WO2019039768A1 - Low-ni austenitic stainless steel with excellent hot workability and hydrogen embrittlement resistance - Google Patents

Low-ni austenitic stainless steel with excellent hot workability and hydrogen embrittlement resistance Download PDF

Info

Publication number
WO2019039768A1
WO2019039768A1 PCT/KR2018/008871 KR2018008871W WO2019039768A1 WO 2019039768 A1 WO2019039768 A1 WO 2019039768A1 KR 2018008871 W KR2018008871 W KR 2018008871W WO 2019039768 A1 WO2019039768 A1 WO 2019039768A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
austenitic stainless
hydrogen embrittlement
hot workability
low
Prior art date
Application number
PCT/KR2018/008871
Other languages
French (fr)
Korean (ko)
Inventor
이재화
조규진
이문수
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2020511252A priority Critical patent/JP7117369B2/en
Priority to EP18849053.6A priority patent/EP3674434A1/en
Priority to CN201880066674.8A priority patent/CN111212928B/en
Publication of WO2019039768A1 publication Critical patent/WO2019039768A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Definitions

  • the present invention relates to a low-Ni austenitic stainless steel having a reduced Mn content, and more particularly, to an austenitic stainless steel improved in hot workability and hydrogen embrittlement which can be caused by reduction of Mn and Ni contents.
  • the work hardening type metastable austenitic stainless steels represented by STS304 and STS301 have excellent workability and corrosion resistance and are widely used in various applications.
  • these steels have a disadvantage of high raw material costs due to high Ni content.
  • raw material supply and demand are unstable due to extreme fluctuations in Ni raw material values, and material prices fluctuate accordingly, making it impossible to secure supply stability. Therefore, development of Ni-austenitic stainless steels with reduced Ni content from various materials suppliers is required.
  • Ni-austenitic stainless steels generally contain at least 5% by weight of Mn in order to reduce the cost of the material by reducing the amount of Ni to a certain amount or less and at the same time to ensure the stability of the austenite phase with decreasing Ni.
  • Mn a large amount of Mn fume is required during the steelmaking process to improve the environment.
  • MnS rigid inclusion
  • the Mn content is reduced by a certain amount or more in the Ni-reduced austenitic stainless steel, the stability of the austenite phase is lowered and a large amount of delta ferrite is formed during casting , which can lead to quality problems such as slab edge cracks and surface flaws during hot rolling.
  • Embodiments of the present invention solve the above problems and provide a low-Ni austenitic stainless steel having excellent hot workability and hydrogen embrittlement resistance even when Mn is reduced.
  • the low-Ni austenitic stainless steel having excellent hot workability and hydrogen embrittlement resistance contains 0.05 to 0.15% of C, 0.2 to 0.7% of Si, 2.0 to 5.0% of Mn, Wherein the alloy contains 2.0 to 5.0% of Ni, 17.0 to 19.0% of Cr, less than 0.1% of S, less than 0.01% of S, 1.0 to 3.0% of Cu, 0.15 to 0.30% of N and Fe and unavoidable impurities.
  • the value of the CRN value of the crack resistance index (CRN) represented by the formula (1) is 0 or more, and the Md30 value represented by the following formula (2) satisfies the range of -30 to 0 ⁇ ⁇ .
  • the PREN value of formula (3) may satisfy 18 or more.
  • it may further include at least one of 0.001 to 0.005% of B, and 0.001 to 0.003% of Ca in terms of% by weight.
  • the stainless steel may have an elongation of 50% or more.
  • the low-Ni austenitic stainless steels having excellent hot workability and hydrogen embrittlement resistance according to the embodiment of the present invention are capable of securing excellent hot workability by suppressing the formation of delta ferrite during reheating of the slab, and as a result, It is possible to solve the occurrence of minor cracks and quality problems.
  • FIG. 1 is a graph showing changes in martensite peak intensity and occurrence of hydrogen embrittlement according to Md30.
  • 2 is a graph showing elongation change according to Md30.
  • the low-Ni austenitic stainless steel having excellent hot workability and hydrogen embrittlement resistance contains 0.05 to 0.15% of C, 0.2 to 0.7% of Si, 2.0 to 5.0% of Mn, Wherein the alloy contains 2.0 to 5.0% of Ni, 17.0 to 19.0% of Cr, less than 0.1% of S, less than 0.01% of S, 1.0 to 3.0% of Cu, 0.15 to 0.30% of N and Fe and unavoidable impurities.
  • the value of the CRN value of the crack resistance index (CRN) represented by the formula (1) is 0 or more, and the Md30 value represented by the following formula (2) satisfies the range of -30 to 0 ⁇ ⁇ .
  • the inventors of the present invention have made a correlation analysis between experimental hot workability evaluation results and predicted delta ( ⁇ ) ferrites for various alloy components by using a crack resistance index (CRN)
  • CNN crack resistance index
  • the stability of the austenite phase for each alloy component was examined to predict the hydrogen embrittlement resistance of the brass annealed material.
  • PREN internal resistance index
  • the low-Ni austenitic stainless steel having excellent hot workability and hydrogen embrittlement resistance contains 0.05 to 0.15% of C, 0.2 to 0.7% of Si, 2.0 to 5.0% of Mn, 2.0 to 5.0% of Ni, 17.0 to 19.0% of Cr, less than 0.1% of P, less than 0.01% of S, 1.0 to 3.0% of Cu, 0.15 to 0.30% of N and Fe and unavoidable impurities.
  • the content of C is 0.05 to 0.15%.
  • the upper limit is set to 0.15%.
  • the content of Si is 0.2 to 0.7%.
  • Si plays a role of deoxidizing agent in steelmaking process and is effective to improve corrosion resistance.
  • Si is an effective element for stabilizing the ferrite phase, and when added in excess, promotes the formation of delta ( ⁇ ) ferrite in the cast slab, thereby lowering the hot workability and lowering the ductility and toughness of the steel due to the solid solution strengthening effect. Therefore, the upper limit is set to 0.7%.
  • the content of Mn is 2.0 to 5.0%.
  • Mn is an austenite phase stabilizing element generally added to Ni, which is effective for suppressing the formation of machined organic martensite to improve the cold rolling property, and its characteristics are effective when added at 2.0% or more.
  • MnS S inclusions
  • the content of Ni is 2.0 to 5.0%.
  • Ni is an essential element for securing good hot workability and cold workability as an austenite phase stabilizing element.
  • addition of 2.0% or more is essential.
  • Ni is a costly raw material, which causes an increase in raw material costs when added in large amounts.
  • the upper limit is set to 5.0%.
  • the content of Cr is 17.0 to 19.0%.
  • Cr is not only an element necessary for securing the corrosion resistance required for stainless steel but also effective for inhibiting the formation of martensite phase, and its characteristics are effective when added over 17.0%.
  • the addition of a large amount promotes the formation of delta (delta) ferrite in the slab, resulting in a reduction in hot workability, so that the upper limit is set to 19.0%.
  • the content of P is less than 0.1%.
  • the upper limit of P is set to 0.1%.
  • the content of S is less than 0.01%.
  • the upper limit of S is set to 0.01% as the corrosion resistance and hot workability are lowered.
  • the content of Cu is 1.0 to 3.0%.
  • Cu is an austenite phase stabilizing element and is effective for softening the material. In order to exhibit such a softening effect, addition of 1.0% or more is essential. However, the addition of a large amount of Cu increases the cost of the material as well as the hot brittleness, thereby setting the upper limit to 3.0%.
  • the content of N is 0.15 to 0.30%.
  • N is an element effective for stabilizing the austenite phase and improving the corrosion resistance. When 0.15% or more is added, its characteristics are effective. On the other hand, when the excess amount of N is added, the cold workability is lowered due to the solid solution strengthening effect, and the upper limit is set to 0.30%.
  • At least one of 0.001 to 0.005% of B and 0.001 to 0.003% of Ca may be further included.
  • B is an effective element for suppressing the occurrence of cracks during casting and securing a good surface quality, and its characteristics are effective when 0.001% is added.
  • nitride BN
  • the upper limit is set to 0.005%.
  • Ca improves the cleanliness of the product by inhibiting the formation of MnS hard inclusions produced in the grain boundaries in the presence of high Mn, and its characteristics are effective when 0.001% is added.
  • the excessive amount of Ca causes a decrease in hot workability due to the formation of Ca-based inclusions and a decrease in product surface quality, so that the upper limit is set to 0.003%.
  • Equation (1) The range of crack resistance index (CRN) expressed by Equation (1) is derived from the correlation between the experimental hot workability evaluation result and the predicted delta ( ⁇ ) ferrite.
  • the low Ni austenitic stainless steel having excellent hot workability and hydrogen embrittlement resistance has a value of crack resistance index (CRN) of 0 or more expressed by the following formula (1).
  • crack resistance index When the crack resistance index (CRN) is 0 or more, cracks may not occur on the surface and the edge portion during hot working.
  • the cold rolled steel sheet is generally subjected to bright annealing.
  • a brass annealing is performed by heat treatment in a reducing atmosphere (Dew point -40 to -60 ° C.) using nitrogen (N 2 ), hydrogen (H 2 ) or the like, in the stainless steel cold rolled steel sheet, By preventing reoxidation, it is a heat treatment technology that keeps the surface bright and beautiful without changing the color and properties of the surface.
  • a reducing atmosphere Dew point -40 to -60 ° C.
  • nitrogen (N 2 ), hydrogen (H 2 ) or the like By preventing reoxidation, it is a heat treatment technology that keeps the surface bright and beautiful without changing the color and properties of the surface.
  • brass annealing using hydrogen is the most common, because it is most widely used not only for high heat capacity but also for suppressing discoloration of the surface.
  • the stress-induced or modified organic martensite is transformed into an austenite phase by brilliant annealing
  • the hydrogen atoms penetrated inside are not released to the outside but trapped in the atomic state in the surface layer.
  • the hydrogen atoms penetrating into the surface layer are bare-out after a lapse of a certain time at room temperature on the ferrite or martensite phase, which is a general BCC and BCT structure, so that the hydrogen atoms do not greatly affect the physical properties.
  • the surface martensite phase is transformed into an austenite phase by the optical annealing, that is, when hydrogen atoms are present in the FCC lattice structure, the natural baking out of the hydrogen atoms is not smooth, do.
  • the low-Ni austenitic stainless steel excellent in hot workability and hydrogen embrittlement according to one embodiment of the present invention satisfies the Md30 value represented by the following formula (2) in the range of -30 to 0 ⁇ ⁇ .
  • Md30 the temperature (° C) at which 50% of the phase transformation to the martensite occurs when 30% deformation is given.
  • Md30 value the temperature at which 50% of the phase transformation to the martensite occurs when 30% deformation is given.
  • Md30 value is high, it is easy to produce the processed organic martensite phase.
  • Md30 value is low, it can be judged that it is relatively difficult to produce the processed organic martensite phase.
  • the Md30 value is used as an index for determining the austenite stabilization degree of a conventional metastable austenitic stainless steel.
  • Fig. 1 is a graph showing changes in martensite peak intensity and occurrence of hydrogen embrittlement according to Md30.
  • the symbol? Indicates that hydrogen embrittlement has not occurred, and the symbol x indicates that hydrogen embrittlement has occurred.
  • Md30 value increases, the peak intensity on the surface martensite due to a decrease in the phase stability of austenite increases, and when the peak intensity increases above a certain value, it is confirmed that hydrogen embrittlement occurs in the light annealing in a hydrogen atmosphere . Based on these results, it is confirmed that it is preferable to keep the Md30 value at 0 DEG C or less to suppress the hydrogen embrittlement.
  • the Md30 value can be reduced, The hardenability is increased and it is difficult to secure a desired elongation. Especially, it is necessary to control the lower limit of Md30 value in consideration of the fact that it is necessary to secure elongation of about 50% or more in general 300-series stainless steel applications.
  • FIG. 2 is a graph showing the elongation change according to Md30.
  • the elongation is 50% or more and the elongation is less than 50%.
  • the PREN value of formula (3) may satisfy 18 or more.
  • Comparative Example 2 cracks were generated in the surface and edge portions in the hot rolling and the CRN (Crack Resistance Index) was -0.47. In Comparative Examples 1, 3 and 4, cracks were not generated on the surface and the edge portion in hot rolling, and when the crack resistance index (CRN) derived according to the delta (delta) ferrite phase fraction was 0 or more, It is confirmed that this is an index.
  • CRN crack resistance index
  • the PRES value according to the formula (3) satisfies the value of 18 or more, so that excellent corrosion resistance at the STS304 level can be secured.
  • the low-Ni austenitic stainless steels according to the embodiments of the present invention can secure excellent corrosion resistance and processability even when Mn is reduced, and can be applied to various applications such as household appliances.

Abstract

Disclosed is low-Ni austenitic stainless steel with improved hot workability and hydrogen embrittlement resistance which may occur as content of Mn and Ni decreases. The austenitic stainless steel according to the present invention comprises, by weight %: 0.05 to 0.15% of C; 0.2 to 0.7% of Si; 2.0 to 5.0% of Mn; 2.0 to 5.0% of Ni; 17.0 to 19.0% of Cr; less than 0.1% of P; less than 0.01% of S; 1.0 to 3.0% of Cu; 0.15 to 0.30% of N; and the balance being Fe and inevitable impurities, wherein a crack resistance index (CRN) value is 0 or more, and a Md30 value satisfies a range of -30 to 0°C.

Description

열간가공성 및 내수소취성이 우수한 저NI 오스테나이트계 스테인리스강 Low NI austenitic stainless steels excellent in hot workability and hydrogen embrittlement resistance
본 발명은 Mn 함량을 낮춘 저Ni 오스테나이트계 스테인리스강에 관한 것으로, 보다 상세하게는 Mn과 Ni 함량 감소에 따라 발생할 수 있는 열간가공성 및 내수소취성을 개선한 오스테나이트계 스테인리스강에 관한 것이다.The present invention relates to a low-Ni austenitic stainless steel having a reduced Mn content, and more particularly, to an austenitic stainless steel improved in hot workability and hydrogen embrittlement which can be caused by reduction of Mn and Ni contents.
STS304 및 STS301로 대표되는 가공 경화형 준안정 오스테나이트계 스테인리스강은 가공성, 내식성 등이 우수하여 다양한 용도에서 폭넓게 사용되고 있다. 그러나, 이들 강종은 높은 Ni 함량에 따라 원료비가 높다는 단점이 있다. 특히 근래에는 Ni 원료값의 극심한 변동에 의해 원료 수급이 불안정할 뿐만 아니라 그에 따른 소재 가격의 변동이 심하여 공급가의 안정성 확보가 불가능한 상황이다. 이에 여러 소재 사용업체로부터 Ni 함량을 감소시킨 Ni 절감형 오스테나이트 스테인리스강에 대한 개발이 요구되고 있다. The work hardening type metastable austenitic stainless steels represented by STS304 and STS301 have excellent workability and corrosion resistance and are widely used in various applications. However, these steels have a disadvantage of high raw material costs due to high Ni content. Especially in recent years, raw material supply and demand are unstable due to extreme fluctuations in Ni raw material values, and material prices fluctuate accordingly, making it impossible to secure supply stability. Therefore, development of Ni-austenitic stainless steels with reduced Ni content from various materials suppliers is required.
종래의 Ni 절감형 오스테나이트계 스테인리스강은 기본적으로 Ni을 일정량 이하로 감소시켜 소재 가격을 낮춤과 동시에 Ni 감소분에 따른 오스테나이트상 안정성 확보를 위해서 5중량% 이상의 Mn을 첨가하는 것이 일반적이었다. 하지만 다량의 Mn을 첨가할 경우 제강공정 중 다량의 Mn 흄(fume) 발생으로 인하여 환경적 측면에서 개선이 요구되는 상황이다. 뿐만 아니라 고Mn의 함유에 기인하여 제강성 개재물(MnS) 생성에 따른 제조공정 상의 생산성 저하 및 최종 냉연소재의 표면 내식성 저하뿐만 아니라 연신율과 같은 기계적 특성을 저하시키는 문제점이 있다.Conventional Ni-austenitic stainless steels generally contain at least 5% by weight of Mn in order to reduce the cost of the material by reducing the amount of Ni to a certain amount or less and at the same time to ensure the stability of the austenite phase with decreasing Ni. However, when a large amount of Mn is added, a large amount of Mn fume is required during the steelmaking process to improve the environment. In addition, there is a problem of deteriorating mechanical properties such as elongation as well as deterioration of productivity in a manufacturing process and deterioration of surface corrosion resistance of a final cold-rolled material due to the formation of a rigid inclusion (MnS) due to the content of high Mn.
이러한 문제를 해결하는 방법으로 Mn의 함량을 감소시키는 것이 바람직하나, Ni 절감형 오스테나이트계 스테인리스강에 있어서 Mn 함량을 일정량 이상 감소시킬 경우 오스테나이트상 안정성이 낮아져 주조 시 다량의 델타 페라이트가 형성되며, 이에 따른 열간압연 시 슬라브 에지크랙 및 표면 선상흠 등의 품질문제를 유발시킬 수 있다. In order to solve this problem, it is preferable to reduce the Mn content. However, when the Mn content is reduced by a certain amount or more in the Ni-reduced austenitic stainless steel, the stability of the austenite phase is lowered and a large amount of delta ferrite is formed during casting , Which can lead to quality problems such as slab edge cracks and surface flaws during hot rolling.
뿐만 아니라, 고내식의 미려한 표면을 요구하는 제품의 경우 최종 냉간압연 시 형성된 표면성상을 최종제품까지 유지하는 것이 요구된다. 이러한 최종의 냉연품질 및 표면성상을 유지함과 동시에, 적절한 소둔에 의해서 양호한 소둔재 물성을 확보하는 방법으로 수소 분위기의 광휘소둔 공정을 적용할 경우, Mn 함량 감소에 따른 수소취성 결함에 의해 가공성이 열위할 수 있는 문제점이 있다.In addition, in the case of a product requiring a highly corrosion-resistant surface, it is required to maintain the surface property formed in the final cold rolling up to the final product. When a brilliant annealing process in a hydrogen atmosphere is applied in such a manner as to maintain the final cold-rolling quality and surface properties and ensure good annealing property by proper annealing, the hydrogen- There is a problem that can be done.
본 발명의 실시예들은 상기와 같은 문제점을 해결하여, Mn을 저감하더라도 우수한 열간가공성 및 내수소취성을 갖는 저Ni 오스테나이트계 스테인리스강을 제공하고자 한다.Embodiments of the present invention solve the above problems and provide a low-Ni austenitic stainless steel having excellent hot workability and hydrogen embrittlement resistance even when Mn is reduced.
또한, STS304 또는 STS301 수준의 내식성을 확보할 수 있는 저Ni 오스테나이트계 스테인리스강을 제공하고자 한다.Further, it is intended to provide a low-Ni austenitic stainless steel capable of securing corrosion resistance at a level of STS304 or STS301.
본 발명의 일 실시예에 따른 열간가공성 및 내수소취성이 우수한 저Ni 오스테나이트계 스테인리스강은, 중량%로, C: 0.05 내지 0.15%, Si: 0.2 내지 0.7%, Mn: 2.0 내지 5.0%, Ni: 2.0 내지 5.0%, Cr: 17.0 내지 19.0%, P: 0.1% 미만, S: 0.01% 미만, Cu: 1.0 내지 3.0%, N: 0.15 내지 0.30%, 나머지 Fe 및 불가피한 불순물을 포함하고, 하기 식 (1)로 표시되는 크랙저항지수(CRN) 값이 0 이상이며, 하기 식 (2)로 표시되는 Md30 값이 -30 내지 0℃ 범위를 만족한다.The low-Ni austenitic stainless steel having excellent hot workability and hydrogen embrittlement resistance according to one embodiment of the present invention contains 0.05 to 0.15% of C, 0.2 to 0.7% of Si, 2.0 to 5.0% of Mn, Wherein the alloy contains 2.0 to 5.0% of Ni, 17.0 to 19.0% of Cr, less than 0.1% of S, less than 0.01% of S, 1.0 to 3.0% of Cu, 0.15 to 0.30% of N and Fe and unavoidable impurities. The value of the CRN value of the crack resistance index (CRN) represented by the formula (1) is 0 or more, and the Md30 value represented by the following formula (2) satisfies the range of -30 to 0 占 폚.
(1) CRN = 615 + 777C - 26.3Si - 1.8Mn + 46.2Ni - 56Cr + 33.3Cu + 767N(1) CRN = 615 + 777C-26.3Si-1.8Mn + 46.2Ni-56Cr + 33.3Cu + 767N
(2) Md30 = 551 - 462(C+N) - 9.2Si - 8.1Mn - 13.7Cr - 29(Ni+Cu)(2) Md30 = 551 - 462 (C + N) - 9.2Si - 8.1Mn - 13.7Cr - 29 (Ni + Cu)
또한, 본 발명의 일 실시예에 따르면, 하기 식 (3)으로 표시되는 내공식저항성지수(PREN) 값이 18 이상을 만족할 수 있다.Further, according to an embodiment of the present invention, the PREN value of formula (3) may satisfy 18 or more.
(3) PREN = Cr + 16N - 0.5Mn(3) PREN = Cr + 16N - 0.5Mn
또한, 본 발명의 일 실시예에 따르면, 중량%로, B: 0.001 내지 0.005% 및 Ca: 0.001 내지 0.003% 중 1종 이상을 더 포함할 수 있다.Also, according to one embodiment of the present invention, it may further include at least one of 0.001 to 0.005% of B, and 0.001 to 0.003% of Ca in terms of% by weight.
또한, 본 발명의 일 실시예에 따르면, 상기 스테인리스강은 연신율이 50% 이상일 수 있다.Also, according to an embodiment of the present invention, the stainless steel may have an elongation of 50% or more.
본 발명의 실시예에 따른 열간가공성 및 내수소취성이 우수한 저Ni 오스테나이트계 스테인리스강은 슬라브 재가열 시 델타 페라이트의 생성이 억제됨에 따라 우수한 열간가공성 확보가 가능하여, 그 결과 열간압연 시 표층부 및 에지부 크랙 발생과 품질 문제를 해결할 수 있다.The low-Ni austenitic stainless steels having excellent hot workability and hydrogen embrittlement resistance according to the embodiment of the present invention are capable of securing excellent hot workability by suppressing the formation of delta ferrite during reheating of the slab, and as a result, It is possible to solve the occurrence of minor cracks and quality problems.
또한, 오스테나이트상 안정성 확보에 기인한 가공유기 마르텐사이트 생성을 억제하여 수소 분위기의 광휘소둔 공정을 거치더라도 우수한 내수소취성 및 가공성을 확보할 수 있다.In addition, excellent hydrogen embrittlement resistance and workability can be ensured even if the production of the processed organic martensite due to the austenite phase stability is suppressed and the brass annealing process in the hydrogen atmosphere is carried out.
또한, STS304 또는 STS301 수준의 우수한 내식성을 확보할 수 있다.In addition, excellent corrosion resistance at the level of STS304 or STS301 can be secured.
도 1은 Md30에 따른 마르텐사이트 피크 강도 변화와 수소취성 발생여부를 나타낸 그래프이다.FIG. 1 is a graph showing changes in martensite peak intensity and occurrence of hydrogen embrittlement according to Md30.
도 2는 Md30에 따른 연신율 변화를 나타낸 그래프이다.2 is a graph showing elongation change according to Md30.
본 발명의 일 실시예에 따른 열간가공성 및 내수소취성이 우수한 저Ni 오스테나이트계 스테인리스강은, 중량%로, C: 0.05 내지 0.15%, Si: 0.2 내지 0.7%, Mn: 2.0 내지 5.0%, Ni: 2.0 내지 5.0%, Cr: 17.0 내지 19.0%, P: 0.1% 미만, S: 0.01% 미만, Cu: 1.0 내지 3.0%, N: 0.15 내지 0.30%, 나머지 Fe 및 불가피한 불순물을 포함하고, 하기 식 (1)로 표시되는 크랙저항지수(CRN) 값이 0 이상이며, 하기 식 (2)로 표시되는 Md30 값이 -30 내지 0℃ 범위를 만족한다.The low-Ni austenitic stainless steel having excellent hot workability and hydrogen embrittlement resistance according to one embodiment of the present invention contains 0.05 to 0.15% of C, 0.2 to 0.7% of Si, 2.0 to 5.0% of Mn, Wherein the alloy contains 2.0 to 5.0% of Ni, 17.0 to 19.0% of Cr, less than 0.1% of S, less than 0.01% of S, 1.0 to 3.0% of Cu, 0.15 to 0.30% of N and Fe and unavoidable impurities. The value of the CRN value of the crack resistance index (CRN) represented by the formula (1) is 0 or more, and the Md30 value represented by the following formula (2) satisfies the range of -30 to 0 占 폚.
(1) CRN = 615 + 777C - 26.3Si - 1.8Mn + 46.2Ni - 56Cr + 33.3Cu + 767N(1) CRN = 615 + 777C-26.3Si-1.8Mn + 46.2Ni-56Cr + 33.3Cu + 767N
(2) Md30 = 551 - 462(C+N) - 9.2Si - 8.1Mn - 13.7Cr - 29(Ni+Cu)(2) Md30 = 551 - 462 (C + N) - 9.2Si - 8.1Mn - 13.7Cr - 29 (Ni + Cu)
이하에서는 본 발명의 실시 예를 첨부 도면을 참조하여 상세히 설명한다. 이하의 실시 예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 충분히 전달하기 위해 제시하는 것이다. 본 발명은 여기서 제시한 실시 예만으로 한정되지 않고 다른 형태로 구체화될 수도 있다. 도면은 본 발명을 명확히 하기 위해 설명과 관계 없는 부분의 도시를 생략하고, 이해를 돕기 위해 구성요소의 크기를 다소 과장하여 표현할 수 있다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The following embodiments are provided to fully convey the spirit of the present invention to a person having ordinary skill in the art to which the present invention belongs. The present invention is not limited to the embodiments shown herein but may be embodied in other forms. For the sake of clarity, the drawings are not drawn to scale, and the size of the elements may be slightly exaggerated to facilitate understanding.
상술한 과제를 해결하기 위해, 본 발명자들은 다양한 합금성분에 대한 실험적 열간가공성 평가 결과와 예측된 델타(δ) 페라이트와의 상관관계 분석을 크랙저항지수(CRN)로 도출하여 열간가공 시 표면 또는 에지부 크랙 형성을 억제시켜 열간가공성을 확보하였으며, 동시에 각 합금성분에 대한 오스테나이트상 안정성 검토를 통해 광휘소둔재에 대한 내수소취성을 예측하였다. 또한, 내공식저항성지수(PREN)를 활용하여 내식성을 예측함으로써 열간가공성이 우수할 뿐만 아니라 가공성과 내식성이 우수한 합금성분을 도출하였다.In order to solve the above-mentioned problems, the inventors of the present invention have made a correlation analysis between experimental hot workability evaluation results and predicted delta (δ) ferrites for various alloy components by using a crack resistance index (CRN) In addition, the stability of the austenite phase for each alloy component was examined to predict the hydrogen embrittlement resistance of the brass annealed material. In addition, by predicting the corrosion resistance using the internal resistance index (PREN), an alloy component having not only excellent hot workability but also excellent workability and corrosion resistance was derived.
본 발명의 일 실시예에 따른 열간가공성 및 내수소취성이 우수한 저Ni 오스테나이트계 스테인리스강은, 중량%로, C: 0.05 내지 0.15%, Si: 0.2 내지 0.7%, Mn: 2.0 내지 5.0%, Ni: 2.0 내지 5.0%, Cr: 17.0 내지 19.0%, P: 0.1% 미만, S: 0.01% 미만, Cu: 1.0 내지 3.0%, N: 0.15 내지 0.30%, 나머지 Fe 및 불가피한 불순물을 포함한다.The low-Ni austenitic stainless steel having excellent hot workability and hydrogen embrittlement resistance according to one embodiment of the present invention contains 0.05 to 0.15% of C, 0.2 to 0.7% of Si, 2.0 to 5.0% of Mn, 2.0 to 5.0% of Ni, 17.0 to 19.0% of Cr, less than 0.1% of P, less than 0.01% of S, 1.0 to 3.0% of Cu, 0.15 to 0.30% of N and Fe and unavoidable impurities.
이하, 본 발명의 실시예에서의 함금성분 함량의 수치 한정 이유에 대하여 설명한다. 이하에서는 특별한 언급이 없는 한 단위는 중량%이다.Hereinafter, the reason for limiting the numerical value of the content of the component component in the embodiment of the present invention will be described. Unless otherwise stated, the unit is wt%.
C의 함량은 0.05 내지 0.15%이다.The content of C is 0.05 to 0.15%.
C는 오스테나이트상 안정화에 효과적인 원소이나 과잉 첨가 시 고용강화 효과에 의해 냉간가공성을 저하시킬 뿐만 아니라 용접부 열영향부 및 열연 코일링 후 잠열에 기인한 Cr탄화물의 입계 석출을 유도하여 연성, 인성, 내식성 등에 악영향을 미칠 수 있다. 이 때문에 상한을 0.15%로 한다. 덧붙여 상술한 것처럼 오스테나이트상 안정화를 위해 0.05% 이상 첨가하는 것이 바람직하다.C not only deteriorates the cold workability due to the effect of solid solution strengthening during the addition of an element effective for stabilizing the austenite phase, but also induces precipitation of Cr carbide due to latent heat after hot-coil coiling, Corrosion resistance and the like can be adversely affected. Therefore, the upper limit is set to 0.15%. In addition, as described above, it is preferable to add at least 0.05% to stabilize the austenite phase.
Si의 함량은 0.2 내지 0.7%이다.The content of Si is 0.2 to 0.7%.
Si은 제강공정 중 탈산제의 역할을 함과 동시에 내식성을 향상시키는데 효과적이며 0.2% 이상 첨가 시 그 특성이 유효하다. 그러나 Si은 페라이트상 안정화에 효과적인 원소로써 과잉 첨가 시 주조 슬라브 내 델타(δ) 페라이트 형성을 조장하여 열간가공성을 저하시킬 뿐만 아니라 고용강화 효과에 의한 강재의 연성 및 인성을 저하시킬 수 있다. 이 때문에 상한을 0.7%로 한다.Si plays a role of deoxidizing agent in steelmaking process and is effective to improve corrosion resistance. However, Si is an effective element for stabilizing the ferrite phase, and when added in excess, promotes the formation of delta (δ) ferrite in the cast slab, thereby lowering the hot workability and lowering the ductility and toughness of the steel due to the solid solution strengthening effect. Therefore, the upper limit is set to 0.7%.
Mn의 함량은 2.0 내지 5.0%이다.The content of Mn is 2.0 to 5.0%.
Mn은 Ni의 대체로 첨가되는 오스테나이트상 안정화 원소로써 가공유기 마르텐사이트 생성을 억제하여 냉간 압연성을 향상시키는데 효과적이며, 2.0% 이상 첨가 시 그 특성이 유효하다. 그러나 과잉 첨가 시 S계 개재물(MnS)의 증가를 가져와 강재의 연성, 인성 및 내식성의 저하를 초래함에 따라 그 상한을 5.0%로 한다.Mn is an austenite phase stabilizing element generally added to Ni, which is effective for suppressing the formation of machined organic martensite to improve the cold rolling property, and its characteristics are effective when added at 2.0% or more. However, the amount of S inclusions (MnS) is increased in the case of excessive addition, resulting in a decrease in softness, toughness and corrosion resistance of the steel, and the upper limit is set to 5.0%.
Ni의 함량은 2.0 내지 5.0%이다.The content of Ni is 2.0 to 5.0%.
Ni은 오스테나이트상 안정화 원소로써 양호한 열간가공성 및 냉간가공성을 확보하기 위해서는 필수적이다. 특히 일정량 이상의 Mn을 첨가함에도 2.0% 이상의 첨가는 필수적이다. 그러나 Ni은 고가의 원소임에 따라 다량의 첨가 시 원료비용의 상승을 초래한다. 이에 그 상한을 5.0%로 한다.Ni is an essential element for securing good hot workability and cold workability as an austenite phase stabilizing element. In particular, even if Mn is added in a certain amount or more, addition of 2.0% or more is essential. However, Ni is a costly raw material, which causes an increase in raw material costs when added in large amounts. The upper limit is set to 5.0%.
Cr의 함량은 17.0 내지 19.0%이다.The content of Cr is 17.0 to 19.0%.
Cr은 스테인리스강에 요구되는 내식성을 확보하기 위해 필요한 원소일 뿐만 아니라 마르텐사이트상 생성 억제를 위해 효과적이며, 17.0% 이상 첨가 시 그 특성이 유효하다. 반면 다량의 첨가 시 슬라브 내 델타(δ) 페라이트 형성을 조장하여 열간가공성의 저하를 초래함에 따라 그 상한을 19.0%로 한다.Cr is not only an element necessary for securing the corrosion resistance required for stainless steel but also effective for inhibiting the formation of martensite phase, and its characteristics are effective when added over 17.0%. On the other hand, the addition of a large amount promotes the formation of delta (delta) ferrite in the slab, resulting in a reduction in hot workability, so that the upper limit is set to 19.0%.
P의 함량은 0.1% 미만이다.The content of P is less than 0.1%.
P는 내식성이나 열간가공성을 저하시킴에 따라 그 상한을 0.1%로 한다.As the corrosion resistance and hot workability are deteriorated, the upper limit of P is set to 0.1%.
S의 함량은 0.01% 미만이다.The content of S is less than 0.01%.
S는 내식성이나 열간가공성을 저하시킴에 따라 그 상한을 0.01%로 한다.The upper limit of S is set to 0.01% as the corrosion resistance and hot workability are lowered.
Cu의 함량은 1.0 내지 3.0%이다.The content of Cu is 1.0 to 3.0%.
Cu는 오스테나이트상 안정화 원소로써 재료의 연질화에 효과적이다. 이러한 연질효과를 발현시키기 위해서는 1.0% 이상의 첨가가 필수적이다. 그러나 다량의 Cu 첨가 시 소재비용의 상승뿐만 아니라 열간 취성을 유발함에 따라 그 상한을 3.0%로 한다.Cu is an austenite phase stabilizing element and is effective for softening the material. In order to exhibit such a softening effect, addition of 1.0% or more is essential. However, the addition of a large amount of Cu increases the cost of the material as well as the hot brittleness, thereby setting the upper limit to 3.0%.
N의 함량은 0.15 내지 0.30%이다.The content of N is 0.15 to 0.30%.
N는 오스테나이트상 안정화 및 내식성 향상에 효과적인 원소로써, 0.15% 이상 첨가 시 그 특성이 유효하다. 반면 N의 과잉 첨가 시 고용강화 효과에 의해 냉간가공성을 저하시킴에 따라 그 상한을 0.30%로 한다.N is an element effective for stabilizing the austenite phase and improving the corrosion resistance. When 0.15% or more is added, its characteristics are effective. On the other hand, when the excess amount of N is added, the cold workability is lowered due to the solid solution strengthening effect, and the upper limit is set to 0.30%.
또한, 본 발명의 일 실시예에 따르면, B: 0.001 내지 0.005% 및 Ca: 0.001 내지 0.003% 중 1종 이상을 더 포함할 수 있다.Also, according to an embodiment of the present invention, at least one of 0.001 to 0.005% of B and 0.001 to 0.003% of Ca may be further included.
B는 주조 중의 크랙 발생을 억제시켜 양호한 표면 품질 확보하는데 효과적인 원소로 0.001% 첨가 시 그 특성이 유효하다. 반면 B을 과잉 첨가 시 소둔/산세 공정 중 제품 표면에 질화물(BN)을 형성시켜 표면품질을 저하시키는 문제를 초래한다. 이에 그 상한을 0.005%로 한다.B is an effective element for suppressing the occurrence of cracks during casting and securing a good surface quality, and its characteristics are effective when 0.001% is added. On the other hand, when B is excessively added, nitride (BN) is formed on the surface of the product during the annealing / pickling process, resulting in a problem of deteriorating the surface quality. The upper limit is set to 0.005%.
Ca는 고 Mn 함유 시 입계에 생성되는 MnS 제강성 개재물의 형성을 억제시켜 제품의 청정도를 향상시키며, 0.001% 첨가 시 그 특성이 유효하다. 반면 Ca의 과잉 첨가 시 Ca계 개재물 형성에 기인한 열간가공성 저하 및 제품 표면품질 저하를 초래함에 따라 그 상한을 0.003%로 한다.Ca improves the cleanliness of the product by inhibiting the formation of MnS hard inclusions produced in the grain boundaries in the presence of high Mn, and its characteristics are effective when 0.001% is added. On the other hand, the excessive amount of Ca causes a decrease in hot workability due to the formation of Ca-based inclusions and a decrease in product surface quality, so that the upper limit is set to 0.003%.
이러한 고Mn 저Ni 함유 오스테나이트계 스테인리스강의 열간가공성은 슬라브 내 분포하는 델타(δ) 페라이트 분율과 상관관계가 있는 것이 알려져 있다. 이는 고온 영역에서의 오스테나이트와 페라이트가 복합적으로 존재할 때 압연공정에서 가해지는 변형량에 있어서 각 상의 변형저항성이 상이하여 발생하는 균열로써, 열간가공성을 확보하기 위해서는 델타(δ) 페라이트의 생성이 억제되는 합금성분의 설계 및 열간가공 조건의 도출이 필요하다. 하지만 상술한 본 발명의 성분계 특징을 참조할 때 C, N과 같은 고용강화 원소가 다량 첨가됨에 따라 낮은 온도에서 열간가공 시 높은 열간압연 부하로 인하여 소재 표면에 다량의 크랙이 발생할 가능성이 높다. 이에 조업 시 조업 이상 발생을 유발하지 않는 열간압연 온도에서 조업하는 것이 바람직하다.It is known that the hot workability of such a high Mn low-Ni-containing austenitic stainless steel is correlated with the delta (?) Ferrite fraction distributed in the slab. This is a crack that occurs when the austenite and ferrite in a high temperature region exist in a complex state and the deformation resistance of each phase differs in the deformation amount applied in the rolling process. In order to secure hot workability, generation of delta (delta) ferrite is suppressed It is necessary to design alloy components and to derive hot working conditions. However, referring to the above-mentioned component system characteristics of the present invention, a large amount of solid solution strengthening elements such as C and N are likely to cause a large amount of cracks on the surface of the material due to a high hot rolling load at the time of hot working at a low temperature. Therefore, it is preferable to operate at a hot rolling temperature that does not cause occurrence of operation abnormality at the time of operation.
구체적으로, 열간압연재의 표면 및 에지 품질을 확인하여 크랙의 발생 유무를 열간가공성의 판단 지표로 하였으며, 합금 성분계에 대한 전산모사를 활용한 상분석을 통하여 델타(δ) 페라이트의 상분율을 예측하였다. 이러한 실험적 열간가공성 평가 결과와 예측된 델타(δ) 페라이트와의 상관관계 분석을 통해 식 (1)로 표시되는 크랙저항지수(CRN) 범위를 도출하였다.Specifically, the surface and edge quality of the hot rolled sheet was checked to determine whether cracks were formed or not, and the phase fraction of delta (δ) ferrite was predicted by phase analysis using computational simulation of alloy components. Respectively. The range of crack resistance index (CRN) expressed by Equation (1) is derived from the correlation between the experimental hot workability evaluation result and the predicted delta (δ) ferrite.
본 발명의 일 실시예에 따른 열간가공성 및 내수소취성이 우수한 저Ni 오스테나이트계 스테인리스강은 하기 식 (1)로 표시되는 크랙저항지수(CRN) 값이 0 이상이다.The low Ni austenitic stainless steel having excellent hot workability and hydrogen embrittlement resistance according to one embodiment of the present invention has a value of crack resistance index (CRN) of 0 or more expressed by the following formula (1).
(1) CRN = 615 + 777C - 26.3Si - 1.8Mn + 46.2Ni - 56Cr + 33.3Cu + 767N(1) CRN = 615 + 777C-26.3Si-1.8Mn + 46.2Ni-56Cr + 33.3Cu + 767N
크랙저항지수(CRN)가 0 이상일 경우 열간가공 시 표면 및 에지부에 크랙이 발생하지 않을 수 있다.When the crack resistance index (CRN) is 0 or more, cracks may not occur on the surface and the edge portion during hot working.
한편, 앞서 설명한 바와 같이, 미려한 표면을 요구하는 제품의 경우 냉간압연재를 광휘소둔(Bright Annealing)하는 것이 일반적이다. 이러한 광휘소둔은 스테인리스 냉간압연재를 질소(N2), 수소(H2) 등을 이용한 환원성 분위기(Dew point -40 ~ -60℃) 하에서 열처리를 수행하여 스테인리스 냉간압연재의 열처리 과정에서 발생하는 재산화를 방지함으로써, 표면의 색상 및 성상 변화 없이 표면을 밝고 미려하게 유지하는 열처리기술이다. 이러한 광휘소둔에 사용되는 분위기 가스로 수소를 이용한 광휘소둔이 가장 일반적이며, 이는 높을 열용량 뿐만 아니라 표면의 변색을 억제를 위해서 가장 널리 사용되기 때문이다.On the other hand, as described above, in the case of a product requiring a beautiful surface, the cold rolled steel sheet is generally subjected to bright annealing. Such a brass annealing is performed by heat treatment in a reducing atmosphere (Dew point -40 to -60 ° C.) using nitrogen (N 2 ), hydrogen (H 2 ) or the like, in the stainless steel cold rolled steel sheet, By preventing reoxidation, it is a heat treatment technology that keeps the surface bright and beautiful without changing the color and properties of the surface. As the atmospheric gas used for such brilliant annealing, brass annealing using hydrogen is the most common, because it is most widely used not only for high heat capacity but also for suppressing discoloration of the surface.
일반적인 오스테나이트계 스테인리스강 대비 본 발명과 같이 Ni 및 Mn의 함량이 상대적으로 감소된 스테인리스강에 대한 수소분위기의 광휘소둔 적용 시 고려해야 할 점이 있다. 이는 광휘소둔 시 수소의 침투에 의해 최종 소재가 수소취성 결함에 따른 가공성 열위의 문제점이 발생할 가능성이 높다는 점이다. 상기의 Ni 및 Mn 등 오스테나이트상 안정화 원소가 감소된 스테인리스강의 경우 최종 광휘소둔 이전 냉간압연 시 응력유기 또는 가공유기 마르텐사이트가 표층부를 중심으로 형성되며, 이러한 표층부에 형성된 마르텐사이트상은 광휘소둔 시 열처리에 의해 오스테나이트상으로 변태되기 이전에 불활성 가스인 수소원자와 접하게 되고, 이러한 수소원자는 일부 마르텐사이트상 내부로 침투하게 된다. 광휘소둔에 의해 기존의 응력유기 또는 가공유기 마르텐사이트가 오스테나이트상으로 상변태함에 따라 내부에 침투된 수소원자는 바깥으로 배출되지 못하고 표층부에서 원자의 상태로 갇혀버리게 된다. 이렇게 표층부에 침투한 수소원자는 일반적인 BCC 및 BCT 구조인 페라이트 혹은 마르텐사이트 상에 대해서는 상온에서 일정시간이 경과한 후 자연적으로 베이크 아웃(bake-out)되어 물성에 큰 영향을 미치지 않게 된다. 반면, 표층부 마르텐사이트상이 광휘소둔에 의해서 오스테나이트상으로 상변태 하였을 경우, 즉 FCC의 격자구조 내에 수소원자가 존재할 경우 상온에서 상당시간 경과할지라도 수소원자의 자연적 베이크 아웃이 원활하지 못하고 장기간 소재 내에 존재하게 된다.There is a point to be considered in application of the brass annealing of a hydrogen atmosphere to a stainless steel having a relatively reduced content of Ni and Mn as compared with a general austenitic stainless steel. This is due to the fact that the ultimate workpiece is likely to suffer from workability damping due to hydrogen embrittlement defects due to the penetration of hydrogen during the light annealing. In the case of stainless steels in which the austenite phase stabilizing elements such as Ni and Mn are reduced, the stressed organic or modified organic martensite is formed around the surface layer during the cold rolling before the final brass annealing, and the martensite phase formed in the surface layer is heat- Before being transformed into the austenite phase by the hydrogen atom, this hydrogen atom penetrates into the inside of some martensite phase. As the stress-induced or modified organic martensite is transformed into an austenite phase by brilliant annealing, the hydrogen atoms penetrated inside are not released to the outside but trapped in the atomic state in the surface layer. The hydrogen atoms penetrating into the surface layer are bare-out after a lapse of a certain time at room temperature on the ferrite or martensite phase, which is a general BCC and BCT structure, so that the hydrogen atoms do not greatly affect the physical properties. On the other hand, when the surface martensite phase is transformed into an austenite phase by the optical annealing, that is, when hydrogen atoms are present in the FCC lattice structure, the natural baking out of the hydrogen atoms is not smooth, do.
이러한 수소원자는 수소취성을 유발시키는 인자로 알려져 있으며, 일부 가공 또는 변형에 의해서 소재 내에 갇혀있던 수소원자들은 수소분자(gas)의 상태로 변화하게 되고, 일정 압력에 도달할 경우 일정 하중 하에서 크랙의 기점으로 작용하여 연신율의 저하를 유발한다.These hydrogen atoms are known to be factors that cause hydrogen embrittlement. Hydrogen atoms trapped in the material due to some processing or deformation are changed into hydrogen molecules. When a certain pressure is reached, cracks Acting as a starting point, causing the elongation to decrease.
따라서 Ni 및 Mn이 상대적으로 낮은 오스테나이트계 스테인리스강의 경우 합금성분과 함께 추가적으로 가공경화에 의해 표면에 형성되는 마르텐사이트상의 생성량을 제어해야만 광휘소둔을 통해 미려한 표면품질이 확보됨과 동시에 우수한 가공성의 확보가 가능하다.Therefore, in the case of austenitic stainless steels having a relatively low Ni and Mn, it is necessary to control the amount of martensite phase formed on the surface due to work hardening in addition to the alloy component, thereby ensuring a good surface quality through the brightness annealing, It is possible.
이에, 본 발명의 일 실시예에 따른 열간가공성 및 내수소취성이 우수한 저Ni 오스테나이트계 스테인리스강은 하기 식 (2)로 표시되는 Md30 값이 -30 내지 0℃ 범위를 만족한다.Therefore, the low-Ni austenitic stainless steel excellent in hot workability and hydrogen embrittlement according to one embodiment of the present invention satisfies the Md30 value represented by the following formula (2) in the range of -30 to 0 占 폚.
(2) Md30 = 551 - 462(C+N) - 9.2Si - 8.1Mn - 13.7Cr - 29(Ni+Cu)(2) Md30 = 551 - 462 (C + N) - 9.2Si - 8.1Mn - 13.7Cr - 29 (Ni + Cu)
준안정 오스테나이트계 스테인리스강은, 마르텐사이트 변태 개시온도(Ms) 이상의 온도에서 소성가공에 의해 마르텐사이트 변태가 발생한다. 이러한 가공에 의해 상변태를 일으키는 상한 온도는 Md값으로 나타내며, 특히 30% 변형을 부여할 때 마르텐사이트로의 상변태가 50%가 일어나는 온도(℃)를 Md30이라 칭한다. Md30 값이 높으면 가공유기 마르텐사이트상의 생성이 쉬운 것에 반해 Md30 값이 낮으면 가공유기 마르텐사이트상의 생성이 상대적으로 어려운 강종으로 판단할 수 있다. 이러한 Md30 값을 통해 통상의 준안정 오스테나이트계 스테인리스강의 오스테나이트 안정화도를 판단할 수 있는 지표로 사용된다.In metastable austenitic stainless steels, martensitic transformation occurs by sintering at temperatures higher than the martensitic transformation starting temperature (Ms). The upper limit temperature causing the phase transformation by this processing is represented by the Md value, and the temperature (° C) at which 50% of the phase transformation to the martensite occurs when 30% deformation is given is referred to as Md30. When the Md30 value is high, it is easy to produce the processed organic martensite phase. On the other hand, if the Md30 value is low, it can be judged that it is relatively difficult to produce the processed organic martensite phase. The Md30 value is used as an index for determining the austenite stabilization degree of a conventional metastable austenitic stainless steel.
수소분위기의 광휘소둔을 실시할 때 오스테나이트 안정화도를 나타내는 Md30과 냉간압연 시 도입되는 마르텐사이트상의 생성량과의 상관관계 및 표층부에 도입되는 마르텐사이트상의 생성량에 기인한 광휘소둔 시 수소취성 발생 여부에 대한 실험적 평가 결과를 도 1에 나타내었다. The correlation between Md30 indicating the degree of austenite stabilization and the amount of martensite phase introduced during cold rolling and the occurrence of hydrogen embrittlement due to the amount of martensite phase introduced into the surface layer during the light annealing The results of the experimental evaluation are shown in Fig.
도 1은 Md30에 따른 마르텐사이트 피크 강도(peak intensity) 변화와 수소취성 발생여부를 나타낸 그래프로써, ● 표시는 수소취성이 미발생한 것을 나타내며 × 표시는 수소취성이 발생한 것을 나타낸다. Md30 값이 증가함에 따라 오스테나이트의 상안정성 저하에 기인한 표층부 마르텐사이트상의 피크 강도가 증가하며, 이러한 피크 강도가 일정수치 이상으로 증가할 경우 수소분위기에서의 광휘소둔 시 수소취성이 발생하는 것을 확인할 수 있다. 이 결과를 바탕으로 Md30 값을 0℃ 이하로 유지하는 것이 수소취성을 억제시키는 데 바람직한 것으로 확인된다.Fig. 1 is a graph showing changes in martensite peak intensity and occurrence of hydrogen embrittlement according to Md30. The symbol? Indicates that hydrogen embrittlement has not occurred, and the symbol x indicates that hydrogen embrittlement has occurred. As the Md30 value increases, the peak intensity on the surface martensite due to a decrease in the phase stability of austenite increases, and when the peak intensity increases above a certain value, it is confirmed that hydrogen embrittlement occurs in the light annealing in a hydrogen atmosphere . Based on these results, it is confirmed that it is preferable to keep the Md30 value at 0 DEG C or less to suppress the hydrogen embrittlement.
또한, 본 발명과 같이 기존 STS304 및 STS301 대비 Mn 및 Ni의 함량 감소에 따른 오스테나이트의 상안정성 개선을 위한 다량의 C, N이 첨가가 불가피한 상황에서는, Md30 값은 감소시킬 수 있으나 소재 자체의 가공경화능이 증가하여 원하는 연신율의 확보가 곤란하다. 특히 일반적인 300계 스테인리스강 용도의 경우 약 50% 이상의 연신율 확보가 필수적인 점을 고려할 때 Md30 값의 하한에 대한 제어가 필요하다.Also, as in the present invention, in the case where a large amount of C and N is inevitably added to improve the phase stability of austenite as a result of reduction in the contents of Mn and Ni relative to conventional STS304 and STS301, the Md30 value can be reduced, The hardenability is increased and it is difficult to secure a desired elongation. Especially, it is necessary to control the lower limit of Md30 value in consideration of the fact that it is necessary to secure elongation of about 50% or more in general 300-series stainless steel applications.
도 2는 Md30에 따른 연신율 변화를 나타낸 그래프로, ■ 표시는 50% 이상의 연신율을 나타내며 × 표시는 50% 미만의 연신율을 나타낸다.FIG. 2 is a graph showing the elongation change according to Md30. In FIG. 2, the elongation is 50% or more and the elongation is less than 50%.
도 2를 참조할 때 상기 합금성분 범위에서 50% 이상의 연신율 확보를 위해서는 Md30 값을 -30℃ 이상으로 제어하는 것이 바람직한 것으로 확인된다.Referring to FIG. 2, it is confirmed that it is desirable to control the Md30 value to -30 ° C or more in order to secure an elongation of 50% or more in the alloy component range.
또한, 기존 STS304 또는 STS301과 유사한 내식성을 확보하는 것이 요구됨에 따라, 합금성분에 대한 내공식저항성지수(PREN) 값을 일정 수준 이상으로 유지할 필요가 있다.Also, as it is required to have similar corrosion resistance as existing STS304 or STS301, it is necessary to maintain the internal formula resistance index (PREN) value for the alloy component above a certain level.
이에, 본 발명의 일 실시예에 따르면, 하기 식 (3)으로 표시되는 내공식저항성지수(PREN) 값이 18 이상을 만족할 수 있다.Thus, according to an embodiment of the present invention, the PREN value of formula (3) may satisfy 18 or more.
(3) PREN = Cr + 16N - 0.5Mn(3) PREN = Cr + 16N - 0.5Mn
이하 본 발명의 바람직한 실시예를 통해 보다 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail.
실시예Example
아래 표 1에 나타낸 다양한 합금 성분범위에 대하여, 200t 슬라브를 제조하고 1,230℃에서 2시간 재가열 후 3t의 두께로 열간압연하였다. 그리고 이러한 열간압연재의 표면 및 에지 품질을 확인하여 크랙의 발생 유/무를 통해 열간가공성의 판단 지표로 하였다. 또한, 합금 성분계에 대한 상분석을 통해 델타(δ) 페라이트의 상분율을 예측하였다. 상기 실험적 열간가공성 평가 결과와 예측된 델타(δ) 페라이트의 상관관계 분석을 통해 도출된 상기 식 (1)의 크랙저항지수(CRN)을 도출하여 표 2에 나타내었다. 연신율은 일본 공업규격 JIS Z 2241에 규정되어 있는 금속재료의 인장시험방법에 따라 JIS Z 2201에 규정되어 있는 5호 시험편을 이용하여 측정하였다.For the various alloy composition ranges shown in Table 1 below, a 200-ton slab was prepared and reheated at 1,230 ° C for 2 hours, followed by hot rolling to a thickness of 3t. The surface and edge quality of these hot rolled materials were checked to determine the index of hot workability through the occurrence of cracks. In addition, phase fraction of delta (δ) ferrite was predicted by phase analysis of alloy components. The crack resistance index (CRN) of the formula (1) derived from the correlation between the experimental hot workability evaluation result and the predicted delta (δ) ferrite was derived and shown in Table 2. The elongation was measured using a No. 5 test piece specified in JIS Z 2201 according to the tensile test method of a metal material specified in Japanese Industrial Standard JIS Z 2241.
구분division CC SiSi MnMn NiNi CrCr CuCu NN
비교예 1Comparative Example 1 0.0950.095 0.460.46 2.912.91 3.483.48 17.817.8 1.581.58 0.160.16
비교예 2Comparative Example 2 0.0760.076 0.450.45 3.013.01 2.92.9 18.118.1 1.611.61 0.220.22
비교예 3Comparative Example 3 0.1020.102 0.430.43 4.374.37 3.543.54 18.118.1 1.441.44 0.250.25
비교예 4Comparative Example 4 0.0980.098 0.470.47 3.953.95 3.683.68 18.018.0 1.541.54 0.230.23
실시예 1Example 1 0.0970.097 0.460.46 3.423.42 3.483.48 18.118.1 1.431.43 0.190.19
실시예 2Example 2 0.0960.096 0.470.47 3.833.83 3.453.45 18.218.2 1.471.47 0.230.23
실시예 3Example 3 0.0960.096 0.440.44 3.943.94 3.313.31 18.218.2 1.51.5 0.210.21
실시예 4Example 4 0.0870.087 0.440.44 2.952.95 3.443.44 17.917.9 1.481.48 0.2440.244
구분division 크랙발생여부Crack occurrence CRNCRN Md30(℃)Md30 (占 폚) 수소취화발생여부Whether hydrogen embrittlement occurs 연신율(%)Elongation (%) PRENPREN
비교예 1Comparative Example 1 ×× 10.810.8 14.814.8 38.038.0 18.918.9
비교예 2Comparative Example 2 -0.47-0.47 7.07.0 46.046.0 20.120.1
비교예 3Comparative Example 3 ×× 64.764.7 -43.4-43.4 ×× 46.846.8 19.919.9
비교예 4Comparative Example 4 ×× 61.461.4 -34.8-34.8 ×× 49.749.7 19.719.7
실시예 1Example 1 ×× 12.612.6 -3.9-3.9 ×× 54.354.3 19.419.4
실시예 2Example 2 ×× 35.935.9 -27.0-27.0 ×× 50.250.2 20.020.0
실시예 3Example 3 ×× 15.715.7 -15.2-15.2 ×× 52.552.5 19.619.6
실시예 4Example 4 ×× 58.758.7 -17.8-17.8 ×× 50.550.5 20.320.3
비교예 2는 열간압연 시 표면과 에지부에 크랙이 발생하였고, 크랙저항지수(CRN)가 -0.47을 나타내었다. 비교예 1, 3, 4는 열간압연 시 표면과 에지부에 크랙이 발생하지 않아, 델타(δ) 페라이트 상분율에 따라 도출된 크랙저항지수(CRN)가 0 이상을 나타내는 경우 열간가공성이 양호할 수 있는 지표임이 확인되었다.In Comparative Example 2, cracks were generated in the surface and edge portions in the hot rolling and the CRN (Crack Resistance Index) was -0.47. In Comparative Examples 1, 3 and 4, cracks were not generated on the surface and the edge portion in hot rolling, and when the crack resistance index (CRN) derived according to the delta (delta) ferrite phase fraction was 0 or more, It is confirmed that this is an index.
표 1 및 2와 함께 도 1을 살펴보면, 비교예 1, 2의 경우 성분계로부터 계산되는 Md30 값이 0℃를 초과하여 냉간압연재의 표층부 마르텐사이트상의 피크 강도(peak intensity)가 증가하여 수소취화가 발생함을 알 수 있었으며, 이는 도 1에 ×로 표시되어 있다. 한편, 비교예 3, 4의 경우 Md30 값이 0℃ 이하를 만족하여 수소취화는 발생하지 않지만, Md30 값이 -30℃ 미만을 나타내어 연신율이 50% 미만으로 측정되었다. 이로부터 Md30 값의 범위는 -30 내지 0℃ 범위를 만족해야 내수소취성 및 50% 이상의 연신율에 따른 가공성 조건을 얻을 수 있음을 알 수 있었다.Referring to FIG. 1 together with Tables 1 and 2, in the case of Comparative Examples 1 and 2, the peak intensity on the surface martensite of the cold rolled steel sheet was increased due to the Md30 value calculated from the component system exceeding 0 ° C, , Which is indicated by X in Fig. 1. On the other hand, in the case of Comparative Examples 3 and 4, the value of Md30 satisfies 0 deg. C or less and hydrogen embrittlement does not occur, but the Md30 value is less than -30 DEG C and the elongation is measured to be less than 50%. From this, it was found that the range of Md30 value should satisfy the range of -30 to 0 占 폚 so that the workability condition according to the hydrogen embrittlement resistance and the elongation of 50% or more can be obtained.
한편, 본 발명에 따른 성분계 범위에서 상기 식 (3)에 따른 내공식저항지수(PREN) 값이 18 이상을 만족하여 STS304 수준의 우수한 내식성 또한 확보할 수 있음을 알 수 있었다.On the other hand, in the range of the composition range according to the present invention, the PRES value according to the formula (3) satisfies the value of 18 or more, so that excellent corrosion resistance at the STS304 level can be secured.
상술한 바에 있어서, 본 발명의 예시적인 실시예들을 설명하였지만, 본 발명은 이에 한정되지 않으며 해당 기술 분야에서 통상의 지식을 가진 자라면 다음에 기재하는 청구범위의 개념과 범위를 벗어나지 않는 범위 내에서 다양한 변경 및 변형이 가능함을 이해할 수 있을 것이다.While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited thereto. Those skilled in the art will recognize that other embodiments may occur to those skilled in the art without departing from the scope and spirit of the following claims. It will be understood that various changes and modifications may be made.
본 발명의 실시예들에 따른 저Ni 오스테나이트계 스테인리스강은 Mn을 저감하더라도 우수한 내식성과 가공성을 확보할 수 있어, 가전제품 등 다양한 용도에 적용될 수 있다.The low-Ni austenitic stainless steels according to the embodiments of the present invention can secure excellent corrosion resistance and processability even when Mn is reduced, and can be applied to various applications such as household appliances.

Claims (4)

  1. 중량%로, C: 0.05 내지 0.15%, Si: 0.2 내지 0.7%, Mn: 2.0 내지 5.0%, Ni: 2.0 내지 5.0%, Cr: 17.0 내지 19.0%, P: 0.1% 미만, S: 0.01% 미만, Cu: 1.0 내지 3.0%, N: 0.15 내지 0.30%, 나머지 Fe 및 불가피한 불순물을 포함하고,0.05 to 0.15% of C, 0.2 to 0.7% of Si, 2.0 to 5.0% of Mn, 2.0 to 5.0% of Ni, 17.0 to 19.0% of Cr, less than 0.1% of S, less than 0.01% of S 1.0 to 3.0% of Cu, 0.15 to 0.30% of N, the balance of Fe and unavoidable impurities,
    하기 식 (1)로 표시되는 크랙저항지수(CRN) 값이 0 이상이며,Wherein a value of a crack resistance index (CRN) represented by the following formula (1) is 0 or more,
    하기 식 (2)로 표시되는 Md30 값이 -30 내지 0℃ 범위를 만족하는 열간가공성 및 내수소취성이 우수한 저Ni 오스테나이트계 스테인리스강:A low Ni austenitic stainless steel excellent in hot workability and hydrogen embrittlement resistance having an Md30 value represented by the following formula (2) satisfying the range of -30 to 0 占 폚:
    (1) CRN = 615 + 777C - 26.3Si - 1.8Mn + 46.2Ni - 56Cr + 33.3Cu + 767N(1) CRN = 615 + 777C-26.3Si-1.8Mn + 46.2Ni-56Cr + 33.3Cu + 767N
    (2) Md30 = 551 - 462(C+N) - 9.2Si - 8.1Mn - 13.7Cr - 29(Ni+Cu)(2) Md30 = 551 - 462 (C + N) - 9.2Si - 8.1Mn - 13.7Cr - 29 (Ni + Cu)
    여기서, C, Si, Mn, Ni, Cr, Cu, N은 각 원소의 함량(중량%)을 의미한다.Here, C, Si, Mn, Ni, Cr, Cu and N mean the content (weight%) of each element.
  2. 제1항에 있어서,The method according to claim 1,
    하기 식 (3)으로 표시되는 내공식저항성지수(PREN) 값이 18 이상을 만족하는 열간가공성 및 내수소취성이 우수한 저Ni 오스테나이트계 스테인리스강:A low-Ni austenitic stainless steel having excellent hot workability and hydrogen embrittlement resistance satisfying an internal resistance index (PREN) value of 18 or more represented by the following formula (3)
    (3) PREN = Cr + 16N - 0.5Mn(3) PREN = Cr + 16N - 0.5Mn
    여기서, Cr, N, Mn은 각 원소의 함량(중량%)을 의미한다.Here, Cr, N, and Mn mean the content (weight%) of each element.
  3. 제1항에 있어서,The method according to claim 1,
    중량%로, B: 0.001 내지 0.005% 및 Ca: 0.001 내지 0.003% 중 1종 이상을 더 포함하는 열간가공성 및 내수소취성이 우수한 저Ni 오스테나이트계 스테인리스강.A low Ni austenitic stainless steel which further contains at least one of 0.001 to 0.005% of B and 0.001 to 0.003% of Ca, in terms of% by weight, and is excellent in hot workability and hydrogen embrittlement resistance.
  4. 제1항에 있어서,The method according to claim 1,
    상기 스테인리스강은 연신율이 50% 이상인 열간가공성 및 내수소취성이 우수한 저Ni 오스테나이트계 스테인리스강.The stainless steel is a low-Ni austenitic stainless steel excellent in hot workability and hydrogen embrittlement with an elongation of 50% or more.
PCT/KR2018/008871 2017-08-22 2018-08-06 Low-ni austenitic stainless steel with excellent hot workability and hydrogen embrittlement resistance WO2019039768A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020511252A JP7117369B2 (en) 2017-08-22 2018-08-06 Low Ni austenitic stainless steel with excellent hot workability and resistance to hydrogen embrittlement
EP18849053.6A EP3674434A1 (en) 2017-08-22 2018-08-06 Low-ni austenitic stainless steel with excellent hot workability and hydrogen embrittlement resistance
CN201880066674.8A CN111212928B (en) 2017-08-22 2018-08-06 Low Ni austenitic stainless steel having excellent hot workability and hydrogen embrittlement resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170105892A KR101952808B1 (en) 2017-08-22 2017-08-22 Low nickel austenitic stainless steel having excellent hot workability and hydrogen embrittlement resistance
KR10-2017-0105892 2017-08-22

Publications (1)

Publication Number Publication Date
WO2019039768A1 true WO2019039768A1 (en) 2019-02-28

Family

ID=65439097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008871 WO2019039768A1 (en) 2017-08-22 2018-08-06 Low-ni austenitic stainless steel with excellent hot workability and hydrogen embrittlement resistance

Country Status (5)

Country Link
EP (1) EP3674434A1 (en)
JP (1) JP7117369B2 (en)
KR (1) KR101952808B1 (en)
CN (1) CN111212928B (en)
WO (1) WO2019039768A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114080466A (en) * 2020-06-19 2022-02-22 现代制铁株式会社 Reinforcing bar and method for manufacturing same
CN114080462A (en) * 2019-05-28 2022-02-22 株式会社Posco Austenitic stainless steel having excellent corrosion resistance of welded portion

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102160735B1 (en) * 2018-08-13 2020-09-28 주식회사 포스코 Austenitic stainless steel with improved strength
CN113981308B (en) * 2021-09-11 2022-08-23 广东省高端不锈钢研究院有限公司 Preparation method of 8K mirror plate manganese-nitrogen series nickel-saving austenitic stainless steel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080061861A (en) * 2006-12-28 2008-07-03 주식회사 포스코 Ethod of manufacturing an austenitic stainless steel added low ni for improving hot workability
KR20090015817A (en) * 2007-08-09 2009-02-12 닛신 세이코 가부시키가이샤 Ni-reduced austenite stainless steel
JP2010121162A (en) * 2008-11-19 2010-06-03 Nisshin Steel Co Ltd Method for manufacturing nickel-saving type hot-rolled austenitic stainless steel sheet, slab and hot-rolled steel sheet
KR20100069875A (en) * 2008-12-17 2010-06-25 주식회사 포스코 Austenitic stainless steel having excellent hot workability with high manganese
JP2014189800A (en) * 2013-03-26 2014-10-06 Nisshin Steel Co Ltd LOW Ni AUSTENITIC STAINLESS STEEL SHEET AND MOLDED ARTICLE THEREOF

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686645B2 (en) * 1989-05-31 1994-11-02 日本金属工業株式会社 Nickel-saving austenitic stainless steel with excellent hot workability
JP3696552B2 (en) * 2001-04-12 2005-09-21 日新製鋼株式会社 Soft stainless steel plate with excellent workability and cold forgeability
JP2004238700A (en) * 2003-02-07 2004-08-26 Nisshin Steel Co Ltd Austenitic stainless steel sheet suitable for press molded product with high surface smoothness
JP2007063632A (en) 2005-08-31 2007-03-15 Nippon Metal Ind Co Ltd Austenitic stainless steel
US8337749B2 (en) * 2007-12-20 2012-12-25 Ati Properties, Inc. Lean austenitic stainless steel
SE533635C2 (en) * 2009-01-30 2010-11-16 Sandvik Intellectual Property Austenitic stainless steel alloy with low nickel content, and article thereof
JP2012172212A (en) * 2011-02-22 2012-09-10 Nisshin Steel Co Ltd Low nickel austenitic stainless steel and method for manufacturing hot-rolled steel sheet of the same
CN102605291A (en) * 2012-03-27 2012-07-25 宝山钢铁股份有限公司 Ni-saving austenitic stainless steel cold-rolled sheet with excellent processability and manufacturing method thereof
FI124993B (en) * 2012-09-27 2015-04-15 Outokumpu Oy Austenitic stainless steel
CN102994916A (en) * 2012-11-23 2013-03-27 四川金广技术开发有限公司 Processable nickel-saving type austenitic stainless steel and production method thereof
JP2014189801A (en) 2013-03-26 2014-10-06 Nisshin Steel Co Ltd WELD ARTICLE OF LOW Ni AUSTENITIC STAINLESS STEEL SHEET
KR20150074697A (en) 2013-12-24 2015-07-02 주식회사 포스코 Low-nickel containing stainless steels

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080061861A (en) * 2006-12-28 2008-07-03 주식회사 포스코 Ethod of manufacturing an austenitic stainless steel added low ni for improving hot workability
KR20090015817A (en) * 2007-08-09 2009-02-12 닛신 세이코 가부시키가이샤 Ni-reduced austenite stainless steel
JP2010121162A (en) * 2008-11-19 2010-06-03 Nisshin Steel Co Ltd Method for manufacturing nickel-saving type hot-rolled austenitic stainless steel sheet, slab and hot-rolled steel sheet
KR20100069875A (en) * 2008-12-17 2010-06-25 주식회사 포스코 Austenitic stainless steel having excellent hot workability with high manganese
JP2014189800A (en) * 2013-03-26 2014-10-06 Nisshin Steel Co Ltd LOW Ni AUSTENITIC STAINLESS STEEL SHEET AND MOLDED ARTICLE THEREOF

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3674434A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114080462A (en) * 2019-05-28 2022-02-22 株式会社Posco Austenitic stainless steel having excellent corrosion resistance of welded portion
EP3978642A4 (en) * 2019-05-28 2022-08-17 Posco Austenitic stainless steel with excellent corrosion resistance of welded part
CN114080466A (en) * 2020-06-19 2022-02-22 现代制铁株式会社 Reinforcing bar and method for manufacturing same

Also Published As

Publication number Publication date
JP7117369B2 (en) 2022-08-12
EP3674434A4 (en) 2020-07-01
CN111212928A (en) 2020-05-29
CN111212928B (en) 2022-11-01
KR101952808B1 (en) 2019-02-28
JP2020531688A (en) 2020-11-05
EP3674434A1 (en) 2020-07-01

Similar Documents

Publication Publication Date Title
WO2019039768A1 (en) Low-ni austenitic stainless steel with excellent hot workability and hydrogen embrittlement resistance
WO2016104974A1 (en) Austenitic stainless steel having excellent flexibility
WO2020101227A1 (en) Nonmagnetic austenitic stainless steel and manufacturing method therefor
WO2010018906A1 (en) Steel sheet for enamelling, and a production method therefor
WO2020054999A1 (en) Austenitic stainless steel having excellent pipe-expandability and age cracking resistance
WO2018110779A1 (en) Low alloy steel sheet having excellent strength and ductility
WO2019117430A1 (en) Ferritic stainless steel having excellent high-temperature oxidation resistance, and manufacturing method therefor
WO2018117477A1 (en) Duplex stainless steel having excellent corrosion resistance and moldability, and manufacturing method therefor
WO2017209431A1 (en) Austenitic stainless steel having improved corrosion-resistance and workability and method for producing same
WO2020130279A1 (en) High-strength stainless steel
WO2019124729A1 (en) Utility ferritic stainless steel having excellent hot workability, and manufacturing method therefor
WO2016105092A1 (en) Ferrite-based stainless steel and method for manufacturing same
KR102169455B1 (en) Porcelain enamel steel sheet excellent in fish scale resistance and enamel adhesion property and manufacturing method thereof
WO2023022351A1 (en) Austenitic stainless steel and method for manufacturing same
WO2011081236A1 (en) Quenched steel sheet having excellent hot press formability, and method for manufacturing same
KR100345703B1 (en) A method of manufacturing high strength steel with good for mability for enamel application
WO2020036370A1 (en) Austenitic stainless steel having improved strength
KR102265183B1 (en) Porcelain enamel steel sheet excellent in fish scale resistance and enamel adhesion property and manufacturing method thereof
WO2021261884A1 (en) High-strength austenitic stainless steel with excellent productivity and cost reduction effect and method for producing same
WO2019112152A1 (en) Austenitic stainless steel having excellent formability and season cracking resistance
WO2020085687A1 (en) High-strength ferritic stainless steel for clamp and method for manufacturing same
WO2018030690A1 (en) Lean duplex stainless steel having excellent bending processability
WO2014098301A1 (en) Hot-rolled stainless steel sheet having excellent hardness and low-temperature impact properties
WO2017111437A1 (en) Lean duplex stainless steel and method for manufacturing same
WO2022131504A1 (en) Austenitic stainless steel with improved high temperature softening resistance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849053

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020511252

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018849053

Country of ref document: EP

Effective date: 20200323