オーステナイト生成元素であることから、Cuを含有させることにより低Ni化・低Mn化の成分設計が容易になる。詳細な検討の結果、上記Ni含有量およびMn含有量の範囲で低Ni・低Mn化を図るためには、Cuを0.8%以上含有させることが極めて有利となる。ただし、3.5%を超えて多量にCuを含有させると熱間加工性が低下しやすい。したがってCu含有量は0.8〜3.5%とする。 Since Cu is an austenite-generating element, inclusion of Cu facilitates component design for reducing Ni and reducing Mn. As a result of detailed studies, it is extremely advantageous to contain Cu in an amount of 0.8% or more in order to achieve low Ni and low Mn in the range of the Ni content and the Mn content. However, if Cu is contained in a large amount exceeding 3.5%, the hot workability tends to be lowered. Therefore, the Cu content is set to 0.8 to 3.5%.
上記以外の元素として、V:0.3%以下、Zr:0.3%以下、Mo:0.5%以下、B、Ca、Mg、CoおよびREM(希土類元素):合計0.1%以下といった元素の混入が許容される。これらはスクラップ等の原料から不可避的に混入する場合があるが上記範囲の混入であれば本発明の効果を阻害するものではない。 As elements other than the above, V: 0.3% or less, Zr: 0.3% or less, Mo: 0.5% or less, B, Ca, Mg, Co, and REM (rare earth elements): total 0.1% or less Such elements are allowed to be mixed. These may be inevitably mixed from raw materials such as scrap, but if mixed within the above range, the effect of the present invention is not hindered.
得られた鋼板において、強度、延性、曲げ性、耐へたり性などの材料特性をSUS301と同等レベルとするために、下記(2)式で定義されるオーステナイト安定度指標Md30が0以上80以下、かつ下記(3)式で定義される積層欠陥エネルギー指標SFEが0以上40未満を満たすように成分組成を調整することが望ましい。
Md30=551−462(C+N)−9.2Si−8.1Mn−29(Ni+Cu)−13.7Cr …(2)
SFE=6.2Ni+18.6Cu+0.7Cr+3.2Mn−53 …(3)
In the resulting steel sheet, the strength, ductility, bendability, the material properties such as sag resistance to the SUS301 equivalent level, austenite stability index Md 30, which is defined by the following equation (2) is 0 or more 80 It is desirable to adjust the component composition so that the stacking fault energy index SFE defined by the following equation (3) satisfies 0 or more and less than 40.
Md 30 = 551-462 (C + N ) -9.2Si-8.1Mn-29 (Ni + Cu) -13.7Cr ... (2)
SFE = 6.2Ni + 18.6Cu + 0.7Cr + 3.2Mn-53 (3)
Md30が大きいほど、オーステナイト相から加工誘起マルテンサイト相への変態が起こりやすいので軽度の冷延ひずみの付与で高強度が得られ、冷間圧延率を低めに設定して延性改善を図る場合には特に有利となる。また、ばねへの成形加工においても曲げ部などで加工ひずみが付与された部分はTRIP現象によりさらに高強度化し、優れた耐へたり性が得られる。これらの作用はMd30を0以上とすることによって顕著に現れる。ただし、Md30が80を超えると加工部での加工誘起マルテンサイト生成量が多くなり過ぎ、特に曲げ加工において割れが発生しやすくなる。 When Md 30 is large, transformation from the austenite phase to the work-induced martensite phase is likely to occur. Therefore, high strength can be obtained by applying mild cold-rolling strain, and the cold rolling rate is set low to improve ductility. Is particularly advantageous. Further, even in the forming process to the spring, the portion to which the processing strain is applied at the bent portion or the like is further strengthened by the TRIP phenomenon, and excellent sag resistance is obtained. These effects are remarkably exhibited by setting Md 30 to 0 or more. However, if Md 30 exceeds 80, the amount of work-induced martensite generation in the processed part becomes too large, and cracking is likely to occur particularly in bending.
SEFが大きくなるとオーステナイト相の加工硬化が小さくなるために、加工時に生じた加工誘起マルテンサイト相と母相であるオーステナイト相の硬度差が大きくなり、特にSFEが40以上の場合には曲げ加工時に両相の界面近傍で亀裂が生じやすくなる。逆にSFEが0より小さくなるとオーステナイト相の加工硬化が過大となり、延性低下が問題となりやすい。 As the SEF increases, the work hardening of the austenite phase decreases, so the difference in hardness between the work-induced martensite phase generated during processing and the austenite phase that is the parent phase increases. Especially when the SFE is 40 or more, bending work Cracks are likely to occur near the interface between both phases. On the other hand, if the SFE is smaller than 0, the work hardening of the austenite phase becomes excessive, and a decrease in ductility tends to be a problem.
表1に示す化学組成の鋼を溶製した。表1中のC1はSUS301、C2はSUS304である。いずれも270kgの溶鋼を水冷式の銅製鋳型に鋳造して、鋳造スラブを得た。 Steels having chemical compositions shown in Table 1 were melted. In Table 1, C1 is SUS301 and C2 is SUS304. In either case, 270 kg of molten steel was cast into a water-cooled copper mold to obtain a cast slab.
C1、C2を除く鋼について、鋳造の際、鋳型に設置した数本の熱電対によって凝固時の温度変化をモニターし、スラブエッジの厚さ中央部表面からスラブ幅方向内部への冷却速度分布を測定した。得られた鋳造スラブから、厚さ60mm×幅80mm×長さ120mmの鋳造スラブ試料を採取した。ただし、上記の冷却速度分布のデータに基づいて採取位置(スラブエッジから鋳造スラブ試料のエッジまでの距離)を変えることによって、鋳造スラブ試料は、エッジの厚さ中央部表面における「凝固開始温度から1250℃までの平均冷却速度」が種々の段階にあるものを用意した。 For steels other than C1 and C2, the temperature change during solidification is monitored by several thermocouples installed in the mold during casting, and the cooling rate distribution from the center surface of the slab edge thickness to the inside of the slab width direction is measured. It was measured. A cast slab sample having a thickness of 60 mm, a width of 80 mm, and a length of 120 mm was collected from the obtained cast slab. However, by changing the sampling position (distance from the slab edge to the edge of the cast slab sample) on the basis of the above cooling rate distribution data, the cast slab sample becomes “from the solidification start temperature on the center surface of the edge thickness. The “average cooling rate to 1250 ° C.” in various stages was prepared.
各鋳造スラブ試料について、エッジ近傍の厚さ中央部の断面が観察できる試料を用意し、研磨およびNaOH水溶液による電解エッチングを施した断面を光学顕微鏡で観察した。断面観察は、スラブ試料エッジ表面から100μm深さの領域を、スラブ試料長手方向15mmの距離にわたって行い、前述の要領でその領域におけるδフェライト相の面積率およびδフェライト相の長径の上位20%の平均値を求めた。δフェライト相の面積率は光学顕微鏡像の画像処理を利用して求めた。 About each casting slab sample, the sample which can observe the cross section of the thickness center part of the edge vicinity was prepared, and the cross section which gave the grinding | polishing and the electrolytic etching by NaOH aqueous solution was observed with the optical microscope. Cross-sectional observation is performed in a region of 100 μm depth from the slab sample edge surface over a distance of 15 mm in the longitudinal direction of the slab sample, and in the manner described above, the area ratio of the δ ferrite phase and the top 20% of the major axis of the δ ferrite phase in that region. The average value was obtained. The area ratio of the δ ferrite phase was determined using image processing of an optical microscope image.
各鋳造スラブ試料を1150〜1230℃の範囲の所定の保持温度で加熱保持したのち、炉から取り出し、熱間圧延に供した。保持温度および保持時間は後述表3中に記載してある。表3中の試験番号P15以外はいずれもオーステナイト単相領域、P15はδフェライト相+オーステナイト相共存領域で加熱保持を行った。熱間圧延のパススケジュールは表2に示す条件とした。各パスのディレイは約7秒、圧延速度は約30m/minとし、水の噴霧を行わない条件で大気中にて熱間圧延を行った。熱間圧延中に、各パスの出側で耳割れの有無を観察した。トータル熱延率95%においても耳割れが発生しない場合を合格(熱間加工性;良好)と判定した。 Each cast slab sample was heated and held at a predetermined holding temperature in the range of 1150 to 1230 ° C., then taken out of the furnace and subjected to hot rolling. The holding temperature and holding time are described in Table 3 below. Except for test number P15 in Table 3, heating was held in the austenite single-phase region, and P15 in the δ ferrite phase + austenite phase coexistence region. The hot rolling pass schedule was set as shown in Table 2. The delay of each pass was about 7 seconds, the rolling speed was about 30 m / min, and hot rolling was performed in the atmosphere under the condition that water was not sprayed. During hot rolling, the presence or absence of ear cracks was observed on the exit side of each pass. Even when the total hot rolling rate was 95%, the case where no cracking occurred was determined to be acceptable (hot workability; good).
熱間圧延前における加熱保持中のスラブ(加熱スラブ)の組織状態を知るために、各鋳造スラブ試料のエッジ付近の位置に相当する試験片を、熱間圧延用試料と同条件で加熱保持し、保持時間経過時点で炉から取り出し、直ちに水中に急冷することにより観察用試料を作製した。これを用いて前述の観察手法によりスラブ試料エッジの厚さ中央部表面から幅方向深さ100μm以内の領域におけるδフェライト相の面積率、およびδフェライト相の長径の上位20%の平均値を求めた。また、上記熱間圧延の3パス目(トータル熱延率66%)を終えた後、5秒以内に水中に急冷した試料についても、前述の観察手法により鋼板エッジ(耳)の厚さ中央部表面から幅方向深さ100μm以内の領域におけるδフェライト相の面積率、およびδフェライト相の長径の上位20%の平均値を求めた。 In order to know the structure of the heated slab (hot slab) before hot rolling, the test piece corresponding to the position near the edge of each cast slab sample was heated and held under the same conditions as the hot rolling sample. The sample for observation was produced by taking out from the furnace at the time when the holding time had elapsed, and immediately quenching in water. Using this, the area ratio of the δ ferrite phase and the average value of the upper 20% of the major axis of the δ ferrite phase in the region within 100 μm in the width direction depth from the surface of the central portion of the slab sample edge are obtained by the observation method described above. It was. In addition, for the sample that was quenched into water within 5 seconds after finishing the third pass of the hot rolling (total hot rolling ratio: 66%), the central portion of the thickness of the steel sheet edge (ear) was measured by the aforementioned observation method. The area ratio of the δ ferrite phase in the region within 100 μm in the width direction from the surface and the average value of the top 20% of the major axis of the δ ferrite phase were determined.
表3にこれらの結果を示す。図3にA1〜A5鋼について、加熱スラブエッジの厚さ方向中央部表面から幅方向深さ100μm以内の領域におけるδフェライト相の面積率(スラブエッジ表層部100μmにおけるδフェライト相の面積率)およびδフェライト相の長径の上位20%の平均値(スラブエッジ表層部100μmにおけるδフェライト相の長径)と、耳割れ発生有無の関係を示す。 Table 3 shows these results. For the A1 to A5 steels in FIG. 3, the area ratio of the δ ferrite phase in the region within a depth of 100 μm from the surface in the thickness direction of the heated slab edge (area ratio of the δ ferrite phase in the slab edge surface layer portion of 100 μm) and The relationship between the average value of the upper 20% of the major axis of the δ ferrite phase (the major axis of the δ ferrite phase in the surface layer portion of the slab edge of 100 μm) and the presence or absence of ear cracks is shown.
表2および図3からわかるように、本発明で規定する化学組成を有し、加熱スラブにおいて前記(A)の組織状態を満たす本発明例のものは、いずれも60%以上の最初の熱延パス直後における板の組織状態が前記(C)を満たし、トータル熱延率95%においても耳割れは全く発生しなかった。このうちP12は鋳造時の高温での冷却速度が遅いものであるが、比較的δフェライト相の生成しにくい化学組成であることから鋳造スラブが前記(B)の組織状態を呈しており、その結果、熱間加工性は良好であった。P15は前記(B)の組織状態を満たさない鋳造スラブを適用した場合であるが、熱間圧延時のオーステナイト単相温度域での加熱保持を長時間としたことにより前記(A)の組織状態を満たす加熱スラブが得られ、熱間加工性は良好であった。 As can be seen from Table 2 and FIG. 3, all of the examples of the present invention having the chemical composition defined in the present invention and satisfying the above-mentioned (A) structure in the heating slab have an initial hot rolling of 60% or more. Even when the structure of the plate immediately after the pass satisfies the above (C), no cracking occurred even at a total hot rolling rate of 95%. Among them, P12 has a slow cooling rate at a high temperature at the time of casting, but the cast slab exhibits the above-mentioned microstructure (B) because it has a chemical composition that is relatively difficult to produce a δ ferrite phase. As a result, the hot workability was good. P15 is a case where a cast slab that does not satisfy the structural state of (B) is applied, but the structural state of (A) is obtained by keeping the heating in the austenite single-phase temperature range during hot rolling for a long time. A heated slab satisfying the above conditions was obtained, and the hot workability was good.
これに対し、比較例P1、P2、P7、P10、P13、P14は、それぞれの化学組成(δフェライト相の生成し易さ)に対して鋳造時の高温での冷却速度が遅すぎたことにより前記(B)の組織状態を満たす鋳造スラブが得られず、それに起因して前記(A)の組織状態を満たす加熱スラブが得られなかったために熱間加工性に劣った。このうちP13は熱間圧延前の加熱保持温度がオーステナイト相+δフェライト相共存領域であったことから加熱スラブ中のδフェライト量がかなり多くなり、P14と比べ早期に耳割れが発生した。P16はCu含有量が高すぎたことに起因して熱間加工性が低下した。P17はS含有量が高すぎたことに起因して熱間加工性が低下した。 On the other hand, Comparative Examples P1, P2, P7, P10, P13, and P14 had a cooling rate at a high temperature during casting that was too slow for each chemical composition (easiness of formation of δ ferrite phase). A cast slab satisfying the structural state of (B) was not obtained, and because of this, a heated slab satisfying the structural state of (A) was not obtained, and thus hot workability was poor. Among these, P13 had a heating holding temperature before hot rolling in the austenite phase + δ ferrite phase coexistence region, so the amount of δ ferrite in the heated slab increased considerably, and ear cracks occurred earlier than P14. In P16, the hot workability deteriorated due to the Cu content being too high. As for P17, hot workability fell because S content was too high.
表1に示した各鋼を用いて、冷延鋼板の材料特性を調べた。各鋼とも板厚3mmの熱間圧延板を出発材料として、以下の工程にて仕上焼鈍材および25%調質圧延材を得た。
仕上焼鈍材; 1060℃での溶体化処理および水冷→酸洗→1mmまで冷間圧延→1080℃での仕上焼鈍および水冷
25%調質圧延材; 1060℃での溶体化処理および水冷→酸洗→1.33mmまで冷間圧延→1080℃での仕上焼鈍および水冷→1mmまで調質圧延(25%)
Using each steel shown in Table 1, the material properties of the cold rolled steel sheet were examined. For each steel, a hot-rolled sheet having a thickness of 3 mm was used as a starting material, and a finish annealed material and a 25% tempered rolled material were obtained in the following steps.
Finish annealing material; Solution treatment at 1060 ° C. and water cooling → Pickling → Cold rolling to 1 mm → Finish annealing and water cooling at 1080 ° C. 25% temper rolled material; Solution treatment at 1060 ° C. and water cooling → Pickling → Cold rolling to 1.33 mm → Finish annealing at 1080 ° C. and water cooling → Temper rolling to 1 mm (25%)
仕上焼鈍材について、JIS Z2201に準拠した13B号試験片を用いた圧延方向の引張試験(クロスヘッド速度3mm/min、標点間距離50mm、常温)を行った。また、表面を#600研磨仕上げとした試料を用いてJIS G0577に準じた方法により、3.5%塩化ナトリウム水溶液、30℃中における孔食電位を測定した。
25%調質圧延材について、JIS Z2244に準拠した方法で荷重10kgにおけるビッカース硬さを測定した。また、幅10mm、長さ200mmの圧延方向を長手方向とする試験片を用いて、JIS H3130に準拠した方法により「繰り返したわみ試験」を行い、ばね限界値を求めた。
なお、引張試験値はn=3、孔食電位はn=3、ビッカース硬さはn=5、ばね限界値はn=5の平均値である。
結果を表4に示す。
The finish annealed material was subjected to a tensile test in the rolling direction (crosshead speed 3 mm / min, distance between gauge points 50 mm, room temperature) using a No. 13B test piece based on JIS Z2201. Moreover, the pitting corrosion potential in a 3.5% sodium chloride aqueous solution at 30 ° C. was measured by a method according to JIS G0577 using a sample whose surface was # 600 polished.
About the 25% tempered rolling material, the Vickers hardness in 10 kg of loads was measured by the method based on JISZ2244. Further, using a test piece having a width direction of 10 mm and a length of 200 mm as a longitudinal direction, a “repetitive deflection test” was performed by a method based on JIS H3130, and a spring limit value was obtained.
The tensile test value is an average value of n = 3, the pitting potential is n = 3, the Vickers hardness is n = 5, and the spring limit value is n = 5.
The results are shown in Table 4.
表4からわかるように、本発明例のものはSUS301、SUS304と同等レベルの強度、延性、耐食性、ばね性を有することが確認された。 As can be seen from Table 4, the examples of the present invention were confirmed to have the same level of strength, ductility, corrosion resistance and springiness as SUS301 and SUS304.
Claims (8)
前記組織状態のスラブを加熱炉から取り出して、当該スラブに熱間圧延を施す工程、
を有するNi節約型オーステナイト系ステンレス熱延鋼板の製造方法。
0.10≦C+0.5N≦0.25 …(1)
ここで(1)式の元素記号の箇所には質量%で表された当該元素の含有量値が代入される。
(A)スラブエッジの厚さ中央部表面からスラブ幅方向深さ100μm以内の領域において、δフェライト相の面積率が4%以下、δフェライト相の長径が上位20%の平均値で30μm以下である組織状態 In the range of mass%, C: more than 0.05% and satisfying the following formula (1), Si: 4% or less, Mn: 0.5% or more and less than 3%, P: 0.06% or less, S: 0.0. 005% or less, Ni: 0.5% or more and less than 5%, Cr: more than 16% and less than 19%, N: more than 0.05% and satisfying the following formula (1), Cu: 0.8% or more and 3. 5% or less, the remaining Fe and a slab having a chemical composition that is an inevitable impurity are charged into a heating furnace, and maintained in a 1100 to 1250 ° C. and austenite single-phase temperature range to obtain the following (A) texture state;
Taking out the slab in the textured state from the heating furnace, and subjecting the slab to hot rolling,
A method for producing a Ni-saving austenitic stainless hot-rolled steel sheet having the following:
0.10 ≦ C + 0.5N ≦ 0.25 (1)
Here, the content value of the element expressed in mass% is substituted for the element symbol in the formula (1).
(A) In the region within the depth of 100 μm in the slab width direction from the surface of the central part of the slab edge, the area ratio of the δ ferrite phase is 4% or less, and the major axis of the δ ferrite phase is 30 μm or less on average. An organizational state
前記保持後のスラブを加熱炉から取り出して、当該スラブに熱間圧延を施す工程、
を有するNi節約型オーステナイト系ステンレス熱延鋼板の製造方法。
0.10≦C+0.5N≦0.25 …(1)
ここで(1)式の元素記号の箇所には質量%で表された当該元素の含有量値が代入される。
(B)スラブエッジの厚さ中央部表面からスラブ幅方向深さ100μm以内の領域において、δフェライト相の面積率が15%以下、δフェライト相の長径が上位20%の平均値で60μm以下である組織状態 In the range of mass%, C: more than 0.05% and satisfying the following formula (1), Si: 4% or less, Mn: 0.5% or more and less than 3%, P: 0.06% or less, S: 0.0. 005% or less, Ni: 0.5% or more and less than 5%, Cr: more than 16% and less than 19%, N: more than 0.05% and satisfying the following formula (1), Cu: 0.8% or more and 3. A cast slab having a chemical composition that is 5% or less, the balance Fe and unavoidable impurities and having the following (B) structure is charged in a heating furnace, 1-100 to 1250 ° C. and 1 to 1 austenite single-phase temperature range. Holding for 5 hours,
Removing the slab after the holding from the heating furnace and subjecting the slab to hot rolling,
A method for producing a Ni-saving austenitic stainless hot-rolled steel sheet having the following:
0.10 ≦ C + 0.5N ≦ 0.25 (1)
Here, the content value of the element expressed in mass% is substituted for the element symbol in the formula (1).
(B) In the region within 100 μm depth in the slab width direction from the surface of the central part of the slab edge, the area ratio of the δ ferrite phase is 15% or less, and the major axis of the δ ferrite phase is 60 μm or less on average. An organizational state
得られた鋳造スラブを加熱炉に装入し、1100〜1250℃かつオーステナイト単相温度域に1〜5h保持する工程、
前記保持後のスラブを加熱炉から取り出して、当該スラブに熱間圧延を施す工程、
を有するNi節約型オーステナイト系ステンレス熱延鋼板の製造方法。
0.10≦C+0.5N≦0.25 …(1)
ここで(1)式の元素記号の箇所には質量%で表された当該元素の含有量値が代入される。 In the range of mass%, C: more than 0.05% and satisfying the following formula (1), Si: 4% or less, Mn: 0.5% or more and less than 3%, P: 0.06% or less, S: 0.0. 005% or less, Ni: 0.5% or more and less than 5%, Cr: more than 16% and less than 19%, N: more than 0.05% and satisfying the following formula (1), Cu: 0.8% or more and 3. Molten steel having a chemical composition of 5% or less, the balance Fe and unavoidable impurities is injected into a mold for slab production, and the average cooling rate from the solidification start temperature to 1250 ° C. at the slab edge surface in the center of the slab thickness is A step of casting so as to be 50 ° C./min or more,
Charging the obtained cast slab into a heating furnace and maintaining the temperature in the austenite single-phase temperature range from 1100 to 1250 ° C. for 1 to 5 hours;
Removing the slab after the holding from the heating furnace and subjecting the slab to hot rolling,
A method for producing a Ni-saving austenitic stainless hot-rolled steel sheet having the following:
0.10 ≦ C + 0.5N ≦ 0.25 (1)
Here, the content value of the element expressed in mass% is substituted for the element symbol in the formula (1).
Md30=551−462(C+N)−9.2Si−8.1Mn−29(Ni+Cu)−13.7Cr …(2)
SFE=6.2Ni+18.6Cu+0.7Cr+3.2Mn−53 …(3)
ここで(2)式(3)式の元素記号の箇所には質量%で表された当該元素の含有量値が代入される。 Chemical composition of the steel further below (2) an austenite stability index Md 30, which is defined 0 to 80. In formula, and (3) below the stacking fault energy index SFE defined by the equation satisfies 0 or more and less than 40 The method for producing a Ni-saving austenitic stainless hot-rolled steel sheet according to any one of claims 1 to 3.
Md 30 = 551-462 (C + N ) -9.2Si-8.1Mn-29 (Ni + Cu) -13.7Cr ... (2)
SFE = 6.2Ni + 18.6Cu + 0.7Cr + 3.2Mn-53 (3)
Here, the content value of the element expressed in mass% is substituted for the element symbol in the formula (2) and formula (3).
0.10≦C+0.5N≦0.25 …(1)
ここで(1)式の元素記号の箇所には質量%で表された当該元素の含有量値が代入される。
(B)スラブエッジの厚さ中央部表面からスラブ幅方向深さ100μm以内の領域において、δフェライト相の面積率が15%以下、δフェライト相の長径が上位20%の平均値で60μm以下である組織状態 In the range of mass%, C: more than 0.05% and satisfying the following formula (1), Si: 4% or less, Mn: 0.5% or more and less than 3%, P: 0.06% or less, S: 0.0. 005% or less, Ni: 0.5% or more and less than 5%, Cr: more than 16% and less than 19%, N: more than 0.05% and satisfying the following formula (1), Cu: 0.8% or more and 3. A Ni-saving austenitic stainless steel slab having a chemical composition of 5% or less, the balance Fe and unavoidable impurities and having the following structural state (B).
0.10 ≦ C + 0.5N ≦ 0.25 (1)
Here, the content value of the element expressed in mass% is substituted for the element symbol in the formula (1).
(B) In the region within 100 μm depth in the slab width direction from the surface of the central part of the slab edge, the area ratio of the δ ferrite phase is 15% or less, and the major axis of the δ ferrite phase is 60 μm or less on average. An organizational state
0.10≦C+0.5N≦0.25 …(1)
ここで(1)式の元素記号の箇所には質量%で表された当該元素の含有量値が代入される。
(A)スラブエッジの厚さ中央部表面からスラブ幅方向深さ100μm以内の領域において、δフェライト相の面積率が4%以下、δフェライト相の長径が上位20%の平均値で30μm以下である組織状態 In the range of mass%, C: more than 0.05% and satisfying the following formula (1), Si: 4% or less, Mn: 0.5% or more and less than 3%, P: 0.06% or less, S: 0.0. 005% or less, Ni: 0.5% or more and less than 5%, Cr: more than 16% and less than 19%, N: more than 0.05% and satisfying the following formula (1), Cu: 0.8% or more and 3. A hot slab having a chemical composition of 5% or less, the balance Fe and inevitable impurities, maintained at 1100 to 1250 ° C. and in the austenite single-phase temperature range, and having the following (A) microstructure Ni-saving austenitic stainless steel slab for rolling process.
0.10 ≦ C + 0.5N ≦ 0.25 (1)
Here, the content value of the element expressed in mass% is substituted for the element symbol in the formula (1).
(A) In the region within the depth of 100 μm in the slab width direction from the surface of the central part of the slab edge, the area ratio of the δ ferrite phase is 4% or less, and the major axis of the δ ferrite phase is 30 μm or less on average. An organizational state
0.10≦C+0.5N≦0.25 …(1)
ここで(1)式の元素記号の箇所には質量%で表された当該元素の含有量値が代入される。 In the range of mass%, C: more than 0.05% and satisfying the following formula (1), Si: 4% or less, Mn: 0.5% or more and less than 3%, P: 0.06% or less, S: 0.0. 005% or less, Ni: 0.5% or more and less than 5%, Cr: more than 16% and less than 19%, N: more than 0.05% and satisfying the following formula (1), Cu: 0.8% or more and 3. Ni-conserving austenitic stainless steel having a chemical composition that is 5% or less, the balance Fe and inevitable impurities, and is a hot rolled steel sheet that is not cared for in the ears after hot rolling and no cracks are observed Rolled steel sheet.
0.10 ≦ C + 0.5N ≦ 0.25 (1)
Here, the content value of the element expressed in mass% is substituted for the element symbol in the formula (1).
Md30=551−462(C+N)−9.2Si−8.1Mn−29(Ni+Cu)−13.7Cr …(2)
SFE=6.2Ni+18.6Cu+0.7Cr+3.2Mn−53 …(3)
ここで(2)式(3)式の元素記号の箇所には質量%で表された当該元素の含有量値が代入される。 Chemical composition of the steel further below (2) an austenite stability index Md 30, which is defined 0 to 80. In formula, and (3) below the stacking fault energy index SFE defined by the equation satisfies 0 or more and less than 40 The Ni-saving austenitic stainless steel slab according to any one of claims 5 and 6, or the Ni-saving austenitic stainless hot-rolled steel sheet according to claim 7.
Md 30 = 551-462 (C + N ) -9.2Si-8.1Mn-29 (Ni + Cu) -13.7Cr ... (2)
SFE = 6.2Ni + 18.6Cu + 0.7Cr + 3.2Mn-53 (3)
Here, the content value of the element expressed in mass% is substituted for the element symbol in the formula (2) and formula (3).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008295205A JP5349015B2 (en) | 2008-11-19 | 2008-11-19 | Method for producing Ni-saving austenitic stainless hot-rolled steel sheet, slab and hot-rolled steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008295205A JP5349015B2 (en) | 2008-11-19 | 2008-11-19 | Method for producing Ni-saving austenitic stainless hot-rolled steel sheet, slab and hot-rolled steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010121162A true JP2010121162A (en) | 2010-06-03 |
JP5349015B2 JP5349015B2 (en) | 2013-11-20 |
Family
ID=42322747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008295205A Active JP5349015B2 (en) | 2008-11-19 | 2008-11-19 | Method for producing Ni-saving austenitic stainless hot-rolled steel sheet, slab and hot-rolled steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5349015B2 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013133259A1 (en) * | 2012-03-09 | 2013-09-12 | 新日鐵住金ステンレス株式会社 | Ferrite-austenite 2-phase stainless steel plate having low in-plane anisotropy and method for producing same |
JP2014189800A (en) * | 2013-03-26 | 2014-10-06 | Nisshin Steel Co Ltd | LOW Ni AUSTENITIC STAINLESS STEEL SHEET AND MOLDED ARTICLE THEREOF |
JP2014205910A (en) * | 2013-03-21 | 2014-10-30 | 大日本印刷株式会社 | Manufacturing method of stainless steel machining member |
JP2016135921A (en) * | 2009-11-02 | 2016-07-28 | エイティーアイ・プロパティーズ・インコーポレーテッド | Lean austenitic stainless steel |
US9617628B2 (en) | 2007-11-29 | 2017-04-11 | Ati Properties Llc | Lean austenitic stainless steel |
US9624564B2 (en) | 2007-12-20 | 2017-04-18 | Ati Properties Llc | Corrosion resistant lean austenitic stainless steel |
WO2017209431A1 (en) * | 2016-05-31 | 2017-12-07 | 주식회사 포스코 | Austenitic stainless steel having improved corrosion-resistance and workability and method for producing same |
US9873932B2 (en) | 2007-12-20 | 2018-01-23 | Ati Properties Llc | Lean austenitic stainless steel containing stabilizing elements |
CN109072385A (en) * | 2016-03-15 | 2018-12-21 | 科罗拉多州立大学研究基金会 | Corrosion resisting alloy and application |
KR101952808B1 (en) * | 2017-08-22 | 2019-02-28 | 주식회사포스코 | Low nickel austenitic stainless steel having excellent hot workability and hydrogen embrittlement resistance |
WO2019093786A1 (en) * | 2017-11-10 | 2019-05-16 | 주식회사 포스코 | High-nitrogen austenitic stainless steel and method for manufacturing same |
WO2020242267A1 (en) * | 2019-05-28 | 2020-12-03 | 주식회사 포스코 | Austenitic stainless steel with excellent corrosion resistance of welded part |
CN114058797A (en) * | 2021-11-18 | 2022-02-18 | 山西太钢不锈钢股份有限公司 | Continuous line annealing and pickling production method of nickel-saving austenitic stainless steel |
CN116024486A (en) * | 2022-12-28 | 2023-04-28 | 宝钢德盛不锈钢有限公司 | Production method for reducing cold-rolled edge scaling of nickel-saving austenitic stainless steel |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS505646B1 (en) * | 1969-12-26 | 1975-03-06 | ||
JP2006111932A (en) * | 2004-10-15 | 2006-04-27 | Nisshin Steel Co Ltd | Austenitic stainless steel material with high proportional limit stress, and manufacturing method therefor |
JP2009041072A (en) * | 2007-08-09 | 2009-02-26 | Nisshin Steel Co Ltd | Ni-REDUCED AUSTENITE STAINLESS STEEL |
WO2009119895A1 (en) * | 2008-03-26 | 2009-10-01 | 新日鐵住金ステンレス株式会社 | Low-alloy duplex stainless steel wherein weld heat-affected zones have good corrosion resistance and toughness |
-
2008
- 2008-11-19 JP JP2008295205A patent/JP5349015B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS505646B1 (en) * | 1969-12-26 | 1975-03-06 | ||
JP2006111932A (en) * | 2004-10-15 | 2006-04-27 | Nisshin Steel Co Ltd | Austenitic stainless steel material with high proportional limit stress, and manufacturing method therefor |
JP2009041072A (en) * | 2007-08-09 | 2009-02-26 | Nisshin Steel Co Ltd | Ni-REDUCED AUSTENITE STAINLESS STEEL |
WO2009119895A1 (en) * | 2008-03-26 | 2009-10-01 | 新日鐵住金ステンレス株式会社 | Low-alloy duplex stainless steel wherein weld heat-affected zones have good corrosion resistance and toughness |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10370748B2 (en) | 2007-11-29 | 2019-08-06 | Ati Properties Llc | Lean austenitic stainless steel |
US9617628B2 (en) | 2007-11-29 | 2017-04-11 | Ati Properties Llc | Lean austenitic stainless steel |
US9624564B2 (en) | 2007-12-20 | 2017-04-18 | Ati Properties Llc | Corrosion resistant lean austenitic stainless steel |
US9822435B2 (en) | 2007-12-20 | 2017-11-21 | Ati Properties Llc | Lean austenitic stainless steel |
US10323308B2 (en) | 2007-12-20 | 2019-06-18 | Ati Properties Llc | Corrosion resistant lean austenitic stainless steel |
US9873932B2 (en) | 2007-12-20 | 2018-01-23 | Ati Properties Llc | Lean austenitic stainless steel containing stabilizing elements |
JP2016135921A (en) * | 2009-11-02 | 2016-07-28 | エイティーアイ・プロパティーズ・インコーポレーテッド | Lean austenitic stainless steel |
JP2013185231A (en) * | 2012-03-09 | 2013-09-19 | Nippon Steel & Sumikin Stainless Steel Corp | Ferrite-austenite 2-phase stainless steel plate having low in-plane anisotropy and method for producing the same |
WO2013133259A1 (en) * | 2012-03-09 | 2013-09-12 | 新日鐵住金ステンレス株式会社 | Ferrite-austenite 2-phase stainless steel plate having low in-plane anisotropy and method for producing same |
JP2014205910A (en) * | 2013-03-21 | 2014-10-30 | 大日本印刷株式会社 | Manufacturing method of stainless steel machining member |
JP2014189800A (en) * | 2013-03-26 | 2014-10-06 | Nisshin Steel Co Ltd | LOW Ni AUSTENITIC STAINLESS STEEL SHEET AND MOLDED ARTICLE THEREOF |
CN109072385A (en) * | 2016-03-15 | 2018-12-21 | 科罗拉多州立大学研究基金会 | Corrosion resisting alloy and application |
WO2017209431A1 (en) * | 2016-05-31 | 2017-12-07 | 주식회사 포스코 | Austenitic stainless steel having improved corrosion-resistance and workability and method for producing same |
WO2019039768A1 (en) * | 2017-08-22 | 2019-02-28 | 주식회사 포스코 | Low-ni austenitic stainless steel with excellent hot workability and hydrogen embrittlement resistance |
KR101952808B1 (en) * | 2017-08-22 | 2019-02-28 | 주식회사포스코 | Low nickel austenitic stainless steel having excellent hot workability and hydrogen embrittlement resistance |
WO2019093786A1 (en) * | 2017-11-10 | 2019-05-16 | 주식회사 포스코 | High-nitrogen austenitic stainless steel and method for manufacturing same |
KR101977492B1 (en) * | 2017-11-10 | 2019-08-28 | 주식회사 포스코 | Austenitic stainless steel and method for manufacturing the same |
WO2020242267A1 (en) * | 2019-05-28 | 2020-12-03 | 주식회사 포스코 | Austenitic stainless steel with excellent corrosion resistance of welded part |
KR20200136670A (en) * | 2019-05-28 | 2020-12-08 | 주식회사 포스코 | Austenitic stainless steel having excellent corrosion resistance of weld |
KR102249965B1 (en) | 2019-05-28 | 2021-05-11 | 주식회사 포스코 | Austenitic stainless steel having excellent corrosion resistance of weld |
CN114058797A (en) * | 2021-11-18 | 2022-02-18 | 山西太钢不锈钢股份有限公司 | Continuous line annealing and pickling production method of nickel-saving austenitic stainless steel |
CN116024486A (en) * | 2022-12-28 | 2023-04-28 | 宝钢德盛不锈钢有限公司 | Production method for reducing cold-rolled edge scaling of nickel-saving austenitic stainless steel |
Also Published As
Publication number | Publication date |
---|---|
JP5349015B2 (en) | 2013-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5349015B2 (en) | Method for producing Ni-saving austenitic stainless hot-rolled steel sheet, slab and hot-rolled steel sheet | |
JP5920555B1 (en) | Austenitic stainless steel sheet and manufacturing method thereof | |
JP6017341B2 (en) | High strength cold-rolled steel sheet with excellent bendability | |
KR101706485B1 (en) | High-strength cold-rolled steel sheet and method for producing the same | |
KR101624439B1 (en) | High-strength steel sheet and method for producing the same | |
KR101840964B1 (en) | Material for cold-rolled stainless steel sheet and method for producing same | |
JP5091732B2 (en) | Stainless steel for low Ni springs with excellent sag resistance and bendability | |
KR20140044925A (en) | Medium carbon steel sheet, quenched member, and method for manufacturing medium carbon steel sheet and quenched member | |
KR101903174B1 (en) | Low alloy steel sheet with excellent strength and ductility | |
KR101850231B1 (en) | Ferritic stainless steel and method for producing same | |
JP6468410B1 (en) | Hot-rolled steel sheet and manufacturing method thereof | |
JP4367091B2 (en) | High-strength hot-rolled steel sheet having excellent fatigue resistance and excellent strength-ductility balance and method for producing the same | |
JP6093063B1 (en) | High-strength stainless steel material excellent in workability and its manufacturing method | |
JP6314921B2 (en) | Low yield ratio high tensile thick steel plate excellent in bending workability and manufacturing method thereof | |
JP2012172211A (en) | METHOD OF MANUFACTURING LOW Ni AUSTENITIC STAINLESS STEEL SHEET | |
JP2007211313A (en) | Ferritic stainless steel having excellent ridging resistance and its production method | |
JP6146429B2 (en) | Tempered high tensile steel plate and method for producing the same | |
JP2001271143A (en) | Ferritic stainless steel excellent in ridging resistance and its production method | |
JP2019052341A (en) | Non-modified low yield ratio high tension thick steel sheet excellent in flexure processability, and manufacturing method therefor | |
JPS62199721A (en) | Production of steel sheet or strip of ferritic stainless steel having good workability | |
JP5534112B2 (en) | Hot-rolled steel sheet for cold rolling material and manufacturing method thereof | |
JP2001207244A (en) | Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method | |
JP5167314B2 (en) | Method for producing ferritic stainless steel with excellent ridging resistance | |
KR101316907B1 (en) | Ferritic stainless steel and method for manufacturing the same | |
JP2016108628A (en) | Production method of two-phase stainless steel material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111114 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130709 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130730 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130820 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130820 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5349015 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |