JPH11350089A - Austenitic stainless steel having excellent antibacterial characteristic and high workability, and its production - Google Patents

Austenitic stainless steel having excellent antibacterial characteristic and high workability, and its production

Info

Publication number
JPH11350089A
JPH11350089A JP17981898A JP17981898A JPH11350089A JP H11350089 A JPH11350089 A JP H11350089A JP 17981898 A JP17981898 A JP 17981898A JP 17981898 A JP17981898 A JP 17981898A JP H11350089 A JPH11350089 A JP H11350089A
Authority
JP
Japan
Prior art keywords
weight
stainless steel
less
workability
austenitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17981898A
Other languages
Japanese (ja)
Inventor
Katsumi Ishii
勝己 石井
Satoshi Suzuki
聡 鈴木
Katsuhisa Miyakusu
克久 宮楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP17981898A priority Critical patent/JPH11350089A/en
Publication of JPH11350089A publication Critical patent/JPH11350089A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an austenitic antibacterial stainless steel capable of maintaining superior antibacterial characteristic over a long period and excellent in workability. SOLUTION: The stainless steel has a composition containing, by weight, <=0.1% C, <=2% Si, <=5% Mn, 10-30% Cr, 5-15% Ni, and 1.0-5.0% Cu and also has a structure where a secondary phase composed essentially of Cu is dispersed in a proportion of >=0.2 vol.% in a matrix. Moreover, the value of ΔD, represented by ΔD=76-90(C+N)-7Ni-0.2Cr-Si-2Mn, is regulated to 0-25. The secondary phase composed essentially of Cu is dispersedly precipitated in the matrx by subjecting the austenitic stainless steel having the prescribed composition to heat treatment at 500-900 deg.C one or more times in the course between the completion of hot rolling and the final product.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は厨房機器、電気機
器、建築材料、機械機器、化学機器等の広範囲な分野に
おいて、抗菌性が必要とされる用途だけでなく、張り出
しおよび深絞り成形を伴う高加工用途に適したオーステ
ナイト系ステンレス鋼及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates not only to applications requiring antibacterial properties but also to overhang and deep drawing in a wide range of fields such as kitchen appliances, electric appliances, building materials, mechanical appliances and chemical appliances. The present invention relates to an austenitic stainless steel suitable for high working applications and a method for producing the same.

【0002】[0002]

【従来の技術】厨房機器、病院等で使用されている各種
機材や、バス、電車等の輸送機関の手摺り用パイプ等で
は、一般環境における耐食性が要求されるため、SUS
304に代表されるステンレス鋼が主として使用されて
いる。しかし、黄色ブドウ球菌等による院内感染が問題
となってきている昨今、バス、電車等の不特定多数の人
間が利用する環境においても衛生面の向上が求められて
いる。これに伴って、各種機械、器具に使用される材料
としても、一般構造材としての特性に止まらず、定期的
な消毒等の感染防止を図る必要がない抗菌性等の機能を
付与したメンテナンスフリーの材料が望まれている。抗
菌性を付与した材料としては、特開平5−22820号
公報、特開平6−10191号公報等で開示されている
ように、有機皮膜やめっきによる抗菌コートが一般的で
あった。
2. Description of the Related Art Corrosion resistance in general environments is required for various equipment used in kitchen equipment, hospitals, etc., and pipes for handrails of transportation means such as buses and trains.
Stainless steel represented by 304 is mainly used. However, in recent years, in-hospital infections caused by Staphylococcus aureus and the like have become a problem, and there is a demand for improved hygiene even in environments used by unspecified large numbers of people, such as buses and trains. Along with this, the materials used for various machines and instruments are not limited to the properties of general structural materials, and are maintenance-free with functions such as antibacterial properties that do not require regular infection prevention such as disinfection. Material is desired. As a material imparted with antibacterial properties, an antibacterial coat by an organic film or plating is generally used as disclosed in JP-A-5-22820 and JP-A-6-10191.

【0003】[0003]

【発明が解決しようとする課題】しかし、抗菌コート
は、皮膜の消失に応じて抗菌性が低下する欠点がある。
また、皮膜の溶解、摩耗、欠損等に起因して外観が劣化
するとともに、抗菌作用が低下する場合もある。また、
一般にAg、Cu等の金属元素は抗菌作用を発揮するこ
とが知られているが、Agは貴金属元素で非常に高価で
あり、工業的に生産する場合の添加元素として不適と考
えた。他方、CuはAgに比較して安価な元素であるこ
と、最近問題となっているトランプエレメントとしての
屑鉄中の残存Cuにも対応でき、原料として屑鉄のリサ
イクルが比較的に容易にできることから、ステンレス鋼
等の材料に添加して抗菌性を付与することが検討されて
きた。
However, the antibacterial coat has a drawback that the antibacterial property is reduced as the film disappears.
In addition, the appearance may be degraded due to dissolution, abrasion, chipping or the like of the film, and the antibacterial effect may be reduced. Also,
Generally, metal elements such as Ag and Cu are known to exhibit an antibacterial action, but Ag is a noble metal element, which is very expensive, and is considered to be unsuitable as an additive element for industrial production. On the other hand, Cu is an inexpensive element as compared with Ag, and can cope with the residual Cu in scrap iron as a playing card element, which has recently become a problem, and can easily recycle scrap iron as a raw material. It has been studied to add antimicrobial properties to materials such as stainless steel.

【0004】本発明者らも、Cu添加による抗菌性の改
善を種々検討し、ステンレス鋼表面のCu濃度を高める
ことによって抗菌性が改善されることを見い出し、特開
平8−53738号、特開平8−225895号で提案
した。また、本発明に先立ちCuの作用をさらに高める
べく提案した特開平9−176800号に抗菌性を有す
るオーステナイト系ステンレス鋼を開示している。しか
し、Cuを添加したオーステナイト系ステンレス鋼で
は、抗菌性を発現するために第2相としてCuリッチ相
を析出させるため、Cu無添加のオーステナイト系ステ
ンレス鋼に比べて、第2相として析出したCuリッチ相
が加工性、特に張出し成形、絞り加工性を低下させると
いう問題点があった。本発明は優れた抗菌性能を具備
し、加えて優れた高加工性をオーステナイト系ステンレ
ス鋼に付与することを目的とする。
The present inventors have also studied various improvements in antibacterial properties by adding Cu, and found that the antibacterial properties can be improved by increasing the Cu concentration on the surface of stainless steel, as disclosed in JP-A-8-53738 and JP-A-8-53738. No. 8-225895. Further, prior to the present invention, Japanese Unexamined Patent Publication No. 9-176800, which has been proposed to further enhance the action of Cu, discloses an austenitic stainless steel having antibacterial properties. However, in an austenitic stainless steel to which Cu is added, a Cu-rich phase is precipitated as a second phase in order to exhibit antibacterial properties. There is a problem that the rich phase deteriorates the workability, particularly stretch forming and drawing workability. An object of the present invention is to provide an austenitic stainless steel having excellent antibacterial performance and additionally excellent workability.

【0005】[0005]

【課題を解決するための手段】本発明のオーステナイト
系ステンレス鋼は、目的を達成するため、C:0.1重
量%以下、Si:2重量%以下、Mn:5重量%以下、
Cr:10〜30重量%、Ni:5〜15重量%、C
u:1.0〜5.0重量%含む組成を持ち、Cuを主体
とする第2相がマトリックス中に0.2体積%以上の割
合で分散していること、ならびに、ΔD=76−90(C+N)
−7Ni−0.2Cr−Si−2Mnで表わされるΔDが0以上、2
5以下とすることを特徴とする。このオーステナイト系
ステンレス鋼は、さらにNb:0.01〜0.50重量
%、Ti:0.02〜1重量%、Mo:2.5重量%以
下、Al:1重量%以下、Zr:1重量%以下、V:1
重量%以下、B:0.05重量5以下および希土類元素
(REM):0.05重量%以下の1種または2種類以
上を含むことができる。その場合、ΔDは76−90(C+N)
−7Ni−0.2Cr−Si−2Mn−30Nb−0.8Moで定義され、ΔD
が0以上、25以下であることを満足するよう合金成分
を設定する。Cuを主成分とする第2相は、所定組成を
持つオーステナイト系ステンレス鋼を熱間圧延後から最
終製品となるまでの間に500〜900℃の温度範囲で
熱処理を1回以上施すことにより、マトリックス中に分
散析出する。
In order to achieve the object, the austenitic stainless steel of the present invention has the following features: C: 0.1% by weight or less, Si: 2% by weight or less, Mn: 5% by weight or less,
Cr: 10 to 30% by weight, Ni: 5 to 15% by weight, C
u: having a composition containing 1.0 to 5.0% by weight, wherein the second phase mainly composed of Cu is dispersed in the matrix at a rate of 0.2% by volume or more, and ΔD = 76-90. (C + N)
ΔD represented by −7Ni−0.2Cr−Si−2Mn is 0 or more,
5 or less. This austenitic stainless steel further contains Nb: 0.01 to 0.50% by weight, Ti: 0.02 to 1% by weight, Mo: 2.5% by weight or less, Al: 1% by weight or less, Zr: 1% by weight. % Or less, V: 1
1 wt% or less, B: 0.05 wt% or less, and rare earth element (REM): 0.05 wt% or less. In that case, ΔD is 76−90 (C + N)
−7Ni−0.2Cr−Si−2Mn−30Nb−0.8Mo, ΔD
Is set to satisfy 0 to 25 inclusive. The second phase containing Cu as a main component is subjected to heat treatment at least once in a temperature range of 500 to 900 ° C. from after hot rolling the austenitic stainless steel having a predetermined composition to a final product, Disperse and precipitate in the matrix.

【0006】[0006]

【作用】 ステンレス鋼は、不動態皮膜と称されるCr
を主とする水酸化物で表面が覆われていることから、優
れた耐食性を呈する。本発明者らは、有効な抗菌性を発
現するCuをオーステナイト系ステンレス鋼に添加し、
不動態皮膜中に含まれるCu量を測定するとともに、黄
色ブドウ球菌を含む液の滴下による抗菌性を調査した。
その結果、ある程度以上のCuを含有させたステンレス
鋼は、抗菌性を備えていることが判った。しかし、鋼中
に数%以下のCuを単に固溶させただけでは、抗菌性お
よびその持続性が必ずしも十分ではない場合がある。そ
こで、さらに検討を重ねた結果、同一のCuリッチ相と
して微細にかつ均一に析出していると、使用環境におい
てCuの溶出が容易になり、抗菌性が改善されるとの知
見を得た。また、加工または使用中に表面が損耗を受け
たとしても、内部のCuリッチ相が新規表面に現れるた
め、抗菌持続性にも優れている。
[Action] Stainless steel is made of Cr, which is called a passive film.
Since the surface is covered with a hydroxide mainly composed of, a high corrosion resistance is exhibited. The present inventors added Cu exhibiting effective antibacterial properties to austenitic stainless steel,
The amount of Cu contained in the passive film was measured, and the antibacterial properties of the solution containing Staphylococcus aureus by dropping were investigated.
As a result, it was found that stainless steel containing Cu to a certain degree or more had antibacterial properties. However, simply dissolving a few percent or less of Cu in steel may not always provide sufficient antibacterial properties and its durability. Then, as a result of further study, it was found that if the same Cu-rich phase was finely and uniformly precipitated, Cu was easily eluted in a use environment, and the antibacterial property was improved. Further, even if the surface is worn during processing or use, the internal Cu-rich phase appears on the new surface, so that the antibacterial durability is excellent.

【0007】Cuリッチ相を析出させる手段としては、
Cuリッチ相が析出しやすい温度領域で時効等の等温加
熱を施すこと、徐冷により析出温度域の通過時間をでき
るだけ長くすること等が考えられ、種々の条件について
検討した結果、最終焼鈍後に500〜900℃の範囲で
時効処理すると析出が促進され、Cu添加量が低い場合
でも良好な抗菌性が得られることを見い出した。また、
Ti、Nb、Mo等の炭窒化物や析出物を形成し易い元
素を添加すると、これら析出物等の析出サイトとしてC
uリッチ相がマトリックスに均一分散し易く、抗菌性お
よび製造性が改善される。また、Cuの一部がCuリッ
チ相として析出していると、表面のCu濃度が上昇する
とともに、抗菌性も改善されることがわかった。
As means for precipitating a Cu-rich phase,
It is conceivable to perform isothermal heating such as aging in the temperature range where the Cu-rich phase is likely to precipitate, and to extend the passage time in the precipitation temperature range as much as possible by slow cooling. It has been found that aging treatment in the range of -900 ° C promotes precipitation, and that good antibacterial properties can be obtained even when the amount of Cu added is low. Also,
When elements that easily form carbonitrides and precipitates, such as Ti, Nb and Mo, are added, C
The u-rich phase is easily dispersed uniformly in the matrix, and the antibacterial property and the productivity are improved. Further, it was found that when a part of Cu was precipitated as a Cu-rich phase, the Cu concentration on the surface was increased and the antibacterial property was also improved.

【0008】しかしながら、上述の知見によって得られ
た素材では、抗菌性に優れた素材を提供することはでき
たが、Cuをマトリックス中に分散析出させるため、通
常のオーステナイト系ステンレス鋼に比較した場合、そ
の加工性とくに張出成形、絞り加工性を低下させるとい
うことがわかった。この原因として、析出したCu原子
は加工によって生じた転位の移動、伝搬時に、転位をト
ラップするのでなく、緩やかに引きずるためと考えられ
ている。そこで、オーステナイト系ステンレス鋼におい
て加工性を改善するために種々の検討を行った。一般
に、オーステナイト系ステンレス鋼において加工性を改
善する方策として、準安定オーステナイト相領域に成分
設計を行い、加工によって生じる加工誘起マルテンサイ
ト相を生成することでオーステナイト相の転位が分散さ
れ加工性が向上するいわゆるTRIP効果がある。この
作用は鋼のオーステナイト安定度によって効果が左右さ
れるが、 本発明者らがこのオーステナイト安定度に関
して調査したところ、Cuを1重量%を超えて添加して
もCu添加による加工性を阻害する作用は顕著には認め
られず、Cu以外の添加元素を規制することで従来のオ
ーステナイト系ステンレス鋼と同等の加工性が得られる
ことを見い出した。すなわち、上述のオーステナイト安
定度の指標Md30に代わるものとして、ΔD=76−90(C
+N)−7Ni−0.2Cr−Si−2Mn−30Nb−0.8Moで表わされる
ΔDが0以上、25以下となるよう合金成分を設定する
ことで良好な加工性が得られることを知見した。ΔDの
式中のNbおよびMoは任意の添加元素であり、添加し
ない場合には式中のこれらの元素の項はなくても良い。
これは、一般に加工誘起マルテンサイト相の生成にはオ
ーステナイト相およびフェライト相の生成元素のバラン
スが関与しているが、Cuが添加されることで上述のよ
うな導出式で制御できるとの知見を得た。
[0008] However, the material obtained based on the above-mentioned knowledge was able to provide a material having excellent antibacterial properties. However, since Cu was dispersed and precipitated in the matrix, it was compared with ordinary austenitic stainless steel. It has been found that the processability, particularly the stretch forming and drawing processability, is reduced. It is considered that the cause of this is that the precipitated Cu atoms do not trap the dislocations but slowly drag them during the movement and propagation of the dislocations generated by the processing. Therefore, various studies were conducted to improve the workability of austenitic stainless steel. In general, as a measure to improve the workability of austenitic stainless steel, component design is performed in the metastable austenite phase region, and the dislocation of the austenite phase is dispersed by forming the work-induced martensite phase generated by processing, improving workability. There is a so-called TRIP effect. Although this effect depends on the austenite stability of the steel, the present inventors have investigated the austenite stability and found that even if Cu is added in excess of 1% by weight, the workability due to the addition of Cu is impaired. The effect is not remarkably recognized, and it has been found that the workability equivalent to that of the conventional austenitic stainless steel can be obtained by regulating the additive elements other than Cu. That is, as an alternative to the above-described index Md30 of austenite stability, ΔD = 76−90 (C
+ N) -7Ni-0.2Cr-Si-2Mn-30Nb-0.8Mo It has been found that good workability can be obtained by setting the alloy components such that ΔD is 0 or more and 25 or less. Nb and Mo in the formula of ΔD are optional additive elements, and when not added, the terms of these elements in the formula may be omitted.
This is based on the finding that the formation of the work-induced martensite phase generally involves the balance of the elements forming the austenite phase and the ferrite phase, but can be controlled by the above-described derivation formula by adding Cu. Obtained.

【0009】以下、本発明オーステナイト系ステンレス
鋼に含まれる合金元素およびその含有量等について説明
する。 C:0.1重量%以下 Cuリッチ相の析出サイトとして有効なCr炭化物を生
成し、微細なCuリッチ相を均一分散させるために有効
な合金元素である。しかし、過剰に添加すると製造性や
耐食性を劣化させることから、C含有量の上限を0.1
重量%に規制した。 Si:2重量%以下 耐食性を改善するために有効な合金元素であり、抗菌性
を向上する作用も呈する。しかし、2重量%を超える過
剰なSi添加は製造性を劣化させる。
Hereinafter, alloying elements contained in the austenitic stainless steel of the present invention and their contents will be described. C: 0.1% by weight or less C is an alloy element effective for generating a Cr carbide effective as a precipitation site of a Cu-rich phase and uniformly dispersing a fine Cu-rich phase. However, if added in excess, the manufacturability and corrosion resistance deteriorate, so the upper limit of the C content is 0.1%.
It was restricted to wt%. Si: 2% by weight or less Si is an alloy element effective for improving corrosion resistance, and also exhibits an action of improving antibacterial properties. However, excessive Si addition exceeding 2% by weight deteriorates the productivity.

【0010】Mn:5重量%以下 製造性を改善するとともに、鋼中の有害なSをMnSと
して固定する作用を呈する。また、MnSは、Cuリッ
チ相生成の核として作用するため、微細なCuリッチ相
を析出させる。しかし、5重量%を超える多量のMn含
有は、耐食性を劣化させる。 Cr:10〜30重量% オーステナイト系ステンレス鋼の耐食性を維持するため
に必要な合金元素であり、必要な耐食性を確保する上か
ら10重量%以上のCrが要求される。しかし、30重
量%を超える多量のCrが含まれると、製造性、加工性
が劣化する。
Mn: not more than 5% by weight The effect of improving manufacturability and fixing harmful S in steel as MnS is exhibited. In addition, since MnS acts as a nucleus for generating a Cu-rich phase, it precipitates a fine Cu-rich phase. However, a large content of Mn exceeding 5% by weight deteriorates corrosion resistance. Cr: 10 to 30% by weight Cr is an alloy element necessary for maintaining the corrosion resistance of austenitic stainless steel, and 10% by weight or more of Cr is required from the viewpoint of ensuring the required corrosion resistance. However, when a large amount of Cr exceeding 30% by weight is contained, the manufacturability and workability deteriorate.

【0011】Ni:5〜15重量% オーステナイト相の安定化に重要な合金元素である。し
かし、多量添加は、高価なNiを消費し鋼材コストを上
昇させることから、Ni含有量の上限を15重量%に規
制した。 Cu:1.0〜5.0重量% および Cuリッチ相:
0.2体積%以上 本発明のステンレス鋼においても最も重要な合金元素で
あり、良好な抗菌性を維持するためには0.2体積%以
上のCuリッチ相が析出していることが必要であり、本
系のオーステナイト系ステンレス鋼で0.2体積%以上
のCuリッチ相を析出させるためにCu含有量1.0重
量%以上が要求される。しかし、5.0重量%を超える
過剰のCuを含有させると、製造性、加工性、耐食性が
劣化する。Cuリッチ相は、析出物の大きさが特に限定
されるものでものでないが、製品表面全体において均等
に抗菌性を発揮させるため、また研磨等が施された場合
にも良好な抗菌性を維持するためには、析出相が表面お
よび内部においても適宜に分散して分布していることが
好ましい。
Ni: 5 to 15% by weight An important alloying element for stabilizing the austenite phase. However, since the addition of a large amount consumes expensive Ni and raises the cost of steel materials, the upper limit of the Ni content is restricted to 15% by weight. Cu: 1.0 to 5.0% by weight and Cu rich phase:
0.2% by volume or more It is the most important alloying element in the stainless steel of the present invention. To maintain good antibacterial properties, it is necessary that 0.2% by volume or more of a Cu-rich phase is precipitated. In order to precipitate a Cu-rich phase of 0.2% by volume or more in the present austenitic stainless steel, a Cu content of 1.0% by weight or more is required. However, when an excessive amount of Cu exceeding 5.0% by weight is contained, manufacturability, workability, and corrosion resistance deteriorate. The Cu-rich phase is not particularly limited in the size of the precipitate, but exhibits good antibacterial properties evenly on the entire product surface and maintains good antibacterial properties even when polished or the like. In order to do so, it is preferable that the precipitated phase is appropriately dispersed and distributed on the surface and inside.

【0012】以下に選択元素について明記する。 Nb:0.01〜0.5重量% 必要に応じて添加する元素である。Cuリッチ相は、N
bの析出物の周囲に析出傾向を示す。そのため、Cuリ
ッチ相を均一に析出させるためには炭化物、窒化物、炭
窒化物を微細に析出させた組織が好ましい。しかし、過
剰にNbを添加すると、製造性、加工性が劣化する。こ
のようなことから、Nbを添加する場合、0.01〜
0.5重量%の範囲に含有量を調整することが好まし
い。 Ti:0.02〜1重量% 必要に応じて添加される元素であり、Nbと同様に炭窒
化物を形成し、その周囲にCuリッチ相を均一析出させ
る作用を呈する。しかし、Tiの過剰添加は、製造性や
加工性を劣化させ、製品表面に疵が発生しやすくなる。
そのため、Tiを添加する場合、その含有量を0.02
〜1重量%の範囲に設定することが好ましい。
The selected elements will be described below. Nb: 0.01 to 0.5% by weight It is an element added as needed. Cu rich phase is N
It shows a tendency to precipitate around the precipitate b. Therefore, in order to uniformly precipitate the Cu-rich phase, a structure in which carbides, nitrides, and carbonitrides are finely precipitated is preferable. However, if Nb is excessively added, the manufacturability and workability deteriorate. Therefore, when Nb is added, 0.01 to
It is preferable to adjust the content in the range of 0.5% by weight. Ti: 0.02 to 1% by weight An element that is added as necessary, and forms a carbonitride similarly to Nb, and has an effect of uniformly depositing a Cu-rich phase around the carbonitride. However, excessive addition of Ti deteriorates manufacturability and workability, and easily causes flaws on the product surface.
Therefore, when Ti is added, its content is set to 0.02
It is preferable to set it in the range of 1 to 1% by weight.

【0013】Mo:3重量%以下 必要に応じて添加される合金元素であり、耐食性を向上
させる作用を呈するとともに、Fe2Mo等の金属間化
合物として析出し、微細なCuリッチ相の核サイトとな
り析出を容易にする。また、MoおよびMoを含む化合
物は、それ自体でも抗菌性を向上させる作用を呈する。
しかし、3重量%を超える過剰のMo添加は、製造性お
よび加工性を劣化させる。 Al:1重量%以下 必要に応じて添加される合金元素であり、Moと同様に
耐食性を改善するとともに析出物を形成し、微細なCu
リッチ相の析出に有効な合金元素である。しかし、Al
の過剰添加により製造性および加工性が劣化するので、
Alを添加する場合その上限を1重量%に規制する。 Zr:1重量%以下 必要に応じて添加される合金成分であり、炭窒化物を形
成し、微細なCuリッチ相の析出を容易にする。しか
し、過剰に添加すると、製造性、加工性が劣化する。そ
のため、Zrを添加する場合、その上限を1重量%に規
制する。
Mo: 3% by weight or less Mo is an alloying element that is added as required, and has an effect of improving corrosion resistance, and precipitates as an intermetallic compound such as Fe2Mo, and becomes a core site of a fine Cu-rich phase. To facilitate. In addition, Mo and a compound containing Mo exhibit an action of improving antibacterial properties by themselves.
However, an excessive addition of Mo exceeding 3% by weight deteriorates manufacturability and processability. Al: 1% by weight or less Al is an alloying element that is added as necessary, and improves the corrosion resistance as well as Mo, forms precipitates, and produces fine Cu.
It is an alloy element effective for the precipitation of a rich phase. However, Al
Manufacturability and workability deteriorate due to excessive addition of
When adding Al, the upper limit is restricted to 1% by weight. Zr: 1% by weight or less Zr is an alloy component added as needed, forms a carbonitride, and facilitates precipitation of a fine Cu-rich phase. However, if it is added excessively, the manufacturability and workability deteriorate. Therefore, when Zr is added, the upper limit is restricted to 1% by weight.

【0014】V:1重量%以下 必要に応じて添加される合金元素であり、Zrと同様に
炭窒化物を形成し、微細なCuリッチ相の析出を容易に
する。しかし、過剰に添加すると、製造性、加工性が劣
化する。そのため、Vを添加する場合、その上限を1重
量%に規制する。 B:0.05重量%以下 必要に応じて添加される合金成分であり、熱間加工性を
改善するとともに、析出物となって母相に分散する。し
かし、過剰に添加すると熱間加工性が劣化するので、B
を添加する場合その上限を0.05重量%に規制する。 希土類元素(REM):0.05重量%以下 必要に応じて添加される合金成分であり、適量の添加で
Bと同様に熱間加工性が改善される。また、Cuリッチ
相の析出に有効な析出物となって母相に分散する。しか
し、過剰に添加すると熱間加工性が劣化するので、RE
Mを添加する場合その上限を0.05重量%に規制す
る。
V: 1% by weight or less An alloying element added as necessary, forms a carbonitride like Zr, and facilitates precipitation of a fine Cu-rich phase. However, if it is added excessively, the manufacturability and workability deteriorate. Therefore, when V is added, the upper limit is regulated to 1% by weight. B: 0.05% by weight or less An alloy component that is added as necessary, improves hot workability, and is dispersed as a precipitate in the matrix. However, excessive workability deteriorates hot workability.
Is added, the upper limit is regulated to 0.05% by weight. Rare earth element (REM): 0.05% by weight or less It is an alloy component added as needed. Hot workability is improved as in B by adding an appropriate amount. Further, it becomes a precipitate effective for the precipitation of the Cu-rich phase and is dispersed in the mother phase. However, if added excessively, the hot workability deteriorates.
When M is added, the upper limit is regulated to 0.05% by weight.

【0015】熱処理温度:500〜900℃ Cuリッチ相を析出させるためには、500〜900℃
の時効処理が有効である。時効処理温度が低くなるほ
ど、母相中の固溶Cu量が少なくなり、Cuリッチ相の
析出量が多くなる。しかし、低すぎる時効処理温度で
は、拡散速度が遅くなり、析出量が逆に減少する。温度
条件を変えて種々の時効処理を施すことが工業的に有効
な温度範囲であることが判った。この時効処理は、熱延
後から最終製品となるまでのいずれの段階で施しても有
効で、冷延板に施しても加工品でもよい。
Heat treatment temperature: 500-900 ° C. In order to precipitate a Cu-rich phase, 500-900 ° C.
Is effective. The lower the aging temperature, the lower the amount of solute Cu in the matrix and the greater the amount of Cu-rich phase deposited. However, if the aging treatment temperature is too low, the diffusion rate becomes slow, and the amount of precipitation decreases. It has been found that performing various aging treatments by changing the temperature conditions is an industrially effective temperature range. This aging treatment is effective at any stage from the end of hot rolling to the end product, and may be applied to a cold rolled sheet or a processed product.

【0016】ΔD:0〜25 ΔDは鋼材の加工性を表す指標であり、ΔD=76−90(C
+N)−7Ni−0.2Cr−Si−2Mn−30Nb−0.8Moで定義され
る。ΔDが0〜25の範囲にある鋼材の場合には、エリ
クセン値が13.0以上であり、良好な加工性を示す。
これに対し、ΔDが0未満の場合には13.0未満、Δ
Dが25を超える場合にも13.0未満となるため、良
好な加工性を得るためにはΔDが0〜25であることが
必要である。
ΔD: 0 to 25 ΔD is an index indicating the workability of the steel material, and ΔD = 76−90 (C
+ N) -7Ni-0.2Cr-Si-2Mn-30Nb-0.8Mo. In the case of a steel material in which ΔD is in the range of 0 to 25, the Erichsen value is 13.0 or more, indicating good workability.
On the other hand, when ΔD is less than 0, it is less than 13.0,
Even when D exceeds 25, it is less than 13.0, so that ΔD needs to be 0 to 25 in order to obtain good workability.

【0017】[0017]

【実施例】表1に示した組成を持つオーステナイト系ス
テンレス鋼を30kg真空溶解炉で溶製し、鍛造および
熱延後に焼鈍および時効処理を施し、熱延焼鈍板を得
た。そして、冷延および焼鈍を繰り返し施し、最終的に
板厚0.7mmの冷延焼鈍板を得た。時効処理条件は85
0℃で、100時間に設定した。得られた供試材を透過
型電子顕微鏡で観察し、Cuリッチ相の析出量を定量し
た。また、各試験片を次の抗菌性試験に供した。Staphy
lococusaureus IFO12732(黄色ブドウ球菌)を普通ブイ
ヨン培地で35℃、16〜24時間振盪培養し、培養液
を用意した。培養液を減菌リン酸緩衝液で20,000
倍に希釈し、液を調整した。5cm×5cmの試験片を
#400研磨した表面に菌液を1mlを滴下し、24時
間保存した。保存後、試験片をSCDLP培地(日本製
薬株式会社製)9mlで洗い流し、得られた液について
標準寒天培地を用いた混釈平板培養法(35℃、2日間
培養)で生菌数をカウントした。また、参照としてシャ
ーレに菌液を直接滴下し、同様に生菌数をカウントし
た。
EXAMPLES 30 kg of austenitic stainless steel having the composition shown in Table 1 was melted in a vacuum melting furnace, and subjected to forging and hot rolling, followed by annealing and aging to obtain a hot rolled annealed sheet. Then, cold rolling and annealing were repeatedly performed to finally obtain a cold rolled annealed sheet having a thickness of 0.7 mm. Aging condition is 85
At 0 ° C., set for 100 hours. The obtained test material was observed with a transmission electron microscope, and the amount of precipitated Cu-rich phase was quantified. Each test piece was subjected to the following antibacterial test. Staphy
lococusaureus IFO12732 (Staphylococcus aureus) was cultured with shaking in a normal broth medium at 35 ° C for 16 to 24 hours to prepare a culture solution. The culture is diluted with sterile phosphate buffer to 20,000.
The solution was prepared by diluting by a factor of two. 1 ml of a bacterial solution was dropped on a surface of a 5 cm × 5 cm test piece polished with # 400, and stored for 24 hours. After storage, the test pieces were washed off with 9 ml of SCDLP medium (manufactured by Nippon Pharmaceutical Co., Ltd.), and the number of viable cells was counted by a pour plate method (cultured at 35 ° C. for 2 days) using a standard agar medium with respect to the obtained liquid. . Further, as a reference, a bacterial solution was directly dropped on a petri dish, and the number of viable bacteria was similarly counted.

【0018】参照の生菌数と比較して99%以上が死滅
したものを○とし、それ以下のものを×として評価し
た。また、加工性の評価としては、エリクセン試験(J
ISZ 2247 エリクセン試験B法)値が従来のS
US304鋼の14.0に対して、5%減に相当する1
3.3以上であったものは○、5〜15%減に相当する
13.3〜11.9のものを△、それ以下は×として評
価した。これらの抗菌性の評価結果ならびに加工性の評
価結果をΔDと併せて表1に示す。表1に示されるよう
に、1%以上のCuが添加され、かつ時効処理によりC
uリッチ相が析出し、なおかつΔDが0〜25の範囲で
ある試験番号1〜12では、いずれも抗菌性はもちろん
のこと加工性についても良好な結果が示されている。こ
れに対して、Cu量が1.0重量%以上添加され、時効
処理を施してあるが、ΔDが0〜25の範囲以外の試験
番号13〜18では、抗菌性は十分発現されているもの
の加工性に劣っていた。また、Cuの添加量の有無に関
わらずΔDが規制範囲内の0〜25にあっても、時効処
理を施していない試験番号19および20では加工性に
ついては良好な結果が得られたが、抗菌性が認められな
かった。さらに、時効処理をせず、かつΔDが0〜25
以外である試験番号21〜23では抗菌性が認められ
ず、かつ加工性にも劣ることが示されている。以上のこ
とから、本発明鋼である優れた抗菌性を発現しつつ、高
加工性を有するオーステナイト系ステンレス鋼を得るた
めには、前述の条件での時効処理はもちろんのこと、Δ
Dが0〜25の範囲となる合金成分の設定が有効である
ことが判る。
When the number of killed cells was 99% or more as compared with the reference viable cell count, the sample was evaluated as ○, and the sample with less than 99% was evaluated as ×. As for the evaluation of workability, the Erichsen test (J
ISZ 2247 Erichsen test B method)
1 equivalent to 5% reduction from 14.0 of US304 steel
Those with 3.3 or more were evaluated as ○, those with 13.3 to 11.9 corresponding to a reduction of 5 to 15% as Δ, and those with less than that were evaluated as ×. Table 1 shows the evaluation results of these antibacterial properties and the workability together with ΔD. As shown in Table 1, 1% or more of Cu was added, and
In Test Nos. 1 to 12, in which a u-rich phase was precipitated and ΔD was in the range of 0 to 25, good results were shown for not only antibacterial properties but also processability. On the other hand, although the Cu content was added by 1.0% by weight or more and the aging treatment was performed, the antibacterial properties were sufficiently exhibited in Test Nos. 13 to 18 in which ΔD was out of the range of 0 to 25. The workability was poor. In addition, even though ΔD was within the regulated range of 0 to 25 regardless of the presence or absence of Cu, good results were obtained with regard to workability in Test Nos. 19 and 20, which were not subjected to aging treatment. No antibacterial properties were observed. Further, the aging treatment is not performed, and ΔD is 0 to 25.
In Test Nos. 21 to 23 other than the above, no antibacterial property was observed, and it was shown that the processability was poor. From the above, in order to obtain an austenitic stainless steel having high workability while expressing the excellent antibacterial properties of the steel of the present invention, not only the aging treatment under the above conditions, but also Δ
It turns out that setting of the alloy component in which D is in the range of 0 to 25 is effective.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】以上に説明したように、本発明のオース
テナイト系ステンレス鋼はCu含有量が1.0重量%以
上かつ時効処理を施すことで、無垢材でも優れた抗菌性
を発揮する。この抗菌性は、材質に由来するので長期間
にわたって持続する。また、合金成分をΔD=76−90(C
+N)−7Ni−0.2Cr−Si−2Mn−30Nb−0.8Moで示されるΔ
Dが0〜25の範囲である場合、高加工性も得ることが
できる。そのため、このステンレス鋼は厨房機器、病院
等で使用される各種器材、電車、バス等の輸送機関にお
いて人体が接触する機器等の中で高加工性が要求され、
かつ抗菌性が要求される広範囲な分野において使用さ
れ、生活環境の更なる改善が図られる。
As described above, the austenitic stainless steel of the present invention exhibits an excellent antibacterial property even with a solid material when the Cu content is 1.0% by weight or more and the aging treatment is performed. This antibacterial property lasts for a long time because it is derived from the material. Further, the alloy component is represented by ΔD = 76−90 (C
+ N) -7Ni-0.2Cr-Si-2Mn-30Nb-0.8Mo
When D is in the range of 0 to 25, high workability can also be obtained. For this reason, stainless steel is required to have high workability in kitchen equipment, various equipment used in hospitals, etc., equipment that comes into contact with the human body in transportation such as trains and buses,
In addition, it is used in a wide range of fields where antibacterial properties are required, and the living environment is further improved.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 C:0.1重量%以下、Si:2重量%
以下、Mn:5重量%以下、Cr:10〜30重量%、
Ni:5〜15重量%、Cu:1.0〜5.0重量%を
含有する組成を持ち、Cuを主体とする第2相がマトリ
ックス中に0.2体積%以上の割合で分散し、かつΔD
=76−90(C+N)−7Ni−0.2Cr−Si−2Mnで定義されるΔD
が0〜25であることを特徴とする抗菌性に優れ高加工
性を具備したオーステナイト系ステンレス鋼。
C: 0.1% by weight or less, Si: 2% by weight
Hereinafter, Mn: 5% by weight or less, Cr: 10 to 30% by weight,
Ni: has a composition containing 5 to 15% by weight and Cu: 1.0 to 5.0% by weight, and the second phase mainly composed of Cu is dispersed in the matrix at a rate of 0.2% by volume or more, And ΔD
ΔD defined as = 76−90 (C + N) −7Ni−0.2Cr−Si−2Mn
Is an austenitic stainless steel excellent in antibacterial property and high in workability, characterized in that it is 0 to 25.
【請求項2】 さらにNb:0.01〜0.50重量
%、Ti:0.02〜1重量%、Mo:2.5重量%以
下、Al:1重量%以下、Zr:1重量%以下、V:1
重量%以下、B:0.05重量%以下および希土類元素
(REM):0.05重量%以下の1種または2種以上
を含有し、 Cuを主体とする第2相がマトリックス中
に0.2体積%以上の割合で分散し、かつΔD=76−90
(C+N)−7Ni−0.2Cr−Si−2Mn−30Nb−0.8Moで定義され
るΔDが0〜25である請求項1に記載のオーステナイ
ト系ステンレス鋼。
2. Nb: 0.01 to 0.50% by weight, Ti: 0.02 to 1% by weight, Mo: 2.5% by weight or less, Al: 1% by weight or less, Zr: 1% by weight or less , V: 1
% Or less, B: 0.05% by weight or less, and rare earth element (REM): 0.05% by weight or less. Dispersed at a rate of 2% by volume or more, and ΔD = 76−90
The austenitic stainless steel according to claim 1, wherein ΔD defined by (C + N) -7Ni-0.2Cr-Si-2Mn-30Nb-0.8Mo is 0 to 25.
【請求項3】 熱間圧延後から最終製品となるまでの間
に500〜900℃の温度範囲で熱処理を1回以上施
し、Cuを主体とする第2相を析出させることを特徴と
する請求項1または2に記載のオーステナイト系ステン
レス鋼の製造方法。
3. The method according to claim 1, wherein a heat treatment is performed at least once in a temperature range of 500 to 900 ° C. from a time after the hot rolling to a final product to precipitate a second phase mainly composed of Cu. Item 3. The method for producing an austenitic stainless steel according to item 1 or 2.
JP17981898A 1998-06-12 1998-06-12 Austenitic stainless steel having excellent antibacterial characteristic and high workability, and its production Pending JPH11350089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17981898A JPH11350089A (en) 1998-06-12 1998-06-12 Austenitic stainless steel having excellent antibacterial characteristic and high workability, and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17981898A JPH11350089A (en) 1998-06-12 1998-06-12 Austenitic stainless steel having excellent antibacterial characteristic and high workability, and its production

Publications (1)

Publication Number Publication Date
JPH11350089A true JPH11350089A (en) 1999-12-21

Family

ID=16072436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17981898A Pending JPH11350089A (en) 1998-06-12 1998-06-12 Austenitic stainless steel having excellent antibacterial characteristic and high workability, and its production

Country Status (1)

Country Link
JP (1) JPH11350089A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106498285A (en) * 2016-11-30 2017-03-15 中国科学院金属研究所 A kind of austenite antimicrobial stainless steel without the need for Ageing Treatment
EP3239341A4 (en) * 2014-12-26 2018-10-31 Posco Austenitic stainless steel having excellent flexibility
CN113322412A (en) * 2021-05-18 2021-08-31 沈阳融荣科技有限公司 High-strength austenite antibacterial stainless steel and preparation method thereof
CN115595509A (en) * 2022-12-13 2023-01-13 太原科技大学(Cn) High-strength-plasticity copper-containing austenitic stainless steel and production process thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3239341A4 (en) * 2014-12-26 2018-10-31 Posco Austenitic stainless steel having excellent flexibility
CN106498285A (en) * 2016-11-30 2017-03-15 中国科学院金属研究所 A kind of austenite antimicrobial stainless steel without the need for Ageing Treatment
CN113322412A (en) * 2021-05-18 2021-08-31 沈阳融荣科技有限公司 High-strength austenite antibacterial stainless steel and preparation method thereof
CN115595509A (en) * 2022-12-13 2023-01-13 太原科技大学(Cn) High-strength-plasticity copper-containing austenitic stainless steel and production process thereof

Similar Documents

Publication Publication Date Title
KR100313171B1 (en) How to use stainless steel with improved antibacterial properties
CN103276300B (en) A kind of copper-bearing antibacterial stainless steel and preparation method thereof
US6306341B1 (en) Stainless steel product having excellent antimicrobial activity and method for production thereof
JP6519023B2 (en) Ferritic stainless steel for kitchen equipment and method of manufacturing the same
CN108677109A (en) A kind of antibacterial austenitic stainless steel alloy material and its manufacturing method
JP3223418B2 (en) Ferritic stainless steel excellent in antibacterial property and method for producing the same
CN108728760B (en) Strong-antibacterial austenitic stainless steel applied to kitchen supplies
CN101353762B (en) Silver copper composite deep punch type ferrite antibiotic stainless steel, steel plate and manufacturing method thereof
CN108728770A (en) A kind of superelevation anti-microbial property austenitic stainless steel applied to medical embedded holder
JPH11350089A (en) Austenitic stainless steel having excellent antibacterial characteristic and high workability, and its production
JP3281526B2 (en) Martensitic stainless steel excellent in antibacterial property and method for producing the same
JP3232532B2 (en) Austenitic stainless steel excellent in antibacterial property and method for producing the same
JP3309769B2 (en) Cu-containing stainless steel sheet and method for producing the same
CN110093566A (en) Direct drinking anti-corrosion antibacterial ferritic stainless steel and preparation method thereof
JP2000303152A (en) Austenitic stainless steel excellent in antibacterial property and hole expanding workability in secondary working and its production
JP4026962B2 (en) High hardness antibacterial steel and its manufacturing method
CN112210721B (en) Antibacterial super-grade duplex stainless steel and preparation method thereof
JP2001254151A (en) Ag-CONTAINING MARTENSITIC STAINLESS STEEL EXCELLENT IN ANTIBACTERIAL PROPERTY AND ITS PRODUCING METHOD
JPH11343540A (en) Martensitic stainless steel excellent in antibacterial property
JPH10237597A (en) High strength and high ductility dual-phase stainless steel excellent in antibacterial property and its production
JPH1192884A (en) Antibacterial martensitic stainless steel and its production
JP3498770B2 (en) Manufacturing method of ferritic stainless steel with excellent antibacterial properties
JP3224210B2 (en) Austenitic stainless steel with excellent antibacterial properties and press formability
JP2000008145A (en) Ferritic stainless steel excellent in antifungal property and its production
KR100328036B1 (en) Ferritic Stainless Steels Having Anti-bacterial Property and A Method of Manufacturing Thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

A977 Report on retrieval

Effective date: 20070104

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070112

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

A02 Decision of refusal

Effective date: 20070507

Free format text: JAPANESE INTERMEDIATE CODE: A02