WO2016105092A1 - Acier inoxydable à base de ferrite et procédé pour le fabriquer - Google Patents

Acier inoxydable à base de ferrite et procédé pour le fabriquer Download PDF

Info

Publication number
WO2016105092A1
WO2016105092A1 PCT/KR2015/014112 KR2015014112W WO2016105092A1 WO 2016105092 A1 WO2016105092 A1 WO 2016105092A1 KR 2015014112 W KR2015014112 W KR 2015014112W WO 2016105092 A1 WO2016105092 A1 WO 2016105092A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
ferritic stainless
elongation
less
content
Prior art date
Application number
PCT/KR2015/014112
Other languages
English (en)
Korean (ko)
Inventor
박지언
박미남
Original Assignee
(주)포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)포스코 filed Critical (주)포스코
Publication of WO2016105092A1 publication Critical patent/WO2016105092A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Definitions

  • the present invention relates to a ferritic stainless steel and a method for manufacturing the same, and more particularly to a ferritic stainless steel and a method for producing excellent moldability by adjusting the content of the constituting the molten steel and the size of the crystal grains.
  • stainless steel is classified according to chemical composition or metal structure. According to the metal structure, stainless steel is classified into austenite series (300 series), ferrite series (400 series), martensite series, and ideal system.
  • ferritic stainless steel 400 series
  • ferritic stainless steel 400 series
  • high temperature characteristics such as thermal expansion rate and thermal fatigue
  • stress corrosion cracking and high temperature strength Based on such characteristics, it is applied to automobile exhaust systems, household appliances, structures, home appliances, elevators, and the like.
  • high corrosion-resistant ferritic stainless steels have a high Cr content, which causes hot sticking defects, and thus, an element that contributes to improvement of corrosion resistance while appropriately adjusting Cr content should be added to secure desired level of corrosion resistance.
  • Patent Document 1 improves the workability through the improvement of the manufacturing process, and the applicant has derived a method of improving the workability and corrosion resistance by controlling the content of the alloy component forming the molten steel without improving the manufacturing process. .
  • the present invention provides a ferritic stainless steel excellent in formability of the final product produced by optimizing the size of the alloying component and crystal grains affecting the elongation decrease, and a manufacturing method thereof.
  • Ferritic stainless steel according to an embodiment of the present invention, C: 0.0005 ⁇ 0.01 wt%, N: 0.005 ⁇ 0.015 wt%, Si: 0.01 ⁇ 0.20 wt%, Mn: 0.01 ⁇ 0.20 wt%, P: 0.001 ⁇ 0.03 wt%, S: 0.0001 to 0.005 wt%, Cr: 10 to 20 wt%, Ni: 0.001 to 0.15 wt%, Al: 0.05 to 0.30 wt%, Ti: 0.1 to 0.3 wt%, Nb: 0.01 to 0.18 wt %, The balance Fe and other unavoidable impurities, the ratio of Nb / Ti is 0.1 ⁇ 0.6, characterized by satisfying the following formula (1).
  • C, N, P, Si and Nb means the content (wt%) of each component.
  • the ferritic stainless steel according to an embodiment of the present invention may be characterized by satisfying the following Equation (2).
  • C, N, P, Si and Nb means the content (wt%) of each component
  • GS means the average diameter of the grain ( ⁇ m).
  • the average diameter GS of the said crystal grain is 15-40 micrometers.
  • the ferritic stainless steel according to an embodiment of the present invention is more than 35%, the yield strength is 250MPa or less, when the stress is 5 to 10% it is preferable that the work hardening index (n) is 0.25 or more. .
  • the ferritic stainless steel manufacturing method C: 0.0005 ⁇ 0.01 wt%, N: 0.005 ⁇ 0.015 wt%, Si: 0.01 ⁇ 0.20 wt%, Mn: 0.01 ⁇ 0.20 wt%, P: 0.001 to 0.03 wt%, S: 0.0001 to 0.005 wt%, Cr: 10 to 20 wt%, Ni: 0.01 to 0.20 wt%, Al: 0.05 to 0.30 wt%, Ti: 0.1 to 0.3 wt%, Nb: 0.01 to 0.18 wt%, and a slab containing the balance Fe and other unavoidable impurities is produced, and the slab is hot rolled, hot rolled, cold rolled, and cold rolled annealed at a temperature in the range of 800 to 900 ° C.
  • the elongation is maintained at 35% or more, the yield strength 250MPa or less, the work hardening index (n) is 0.25 or more to maintain the formability There is an effect that can be improved.
  • Figure 3 is a graph showing the relationship between the alloying components and the particle size relationship and the work hardening index (n) affecting the yield strength.
  • Ferritic stainless steel according to an embodiment of the present invention, C: 0.0005 to 0.01 wt%, N: 0.005 to 0.015 wt%, Si: 0.01 to 0.20 wt%, Mn: 0.01 to 0.20 wt%, P: 0.001 ⁇ 0.03 wt%, S: 0.0001-0.005 wt%, Cr: 10-20 wt%, Ni: 0.001-0.15 wt%, Al: 0.05-0.30 wt%, consisting of balance Fe and other unavoidable impurities, Nb / It is preferable that the ratio of Ti satisfy
  • the amount of carbon (C) is preferably 0.0005 wt% or more and 0.01 wt% or less.
  • the amount of nitrogen (N) is preferably 0.005 wt% or more and 0.015 wt% or less.
  • Nitrogen (N) has the effect of raising the strength of the material like carbon (C).
  • the amount of nitrogen (N) is less than 0.005wt% TiN crystallization is lowered, the isotropic crystallization rate of the slab is lowered, if it exceeds 0.015wt% there is a problem that the elongation is lowered by increasing the impurities of the material.
  • the amount of silicon (Si) is preferably 0.01 wt% or more and 0.20 wt% or less.
  • Silicon (Si) is a useful element for deoxidation, and when added to less than 0.01wt%, the refining cost is increased, and when it exceeds 0.20wt%, impurities of the material increase, so that the elongation is lowered.
  • the amount of manganese (Mn) is preferably 0.01 wt% or more and 0.20 wt% or less.
  • Manganese (Mn) has the effect of increasing the strength of the steel, the effect can be obtained by containing 0.01wt% or more, but when excessively contained, MnS, which causes corrosion, deteriorates the corrosion resistance, elongation due to the increase of impurities in the material It contains less than 0.20wt% since it reduces.
  • the content of phosphorus (P) is preferably 0.001 wt% or more and 0.03 wt% or less.
  • Phosphorus (P) is an element that is inevitably included in the steel, the amount of refining is less than 0.001wt%, there is a problem that the refining cost is increased, 0.03wt% or less because it is easy to degrade the weldability and cause grain boundary corrosion when excessively Limited to
  • the content of sulfur (S) is preferably 0.0001wt% or more and 0.005wt% or less.
  • the content of chromium (Cr) is preferably 10 wt% or more and 20 wt% or less.
  • Chromium (Cr) is the most important element added to ensure the corrosion resistance of stainless steel. If it is added below 10wt%, the corrosion resistance is lowered. If it is added above 20wt%, the cause of hot-rolling sticking defects Therefore, the content is 20 wt% or less.
  • the content of nickel (Ni) is preferably 0.01wt% or more and 0.2wt% or less.
  • the refining cost is increased, if it exceeds 0.2wt%, impurities in the material are increased to reduce the elongation, so it is limited to 0.01 ⁇ 0.2wt%.
  • the amount of aluminum (Al) is preferably 0.01 wt% or more and 0.10 wt% or less.
  • the amount of aluminum (Al) is less than 0.01wt%, there is a problem that the refining price is expensive, and if the amount of aluminum (Al) exceeds 0.10wt%, impurities of the material increase and the elongation is lowered.
  • the amount of titanium (Ti) is preferably 0.10 wt% or more and 0.30 wt% or less.
  • the amount of titanium (Ti) is less than 0.10wt%, the amount of TiN crystallization is reduced, so that the isotropic crystallinity of slabs is lowered, and the elongation is reduced due to the increase of the dissolved C and N elements. There is a problem that workability is lowered due to increase.
  • the amount of niobium (Nb) is preferably 0.01 wt% or more and 0.18 wt% or less.
  • Niobium (Nb) preferentially combines with carbon (C) and nitrogen (N) to form precipitates that suppress the deterioration of corrosion resistance, but when excessively added, it causes poor appearance and toughness due to inclusions and increases raw material costs.
  • the content is limited to 0.01 wt% or more and 0.18 wt% or less.
  • titanium (Ti) and niobium (Nb) is preferably added so that the ratio of Nb / Ti satisfies 0.1 ⁇ 0.6.
  • the ratio of Nb / Ti is less than 0.1, the grains are coarsened, resulting in ridging defects caused by orange peels in the final product, and if it exceeds 0.6, the raw material cost is increased and elongation due to fine niobium (Nb) precipitates is increased. This is because the work hardening index (n) is decreased, and the yield strength is increased, thereby degrading the formability.
  • Ferritic stainless steel according to an embodiment of the present invention is produced by performing molten steel having the above composition to produce a slab and then reheating it to perform hot rolling, hot annealing cold rolling and final annealing.
  • the final elongation of the ferritic stainless steel according to an embodiment of the present invention is more limited to the amount of C, N, P, Si and Nb that are elements that affect the reduction in elongation in order to satisfy 35% or more. It is preferable to limit to.
  • the ferritic stainless steel according to an embodiment of the present invention which is an element affecting the yield strength and the work hardening index (n) to satisfy the yield strength of 250MPa or more, work hardening index (n) 0.25 or more, It is preferable to limit the content of P, Si, and Nb and the average grain size (GS; Grain Size) to satisfy the following formula (2).
  • Table 1 shows the composition range for each component of the various examples and comparative examples of the present invention.
  • Ferritic stainless steel according to an embodiment of the present invention after producing a slab by playing a molten steel having a composition as shown in Table 1 in a conventional method, it is subjected to hot rolling at a temperature of 800 ⁇ 1250 °C, hot rolled annealing And after performing cold rolling, it is manufactured by performing final cold-rolling annealing in the temperature range of 800-900 degreeC.
  • the elongation was evaluated by measuring the elongation at break after tensile strength in the rolling direction after processing with JIS13B specimens, and the work hardening index (n) at the yield strength and strain of 5 to 10% according to the 0.2% offset method. Measured and evaluated.
  • CA means final cold annealing temperature
  • OP is Orange Peel
  • GS is the average diameter of the grain
  • n means the work hardening index value.
  • 1 is a graph showing the relationship between the elongation and the relationship between the alloy components affecting the elongation decrease.
  • Figure 2 is a graph showing the relationship between the alloying formula and the particle size relationship and the yield strength affecting the yield strength
  • Figure 3 is a relationship between the alloying component and the particle size affecting the yield strength
  • the work hardening index ( n) is a graph showing the relationship between.
  • the B value is the condition of the formula (2). If it is not satisfied, the yield strength exceeds 250 MPa as shown in Nos. 6, 8 and 9, or the work hardening index (n) is less than 0.25 as shown in Nos. 6 and 7. Can be.
  • the final annealing temperature is less than 800 °C, elongation, yield strength and work hardening index (n) does not meet the target value, the moldability is reduced, and the final annealing temperature is 900 °C like No. 3 and No. 10 When it exceeds the average diameter (GS) of the grain becomes larger than 40 ⁇ m, it can be seen that the orange peel occurs.
  • Final annealing temperature is controlled to 800 ⁇ 900 °C by controlling the average grain size of 15 ⁇ 40 ⁇ m can prevent the generation of orange peel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

La présente invention concerne un acier inoxydable à base de ferrite et un procédé de fabrication de celui-ci, l'acier inoxydable à base de ferrite ayant une excellente aptitude au moulage par le biais du réglage de la teneur des ingrédients constituant l'acier fondu et de la taille des grains cristallins. L'acier inoxydable à base de ferrite selon un mode de réalisation de la présente invention contient C (de 0,0005 à 0,01 % en poids), N (de 0,005 à 0,015 % en poids), Si (de 0,01 à 0,20 % en poids), Mn (de 0,01 à 0,20 % en poids), P (de 0,001 à 0,03 % en poids), S (de 0,0001 à 0,005 % en poids), Cr (de 10 à 20 % en poids), Ni (de 0,001 à 0,15 % en poids), Al (de 0,05 à 0,30 % en poids), le reste étant constitué de Fe et d'autres impuretés inévitables, le rapport Nb/Ti allant de 0,1 à 0,6, et il satisfait à l'expression (1) ci-dessous. 0,1 < 400C + 85,7N + 55,6P + 7,7Si + 7,3Nb < 5 (1). Dans l'expression (1), C, N, P, Si et Nb représentent la teneur des ingrédients respectifs (en pourcentage en poids).
PCT/KR2015/014112 2014-12-26 2015-12-22 Acier inoxydable à base de ferrite et procédé pour le fabriquer WO2016105092A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140191164A KR20160080314A (ko) 2014-12-26 2014-12-26 페라이트계 스테인리스강 및 그 제조방법
KR10-2014-0191164 2014-12-26

Publications (1)

Publication Number Publication Date
WO2016105092A1 true WO2016105092A1 (fr) 2016-06-30

Family

ID=56151031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014112 WO2016105092A1 (fr) 2014-12-26 2015-12-22 Acier inoxydable à base de ferrite et procédé pour le fabriquer

Country Status (2)

Country Link
KR (1) KR20160080314A (fr)
WO (1) WO2016105092A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019228894A1 (fr) 2018-05-30 2019-12-05 Philip Morris Products S.A. Détection de conditions de chauffage défavorables dans un système de génération d'aérosol chauffé électriquement
CN111356782A (zh) * 2017-08-31 2020-06-30 株式会社Posco 具有改善的热辐射特性和可加工性的基于铁素体的不锈钢和用于制备其的方法
EP4393335A2 (fr) 2018-05-30 2024-07-03 Philip Morris Products S.A. Procédés de détection de conditions de chauffage dans un système de génération d'aérosol

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6610644B2 (ja) 2017-11-20 2019-11-27 ダイキン工業株式会社 空気調和機の室内ユニット

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641695A (ja) * 1992-03-27 1994-02-15 Nisshin Steel Co Ltd 排ガス流路部材用フェライト系ステンレス鋼及び製造方法
JPH10204591A (ja) * 1997-01-24 1998-08-04 Kawasaki Steel Corp 耐熱性および溶接部のマフラー耐食性に優れるエンジン排気部材用フェライト系ステンレス鋼
JP2003138347A (ja) * 2001-10-31 2003-05-14 Kawasaki Steel Corp フェライト系ステンレス鋼板及びその製造方法
KR20140080353A (ko) * 2012-12-20 2014-06-30 주식회사 포스코 내리징성이 우수한 페라이트계 스테인리스강 및 그 제조 방법
JP2014181403A (ja) * 2013-12-26 2014-09-29 Jfe Steel Corp フェライト系ステンレス鋼板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851316A (en) 1995-09-26 1998-12-22 Kawasaki Steel Corporation Ferrite stainless steel sheet having less planar anisotropy and excellent anti-ridging characteristics and process for producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641695A (ja) * 1992-03-27 1994-02-15 Nisshin Steel Co Ltd 排ガス流路部材用フェライト系ステンレス鋼及び製造方法
JPH10204591A (ja) * 1997-01-24 1998-08-04 Kawasaki Steel Corp 耐熱性および溶接部のマフラー耐食性に優れるエンジン排気部材用フェライト系ステンレス鋼
JP2003138347A (ja) * 2001-10-31 2003-05-14 Kawasaki Steel Corp フェライト系ステンレス鋼板及びその製造方法
KR20140080353A (ko) * 2012-12-20 2014-06-30 주식회사 포스코 내리징성이 우수한 페라이트계 스테인리스강 및 그 제조 방법
JP2014181403A (ja) * 2013-12-26 2014-09-29 Jfe Steel Corp フェライト系ステンレス鋼板

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111356782A (zh) * 2017-08-31 2020-06-30 株式会社Posco 具有改善的热辐射特性和可加工性的基于铁素体的不锈钢和用于制备其的方法
WO2019228894A1 (fr) 2018-05-30 2019-12-05 Philip Morris Products S.A. Détection de conditions de chauffage défavorables dans un système de génération d'aérosol chauffé électriquement
EP4393335A2 (fr) 2018-05-30 2024-07-03 Philip Morris Products S.A. Procédés de détection de conditions de chauffage dans un système de génération d'aérosol

Also Published As

Publication number Publication date
KR20160080314A (ko) 2016-07-08

Similar Documents

Publication Publication Date Title
CN109628836B (zh) 一种高强度建筑结构用抗震耐火钢及其制备方法
WO2020101227A1 (fr) Acier inoxydable austénitique non magnétique et son procédé de fabrication
WO2016105092A1 (fr) Acier inoxydable à base de ferrite et procédé pour le fabriquer
WO2017111290A1 (fr) Tôle d&#39;acier présentant une excellente résistance au traitement thermique après soudage pour récipient sous pression à basse température et son procédé de fabrication
WO2018110779A1 (fr) Tôle d&#39;acier faiblement allié ayant une résistance et une ductilité excellentes
WO2019117430A1 (fr) Acier inoxydable ferritique ayant une excellente résistance à l&#39;oxydation à haute température et procédé de fabrication associé
WO2021100995A1 (fr) Tôle d&#39;acier ayant une résistance élevée et une grande aptitude au formage et son procédé de fabrication
WO2019039768A1 (fr) Acier inoxydable austénitique à faible teneur en ni présentant d&#39;excellentes propriétés d&#39;ouvrabilité à chaud et de résistance à la fragilisation par l&#39;hydrogène
WO2019059660A1 (fr) Tôle d&#39;acier faiblement allié possédant une résistance et une ductilité excellentes et procédé de fabrication s&#39;y rapportant
WO2017052005A1 (fr) Acier inoxydable ferritique et son procédé de fabrication
WO2017111251A1 (fr) Acier inoxydable austénitique présentant des propriétés de résistance au fluage et une résistance à la traction améliorées et son procédé de fabrication
WO2016064226A1 (fr) Tôle d&#39;acier inoxydable ferritique à haute résistance et ductilité élevée et son procédé de production
WO2019124729A1 (fr) Acier inoxydable ferritique utilitaire possédant une excellente aptitude au façonnage à chaud et son procédé de fabrication
WO2019112142A1 (fr) Acier inoxydable austénitique à dureté élevée présentant une excellente résistance à la corrosion
WO2011081236A1 (fr) Feuille d&#39;acier trempé ayant une excellente aptitude au formage à chaud par pression, et son procédé de fabrication
WO2021125564A1 (fr) Acier inoxydable ferritique à haute résistance pour collier de serrage et son procédé de fabrication
KR101695758B1 (ko) 가공성이 향상된 페라이트계 스테인리스강 및 이의 제조 방법
KR101614606B1 (ko) 성형성이 우수한 페라이트계 스테인리스강 및 그 제조 방법
WO2020085687A1 (fr) Acier inoxydable ferritique à haute résistance pour collier de serrage et son procédé de production
WO2016047840A1 (fr) Tôle d&#39;acier laminée et procédé de production associé
WO2023075391A1 (fr) Feuille d&#39;acier inoxydable ferritique laminée à chaud présentant une excellente aptitude au formage et procédé associé de fabrication
WO2014098301A1 (fr) Tôle en acier inoxydable roulée à chaud ayant une excellente dureté et d&#39;excellentes propriétés d&#39;impact à basse température
WO2020130257A1 (fr) Tôle d&#39;acier à haute résistance ayant une excellente ductilité et une excellente aptitude au façonnage, et son procédé de fabrication
WO2022270814A1 (fr) Acier inoxydable austénitique et son procédé de fabrication
WO2017111437A1 (fr) Acier inoxydable duplex pauvre et son procédé de fabrication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15873619

Country of ref document: EP

Kind code of ref document: A1