WO2019039768A1 - Acier inoxydable austénitique à faible teneur en ni présentant d'excellentes propriétés d'ouvrabilité à chaud et de résistance à la fragilisation par l'hydrogène - Google Patents

Acier inoxydable austénitique à faible teneur en ni présentant d'excellentes propriétés d'ouvrabilité à chaud et de résistance à la fragilisation par l'hydrogène Download PDF

Info

Publication number
WO2019039768A1
WO2019039768A1 PCT/KR2018/008871 KR2018008871W WO2019039768A1 WO 2019039768 A1 WO2019039768 A1 WO 2019039768A1 KR 2018008871 W KR2018008871 W KR 2018008871W WO 2019039768 A1 WO2019039768 A1 WO 2019039768A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
austenitic stainless
hydrogen embrittlement
hot workability
low
Prior art date
Application number
PCT/KR2018/008871
Other languages
English (en)
Korean (ko)
Inventor
이재화
조규진
이문수
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2020511252A priority Critical patent/JP7117369B2/ja
Priority to CN201880066674.8A priority patent/CN111212928B/zh
Priority to EP18849053.6A priority patent/EP3674434A1/fr
Publication of WO2019039768A1 publication Critical patent/WO2019039768A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Definitions

  • the present invention relates to a low-Ni austenitic stainless steel having a reduced Mn content, and more particularly, to an austenitic stainless steel improved in hot workability and hydrogen embrittlement which can be caused by reduction of Mn and Ni contents.
  • the work hardening type metastable austenitic stainless steels represented by STS304 and STS301 have excellent workability and corrosion resistance and are widely used in various applications.
  • these steels have a disadvantage of high raw material costs due to high Ni content.
  • raw material supply and demand are unstable due to extreme fluctuations in Ni raw material values, and material prices fluctuate accordingly, making it impossible to secure supply stability. Therefore, development of Ni-austenitic stainless steels with reduced Ni content from various materials suppliers is required.
  • Ni-austenitic stainless steels generally contain at least 5% by weight of Mn in order to reduce the cost of the material by reducing the amount of Ni to a certain amount or less and at the same time to ensure the stability of the austenite phase with decreasing Ni.
  • Mn a large amount of Mn fume is required during the steelmaking process to improve the environment.
  • MnS rigid inclusion
  • the Mn content is reduced by a certain amount or more in the Ni-reduced austenitic stainless steel, the stability of the austenite phase is lowered and a large amount of delta ferrite is formed during casting , which can lead to quality problems such as slab edge cracks and surface flaws during hot rolling.
  • Embodiments of the present invention solve the above problems and provide a low-Ni austenitic stainless steel having excellent hot workability and hydrogen embrittlement resistance even when Mn is reduced.
  • the low-Ni austenitic stainless steel having excellent hot workability and hydrogen embrittlement resistance contains 0.05 to 0.15% of C, 0.2 to 0.7% of Si, 2.0 to 5.0% of Mn, Wherein the alloy contains 2.0 to 5.0% of Ni, 17.0 to 19.0% of Cr, less than 0.1% of S, less than 0.01% of S, 1.0 to 3.0% of Cu, 0.15 to 0.30% of N and Fe and unavoidable impurities.
  • the value of the CRN value of the crack resistance index (CRN) represented by the formula (1) is 0 or more, and the Md30 value represented by the following formula (2) satisfies the range of -30 to 0 ⁇ ⁇ .
  • the PREN value of formula (3) may satisfy 18 or more.
  • it may further include at least one of 0.001 to 0.005% of B, and 0.001 to 0.003% of Ca in terms of% by weight.
  • the stainless steel may have an elongation of 50% or more.
  • the low-Ni austenitic stainless steels having excellent hot workability and hydrogen embrittlement resistance according to the embodiment of the present invention are capable of securing excellent hot workability by suppressing the formation of delta ferrite during reheating of the slab, and as a result, It is possible to solve the occurrence of minor cracks and quality problems.
  • FIG. 1 is a graph showing changes in martensite peak intensity and occurrence of hydrogen embrittlement according to Md30.
  • 2 is a graph showing elongation change according to Md30.
  • the low-Ni austenitic stainless steel having excellent hot workability and hydrogen embrittlement resistance contains 0.05 to 0.15% of C, 0.2 to 0.7% of Si, 2.0 to 5.0% of Mn, Wherein the alloy contains 2.0 to 5.0% of Ni, 17.0 to 19.0% of Cr, less than 0.1% of S, less than 0.01% of S, 1.0 to 3.0% of Cu, 0.15 to 0.30% of N and Fe and unavoidable impurities.
  • the value of the CRN value of the crack resistance index (CRN) represented by the formula (1) is 0 or more, and the Md30 value represented by the following formula (2) satisfies the range of -30 to 0 ⁇ ⁇ .
  • the inventors of the present invention have made a correlation analysis between experimental hot workability evaluation results and predicted delta ( ⁇ ) ferrites for various alloy components by using a crack resistance index (CRN)
  • CNN crack resistance index
  • the stability of the austenite phase for each alloy component was examined to predict the hydrogen embrittlement resistance of the brass annealed material.
  • PREN internal resistance index
  • the low-Ni austenitic stainless steel having excellent hot workability and hydrogen embrittlement resistance contains 0.05 to 0.15% of C, 0.2 to 0.7% of Si, 2.0 to 5.0% of Mn, 2.0 to 5.0% of Ni, 17.0 to 19.0% of Cr, less than 0.1% of P, less than 0.01% of S, 1.0 to 3.0% of Cu, 0.15 to 0.30% of N and Fe and unavoidable impurities.
  • the content of C is 0.05 to 0.15%.
  • the upper limit is set to 0.15%.
  • the content of Si is 0.2 to 0.7%.
  • Si plays a role of deoxidizing agent in steelmaking process and is effective to improve corrosion resistance.
  • Si is an effective element for stabilizing the ferrite phase, and when added in excess, promotes the formation of delta ( ⁇ ) ferrite in the cast slab, thereby lowering the hot workability and lowering the ductility and toughness of the steel due to the solid solution strengthening effect. Therefore, the upper limit is set to 0.7%.
  • the content of Mn is 2.0 to 5.0%.
  • Mn is an austenite phase stabilizing element generally added to Ni, which is effective for suppressing the formation of machined organic martensite to improve the cold rolling property, and its characteristics are effective when added at 2.0% or more.
  • MnS S inclusions
  • the content of Ni is 2.0 to 5.0%.
  • Ni is an essential element for securing good hot workability and cold workability as an austenite phase stabilizing element.
  • addition of 2.0% or more is essential.
  • Ni is a costly raw material, which causes an increase in raw material costs when added in large amounts.
  • the upper limit is set to 5.0%.
  • the content of Cr is 17.0 to 19.0%.
  • Cr is not only an element necessary for securing the corrosion resistance required for stainless steel but also effective for inhibiting the formation of martensite phase, and its characteristics are effective when added over 17.0%.
  • the addition of a large amount promotes the formation of delta (delta) ferrite in the slab, resulting in a reduction in hot workability, so that the upper limit is set to 19.0%.
  • the content of P is less than 0.1%.
  • the upper limit of P is set to 0.1%.
  • the content of S is less than 0.01%.
  • the upper limit of S is set to 0.01% as the corrosion resistance and hot workability are lowered.
  • the content of Cu is 1.0 to 3.0%.
  • Cu is an austenite phase stabilizing element and is effective for softening the material. In order to exhibit such a softening effect, addition of 1.0% or more is essential. However, the addition of a large amount of Cu increases the cost of the material as well as the hot brittleness, thereby setting the upper limit to 3.0%.
  • the content of N is 0.15 to 0.30%.
  • N is an element effective for stabilizing the austenite phase and improving the corrosion resistance. When 0.15% or more is added, its characteristics are effective. On the other hand, when the excess amount of N is added, the cold workability is lowered due to the solid solution strengthening effect, and the upper limit is set to 0.30%.
  • At least one of 0.001 to 0.005% of B and 0.001 to 0.003% of Ca may be further included.
  • B is an effective element for suppressing the occurrence of cracks during casting and securing a good surface quality, and its characteristics are effective when 0.001% is added.
  • nitride BN
  • the upper limit is set to 0.005%.
  • Ca improves the cleanliness of the product by inhibiting the formation of MnS hard inclusions produced in the grain boundaries in the presence of high Mn, and its characteristics are effective when 0.001% is added.
  • the excessive amount of Ca causes a decrease in hot workability due to the formation of Ca-based inclusions and a decrease in product surface quality, so that the upper limit is set to 0.003%.
  • Equation (1) The range of crack resistance index (CRN) expressed by Equation (1) is derived from the correlation between the experimental hot workability evaluation result and the predicted delta ( ⁇ ) ferrite.
  • the low Ni austenitic stainless steel having excellent hot workability and hydrogen embrittlement resistance has a value of crack resistance index (CRN) of 0 or more expressed by the following formula (1).
  • crack resistance index When the crack resistance index (CRN) is 0 or more, cracks may not occur on the surface and the edge portion during hot working.
  • the cold rolled steel sheet is generally subjected to bright annealing.
  • a brass annealing is performed by heat treatment in a reducing atmosphere (Dew point -40 to -60 ° C.) using nitrogen (N 2 ), hydrogen (H 2 ) or the like, in the stainless steel cold rolled steel sheet, By preventing reoxidation, it is a heat treatment technology that keeps the surface bright and beautiful without changing the color and properties of the surface.
  • a reducing atmosphere Dew point -40 to -60 ° C.
  • nitrogen (N 2 ), hydrogen (H 2 ) or the like By preventing reoxidation, it is a heat treatment technology that keeps the surface bright and beautiful without changing the color and properties of the surface.
  • brass annealing using hydrogen is the most common, because it is most widely used not only for high heat capacity but also for suppressing discoloration of the surface.
  • the stress-induced or modified organic martensite is transformed into an austenite phase by brilliant annealing
  • the hydrogen atoms penetrated inside are not released to the outside but trapped in the atomic state in the surface layer.
  • the hydrogen atoms penetrating into the surface layer are bare-out after a lapse of a certain time at room temperature on the ferrite or martensite phase, which is a general BCC and BCT structure, so that the hydrogen atoms do not greatly affect the physical properties.
  • the surface martensite phase is transformed into an austenite phase by the optical annealing, that is, when hydrogen atoms are present in the FCC lattice structure, the natural baking out of the hydrogen atoms is not smooth, do.
  • the low-Ni austenitic stainless steel excellent in hot workability and hydrogen embrittlement according to one embodiment of the present invention satisfies the Md30 value represented by the following formula (2) in the range of -30 to 0 ⁇ ⁇ .
  • Md30 the temperature (° C) at which 50% of the phase transformation to the martensite occurs when 30% deformation is given.
  • Md30 value the temperature at which 50% of the phase transformation to the martensite occurs when 30% deformation is given.
  • Md30 value is high, it is easy to produce the processed organic martensite phase.
  • Md30 value is low, it can be judged that it is relatively difficult to produce the processed organic martensite phase.
  • the Md30 value is used as an index for determining the austenite stabilization degree of a conventional metastable austenitic stainless steel.
  • Fig. 1 is a graph showing changes in martensite peak intensity and occurrence of hydrogen embrittlement according to Md30.
  • the symbol? Indicates that hydrogen embrittlement has not occurred, and the symbol x indicates that hydrogen embrittlement has occurred.
  • Md30 value increases, the peak intensity on the surface martensite due to a decrease in the phase stability of austenite increases, and when the peak intensity increases above a certain value, it is confirmed that hydrogen embrittlement occurs in the light annealing in a hydrogen atmosphere . Based on these results, it is confirmed that it is preferable to keep the Md30 value at 0 DEG C or less to suppress the hydrogen embrittlement.
  • the Md30 value can be reduced, The hardenability is increased and it is difficult to secure a desired elongation. Especially, it is necessary to control the lower limit of Md30 value in consideration of the fact that it is necessary to secure elongation of about 50% or more in general 300-series stainless steel applications.
  • FIG. 2 is a graph showing the elongation change according to Md30.
  • the elongation is 50% or more and the elongation is less than 50%.
  • the PREN value of formula (3) may satisfy 18 or more.
  • Comparative Example 2 cracks were generated in the surface and edge portions in the hot rolling and the CRN (Crack Resistance Index) was -0.47. In Comparative Examples 1, 3 and 4, cracks were not generated on the surface and the edge portion in hot rolling, and when the crack resistance index (CRN) derived according to the delta (delta) ferrite phase fraction was 0 or more, It is confirmed that this is an index.
  • CRN crack resistance index
  • the PRES value according to the formula (3) satisfies the value of 18 or more, so that excellent corrosion resistance at the STS304 level can be secured.
  • the low-Ni austenitic stainless steels according to the embodiments of the present invention can secure excellent corrosion resistance and processability even when Mn is reduced, and can be applied to various applications such as household appliances.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

L'invention concerne un acier inoxydable austénitique à faible teneur en Ni présentant des propriétés améliorées d'ouvrabilité à chaud et de résistance à la fragilisation par l'hydrogène qui peut se produire lorsque la teneur en Mn et en Ni diminue. L'acier inoxydable austénitique selon la présente invention comprend, en % en poids : de 0,05 à 0,15 % de C ; de 0,2 à 0,7 % de Si ; de 2,0 à 5,0 % de Mn ; de 2,0 à 5,0 % de Ni ; de 17,0 à 19,0 % de Cr ; moins de 0,1 % de P ; moins de 0,01 % de S ; de 1,0 à 3,0 % de Cu ; de 0,15 à 0,30 % de N ; et le complément étant constitué de Fe et d'impuretés inévitables, une valeur d'indice de résistance à la fissuration (CRN) étant supérieure ou égale à 0, et une valeur de Md30 satisfaisant à une plage de -30 à 0 °C.
PCT/KR2018/008871 2017-08-22 2018-08-06 Acier inoxydable austénitique à faible teneur en ni présentant d'excellentes propriétés d'ouvrabilité à chaud et de résistance à la fragilisation par l'hydrogène WO2019039768A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020511252A JP7117369B2 (ja) 2017-08-22 2018-08-06 熱間加工性および耐水素脆性に優れた低Niオーステナイト系ステンレス鋼
CN201880066674.8A CN111212928B (zh) 2017-08-22 2018-08-06 具有优异的热加工性和抗氢脆性的低Ni奥氏体不锈钢
EP18849053.6A EP3674434A1 (fr) 2017-08-22 2018-08-06 Acier inoxydable austénitique à faible teneur en ni présentant d'excellentes propriétés d'ouvrabilité à chaud et de résistance à la fragilisation par l'hydrogène

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170105892A KR101952808B1 (ko) 2017-08-22 2017-08-22 열간가공성 및 내수소취성이 우수한 저Ni 오스테나이트계 스테인리스강
KR10-2017-0105892 2017-08-22

Publications (1)

Publication Number Publication Date
WO2019039768A1 true WO2019039768A1 (fr) 2019-02-28

Family

ID=65439097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008871 WO2019039768A1 (fr) 2017-08-22 2018-08-06 Acier inoxydable austénitique à faible teneur en ni présentant d'excellentes propriétés d'ouvrabilité à chaud et de résistance à la fragilisation par l'hydrogène

Country Status (5)

Country Link
EP (1) EP3674434A1 (fr)
JP (1) JP7117369B2 (fr)
KR (1) KR101952808B1 (fr)
CN (1) CN111212928B (fr)
WO (1) WO2019039768A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114080462A (zh) * 2019-05-28 2022-02-22 株式会社Posco 具有优异的焊接部耐腐蚀性的奥氏体不锈钢
CN114080466A (zh) * 2020-06-19 2022-02-22 现代制铁株式会社 钢筋及其制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102160735B1 (ko) * 2018-08-13 2020-09-28 주식회사 포스코 강도가 향상된 오스테나이트계 스테인리스강
CN113981308B (zh) * 2021-09-11 2022-08-23 广东省高端不锈钢研究院有限公司 一种8k镜面板锰氮系节镍奥氏体不锈钢的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080061861A (ko) * 2006-12-28 2008-07-03 주식회사 포스코 열간가공성이 우수한 니켈 저감형 오스테나이트계스테인리스강의 제조방법
KR20090015817A (ko) * 2007-08-09 2009-02-12 닛신 세이코 가부시키가이샤 Ni 절감형 오스테나이트계 스테인레스강
JP2010121162A (ja) * 2008-11-19 2010-06-03 Nisshin Steel Co Ltd Ni節約型オーステナイト系ステンレス熱延鋼板の製造方法並びにスラブおよび熱延鋼板
KR20100069875A (ko) * 2008-12-17 2010-06-25 주식회사 포스코 열간가공성이 우수한 고망간 오스테나이트계 스테인리스강
JP2014189800A (ja) * 2013-03-26 2014-10-06 Nisshin Steel Co Ltd 低Niオ−ステナイト系ステンレス鋼板およびその鋼板を加工した加工品

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686645B2 (ja) * 1989-05-31 1994-11-02 日本金属工業株式会社 熱間加工性に優れたニッケル節減型オーステナイト系ステンレス鋼
JP3696552B2 (ja) * 2001-04-12 2005-09-21 日新製鋼株式会社 加工性,冷間鍛造性に優れた軟質ステンレス鋼板
JP2004238700A (ja) * 2003-02-07 2004-08-26 Nisshin Steel Co Ltd 表面平滑性の良好なプレス成形品に適したオーステナイト系ステンレス鋼板
JP2007063632A (ja) * 2005-08-31 2007-03-15 Nippon Metal Ind Co Ltd オーステナイト系ステンレス鋼
US8337749B2 (en) * 2007-12-20 2012-12-25 Ati Properties, Inc. Lean austenitic stainless steel
SE533635C2 (sv) * 2009-01-30 2010-11-16 Sandvik Intellectual Property Austenitisk rostfri stållegering med låg nickelhalt, samt artikel därav
JP2012172212A (ja) * 2011-02-22 2012-09-10 Nisshin Steel Co Ltd 低Niオーステナイト系ステンレス鋼およびその熱延鋼板の製造法
CN102605291A (zh) * 2012-03-27 2012-07-25 宝山钢铁股份有限公司 一种加工性能优良的节镍奥氏体不锈钢冷轧板及其制造方法
FI124993B (fi) * 2012-09-27 2015-04-15 Outokumpu Oy Austeniittinen ruostumaton teräs
CN102994916A (zh) * 2012-11-23 2013-03-27 四川金广技术开发有限公司 一种可加工的节镍型奥氏体不锈钢及其制造方法
JP2014189801A (ja) * 2013-03-26 2014-10-06 Nisshin Steel Co Ltd 低Niオーステナイト系ステンレス鋼板の溶接品
KR20150074697A (ko) * 2013-12-24 2015-07-02 주식회사 포스코 저 니켈 함유 스테인리스강

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080061861A (ko) * 2006-12-28 2008-07-03 주식회사 포스코 열간가공성이 우수한 니켈 저감형 오스테나이트계스테인리스강의 제조방법
KR20090015817A (ko) * 2007-08-09 2009-02-12 닛신 세이코 가부시키가이샤 Ni 절감형 오스테나이트계 스테인레스강
JP2010121162A (ja) * 2008-11-19 2010-06-03 Nisshin Steel Co Ltd Ni節約型オーステナイト系ステンレス熱延鋼板の製造方法並びにスラブおよび熱延鋼板
KR20100069875A (ko) * 2008-12-17 2010-06-25 주식회사 포스코 열간가공성이 우수한 고망간 오스테나이트계 스테인리스강
JP2014189800A (ja) * 2013-03-26 2014-10-06 Nisshin Steel Co Ltd 低Niオ−ステナイト系ステンレス鋼板およびその鋼板を加工した加工品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3674434A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114080462A (zh) * 2019-05-28 2022-02-22 株式会社Posco 具有优异的焊接部耐腐蚀性的奥氏体不锈钢
EP3978642A4 (fr) * 2019-05-28 2022-08-17 Posco Acier inoxydable austénitique permettant d'obtenir une excellente résistance à la corrosion d'une pièce soudée
CN114080466A (zh) * 2020-06-19 2022-02-22 现代制铁株式会社 钢筋及其制造方法

Also Published As

Publication number Publication date
EP3674434A4 (fr) 2020-07-01
CN111212928A (zh) 2020-05-29
CN111212928B (zh) 2022-11-01
JP2020531688A (ja) 2020-11-05
KR101952808B1 (ko) 2019-02-28
EP3674434A1 (fr) 2020-07-01
JP7117369B2 (ja) 2022-08-12

Similar Documents

Publication Publication Date Title
WO2019039768A1 (fr) Acier inoxydable austénitique à faible teneur en ni présentant d'excellentes propriétés d'ouvrabilité à chaud et de résistance à la fragilisation par l'hydrogène
WO2016104974A1 (fr) Acier inoxydable austénitique présentant une excellente flexibilité
WO2020101227A1 (fr) Acier inoxydable austénitique non magnétique et son procédé de fabrication
WO2010018906A1 (fr) Feuille d’acier pour l’émaillage, et son procédé de production
WO2020054999A1 (fr) Acier inoxydable austénitique présentant une excellente expansibilité de tuyau et une excellente résistance à la fissuration liée au vieillissement
WO2018110779A1 (fr) Tôle d'acier faiblement allié ayant une résistance et une ductilité excellentes
WO2019117430A1 (fr) Acier inoxydable ferritique ayant une excellente résistance à l'oxydation à haute température et procédé de fabrication associé
WO2018117477A1 (fr) Acier inoxydable duplex ayant d'excellentes caractéristiques de résistance à la corrosion et d'usinabilité et procédé de fabrication de celui-ci
WO2016105092A1 (fr) Acier inoxydable à base de ferrite et procédé pour le fabriquer
WO2017111251A1 (fr) Acier inoxydable austénitique présentant des propriétés de résistance au fluage et une résistance à la traction améliorées et son procédé de fabrication
WO2017209431A1 (fr) Acier inoxydable austénitique présentant une résistance à la corrosion et une aptitude au façonnage améliorées et son procédé de production
WO2020130279A1 (fr) Acier inoxydable à haute résistance mécanique
WO2019124729A1 (fr) Acier inoxydable ferritique utilitaire possédant une excellente aptitude au façonnage à chaud et son procédé de fabrication
KR102169455B1 (ko) 내피쉬스케일성 및 법랑 밀착성이 우수한 법랑용 강판 및 그 제조방법
WO2023022351A1 (fr) Acier inoxydable austénitique et son procédé de fabrication
WO2022131504A1 (fr) Acier inoxydable austénitique doté d'une résistance au ramollissement à haute température améliorée
WO2011081236A1 (fr) Feuille d'acier trempé ayant une excellente aptitude au formage à chaud par pression, et son procédé de fabrication
KR100345703B1 (ko) 성형성이우수한고강도법랑용강판의제조방법
WO2020036370A1 (fr) Acier inoxydable austénitique ayant une résistance améliorée
KR102265183B1 (ko) 내피쉬스케일성 및 법랑 밀착성이 우수한 법랑용 강판 및 그 제조방법
WO2019112152A1 (fr) Acier inoxydable austénitique ayant d'excellentes aptitude au formage et résistance à la crique saisonnière
WO2020085687A1 (fr) Acier inoxydable ferritique à haute résistance pour collier de serrage et son procédé de production
WO2016047840A1 (fr) Tôle d'acier laminée et procédé de production associé
WO2018030690A1 (fr) Acier inoxydable duplex pauvre à excellente aptitude à la flexion
WO2014098301A1 (fr) Tôle en acier inoxydable roulée à chaud ayant une excellente dureté et d'excellentes propriétés d'impact à basse température

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849053

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020511252

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018849053

Country of ref document: EP

Effective date: 20200323