WO2016104974A1 - Austenitic stainless steel having excellent flexibility - Google Patents

Austenitic stainless steel having excellent flexibility Download PDF

Info

Publication number
WO2016104974A1
WO2016104974A1 PCT/KR2015/012973 KR2015012973W WO2016104974A1 WO 2016104974 A1 WO2016104974 A1 WO 2016104974A1 KR 2015012973 W KR2015012973 W KR 2015012973W WO 2016104974 A1 WO2016104974 A1 WO 2016104974A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
austenitic stainless
less
inventive example
excellent flexibility
Prior art date
Application number
PCT/KR2015/012973
Other languages
French (fr)
Korean (ko)
Inventor
강형구
조규진
채동철
이재화
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP15873501.9A priority Critical patent/EP3239341A4/en
Priority to JP2017530337A priority patent/JP2018502991A/en
Priority to US15/539,874 priority patent/US20170349985A1/en
Priority to CN201580071219.3A priority patent/CN107429367A/en
Publication of WO2016104974A1 publication Critical patent/WO2016104974A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Definitions

  • the present invention relates to an austenitic stainless steel having excellent flexibility.
  • the work hardening is expressed as TS-YS, which is a difference between the yield strength YS indicating the strength at the start of deformation of the material and the tensile strength TS showing the maximum strength by maximizing the work hardening of the material.
  • TS-YS yield strength indicating the strength at the start of deformation of the material
  • TS-YS tensile strength TS showing the maximum strength by maximizing the work hardening of the material.
  • Patent Document 0001 KR 10-2010-0099726 A (2010.09.13)
  • An object of the present invention is to provide an austenitic stainless steel having excellent flexibility by controlling the content of component elements affecting the degree of work hardening and controlling the size of crystal grains in order to solve such a conventional problem.
  • the austenitic stainless steel having excellent flexibility according to the present invention for achieving this object is, in weight%, Si: 0.1 to 0.65%, Mn: 1.0 to 3.0%, Ni: 6.5 to 10.0%, Cr: 16.5 to 18.5%, Cu: 6.0% or less (excluding 0), C + N: 0.13% or less (excluding 0), the rest contains Fe and unavoidable impurities, and the work hardening formula H1 defined by the following formula is 300 or less It is characterized by.
  • the structure size (D) of the austenitic stainless steel excellent in the flexibility of the present invention is characterized by being 20 to 40 ⁇ m.
  • the austenitic stainless steel having excellent flexibility according to the present invention for achieving this object is, in weight%, Si: 0.1 to 0.65%, Mn: 1.0 to 3.0%, Ni: 6.5 to 10.0%, Cr: 16.5 to 18.5%, Cu: 6.0% or less (excluding 0), C + N: 0.13% or less (excluding 0), the rest includes Fe and unavoidable impurities, and the work hardening formula H2 defined by the following formula is 300 or less It is characterized by.
  • the size (D) of the tissue is characterized in that 20 ⁇ 300 ⁇ m.
  • the austenitic stainless steel having excellent flexibility of the present invention has a weight% of Si: 0.1 to 0.65%, Mn: 1.0 to 3.0%, Ni: 6.5 to 10.0%, Cr: 16.5 to 18.5%, and Cu: 6.0%. Or less (excluding 0), C + N: 0.13% or less (excluding 0), the remainder contains Fe and inevitable impurities,
  • M d30 defined by the following formula is characterized in that less than zero.
  • M d30 is -100-0 .
  • TS tensile strength
  • YS yield strength
  • the present invention has the advantage of producing an austenitic stainless steel excellent in flexibility by controlling the content of the element, grain size and the like.
  • 1 is a view showing a correlation between work hardening type H1 and work hardening actual measured value
  • 3 to 5 is a view showing the size distribution of the grains
  • Fig. 6 is a diagram showing a correlation between quartz hardening type H2 and measured hardening degree
  • the austenitic stainless steel excellent in the flexibility of the present invention is, in weight%, Si: 0.1 to 0.65%, Mn: 1.0 to 3.0%, Ni: 6.5 to 10.0%, Cr: 16.5 to 18.5%, Cu: 6.0% And C + N is 0.13% or less and contains the remaining Fe and unavoidable impurities.
  • C and N are not only hardening austenitic stainless steel as an invasive solid solution strengthening element, but if the content is high, hardening strain organic martensite generated during processing increases the work hardening of the material. Therefore, there is a need to limit the content of C and N, the present invention limits the content of C + N to 0.13% or less.
  • Si is added by adjusting in the range of 0.1 to 0.65% by weight.
  • Si is an essential element for deoxidation, 0.1% or more is added.
  • Mn is adjusted and added in the range of 1.0 to 3.0 weight%.
  • Mn is not only essential for deoxidation but also increases stability of the austenite phase, and 1.0% or more is added to maintain austenite balance. However, addition of excessively high content of Mn lowers the corrosion resistance of the material, so the upper limit thereof is limited to 3.0%.
  • Ni is added by adjusting in the range of 6.5 to 10.0% by weight.
  • Ni is not only effective in improving corrosion resistance, such as pitting resistance, by complex addition with Cr, but also softening of austenite steel when its content is increased.
  • Cr is an essential element to improve the corrosion resistance, and more than 16.5% must be added to be used for general purposes. However, addition of excessively high content of Cr causes hardening of the austenite phase and raises the cost, thus limiting the upper limit to 18.5%.
  • Cu is added by adjusting in the range of 6.0 weight% or less.
  • Cu can cause soft nitriding of austenite steel.
  • the addition of excessively high content of Cu lowers the hot workability and rather hardens the austenite phase, so the upper limit thereof is limited to 6.0%.
  • the component control method provided by the present invention is important.
  • the materials described in the following examples were prepared by ingots of 150 mm thickness, hot rolled to 3 mm after heating to 1,250 ° C., and then heat-treated at 1,100 ° C. for 60 seconds.
  • a manufacturing method does not limit the properties of the material provided by the present invention, and is one that employs one of the usual methods for producing austenitic stainless steel, and merely includes an example of manufacturing a material for evaluating the properties.
  • the properties of the material change by the component control method provided in the present invention. Yield strength YS and tensile strength TS are the values obtained by uniaxial stretching of the material.
  • H1 shown in Table 1 is defined by the following equation.
  • the H1 value is defined using the component elements constituting the present invention, and the H1 value and the measured TS-YS value The correlation between them was analyzed.
  • the relationship between the H1 value obtained through component control and the measured TS-YS value is shown, and it can be seen that the above description is implemented.
  • a linearly smooth relationship is established between them, and thus, even if the lower limit of the H1 value is not set in the present invention, austenite having more flexibility through manufacturing a material having a lower H1 value is obtained. It can be seen that the production of the steel can be made.
  • the grain size of the austenitic stainless steel produced by a conventional manufacturing process is generally 30 ⁇ 10 ⁇ m.
  • the grain size (D) of the austenitic stainless steel having excellent flexibility of the present invention is also present in the 30 ⁇ 10 ⁇ m section, as shown in Comparative Example 1 of Table 2 when H1 is 329
  • the actual TS-YS value is obtained as 328, indicating that the flexibility is not good.
  • FIG. 3 to 5 is a view showing the size distribution of the crystal grains
  • Figure 3 is a structure photograph showing the grain size of the austenitic stainless steel according to Inventive Example 6
  • Figure 4 is austenitic stainless steel according to Comparative Example 6 5 is a tissue photograph showing grain size
  • FIG. 5 is a tissue photograph showing grain size of an austenitic stainless steel according to Inventive Example 17.
  • the present invention provides a modified work hardening type H2 to obtain a low work hardening material even when the grain size is larger than usual.
  • Table 3 shows the component contents of Inventive Examples 17 to 21 and Comparative Examples 4 to 6 disclosed in Table 2.
  • the TS-YS value may be limited through the following austenite stability M d30 .
  • the TS-YS value can be maintained at 300 MPa or less, indicating that the flexibility is improved.
  • Austenitic stainless steel having excellent flexibility can be applied to a refrigerant pipe for air conditioners for homes and automobiles.

Abstract

An austenitic stainless steel having excellent flexibility is disclosed. The austenitic stainless steel having excellent flexibility of the present invention comprises 0.1-0.65 wt% of Si, 1.0-3.0 wt% of Mn, 6.5-10.0 wt% of Ni, 16.5-18.5 wt% of Cr, 6.0 wt% or less of Cu (except 0), 0.13 wt% or less of C+N (except 0), and the remainder being Fe and inevitable impurities, wherein work hardening formula H1 defined as a mathematical expression below is 300 or less. H1=-459+79.8Si-10.2Mn-8.16Ni+48.0Cr-13.2Cu+623(C+N)

Description

가요성이 우수한 오스테나이트계 스테인리스강Highly flexible austenitic stainless steel
본 발명은 가요성이 우수한 오스테나이트계 스테인리스강에 관한 것이다.The present invention relates to an austenitic stainless steel having excellent flexibility.
종래 가정용 및 자동차용 에어컨 냉매 배관으로 스테인리스강을 적용하고자 하는 시도가 있었다. 이는 내식성이 우수할 뿐만 아니라 비교적 소재 비용이 저렴하기 때문이다.Attempts have been made to apply stainless steel as a refrigerant pipe for air conditioners for homes and automobiles. This is because not only the corrosion resistance is excellent but also the material cost is relatively low.
그러나, 에어컨 냉매 배관 시공 시 설치 공간에 제약을 받기 때문에, 배관을 구부리는 등의 작업이 필수적으로 수반되는바, 일반적인 스테인리스강은 배관 시공 시 필수적으로 구비되어야 하는 가요성을 구비하지 못 한다는 문제점이 존재한다.However, since the installation space is limited when the air conditioner refrigerant piping is installed, it is necessary to bend the pipe, such that the general stainless steel does not have the flexibility that must be provided essential for piping construction. exist.
금속재료는 인장 또는 압축 등 변형을 받으면 가공경화가 발생하여 변형을 받을수록 더욱 강해지는 특성이 있다. 배관을 구부리는 것은 인장과 압축의 복합적인 작용으로 구부리는 정도가 심해짐에 따라 소재는 더욱 경질화된다. 특히 오스테나이트계 스테인리스강으로서 가장 널리 사용되는 304강은 가공경화의 정도가 심해 에어컨 배관 시공을 해야 하는 공간 내에서 인력으로 배관을 구부리는 것은 매우 곤란하다.When the metal material is subjected to deformation such as tensile or compression, work hardening occurs, and thus the metal material becomes stronger as the deformation is received. Bending the pipe is a complex action of tension and compression, and as the degree of bending increases, the material becomes harder. In particular, 304 steel, which is most widely used as an austenitic stainless steel, has a high degree of work hardening, and thus it is very difficult to bend pipes by manpower in a space where air conditioning piping should be performed.
가공경화라 함은, 소재의 변형이 시작될 때의 강도를 가리키는 항복강도(YS)와 소재의 가공경화가 극대화되어 최대의 강도를 나타내는 인장강도(TS)의 차이인 TS-YS로써 표현한다. 즉 인력으로 구부리기 용이하기 위해서는 이러한 가공경화 현상을 억제하여 TS-YS가 최소화되는 소재가 요구된다.The work hardening is expressed as TS-YS, which is a difference between the yield strength YS indicating the strength at the start of deformation of the material and the tensile strength TS showing the maximum strength by maximizing the work hardening of the material. In other words, in order to be easy to bend by manpower, a material that minimizes the work hardening phenomenon and minimizes TS-YS is required.
오스테나이트계 스테인리스강에서는 Cr, Ni, Mn, Cu, C, N 원소가 주로 첨가되는데, 이러한 원소들의 함량이 다양화 되어 많은 강종이 제조되고 있지만 우수한 가요성을 위한 최적 성분제어 방법은 공개되어 있지 않은 형편이다. 본 발명에서는 이러한 원소들의 제어를 통해 가공경화의 최소화를 구현하여 우수한 가요성을 가지는 소재를 제조하고자 하였다.In austenitic stainless steels, Cr, Ni, Mn, Cu, C, and N elements are mainly added, and many steel grades are manufactured due to the diversified contents of these elements, but an optimal composition control method for excellent flexibility is not disclosed. I'm not. In the present invention, to minimize the work hardening through the control of these elements to produce a material having excellent flexibility.
상기한 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.The matters described as the background art are only for the purpose of improving the understanding of the background of the present invention and should not be taken as acknowledging that they correspond to the related art already known to those skilled in the art.
(특허문헌 0001) KR 10-2010-0099726 A (2010.09.13)  (Patent Document 0001) KR 10-2010-0099726 A (2010.09.13)
본 발명은 이러한 종래의 문제점을 해결하기 위해 가공경화도에 영향을 미치는 성분 원소의 함량을 제어하고, 결정립의 크기를 제어함으로써 가요성이 우수한 오스테나이트계 스테인리스강을 제공하는데 그 목적이 있다.An object of the present invention is to provide an austenitic stainless steel having excellent flexibility by controlling the content of component elements affecting the degree of work hardening and controlling the size of crystal grains in order to solve such a conventional problem.
이러한 목적을 달성하기 위한 본 발명에 따른 가요성이 우수한 오스테나이트계 스테인리스강은, 중량 %로, Si : 0.1~0.65%, Mn : 1.0~3.0%, Ni : 6.5~10.0%, Cr: 16.5~18.5%, Cu : 6.0%이하(0은 제외), C+N : 0.13% 이하(0은 제외), 나머지는 Fe 및 불가피한 불순물을 포함하고, 하기의 수식으로 정의된 가공경화식 H1이 300 이하인 것을 특징으로 한다.The austenitic stainless steel having excellent flexibility according to the present invention for achieving this object is, in weight%, Si: 0.1 to 0.65%, Mn: 1.0 to 3.0%, Ni: 6.5 to 10.0%, Cr: 16.5 to 18.5%, Cu: 6.0% or less (excluding 0), C + N: 0.13% or less (excluding 0), the rest contains Fe and unavoidable impurities, and the work hardening formula H1 defined by the following formula is 300 or less It is characterized by.
H1 = -459 + 79.8Si - 10.2Mn - 8.16Ni + 48.0Cr - 13.2Cu + 623(C+N)H1 = -459 + 79.8 Si-10.2Mn-8.16Ni + 48.0Cr-13.2Cu + 623 (C + N)
본 발명의 가요성이 우수한 오스테나이트계 스테인리스강의 조직 크기(D)는 20~40㎛ 인 것을 특징으로 한다.The structure size (D) of the austenitic stainless steel excellent in the flexibility of the present invention is characterized by being 20 to 40 µm.
이러한 목적을 달성하기 위한 본 발명에 따른 가요성이 우수한 오스테나이트계 스테인리스강은, 중량 %로, Si : 0.1~0.65%, Mn : 1.0~3.0%, Ni : 6.5~10.0%, Cr: 16.5~18.5%, Cu : 6.0%이하(0은 제외), C+N : 0.13% 이하(0은 제외), 나머지는 Fe 및 불가피한 불순물을 포함하고, 하기의 수식으로 정의된 가공경화식 H2는 300 이하인 것을 특징으로 한다.The austenitic stainless steel having excellent flexibility according to the present invention for achieving this object is, in weight%, Si: 0.1 to 0.65%, Mn: 1.0 to 3.0%, Ni: 6.5 to 10.0%, Cr: 16.5 to 18.5%, Cu: 6.0% or less (excluding 0), C + N: 0.13% or less (excluding 0), the rest includes Fe and unavoidable impurities, and the work hardening formula H2 defined by the following formula is 300 or less It is characterized by.
H2 = 4.27 + 0.875(-459 + 79.8Si - 10.2Mn - 8.16Ni + 48.0Cr - 13.2Cu + 623(C+N))-287D (D : 조직의 크기)H2 = 4.27 + 0.875 (-459 + 79.8 Si-10.2Mn-8.16Ni + 48.0Cr-13.2Cu + 623 (C + N))-287D (D: tissue size)
조직의 크기(D)는 20~300㎛인 것을 특징으로 한다.The size (D) of the tissue is characterized in that 20 ~ 300㎛.
본 발명의 가요성이 우수한 오스테나이트계 스테인리스강은, 중량 %로, Si : 0.1~0.65%, Mn : 1.0~3.0%, Ni : 6.5~10.0%, Cr: 16.5~18.5%, Cu : 6.0% 이하(0은 제외), C+N : 0.13% 이하(0은 제외), 나머지는 Fe 및 불가피한 불순물을 포함하고,The austenitic stainless steel having excellent flexibility of the present invention has a weight% of Si: 0.1 to 0.65%, Mn: 1.0 to 3.0%, Ni: 6.5 to 10.0%, Cr: 16.5 to 18.5%, and Cu: 6.0%. Or less (excluding 0), C + N: 0.13% or less (excluding 0), the remainder contains Fe and inevitable impurities,
하기의 수식으로 정의된 Md30은 0 이하인 것을 특징으로 한다.M d30 defined by the following formula is characterized in that less than zero.
Md30 = 551 - 462(C+N) - 9.2Si - 8.1Mn - 29(Ni+Cu) - 13.7CrM d30 = 551-462 (C + N)-9.2 Si-8.1 Mn-29 (Ni + Cu)-13.7Cr
Md30은 -100 ~ 0 인 것이 바람직하다.It is preferable that M d30 is -100-0 .
TS(인장강도)와 YS(항복강도)의 차이값은 300Mpa 이하인 것을 특징으로 한다.The difference between TS (tensile strength) and YS (yield strength) is characterized in that less than 300Mpa.
본 발명은 원소의 함량, 결정립 크기 등을 제어함으로써 가요성이 우수한 오스테나이트계 스테인리스강을 제조할 수 있는 이점이 있다.The present invention has the advantage of producing an austenitic stainless steel excellent in flexibility by controlling the content of the element, grain size and the like.
도 1은 가공 경화식 H1과 가공경화도 실측치의 상관 관계를 나타낸 도면,1 is a view showing a correlation between work hardening type H1 and work hardening actual measured value,
도 2는 결정립 크기에 따른 가공 경화식 H1의 변화를 나타낸 도면,2 is a view showing a change in work hardening formula H1 according to grain size,
도 3 내지 5는 결정립의 크기 분포를 나타낸 도면,3 to 5 is a view showing the size distribution of the grains,
도 6은 수정 가공 경화식 H2와 가공 경화도 실측치와의 상관 관계를 나타낸 도면,Fig. 6 is a diagram showing a correlation between quartz hardening type H2 and measured hardening degree;
도 7은 오스테나이트 안정화 지수와 가공 경화도 실측치와의 상관 관계를 나타낸 도면이다.It is a figure which shows the correlation between the austenite stabilization index and the work hardening actually measured value.
이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예에 따른 가요성이 우수한 오스테나이트계 스테인리스강에 대하여 설명한다.Hereinafter, with reference to the accompanying drawings will be described with respect to the austenitic stainless steel excellent in flexibility according to a preferred embodiment of the present invention.
본 발명의 가요성이 우수한 오스테나이트계 스테인리스강은, 중량 %로, Si: 0.1~0.65%, Mn: 1.0~3.0%, Ni: 6.5~10.0%, Cr: 16.5~18.5%, Cu: 6.0%를 함유하고 C+N은 0.13% 이하로 함유하며, 나머지 Fe 및 불가피한 불순물을 포함한다.The austenitic stainless steel excellent in the flexibility of the present invention is, in weight%, Si: 0.1 to 0.65%, Mn: 1.0 to 3.0%, Ni: 6.5 to 10.0%, Cr: 16.5 to 18.5%, Cu: 6.0% And C + N is 0.13% or less and contains the remaining Fe and unavoidable impurities.
이하에서는 본 발명의 가요성이 우수한 오스테나이트계 스테인리스강을 구성하는 성분들의 수치한정 이유에 대하여 설명한다.Hereinafter, the reason for numerical limitation of the components constituting the austenitic stainless steel excellent in the flexibility of the present invention will be described.
C+N은 0.13 중량% 이하로 첨가되어야 한다.C + N should be added up to 0.13% by weight.
C 와 N는 침입형 고용강화 원소로서 오스테나이트계 스테인리스강을 경질화 시킬 뿐만 아니라 그 함량이 높으면 가공 시 발생하는 변형유기 마르텐사이트를 경질화하여 소재의 가공 경화도가 증가하게 된다. 따라서, C 및 N의 함량을 제한할 필요성이 있으며, 본 발명에서는 C+N의 함량을 0.13% 이하로 제한한다.C and N are not only hardening austenitic stainless steel as an invasive solid solution strengthening element, but if the content is high, hardening strain organic martensite generated during processing increases the work hardening of the material. Therefore, there is a need to limit the content of C and N, the present invention limits the content of C + N to 0.13% or less.
Si는 0.1 ~ 0.65 중량% 범위 내에서 조절하여 첨가한다.Si is added by adjusting in the range of 0.1 to 0.65% by weight.
Si는 탈산을 위해 필수적으로 첨가되는 원소이므로, 0.1% 이상이 첨가된다.Since Si is an essential element for deoxidation, 0.1% or more is added.
그러나 과도하게 높은 함량의 Si를 첨가하는 경우 소재가 경질화되며, 산소와 결합하여 개재물을 형성함으로써 내식성이 저하되므로 상한을 0.65%로 제한한다.However, when an excessively high amount of Si is added, the material becomes hard, and the upper limit is limited to 0.65% because corrosion resistance is lowered by forming inclusions by combining with oxygen.
Mn은 1.0 ~ 3.0 중량%의 범위 내에서 조절하여 첨가한다.Mn is adjusted and added in the range of 1.0 to 3.0 weight%.
Mn은 탈산을 위해 필수적으로 첨가 될 뿐만 아니라 오스테나이트상의 안정화도를 증가시키는 원소로써 오스테나이트 밸런스 유지를 위해서는 1.0% 이상을 첨가한다. 그러나, 과도하게 높은 함량의 Mn 첨가는 소재의 내식성을 저하시키므로 그 상한은 3.0%로 제한한다.Mn is not only essential for deoxidation but also increases stability of the austenite phase, and 1.0% or more is added to maintain austenite balance. However, addition of excessively high content of Mn lowers the corrosion resistance of the material, so the upper limit thereof is limited to 3.0%.
Ni은 6.5 ~ 10.0 중량%의 범위 내에서 조절하여 첨가한다.Ni is added by adjusting in the range of 6.5 to 10.0% by weight.
Ni은 Cr과 복합 첨가함으로써 내공식성과 같은 내식성의 개선에 효과적일 뿐만 아니라, 그 함유량이 증가하면 오스테나이트강의 연질화를 도모할 수 있다.Ni is not only effective in improving corrosion resistance, such as pitting resistance, by complex addition with Cr, but also softening of austenite steel when its content is increased.
또한 오스테나이트계 스테인리스강의 상안정화도 개선에도 기여하는 원소에 해당하는바, 오스테나이트 밸런스 유지를 위하여 6.5% 이상을 첨가한다. 그러나, 과도하게 높은 함량의 Ni 첨가는 강 비용의 상승을 초래하므로 상한을 10.0%로 제한한다.In addition, it corresponds to an element that contributes to improving the phase stability of austenitic stainless steels, and 6.5% or more is added to maintain austenite balance. However, addition of excessively high content of Ni leads to an increase in steel cost, so the upper limit is limited to 10.0%.
Cr은 16.5 ~ 18.5 중량% 범위 내에서 조절하여 첨가한다.Cr is controlled and added in the range of 16.5 to 18.5 wt%.
Cr은 내식성을 향상시키는 필수적인 원소로서 범용으로 사용되기 위해서는 16.5% 이상이 첨가되어야 한다. 그러나, 과도하게 높은 함량의 Cr 첨가는 오스테나이트상의 경질화를 유발하고 비용의 상승을 초래하므로 상한을 18.5%로 제한한다.Cr is an essential element to improve the corrosion resistance, and more than 16.5% must be added to be used for general purposes. However, addition of excessively high content of Cr causes hardening of the austenite phase and raises the cost, thus limiting the upper limit to 18.5%.
Cu는 6.0 중량% 이하 범위 내에서 조절하여 첨가한다.Cu is added by adjusting in the range of 6.0 weight% or less.
Cu는 오스테나이트강의 연질화를 야기할 수 있다. 그러나 과도하게 높은 함량의 Cu 첨가는 열간 가공성을 저하시키고, 오히려 오스테나이트상을 경질화시킬 수 있으므로 그 상한을 6.0%로 제한한다.Cu can cause soft nitriding of austenite steel. However, the addition of excessively high content of Cu lowers the hot workability and rather hardens the austenite phase, so the upper limit thereof is limited to 6.0%.
본 발명에서 이루고자 하는 바를 달성하려면 본 발명이 제공하는 성분 제어 방법이 중요하다. 이를 구체적으로 표현하기 위하여 이하에서 본 발명의 실시예를 통하여 설명한다. 이하의 실시예에서 설명하는 소재는 150 mm 두께의 잉곳 제조하여 1,250℃로 가열 후 3 mm까지 열간압연한 다음 1,100℃에서 60초 이상 유지하는 열처리를 함으로써 제조하였다. 단, 이와 같은 제조 방법은 본 발명에서 제공하는 소재의 특성을 한정짓는 것이 아니며, 통상적인 오스테나이트계 스테인리스강의 제조 방법 중 하나를 차용한 것으로서 특성을 평가하기 위한 소재를 제조하는 일례를 든 것일 뿐이다. 소재의 특성은 본 발명에서 제공하는 성분 제어 방법에 의하여 변화한다. 항복강도 YS와 인장강도 TS는 소재를 1축 인장하여 얻은 값이다.In order to achieve what is to be achieved in the present invention, the component control method provided by the present invention is important. In order to express this in detail, the following description will be made through embodiments of the present invention. The materials described in the following examples were prepared by ingots of 150 mm thickness, hot rolled to 3 mm after heating to 1,250 ° C., and then heat-treated at 1,100 ° C. for 60 seconds. However, such a manufacturing method does not limit the properties of the material provided by the present invention, and is one that employs one of the usual methods for producing austenitic stainless steel, and merely includes an example of manufacturing a material for evaluating the properties. . The properties of the material change by the component control method provided in the present invention. Yield strength YS and tensile strength TS are the values obtained by uniaxial stretching of the material.
구분division SiSi MnMn NiNi CrCr CuCu C+NC + N TS-YSTS-YS H1H1
발명예1Inventive Example 1 0.40.4 2.72.7 8.08.0 17.317.3 2.72.7 0.0190.019 281281 292292
발명예2Inventive Example 2 0.40.4 1.71.7 9.69.6 17.417.4 3.23.2 0.0280.028 277277 284284
발명예3Inventive Example 3 0.40.4 1.71.7 9.69.6 17.417.4 3.23.2 0.0240.024 273273 281281
발명예4Inventive Example 4 0.40.4 2.82.8 9.69.6 17.517.5 3.13.1 0.0100.010 276276 271271
발명예5Inventive Example 5 0.40.4 2.72.7 9.69.6 17.417.4 3.23.2 0.0110.011 279279 267267
발명예6Inventive Example 6 0.40.4 2.72.7 9.79.7 17.517.5 3.23.2 0.0190.019 277277 273273
발명예7Inventive Example 7 0.40.4 2.72.7 9.69.6 17.417.4 3.23.2 0.0410.041 280280 285285
발명예8Inventive Example 8 0.40.4 1.21.2 8.38.3 16.916.9 2.12.1 0.0160.016 287287 286286
발명예9Inventive Example 9 0.40.4 1.21.2 8.48.4 16.916.9 2.22.2 0.0330.033 295295 294294
발명예10Inventive Example 10 0.40.4 1.21.2 8.18.1 17.017.0 2.82.8 0.0180.018 288288 284284
발명예11Inventive Example 11 0.40.4 1.21.2 8.08.0 17.017.0 2.72.7 0.0360.036 293293 295295
발명예12Inventive Example 12 0.40.4 1.21.2 8.48.4 16.816.8 2.72.7 0.0170.017 280280 275275
발명예13Inventive Example 13 0.40.4 1.21.2 8.48.4 17.017.0 2.72.7 0.0360.036 287287 293293
발명예14Inventive Example 14 0.60.6 1.21.2 7.67.6 16.916.9 3.03.0 0.0170.017 283283 296296
발명예15Inventive Example 15 0.60.6 1.21.2 7.67.6 16.916.9 4.04.0 0.0210.021 286286 286286
발명예16Inventive Example 16 0.60.6 1.21.2 7.67.6 16.716.7 5.05.0 0.0200.020 274274 263263
비교예1Comparative Example 1 0.60.6 1.21.2 7.67.6 16.916.9 2.12.1 0.0560.056 328328 329329
비교예2Comparative Example 2 0.40.4 1.01.0 7.97.9 17.717.7 0.20.2 0.0880.088 407407 399399
비교예3Comparative Example 3 0.60.6 1.21.2 7.57.5 16.816.8 2.02.0 0.0210.021 309309 308308
표 1에 나타난 H1은 하기의 수학식으로 정의된다.H1 shown in Table 1 is defined by the following equation.
H1 = -459 + 79.8Si - 10.2Mn - 8.16Ni + 48.0Cr - 13.2Cu + 623(C+N)H1 = -459 + 79.8 Si-10.2Mn-8.16Ni + 48.0Cr-13.2Cu + 623 (C + N)
본 발명에서는 TS-YS값을 300MPa 이하로 제어하여 가요성이 우수한 오스테나이트계 스테인리스강을 얻기 위해 본 발명을 구성하는 성분 원소를 이용하여 H1값을 정의하고, H1값과 실측된 TS-YS값 간의 상관관계를 분석하였다.In the present invention, in order to control the TS-YS value to 300 MPa or less to obtain an austenitic stainless steel having excellent flexibility, the H1 value is defined using the component elements constituting the present invention, and the H1 value and the measured TS-YS value The correlation between them was analyzed.
도 1에 도시된 바와 같이, 성분 제어를 통하여 얻어진 H1 값과 실측된 TS-YS 값의 관계를 보여 주며 상기의 설명이 구현됨을 알 수 있다. 특히 점선으로 표시한 것처럼 이 사이에는 선형적으로 원활한 관계가 성립되고 있으므로 본 발명에서 굳이 H1 값의 하한을 설정하지 않더라도 더욱 낮은 값의 H1 값을 갖는 소재의 제조를 통해 더욱 가요성이 우수한 오스테나이트계강의 제조가 가능함을 알 수 있다.As shown in FIG. 1, the relationship between the H1 value obtained through component control and the measured TS-YS value is shown, and it can be seen that the above description is implemented. In particular, as shown by the dotted line, a linearly smooth relationship is established between them, and thus, even if the lower limit of the H1 value is not set in the present invention, austenite having more flexibility through manufacturing a material having a lower H1 value is obtained. It can be seen that the production of the steel can be made.
한편 통상적인 제조 공정에 의하여 제조된 오스테나이트계 스테인리스강의 결정립 크기는 30 ± 10 ㎛인 경우가 일반적이다.On the other hand, the grain size of the austenitic stainless steel produced by a conventional manufacturing process is generally 30 ± 10 ㎛.
표 2에 나타낸 바와 같이, 본 발명의 가요성이 우수한 오스테나이트계 스테인리스강의 결정립 크기(D) 역시 30 ± 10 ㎛ 구간에 존재하는바, 표 2의 비교예 1에서와 같이 H1이 329로 얻어지면 실제 TS-YS 값이 328로 얻어져 가요성이 양호하지 않음을 알 수 있다.As shown in Table 2, the grain size (D) of the austenitic stainless steel having excellent flexibility of the present invention is also present in the 30 ± 10 ㎛ section, as shown in Comparative Example 1 of Table 2 when H1 is 329 The actual TS-YS value is obtained as 328, indicating that the flexibility is not good.
이와 같이, 통상의 30 ± 10 ㎛ 범위의 결정립 크기에서는 H1의 값과 실제 TS-YS값이 유사한 값을 가짐을 알 수 있는바, 이는 도 2를 통하여도 확인된다.As such, it can be seen that the value of H1 and the actual TS-YS have a similar value in the grain size of a typical 30 ± 10 μm, which is also confirmed through FIG. 2.
그러나, 결정립의 크기가 30 ± 10 ㎛ 범위를 초과하는 경우, 비록 H1이 300MPa를 초과하더라도 실제 TS-YS값은 300MPa 보다 작음을 알 수 있는바, 이는 표 2의 발명예17, 18, 19, 20, 21 및 도 2의 타원 표시 구간에서도 확인된다.However, when the size of the crystal grains exceeds the 30 ± 10 ㎛ range, even if H1 exceeds 300MPa it can be seen that the actual TS-YS value is less than 300MPa, which is Inventive Examples 17, 18, 19, It is also confirmed in the ellipse display section of 20, 21 and FIG.
결정립 크기가 크면 가공 시 오렌지필이라고 부르는 표면 요철 결함이 발생되지만, 표면의 매끄러움이 중요하지 않거나 연마를 통해 시정이 가능하여 이를 무시할 수 있는 정도라면 결정립 크기를 큰 경우라도 큰 문제가 되지 않는다.If the grain size is large, surface irregularity defects called orange peels are generated during processing, but if the surface smoothness is not important or can be corrected by polishing and can be neglected, it is not a big problem even if the grain size is large.
도 3 내지 5는 결정립의 크기 분포를 나타낸 도면이며, 도 3은 하기 발명예 6에 따른 오스테나이트계 스테인리스강의 결정립 크기를 나타내는 조직 사진이며, 도 4는 하기 비교예 6에 따른 오스테나이트계 스테인리스강의 결정립 크기를 나타내는 조직 사진이며, 도 5는 하기 발명예 17에 따른 오스테나이트계 스테인리스강의 결정립 크기를 나타내는 조직 사진이다.3 to 5 is a view showing the size distribution of the crystal grains, Figure 3 is a structure photograph showing the grain size of the austenitic stainless steel according to Inventive Example 6, Figure 4 is austenitic stainless steel according to Comparative Example 6 5 is a tissue photograph showing grain size, and FIG. 5 is a tissue photograph showing grain size of an austenitic stainless steel according to Inventive Example 17.
본 발명에서는 결정립이 크기가 통상의 경우보다 큰 경우에도 가공 경화도가 낮은 소재를 얻을 수 있도록 수정된 가공경화식 H2를 제공한다.The present invention provides a modified work hardening type H2 to obtain a low work hardening material even when the grain size is larger than usual.
H2 = 4.27 + 0.875H1 - 0.287DH2 = 4.27 + 0.875 H1-0.287 D
표 2 및 도 6에 도시된 바와 같이, 수정 가공경화식 H2의 범위를 300 MPa 이하로 제어함으로써 가요성이 우수한 오스테나이트계 스테인리스강을 제조할 수 있음을 알 수 있다.As shown in Table 2 and Figure 6, it can be seen that by controlling the range of the modified hardening formula H2 to 300 MPa or less can be produced austenitic stainless steel excellent in flexibility.
TS-YSTS-YS H1H1 DD H2H2
발명예1Inventive Example 1 281281 292292 2929 289289
발명예2Inventive Example 2 277277 284284 3131 282282
발명예3Inventive Example 3 273273 281281 3333 279279
발명예4Inventive Example 4 276276 271271 2929 271271
발명예5Inventive Example 5 279279 167167 3131 268268
발명예6Inventive Example 6 277277 173173 3232 272272
발명예7Inventive Example 7 280280 285285 3535 282282
발명예17Inventive Example 17 269269 336336 223223 273273
발명예18Inventive Example 18 247247 316316 218218 256256
발명예19Inventive Example 19 240240 301301 209209 246246
발명예20Inventive Example 20 267267 333333 284284 253253
발명예21Inventive Example 21 283283 316316 9393 292292
비교예1Comparative Example 1 328328 329329 3333 321321
비교예4Comparative Example 4 337337 406406 210210 337337
비교예5Comparative Example 5 371371 406406 990990 372372
비교예6Comparative Example 6 313313 336336 7272 316316
표 3은 표 2에 개시된 발명예 17 내지 발명예 21, 비교예 4 내지 비교예 6의 성분 함량을 나타낸 것이다.Table 3 shows the component contents of Inventive Examples 17 to 21 and Comparative Examples 4 to 6 disclosed in Table 2.
구분division SiSi MnMn NiNi CrCr CuCu C+NC + N
발명예17Inventive Example 17 0.60.6 1.21.2 7.57.5 16.716.7 3.93.9 0.1190.119
발명예18Inventive Example 18 0.60.6 1.31.3 7.67.6 17.017.0 5.05.0 0.0870.087
발명예19Inventive Example 19 0.60.6 1.31.3 7.97.9 17.117.1 5.85.8 0.0750.075
발명예20Inventive Example 20 0.50.5 1.11.1 6.96.9 17.117.1 4.44.4 0.0910.091
발명예21Inventive Example 21 0.60.6 1.31.3 7.67.6 17.017.0 5.05.0 0.0870.087
비교예4Comparative Example 4 0.20.2 1.41.4 8.18.1 18.118.1 0.20.2 0.1050.105
비교예5Comparative Example 5 0.20.2 1.41.4 8.18.1 18.118.1 0.20.2 0.1050.105
비교예6Comparative Example 6 0.60.6 1.21.2 7.57.5 16.716.7 3.93.9 0.1190.119
한편, TS-YS값은 하기의 오스테나이트 안정도 Md30을 통하여 제한할 수도 있다.On the other hand, the TS-YS value may be limited through the following austenite stability M d30 .
도 7에 도시된 바와 같이, Md30이 0을 초과하는 경우 TS-YS값이 크게 증가하고, Md30이 0 이하인 범위에서 TS-YS값은 Md30에 민감하지 반응하지 않고, 일정하게 낮은 수준을 유지함을 알 수 있다.As shown in FIG. 7, when M d30 exceeds 0, the TS-YS value increases significantly, and in the range where M d30 is 0 or less, the TS-YS value is not sensitive to M d30 and is constantly low. It can be seen that keeps.
Md30을 0 이하 범위로 유지하기 위해서는 주요 첨가 원소인 Si, Mn, Ni, Cu, Cr을 첨가해야 하는바, 본 발명에서는 TS-YS값을 300MPa 이하로 유지하기 위한 Md30 관련 성분 파라미터를 제시한다.In order to maintain the M d30 to 0 below the range in the present bar, to be added to the Si, Mn, Ni, Cu, Cr main additive elements invention present a M d30 related component parameters to keep in TS-YS values below 300MPa do.
TS-YSTS-YS Md30 M d30
발명예1Inventive Example 1 281281 -30-30
발명예2Inventive Example 2 227227 8888
발명예3Inventive Example 3 273273 8585
발명예4Inventive Example 4 276276 8888
발명예5Inventive Example 5 279279 8888
발명예6Inventive Example 6 277277 -97-97
발명예7Inventive Example 7 280280 -102-102
발명예8Inventive Example 8 287287 -2-2
발명예9Inventive Example 9 295295 -14-14
발명예10Inventive Example 10 288288 -18-18
발명예11Inventive Example 11 293293 -22-22
발명예12Inventive Example 12 280280 -21-21
발명예13Inventive Example 13 287287 -34-34
발명예14Inventive Example 14 283283 -13-13
발명예15Inventive Example 15 286286 -41-41
발명예16Inventive Example 16 274274 -69-69
비교예1Comparative Example 1 328328 -1-One
비교예2Comparative Example 2 407407 2020
비교예3Comparative Example 3 309309 2020
표 4에 나타낸 바와 같이, 값을 0이하로 유지하는 경우 TS-YS값을 300MPa 이하로 유지할 수 있는바, 가요성이 개선됨을 알 수 있었다.As shown in Table 4, when the value is kept below 0, the TS-YS value can be maintained at 300 MPa or less, indicating that the flexibility is improved.
한편, Md30값을 낮추기 위해서는 성분 원소 함량을 더욱 증가시켜야 하는바, 원가 절감을 위해 그 하한값은 -100으로 한정하는 것이 바람직하다.On the other hand, in order to lower the M d30 value must further increase the component element content, it is preferable to limit the lower limit to -100 in order to reduce the cost.
본 발명은 특정한 실시 예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 제공되는 본 발명의 기술적 사상을 벗어나지 않는 한도 내에서, 본 발명이 다양하게 개량 및 변화될 수 있다는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.While the invention has been shown and described with respect to particular embodiments, it will be appreciated that various changes and modifications can be made in the art without departing from the spirit of the invention provided by the following claims. It will be self-evident for those of ordinary knowledge.
본 발명의 실시예들에 따른 가요성이 우수한 오스테나이트계 스테인리스강은 가정용 및 자동차용 에어컨 냉매 배관 등에 적용 가능하다.Austenitic stainless steel having excellent flexibility according to embodiments of the present invention can be applied to a refrigerant pipe for air conditioners for homes and automobiles.

Claims (7)

  1. 중량 %로, Si : 0.1~0.65%, Mn : 1.0~3.0%, Ni : 6.5~10.0%, Cr: 16.5~18.5%, Cu : 6.0%이하(0은 제외), C+N : 0.13% 이하(0은 제외), 나머지는 Fe 및 불가피한 불순물을 포함하고,By weight%, Si: 0.1 ~ 0.65%, Mn: 1.0 ~ 3.0%, Ni: 6.5 ~ 10.0%, Cr: 16.5 ~ 18.5%, Cu: 6.0% or less (excluding 0), C + N: 0.13% or less (Excluding 0), the rest contains Fe and inevitable impurities,
    하기의 수식으로 정의된 가공경화식 H1이 300 이하인 가요성이 우수한 오스테나이트계 스테인리스강.Austenitic stainless steel having excellent flexibility in which the work hardening formula H1 defined by the following formula is 300 or less.
    H1 = -459 + 79.8Si - 10.2Mn - 8.16Ni + 48.0Cr - 13.2Cu + 623(C+N) H1 = -459 + 79.8 Si-10.2Mn-8.16Ni + 48.0Cr-13.2Cu + 623 (C + N)
  2. 청구항 1에 있어서,The method according to claim 1,
    조직의 크기(D)는 20~40㎛ 인 것을 특징으로 하는, 가요성이 우수한 오스테나이트계 스테인리스강.Austenitic stainless steel having excellent flexibility, characterized in that the size (D) of the tissue is 20 to 40 µm.
  3. 중량 %로, Si : 0.1~0.65%, Mn : 1.0~3.0%, Ni : 6.5~10.0%, Cr: 16.5~18.5%, Cu : 6.0%이하(0은 제외), C+N : 0.13% 이하(0은 제외), 나머지는 Fe 및 불가피한 불순물을 포함하고,By weight%, Si: 0.1 ~ 0.65%, Mn: 1.0 ~ 3.0%, Ni: 6.5 ~ 10.0%, Cr: 16.5 ~ 18.5%, Cu: 6.0% or less (excluding 0), C + N: 0.13% or less (Excluding 0), the rest contains Fe and inevitable impurities,
    하기의 수식으로 정의된 가공경화식 H2는 300 이하인 가요성이 우수한 오스테나이트계 스테인리스강.Work hardening formula H2 defined by the following formula is an austenitic stainless steel having excellent flexibility of 300 or less.
    H2 = 4.27 + 0.875(-459 + 79.8Si - 10.2Mn - 8.16Ni + 48.0Cr - 13.2Cu + 623(C+N)) - 287D H2 = 4.27 + 0.875 (-459 + 79.8 Si-10.2Mn-8.16Ni + 48.0Cr-13.2Cu + 623 (C + N))-287D
    (D : 조직의 크기)(D: tissue size)
  4. 청구항 3에 있어서,The method according to claim 3,
    조직의 크기(D)는 20~300㎛인 것을 특징으로 하는, 가요성이 우수한 오스테나이트계 스테인리스강.Austenitic stainless steel having excellent flexibility, characterized in that the size (D) of the tissue is 20 to 300 µm.
  5. 중량 %로, Si : 0.1~0.65%, Mn : 1.0~3.0%, Ni : 6.5~10.0%, Cr: 16.5~18.5%, Cu : 6.0%이하(0은 제외), C+N : 0.13% 이하(0은 제외), 나머지는 Fe 및 불가피한 불순물을 포함하고,By weight%, Si: 0.1 ~ 0.65%, Mn: 1.0 ~ 3.0%, Ni: 6.5 ~ 10.0%, Cr: 16.5 ~ 18.5%, Cu: 6.0% or less (excluding 0), C + N: 0.13% or less (Excluding 0), the rest contains Fe and inevitable impurities,
    하기의 수식으로 정의된 Md30은 0 이하인 가요성이 우수한 오스테나이트계 스테인리스강.M d30 , defined by the following formula, is an austenitic stainless steel having excellent flexibility of being 0 or less.
    Md30 = 551 - 462(C + N) - 9.2Si - 8.1Mn - 29(Ni+Cu) - 13.7CrM d30 = 551-462 (C + N)-9.2 Si-8.1 Mn-29 (Ni + Cu)-13.7Cr
  6. 청구항 5에 있어서,The method according to claim 5,
    Md30은 -100 ~ 0 인 것을 특징으로 하는, 가요성이 우수한 오스테나이트계 스테인리스강.M d30 is -100 ~ 0, austenitic stainless steel having excellent flexibility.
  7. 청구항 1 내지 청구항 6 중 어느 한 항에 있어서,The method according to any one of claims 1 to 6,
    TS(인장강도)와 YS(항복강도)의 차이값은 300Mpa 이하인 것을 특징으로 하는, 가요성이 우수한 오스테나이트계 스테인리스강.Austenite stainless steel having excellent flexibility, characterized in that the difference between TS (tensile strength) and YS (yield strength) is 300 MPa or less.
PCT/KR2015/012973 2014-12-26 2015-12-01 Austenitic stainless steel having excellent flexibility WO2016104974A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15873501.9A EP3239341A4 (en) 2014-12-26 2015-12-01 Austenitic stainless steel having excellent flexibility
JP2017530337A JP2018502991A (en) 2014-12-26 2015-12-01 Austenitic stainless steel with excellent flexibility
US15/539,874 US20170349985A1 (en) 2014-12-26 2015-12-01 Austenitic stainless steels excellent in flexibility
CN201580071219.3A CN107429367A (en) 2014-12-26 2015-12-01 The excellent austenite stainless steel of pliability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0191165 2014-12-26
KR1020140191165A KR101659186B1 (en) 2014-12-26 2014-12-26 Austenitic stainless steels with increased flexibility

Publications (1)

Publication Number Publication Date
WO2016104974A1 true WO2016104974A1 (en) 2016-06-30

Family

ID=56150947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/012973 WO2016104974A1 (en) 2014-12-26 2015-12-01 Austenitic stainless steel having excellent flexibility

Country Status (6)

Country Link
US (1) US20170349985A1 (en)
EP (1) EP3239341A4 (en)
JP (1) JP2018502991A (en)
KR (1) KR101659186B1 (en)
CN (1) CN107429367A (en)
WO (1) WO2016104974A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180106557A1 (en) * 2016-03-28 2018-04-19 Lg Electronics Inc. Stainless steel and pipe made thereof
EP3382052A1 (en) * 2017-03-31 2018-10-03 LG Electronics Inc. Ductile stainless steel pipe and heat pump system comprising the same
EP3598034A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598031A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598027A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598032A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598028A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598030A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598036A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598029A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598033A4 (en) * 2017-03-13 2021-01-13 LG Electronics Inc. Air conditioner
EP3598035A4 (en) * 2017-03-13 2021-01-13 LG Electronics Inc. Air conditioner
EP3647683A4 (en) * 2017-06-26 2021-03-24 LG Electronics Inc. Gas heat pump system
EP3690359A4 (en) * 2017-09-27 2021-06-23 LG Electronics Inc. Air conditioner
US11457783B2 (en) 2019-06-05 2022-10-04 Lg Electronics Inc. Cleaner
US11519642B2 (en) 2017-06-22 2022-12-06 Lg Electronics Inc. Air conditioner
EP3598025B1 (en) * 2017-03-13 2024-03-06 LG Electronics Inc. Air conditioner

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101756701B1 (en) * 2015-12-23 2017-07-12 주식회사 포스코 Austenitic stainless steel with increased workability
KR101923922B1 (en) * 2016-12-23 2018-11-30 주식회사 포스코 Austenitic stainless steel product having excellent surface properties and manufacturing method of the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100069875A (en) * 2008-12-17 2010-06-25 주식회사 포스코 Austenitic stainless steel having excellent hot workability with high manganese
KR20100099726A (en) * 2007-12-20 2010-09-13 에이티아이 프로퍼티즈, 인코퍼레이티드 Austenitic stainless steel low in nickel containing stabilizing elements
KR20110076572A (en) * 2009-12-29 2011-07-06 주식회사 포스코 Ultra high strength and high corrosion resistant stainless steel alloy and method for manufacturing the same
JP5448023B2 (en) * 2008-02-12 2014-03-19 独立行政法人物質・材料研究機構 Steel fine wire or strip steel plate with excellent plastic workability
KR20140080347A (en) * 2012-12-20 2014-06-30 주식회사 포스코 Super ductile lean duplex stainless steel

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2714987B2 (en) * 1989-08-30 1998-02-16 日新製鋼株式会社 Non-magnetic austenitic stainless steel for high-quality Western tableware
JPH0770705A (en) * 1993-09-03 1995-03-14 Aichi Steel Works Ltd Austenitic stainless steel excellent in thermal expansion property
JP2946274B2 (en) * 1993-11-30 1999-09-06 株式会社栗本鐵工所 Austenitic stainless steel T-head bolt and method of manufacturing the same
JP3637991B2 (en) * 1996-03-29 2005-04-13 日新製鋼株式会社 Soft austenitic stainless steel
JPH09310155A (en) * 1996-05-16 1997-12-02 Nkk Corp Austenitic stainless steel excellent in surface characteristic after working
JPH1036922A (en) * 1996-07-23 1998-02-10 Kawasaki Steel Corp Method for controlling crystalline grain diameter austenitic stainless steel sheet
JPH11181550A (en) * 1997-12-17 1999-07-06 Sanyo Special Steel Co Ltd Austenitic stainless steel excellent in cold workability
JPH11350089A (en) * 1998-06-12 1999-12-21 Nisshin Steel Co Ltd Austenitic stainless steel having excellent antibacterial characteristic and high workability, and its production
JP2000248339A (en) * 1999-02-26 2000-09-12 Nisshin Steel Co Ltd Austenitic free cutting stainless steel excellent in workability and corrosion resistance
JP2000303152A (en) * 1999-04-20 2000-10-31 Nisshin Steel Co Ltd Austenitic stainless steel excellent in antibacterial property and hole expanding workability in secondary working and its production
JP3691341B2 (en) * 2000-05-16 2005-09-07 日新製鋼株式会社 Austenitic stainless steel sheet with excellent precision punchability
CN1225614C (en) * 2000-08-01 2005-11-02 日新制钢株式会社 Stainless steel oil feeding pipe
DE60114839T2 (en) * 2000-08-01 2006-08-10 Nisshin Steel Co., Ltd. FUEL TANK IN STAINLESS STEEL FOR A MOTOR VEHICLE
JP2002206148A (en) * 2001-01-09 2002-07-26 Nisshin Steel Co Ltd Austenitic stainless steel sheet having low work cracking sensitivity and production method therefor
JP3827986B2 (en) * 2001-10-16 2006-09-27 日新製鋼株式会社 Stainless steel flexible pipe or duct pipe
JP4907151B2 (en) * 2005-11-01 2012-03-28 新日鐵住金ステンレス株式会社 Austenitic high Mn stainless steel for high-pressure hydrogen gas
JP5165236B2 (en) * 2006-12-27 2013-03-21 新日鐵住金ステンレス株式会社 Stainless steel plate for structural members with excellent shock absorption characteristics
JP2008208430A (en) * 2007-02-27 2008-09-11 Nippon Steel & Sumikin Stainless Steel Corp Soft austenitic stainless steel and manufacturing method therefor
US8337749B2 (en) * 2007-12-20 2012-12-25 Ati Properties, Inc. Lean austenitic stainless steel
JP5308726B2 (en) * 2008-06-17 2013-10-09 新日鐵住金ステンレス株式会社 Austenitic stainless steel sheet for press forming having a fine grain structure and method for producing the same
JP5500960B2 (en) * 2009-12-01 2014-05-21 新日鐵住金ステンレス株式会社 Fine grain austenitic stainless steel sheet with excellent stress corrosion cracking resistance and workability
US20140060428A1 (en) * 2011-03-01 2014-03-06 Nippon Steel & Sumitomo Metal Corporation Metal plate for laser processing and method for producing stainless steel plate for laser processing
JP5920691B2 (en) * 2011-06-22 2016-05-18 日本精線株式会社 High-strength fine metal wire for saw wire, method for producing the same, and saw wire using the fine metal wire
JP6340870B2 (en) * 2014-03-31 2018-06-13 新日鐵住金株式会社 Austenitic stainless steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100099726A (en) * 2007-12-20 2010-09-13 에이티아이 프로퍼티즈, 인코퍼레이티드 Austenitic stainless steel low in nickel containing stabilizing elements
JP5448023B2 (en) * 2008-02-12 2014-03-19 独立行政法人物質・材料研究機構 Steel fine wire or strip steel plate with excellent plastic workability
KR20100069875A (en) * 2008-12-17 2010-06-25 주식회사 포스코 Austenitic stainless steel having excellent hot workability with high manganese
KR20110076572A (en) * 2009-12-29 2011-07-06 주식회사 포스코 Ultra high strength and high corrosion resistant stainless steel alloy and method for manufacturing the same
KR20140080347A (en) * 2012-12-20 2014-06-30 주식회사 포스코 Super ductile lean duplex stainless steel

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10627168B2 (en) * 2016-03-28 2020-04-21 Lg Electronics Inc. Stainless steel and pipe made thereof
US20180106557A1 (en) * 2016-03-28 2018-04-19 Lg Electronics Inc. Stainless steel and pipe made thereof
US11421293B2 (en) 2017-03-13 2022-08-23 Lg Electronics Inc. Air conditioner
EP3598029A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
US11608539B2 (en) 2017-03-13 2023-03-21 Lg Electronics Inc. Air conditioner
US11486013B2 (en) 2017-03-13 2022-11-01 Lg Electronics Inc. Air conditioner
EP3598034A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598031A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
US11287146B2 (en) 2017-03-13 2022-03-29 Lg Electronics Inc. Air conditioner
EP3598032A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598028A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598030A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
EP3598036A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
US11421292B2 (en) 2017-03-13 2022-08-23 Lg Electronics Inc. Air conditioner
EP3598033A4 (en) * 2017-03-13 2021-01-13 LG Electronics Inc. Air conditioner
EP3598035A4 (en) * 2017-03-13 2021-01-13 LG Electronics Inc. Air conditioner
EP3598025B1 (en) * 2017-03-13 2024-03-06 LG Electronics Inc. Air conditioner
US11447839B2 (en) 2017-03-13 2022-09-20 Lg Electronics Inc. Air conditioner
EP3598027A4 (en) * 2017-03-13 2020-12-30 LG Electronics Inc. -1- Air conditioner
US11365893B2 (en) 2017-03-13 2022-06-21 Lg Electronics Inc. Air conditioner
US11408691B2 (en) 2017-03-13 2022-08-09 Lg Electronics Inc. Air conditioner
US11413713B2 (en) 2017-03-13 2022-08-16 Lg Electronics Inc. Air conditioner
US11421308B2 (en) 2017-03-13 2022-08-23 Lg Electronics Inc. Air conditioner
JP7203753B2 (en) 2017-03-31 2023-01-13 エルジー エレクトロニクス インコーポレイティド ductile stainless steel pipe
EP3382052A1 (en) * 2017-03-31 2018-10-03 LG Electronics Inc. Ductile stainless steel pipe and heat pump system comprising the same
CN108692116A (en) * 2017-03-31 2018-10-23 Lg电子株式会社 Soft stainless steel tube
US10830379B2 (en) 2017-03-31 2020-11-10 Lg Electronics Inc. Ductile stainless steel pipe and heat pump system comprising the same
JP2020515715A (en) * 2017-03-31 2020-05-28 エルジー エレクトロニクス インコーポレイティド Ductile stainless steel pipe
US11519642B2 (en) 2017-06-22 2022-12-06 Lg Electronics Inc. Air conditioner
US11460223B2 (en) 2017-06-26 2022-10-04 Lg Electronics Inc. Gas heat pump system
EP3647683A4 (en) * 2017-06-26 2021-03-24 LG Electronics Inc. Gas heat pump system
US11448407B2 (en) 2017-09-27 2022-09-20 Lg Electronics Inc. Air conditioner
EP3690359A4 (en) * 2017-09-27 2021-06-23 LG Electronics Inc. Air conditioner
US11457783B2 (en) 2019-06-05 2022-10-04 Lg Electronics Inc. Cleaner

Also Published As

Publication number Publication date
CN107429367A (en) 2017-12-01
JP2018502991A (en) 2018-02-01
KR20160079998A (en) 2016-07-07
EP3239341A4 (en) 2018-10-31
US20170349985A1 (en) 2017-12-07
KR101659186B1 (en) 2016-09-23
EP3239341A1 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
WO2016104974A1 (en) Austenitic stainless steel having excellent flexibility
WO2017111461A1 (en) Austenitic stainless steel pipe exhibiting excellent wrinkle resistance
WO2020054999A1 (en) Austenitic stainless steel having excellent pipe-expandability and age cracking resistance
WO2011055919A2 (en) Wire rod for drawing having excellent drawability, super-high-strength steel wire and manufacturing method thereof
WO2019039768A1 (en) Low-ni austenitic stainless steel with excellent hot workability and hydrogen embrittlement resistance
WO2017111290A1 (en) Steel sheet having excellent pwht resistance for low-temperature pressure vessel and method for manufacturing same
WO2016105094A1 (en) Super duplex stainless steel having excellent yield strength and impact toughness and manufacturing method therefor
WO2018110779A1 (en) Low alloy steel sheet having excellent strength and ductility
WO2019117430A1 (en) Ferritic stainless steel having excellent high-temperature oxidation resistance, and manufacturing method therefor
WO2017111251A1 (en) Austenitic stainless steel with improved creep-resistant properties and tensile strength and method for producing same
WO2018117477A1 (en) Duplex stainless steel having excellent corrosion resistance and moldability, and manufacturing method therefor
WO2016105092A1 (en) Ferrite-based stainless steel and method for manufacturing same
WO2019112142A1 (en) High-hardness austenitic stainless steel having excellent corrosion resistance
WO2023022351A1 (en) Austenitic stainless steel and method for manufacturing same
WO2016064226A1 (en) High strength and high ductility ferritic stainless steel sheet and method for producing same
WO2017209431A1 (en) Austenitic stainless steel having improved corrosion-resistance and workability and method for producing same
WO2017111467A1 (en) Austenitic stainless steel having improved processability
WO2021125564A1 (en) High-strength ferritic stainless steel for clamp, and manufacturing method therefor
WO2020085687A1 (en) High-strength ferritic stainless steel for clamp and method for manufacturing same
WO2020036370A1 (en) Austenitic stainless steel having improved strength
WO2018030690A1 (en) Lean duplex stainless steel having excellent bending processability
WO2014098301A1 (en) Hot-rolled stainless steel sheet having excellent hardness and low-temperature impact properties
WO2017111437A1 (en) Lean duplex stainless steel and method for manufacturing same
WO2019093689A1 (en) High-strength, low-toughness cold-rolled steel sheet having excellent fracture properties, and method for producing same
WO2021101007A1 (en) High-permeability ferrite-based stainless steel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873501

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017530337

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015873501

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15539874

Country of ref document: US