WO2022131504A1 - Austenitic stainless steel with improved high temperature softening resistance - Google Patents

Austenitic stainless steel with improved high temperature softening resistance Download PDF

Info

Publication number
WO2022131504A1
WO2022131504A1 PCT/KR2021/014158 KR2021014158W WO2022131504A1 WO 2022131504 A1 WO2022131504 A1 WO 2022131504A1 KR 2021014158 W KR2021014158 W KR 2021014158W WO 2022131504 A1 WO2022131504 A1 WO 2022131504A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
austenitic stainless
high temperature
softening
rolling
Prior art date
Application number
PCT/KR2021/014158
Other languages
French (fr)
Korean (ko)
Inventor
이재화
이문수
조규진
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2022131504A1 publication Critical patent/WO2022131504A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Definitions

  • the present invention relates to austenitic stainless steel having improved resistance to softening at high temperatures, and more particularly, to austenitic stainless steel capable of preventing softening even at a high temperature of 500 to 600° C., which is mainly used for gaskets.
  • a cylinder head gasket or an exhaust manifold gasket of an automobile or motorcycle engine is a part exposed to repeated pressure fluctuations under high temperature, high pressure, and high vibration characteristic of an engine.
  • a high pressure is applied during compression to the automobile engine cylinder gasket, it must be in contact with both contacting counterparts with a high surface pressure in order to maintain the sealability of the combustion gas.
  • austenitic stainless steel is deformed by transformation from an unstable austenite phase to a martensite phase at room temperature during cold working, that is, transformation induced plasticity.
  • transformation induced plasticity the strength of the material also increases. Therefore, in order to secure the strength of the material, it is necessary to increase the cold rolling reduction ratio.
  • the yield stress (0.2% yield strength) continuously increases, resulting in a rough surface during gasket molding, local stress concentration in the material, and necking in the bent portion. do.
  • the above-mentioned surface and processing shape defects are factors that significantly deteriorate the gas sealing properties. That is, an increase in the cold rolling reduction rate acts as a factor that deteriorates toughness, fatigue resistance, and workability.
  • the material is softened (strength decreased) as the above-described processed martensite phase is decomposed, and the stability is poor.
  • Embodiments of the present invention are intended to provide an austenitic stainless steel capable of securing softening resistance at a temperature of 500° C. or higher by refining crystal grains.
  • the austenitic stainless steel having improved resistance to high temperature softening according to an embodiment of the present invention is, by weight, C: 0.02 to 0.15%, N: 0.1 to 0.3%, Si: 0.2 to 0.7, Mn: 2.0 to 5.0% , Cr: 17.0 to 19.0%, Ni: 2.5 to 5.0%, Cu: 1.0 to 3.0%, the remaining Fe and unavoidable impurities, and satisfies the following formula (1).
  • C, N, Si, Mn, Cr, Ni, and Cu mean weight % of each element.
  • the average grain diameter may be 10 ⁇ m or less.
  • Ca: 0.001 to 0.003%, B: 0.001 to 0.005%, P: 0.1% or less (excluding 0) and S: 0.01% or less (excluding 0) at least one of may further include.
  • the yield strength may be 450 MPa or more.
  • the hardness may be 450 Hv or more.
  • the elongation may be 35% or more.
  • a method of manufacturing austenitic stainless steel having improved resistance to high temperature softening according to another embodiment of the present invention, in weight %, C: 0.02 to 0.15%, N: 0.1 to 0.3%, Si: 0.2 to 0.7, Mn: 2.0 to 5.0%, Cr: 17.0 to 19.0%, Ni: 2.5 to 5.0%, Cu: 1.0 to 3.0%, including the remaining Fe and unavoidable impurities, hot rolling and hot annealing of a slab satisfying the following formula (1) step; cold-rolling the hot-rolled annealing material to a total reduction ratio of 50% or more; and heat-treating the cold-rolled material at 900°C to 1000°C.
  • C, N, Si, Mn, Cr, Ni, and Cu mean weight % of each element.
  • the total reduction ratio may be 70% or more.
  • the hot rolling may be performed at 1,050 to 1,300 °C.
  • the step of solution heat treatment at 1050 to 1200 °C may be further included.
  • an austenitic stainless steel applicable as a gasket material because it is possible to secure softening resistance at a temperature of 500° C. or higher while ensuring strength and workability.
  • an austenitic stainless steel having a reduced nickel content while ensuring elongation and corrosion resistance comparable to the existing 301 stainless steel.
  • Example 1 is a microstructure photograph taken with an optical microscope (Optical Microscope, OM) of Comparative Example 1 and Example 1 steel.
  • the austenitic stainless steel having improved resistance to high temperature softening according to an embodiment of the present invention is, by weight, C: 0.02 to 0.15%, N: 0.1 to 0.3%, Si: 0.2 to 0.7, Mn: 2.0 to 5.0% , Cr: 17.0 to 19.0%, Ni: 2.5 to 5.0%, Cu: 1.0 to 3.0%, the remaining Fe and unavoidable impurities, and satisfies the following formula (1).
  • C, N, Si, Mn, Cr, Ni, and Cu mean weight % of each element.
  • Methods for improving the strength of a material include solid solution strengthening, precipitation strengthening, dispersion strengthening, generation of martensite phase, crystal grain refinement, and the like.
  • the method of refining the crystal grains of the material can not only expect an improvement in superior strength compared to the strength obtained through a conventional level of heat treatment, but also improve the strength and toughness, thereby improving the mechanical properties of the material. It is used as a useful tool to improve.
  • the method of refining the crystal grains of the material is attracting attention in various alloy fields because it can reduce defects inside the material, obtain a uniform material, and does not require the addition of additional alloying elements.
  • thermomechanical control process a process induced transformation process (SIMRT, Strain-Induced Martensite and its Reverse Transformation) is widely used.
  • the processing induced transformation process is a method using the characteristic of reverse transformation of the martensite phase introduced during cold working to an austenite phase by cold working a material having a metastable austenite structure at room temperature and heating it to a temperature of 600° C. or higher.
  • the reverse transformation austenite phase Compared to untransformed austenite, the reverse transformation austenite phase has a higher dislocation density and fine grains, so the strength of the material can be improved, and the elongation rate is greater than that of the austenite phase before reverse transformation.
  • the present inventors derived the stability range of the austenite phase considering both the amount of martensite produced during cold working and the reverse transformation temperature related to the grain size of the austenitic stainless steel.
  • the austenitic stainless steel having improved resistance to high temperature softening according to an aspect of the present invention is, by weight, C: 0.02 to 0.15%, N: 0.1 to 0.3%, Si: 0.2 to 0.7%, Mn: 2.0 to 5.0% , Cr: 17.0 to 19.0%, Ni: 2.5 to 5.0%, Cu: 1.0 to 3.0%, remaining Fe and unavoidable impurities.
  • the unit is % by weight.
  • the content of C is 0.02 to 0.15%.
  • Carbon (C) is an effective element for stabilizing the austenite phase, and in the present invention, 0.02% or more may be added to secure the strength of the material.
  • the content when the content is excessive, it not only reduces cold workability due to solid solution strengthening, but also induces grain boundary precipitation of Cr carbides by combining with Cr, thereby reducing ductility, toughness and corrosion resistance, and martensite transformation start temperature (Martensite Start temperature). , Ms) is lowered, so there is a problem that strength cannot be secured because the generation of stress-induced martensite is not smooth during cold working, and the upper limit can be limited to 0.15%.
  • the content of N is 0.1 to 0.3%.
  • the content of Si is 0.2 to 0.7%.
  • Silicon (Si) is an element that acts as a deoxidizer during the steelmaking process, and may be added in an amount of 0.2% or more to secure corrosion resistance.
  • the content of silicon, which is a ferrite phase stabilizing element is excessive, delta ( ⁇ )-ferrite is formed in the cast slab to reduce hot workability, and there is a problem in that the ductility and toughness of the steel are lowered in the solid solution strengthening effect.
  • the upper limit may be limited to 0.7%.
  • the content of Mn is 2.0 to 5.0%.
  • Manganese (Mn) is an austenite phase stabilizing element added instead of nickel (Ni) in the present invention. It is effective in improving cold rolling properties by suppressing processing-induced martensite formation, and increasing the solubility of nitrogen (N) during the steelmaking process. 2.0% or more can be added as an element to However, if the content is excessive, the martensite transformation initiation temperature (Ms) is lowered, so that the generation of stress-induced martensite during cold working is not smooth, and the surface quality is reduced due to surface oxidation during hot rolling and reverse transformation heat treatment. , since the increase in S-based inclusions (MnS) may reduce the ductility, toughness and corrosion resistance of the steel, the upper limit thereof may be limited to 5.0%.
  • the content of Cr is 17.0 to 19.0%.
  • Chromium (Cr) is a basic element that stabilizes ferrite and contains the most among elements for improving corrosion resistance of stainless steel. In the present invention, 17.0% or more may be added to suppress the formation of martensite phase.
  • chromium which is a ferrite phase stabilizing element
  • delta ( ⁇ )-ferrite is formed in the cast slab to reduce hot workability, and stress-induced martensite is not smoothly generated during cold working, and martensite is formed.
  • the content of Ni is 2.5 to 5.0%.
  • Nickel (Ni) is the most powerful austenite phase stabilizing element, and as its content increases, the austenite phase is stabilized to soften the material.
  • Ni is added by 2.5% or more. It is essential However, if the content is excessive, as Ni is an expensive element, it causes an increase in raw material cost, and the martensite transformation initiation temperature (Ms) is lowered, so that the generation of stress-induced martensite is not smooth during cold working, so strength is secured. Since there is a problem that it cannot be done, the upper limit can be limited to 5.0%.
  • the content of Cu is 1.0 to 3.0%%.
  • Copper (Cu) is an austenite phase stabilizing element, and in the present invention, it is added by 1.0% or more in order to soften the material by reducing Stacking Fault Energy (SFE).
  • SFE Stacking Fault Energy
  • Ms martensite transformation initiation temperature
  • Ca: 0.001 to 0.003%, B: 0.001 to 0.005%, P: 0.1% or less (excluding 0) and S: 0.01% or less (excluding 0) at least one of may further include.
  • the content of Ca is 0.001 to 0.003%.
  • Calcium (Ca) is an element that suppresses the formation of MnS steel-making inclusions generated at grain boundaries when Mn is contained in a large amount. In the present invention, 0.001% or more may be added to improve the cleanliness of the material. However, when the content is excessive, there is a problem that Ca-based inclusions are generated to deteriorate the hot workability and surface quality of the material, so the upper limit can be limited to 0.003%.
  • the content of B is 0.001 to 0.005%.
  • Boron (B) is an effective element for suppressing crack generation during casting and securing good surface quality, and may be added in an amount of 0.001% or more. However, if the content is excessive, there is a problem that nitride (BN) is formed on the surface of the product during the annealing/pickling process to deteriorate the surface quality, so the upper limit may be limited to 0.005%.
  • the content of P is 0.1% or less (excluding 0).
  • Phosphorus (P) is an impurity that is unavoidably contained in steel and is an element that causes intergranular corrosion or inhibits hot workability.
  • the upper limit of the P content is managed as 0.1%.
  • the content of S is 0.01% or less (excluding 0).
  • S is an impurity that is unavoidably contained in steel, and is an element that segregates at grain boundaries and is a major cause of inhibiting hot workability, so it is desirable to control its content as low as possible.
  • the upper limit of the S content is managed as 0.015%.
  • the remaining component of the present invention is iron (Fe).
  • Fe iron
  • martensitic transformation occurs by plastic (cold) working at a temperature higher than or equal to the martensitic transformation initiation temperature (Ms).
  • the above-mentioned martensitic phase fraction depends on the austenite phase stability.
  • the upper limit temperature at which the phase transformation occurs by such plastic working is expressed by the Md value, and is a measure of the degree of phase transformation occurring by the processing.
  • the temperature (°C) at which 50% of the phase transformation to martensite occurs is defined as Md 30 .
  • Md 30 value is used as an index for determining the degree of austenite stabilization of conventional austenitic stainless steels, and can be expressed by the component relational expression of Equation (1) below.
  • Equation (1) the higher the value of Equation (1), the more active the transformation from the austenite phase to the martensite phase occurred due to external stress, but surface defects occurred and the workability decreased. It was tried to control the transformation amount of processing-induced martensite through the value.
  • the Md 30 value expressed by Equation (1) satisfies the range of -30°C to 30°C.
  • Equation (1) When the value of Equation (1) is less than -30°C, the processing-induced martensite phase acting as a nucleation site cannot be secured, and the average grain size cannot be derived to 10 ⁇ m or less. On the other hand, when the value of Equation (1) is too high, the austenitic stainless steel of the above-mentioned alloy composition is accompanied by a sharp work-induced martensitic transformation behavior due to external deformation. Accordingly, there is a problem that surface defects of the austenitic stainless steel occur and workability is reduced, so that the upper limit of Equation (1) is limited to 30°C.
  • a method of manufacturing austenitic stainless steel having improved resistance to high temperature softening according to an embodiment of the present invention, in weight%, in weight%, C: 0.02 to 0.15%, N: 0.1 to 0.3%, Si: 0.2 to 0.7, Mn : 2.0 to 5.0%, Cr: 17.0 to 19.0%, Ni: 2.5 to 5.0%, Cu: 1.0 to 3.0%, including the remaining Fe and unavoidable impurities, hot rolling and hot rolling a slab satisfying the following formula (1) annealing; cold-rolling the hot-rolled annealing material to a total reduction ratio of 50% or more; and cold-rolling and annealing the cold-rolled material at 900°C to 1000°C.
  • C, N, Si, Mn, Cr, Ni, and Cu mean weight % of each element.
  • a slab having the above composition may be subjected to conventional casting, hot rolling, solution heat treatment and pickling to manufacture a hot-rolled annealed material.
  • the slab can be hot rolled at a temperature of 1,050 to 1,300 ° C, which is a normal rolling temperature, and solution heat treatment is performed in a temperature range of 1,050 to 1,200 ° C to remove surface defects of the hot-rolled steel sheet and dissolve precipitates. can be performed.
  • the solution heat treatment may be performed for 60 to 120 seconds.
  • the hot-rolled steel sheet may be pickled to remove surface scale, and then cold-rolled to manufacture a thin film.
  • the austenite phase of the hot-rolled annealed steel sheet is transformed into a processing-induced martensitic phase by processing, and as the rolling reduction increases, the fraction of the martensite phase increases, thereby increasing the yield strength of the material.
  • a relatively high reduction ratio of 50% or more is applied to promote the production of processed induced martensite to secure a yield strength of 500Mpa or more.
  • the total reduction ratio can be controlled to 70% or more.
  • the heat treatment for forming the reverse transformation austenite phase may be performed in the range of the austenite reverse transformation completion temperature (Austenite finish temperature, hereinafter AF) to AF+50°C.
  • austenite reverse transformation completion temperature Austenite finish temperature, hereinafter AF
  • the reverse transformation heat treatment temperature is preferably controlled to be low in the vicinity of the austenite reverse transformation completion temperature AF.
  • reverse transformation heat treatment may be performed at 900°C to 1000°C for 10 seconds to 10 minutes.
  • the cold-rolled material thus manufactured has an average grain size of 10 ⁇ m or less.
  • the manufactured cold rolled material has a yield strength of 450 MPa or more.
  • the manufactured cold-rolled material can secure a hardness of 450 Hv or more even at a temperature of 500 ° C. or more.
  • a slab was prepared through ingot melting, heated at 1,230 ° C. for 2 hours, and then hot rolled to a thickness of 3 mm was performed. After hot rolling, 1,050 Solution heat treatment was performed at °C. Next, the hot-rolled coil was subjected to cold rolling at a reduction ratio of 50%, and heat treatment was performed at 900° C. for 1 minute.
  • Example 1 0.11 0.210 0.45 3.9 18.0 3.5 1.5 0.04 0.004 -24.17
  • Example 2 0.05 0.180 0.3 3.6 17.7 3.7 2.0 0.04 0.004 5.03
  • Comparative Example 1 0.06 0.22 0.55 4.3 18.7 4.2 1.4 0.04 0.004 -36.84
  • Comparative Example 2 0.08 0.16 0.4 3.2 17.3 3.2 1.3 0.04 0.004 43.01
  • a tensile test was performed at a speed of 20 mm/min using a test piece processed according to the JIS 13B standard, and yield strength (MPa) was measured.
  • the average grain size was measured by photographing with an optical microscope (Optical Microscope, OM) after performing nitric acid electrolytic pickling on the cold-rolled steel sheet. Through an image analyzer of the obtained microstructure photograph, arbitrary 3 points of the steel plate were measured, and then the average value was expressed.
  • optical microscope Optical Microscope, OM
  • temper rolling was performed with a work roll having an average roughness of #600 or more, and the hardness and formability of the temper rolling material were evaluated.
  • the hardness of the temper rolling material was shown in Table 2 below by measuring the hardness value of the surface portion under the condition of Vickers hardness (1 kg/f).
  • the hardness value of the surface part was measured under the condition of Vickers hardness (1 kg/f), and it is shown in Table 2 below.
  • Example 1 is a microstructure photograph taken with an optical microscope (Optical Microscope, OM) of Comparative Example 1 and Example 1 steel.
  • Example 3 in Comparative Example 3 to which general heat treatment conditions were applied, the average grain size was 32 ⁇ m and exceeded 10 ⁇ m, whereas Example 3 was heat treated at a temperature near the austenite reverse transformation completion temperature (AF). In the case of , the average grain size was as fine as 8 ⁇ m.
  • AF austenite reverse transformation completion temperature
  • the alloy component and the relational expression to derive the grain size to 10 ⁇ m or less, excellent elongation and surface quality of 35% or more can be secured during temper rolling, and the gasket application temperature is 500 to It is possible to manufacture austenitic stainless steel that can prevent softening in the temperature range of 600 °C.
  • the present invention while ensuring strength and workability, it is possible to secure softening resistance at a temperature of 500° C. or higher, so that it can be applied as a gasket material.

Abstract

Disclosed is an austenitic stainless steel with improved high temperature softening resistance. According to the present invention, the stainless steel comprises, in weight%, C: 0.02-0.15%, N: 0.1-0.3%, Si: 0.2-0.7, Mn: 2.0-5.0%, Cr: 17.0-19.0%, Ni: 2.5-5.0%, Cu: 1.0-3.0%, and the balance being Fe and inevitable impurities and satisfies formula (1). Formula (1): -30≤ 551-462*(C+N)-9.2*Si-8.1*Mn-13.7*Cr-29*(Ni+Cu) ≤30, wherein C, N, Si, Mn, Cr, Ni, and Cu denote weight% of the respective elements.

Description

고온 연화저항성이 향상된 오스테나이트계 스테인리스강Austenitic stainless steel with improved resistance to softening at high temperatures
본 발명은 고온 연화저항성이 향상된 오스테나이트계 스테인리스강에 관한 것으로, 보다 상세하게는 가스켓이 주로 사용되는 500 내지 600℃의 고온에서도 연화를 방지할 수 있는 오스테나이트계 스테인리스강에 관한 것이다.The present invention relates to austenitic stainless steel having improved resistance to softening at high temperatures, and more particularly, to austenitic stainless steel capable of preventing softening even at a high temperature of 500 to 600° C., which is mainly used for gaskets.
자동차, 오토바이 엔진의 실린더 헤드 가스켓(Gasket)이나, 배기 매니폴드 가스켓은 엔진 특유의 고온, 고압, 고진동 하에서의 반복되는 압력 변동에 노출되는 부품이다. 특히, 자동차 엔진 실리더 가스켓에서는 압축시 고압이 가해지므로, 연소 가스의 밀봉성(sealability)을 유지하기 위해서 쌍방의 접촉 상대재와 높은 면압으로 접하고 있어야 한다. A cylinder head gasket or an exhaust manifold gasket of an automobile or motorcycle engine is a part exposed to repeated pressure fluctuations under high temperature, high pressure, and high vibration characteristic of an engine. In particular, since a high pressure is applied during compression to the automobile engine cylinder gasket, it must be in contact with both contacting counterparts with a high surface pressure in order to maintain the sealability of the combustion gas.
엔진이나 배기 가스 경로에 사용되는 메탈 가스켓에서는, 프레스에 의한 비드 성형으로 일정 높이의 연속하는 융기부를 형성하여 면압을 확보하는 것이 일반적이다. 메탈 가스켓의 밀봉성을 확보하기 위해서는 접촉 상대재와 높은 면압으로 접할 필요가 있고, 이를 위해 메탈 가스켓의 강도 및 피로특성이 요구된다.In a metal gasket used for an engine or exhaust gas path, it is common to secure surface pressure by forming continuous ridges of a certain height by bead forming by a press. In order to secure the sealing properties of the metal gasket, it is necessary to contact the contact material with a high surface pressure, and for this purpose, the strength and fatigue characteristics of the metal gasket are required.
가스켓 소재로, 가공 경화형 준안정 오스테나이트계 스테인리스강(STS301 스테인리스강 등)이 적용되고 있다. As a gasket material, work-hardening metastable austenitic stainless steel (STS301 stainless steel, etc.) is applied.
일반적으로, 오스테나이트계 스테인리스강은 냉간가공시 상온에서 불안정한 오스테나이트상에서 마르텐사이트상으로의 변태, 즉 소성유기변태(Transformation Induced Plasticity)에 의해 변형이 발생한다. 이 때, 생성되는 가공 유기 마르텐사이트상은 강도가 높으므로 소재의 강도 또한 증가하는 것이다. 따라서, 소재의 강도를 확보하기 위해서는 냉간 압하율을 높일 필요가 있다. In general, austenitic stainless steel is deformed by transformation from an unstable austenite phase to a martensite phase at room temperature during cold working, that is, transformation induced plasticity. At this time, since the generated processed induced martensite phase has high strength, the strength of the material also increases. Therefore, in order to secure the strength of the material, it is necessary to increase the cold rolling reduction ratio.
하지만, 냉간 압하율이 증가함에 따라, 지속적으로 항복 응력(0.2% 내력)이 상승하여, 가스켓 성형 시 표면이 거칠어지고, 소재에 국부적인 응력집중이 발생하여, 굽힘부에서 넥킹(necking)이 발생한다. 전술한 표면 및 가공 형상의 불량은, 가스 밀봉성을 현저히 열화시키는 요인이 된다. 즉 냉간 압하율의 증가는 인성, 내피로 특성 및 가공성을 저하시키는 요인으로 작용한다. However, as the cold reduction ratio increases, the yield stress (0.2% yield strength) continuously increases, resulting in a rough surface during gasket molding, local stress concentration in the material, and necking in the bent portion. do. The above-mentioned surface and processing shape defects are factors that significantly deteriorate the gas sealing properties. That is, an increase in the cold rolling reduction rate acts as a factor that deteriorates toughness, fatigue resistance, and workability.
한편, 가스켓이 사용되는 500℃ 이상의 고온 영역에서는, 전술한 가공 유기 마르텐사이트상이 분해됨에 따라 소재가 연화(강도 저하)되어, 복원성이 열위해진다.On the other hand, in a high temperature region of 500° C. or higher in which the gasket is used, the material is softened (strength decreased) as the above-described processed martensite phase is decomposed, and the stability is poor.
500~600℃ 범위의 고온 영역에서의 연화저항성 감소 문제를 해결하기 위해, 내열용 가스켓 소재로 고합금 Fe-Cr-Mn-Ni 오스테나이트계 스테인리스강 및 Inconel 718 등을 도입하는 경우를 고려할 수 있으나, 고가 원소를 다량 함유하여 가격경쟁력 측면에서 문제가 있고, 소재 가격의 극심한 변동에 의해 원료수급이 불안정할 뿐만 아니라 공급가의 안정성 확보가 어려운 상황이다.In order to solve the problem of reducing softening resistance in the high temperature range of 500~600℃, it is possible to consider the case of introducing high alloy Fe-Cr-Mn-Ni austenitic stainless steel and Inconel 718 as heat-resistant gasket materials. , there is a problem in terms of price competitiveness because it contains a large amount of expensive elements.
따라서, 강도 및 가공성을 확보하면서도 500~600℃ 범위의 고온 영역에서의 연화저항성 감소를 최소화할 수 있어 가스켓 소재로 적용 가능한 오스테나이트계 스테인리스강의 개발이 요구된다.Therefore, it is possible to minimize the decrease in softening resistance in a high temperature range of 500 to 600° C. while securing strength and workability, so that it is required to develop an austenitic stainless steel applicable as a gasket material.
본 발명의 실시예들은 결정립을 미세화함으로써 500 ℃ 이상의 온도에서 연화저항성을 확보할 수 있는 오스테나이트계 스테인리스강을 제공하고자 한다.Embodiments of the present invention are intended to provide an austenitic stainless steel capable of securing softening resistance at a temperature of 500° C. or higher by refining crystal grains.
본 발명의 일 실시예에 따른 고온 연화저항성이 향상된 오스테나이트계 스테인리스강은, 중량%로, C: 0.02 내지 0.15%, N: 0.1 내지 0.3%, Si: 0.2 내지 0.7, Mn: 2.0 내지 5.0%, Cr: 17.0 내지 19.0%, Ni: 2.5 내지 5.0%, Cu: 1.0 내지 3.0%, 나머지 Fe 및 불가피한 불순물을 포함하고, 하기 식(1)을 만족한다.The austenitic stainless steel having improved resistance to high temperature softening according to an embodiment of the present invention is, by weight, C: 0.02 to 0.15%, N: 0.1 to 0.3%, Si: 0.2 to 0.7, Mn: 2.0 to 5.0% , Cr: 17.0 to 19.0%, Ni: 2.5 to 5.0%, Cu: 1.0 to 3.0%, the remaining Fe and unavoidable impurities, and satisfies the following formula (1).
식(1): -30≤ 551-462*(C+N)-9.2*Si-8.1*Mn-13.7*Cr-29*(Ni+Cu) ≤30Formula (1): -30≤ 551-462*(C+N)-9.2*Si-8.1*Mn-13.7*Cr-29*(Ni+Cu) ≤30
여기서, C, N, Si, Mn, Cr, Ni, Cu는 각 원소의 중량%를 의미한다.Here, C, N, Si, Mn, Cr, Ni, and Cu mean weight % of each element.
또한, 본 발명의 일 실시예에 따르면, 평균 결정립 지름이 10㎛이하일 수 있다. In addition, according to an embodiment of the present invention, the average grain diameter may be 10㎛ or less.
또한, 본 발명의 일 실시예에 따르면, Ca: 0.001 내지 0.003%, B: 0.001 내지 0.005%, P: 0.1% 이하(0은 제외) 및 S: 0.01% 이하(0은 제외) 중 1종 이상을 더 포함할 수 있다. In addition, according to an embodiment of the present invention, Ca: 0.001 to 0.003%, B: 0.001 to 0.005%, P: 0.1% or less (excluding 0) and S: 0.01% or less (excluding 0) at least one of may further include.
또한, 본 발명의 일 실시예에 따르면, 항복강도가 450MPa 이상일 수 있다.In addition, according to an embodiment of the present invention, the yield strength may be 450 MPa or more.
또한, 본 발명의 일 실시예에 따르면, 500 ℃ 이상의 온도에서, 경도가 450Hv 이상일 수 있다. In addition, according to an embodiment of the present invention, at a temperature of 500 ℃ or more, the hardness may be 450 Hv or more.
또한, 본 발명의 일 실시예에 따르면, 연신율이 35% 이상일 수 있다. In addition, according to an embodiment of the present invention, the elongation may be 35% or more.
본 발명의 다른 일 실시예에 따른 고온 연화저항성이 향상된 오스테나이트계 스테인리스강의 제조 방법은, 중량%로, C: 0.02 내지 0.15%, N: 0.1 내지 0.3%, Si: 0.2 내지 0.7, Mn: 2.0 내지 5.0%, Cr: 17.0 내지 19.0%, Ni: 2.5 내지 5.0%, Cu: 1.0 내지 3.0%, 나머지 Fe 및 불가피한 불순물을 포함하고, 하기 식(1)을 만족하는 슬라브를 열간압연 및 열연소둔하는 단계; 상기 열연 소둔재를, 총압하율 50% 이상으로 제어하여 냉간압연하는 단계; 및 상기 냉간 압연재를 900℃ 내지 1000℃에서 열처리하는 단계;를 포함한다. A method of manufacturing austenitic stainless steel having improved resistance to high temperature softening according to another embodiment of the present invention, in weight %, C: 0.02 to 0.15%, N: 0.1 to 0.3%, Si: 0.2 to 0.7, Mn: 2.0 to 5.0%, Cr: 17.0 to 19.0%, Ni: 2.5 to 5.0%, Cu: 1.0 to 3.0%, including the remaining Fe and unavoidable impurities, hot rolling and hot annealing of a slab satisfying the following formula (1) step; cold-rolling the hot-rolled annealing material to a total reduction ratio of 50% or more; and heat-treating the cold-rolled material at 900°C to 1000°C.
식(1): -30≤ 551-462*(C+N)-9.2*Si-8.1*Mn-13.7*Cr-29*(Ni+Cu) ≤30Formula (1): -30≤ 551-462*(C+N)-9.2*Si-8.1*Mn-13.7*Cr-29*(Ni+Cu) ≤30
여기서, C, N, Si, Mn, Cr, Ni, Cu는 각 원소의 중량%를 의미한다.Here, C, N, Si, Mn, Cr, Ni, and Cu mean weight % of each element.
또한, 본 발명의 일 실시예에 따르면, 냉간압연 시, 총 압하율은 70% 이상일 수 있다. In addition, according to an embodiment of the present invention, during cold rolling, the total reduction ratio may be 70% or more.
또한, 본 발명의 일 실시예에 따르면, 상기 열간압연은, 1,050 내지 1,300℃에서 수행될 수 있다. In addition, according to an embodiment of the present invention, the hot rolling may be performed at 1,050 to 1,300 °C.
또한, 본 발명의 일 실시예에 따르면, 열간압연 후, 1050 내지 1200℃에서 용체화 처리하는 단계를 더 포함할 수 있다.In addition, according to an embodiment of the present invention, after hot rolling, the step of solution heat treatment at 1050 to 1200 ℃ may be further included.
본 발명의 실시예에 따르면, 강도 및 가공성을 확보하면서도, 500℃ 이상의 온도에서 연화저항성을 확보할 수 있어 가스켓 소재로 적용 가능한 오스테나이트계 스테인리스강을 제공할 수 있다. According to an embodiment of the present invention, it is possible to provide an austenitic stainless steel applicable as a gasket material because it is possible to secure softening resistance at a temperature of 500° C. or higher while ensuring strength and workability.
본 발명의 실시예에 따르면, 기존 301 스테인리스강 수준의 연신율 및 내식성을 확보하면서도 니켈 함량이 저감된 오스테나이트계 스테인리스강을 제공할 수 있다.According to an embodiment of the present invention, it is possible to provide an austenitic stainless steel having a reduced nickel content while ensuring elongation and corrosion resistance comparable to the existing 301 stainless steel.
도 1은 비교예 1 및 실예에 1 강재를 광학현미경(Optical Microscope, OM)으로 촬영한 미세조직 사진이다.1 is a microstructure photograph taken with an optical microscope (Optical Microscope,  OM) of Comparative Example 1 and Example 1 steel.
본 발명의 일 실시예에 따른 고온 연화저항성이 향상된 오스테나이트계 스테인리스강은, 중량%로, C: 0.02 내지 0.15%, N: 0.1 내지 0.3%, Si: 0.2 내지 0.7, Mn: 2.0 내지 5.0%, Cr: 17.0 내지 19.0%, Ni: 2.5 내지 5.0%, Cu: 1.0 내지 3.0%, 나머지 Fe 및 불가피한 불순물을 포함하고, 하기 식(1)을 만족한다.The austenitic stainless steel having improved resistance to high temperature softening according to an embodiment of the present invention is, by weight, C: 0.02 to 0.15%, N: 0.1 to 0.3%, Si: 0.2 to 0.7, Mn: 2.0 to 5.0% , Cr: 17.0 to 19.0%, Ni: 2.5 to 5.0%, Cu: 1.0 to 3.0%, the remaining Fe and unavoidable impurities, and satisfies the following formula (1).
식(1): -30≤ 551-462*(C+N)-9.2*Si-8.1*Mn-13.7*Cr-29*(Ni+Cu) ≤30Formula (1): -30≤ 551-462*(C+N)-9.2*Si-8.1*Mn-13.7*Cr-29*(Ni+Cu) ≤30
여기서, C, N, Si, Mn, Cr, Ni, Cu는 각 원소의 중량%를 의미한다.Here, C, N, Si, Mn, Cr, Ni, and Cu mean weight % of each element.
이하에서는 본 발명의 실시예를 첨부 도면을 참조하여 상세히 설명한다. 이하의 실시예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 충분히 전달하기 위해 제시하는 것이다. 본 발명은 여기서 제시한 실시예만으로 한정되지 않고 다른 형태로 구체화될 수도 있다. 도면은 본 발명을 명확히 하기 위해 설명과 관계없는 부분의 도시를 생략하고, 이해를 돕기 위해 구성요소의 크기를 다소 과장하여 표현할 수 있다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The following examples are presented in order to sufficiently convey the spirit of the present invention to those of ordinary skill in the art to which the present invention pertains. The present invention is not limited to the embodiments presented herein, and may be embodied in other forms. The drawings may omit illustration of parts irrelevant to the description in order to clarify the present invention, and slightly exaggerate the size of the components to help understanding.
또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Also, when a part "includes" a certain component, it means that other components may be further included, rather than excluding other components, unless otherwise stated.
단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.The singular expression includes the plural expression unless the context clearly dictates otherwise.
이하에서는 본 발명에 따른 실시예를 첨부된 도면을 참조하여 상세히 설명한다. Hereinafter, an embodiment according to the present invention will be described in detail with reference to the accompanying drawings.
소재의 강도를 향상시키는 방법으로는 고용강화, 석출강화, 분산강화, 마르텐사이트상의 생성, 결정립 미세화 등이 있다. 소재의 결정립을 미세화하는 방법은, 통상적인 수준의 열처리를 통해서 확보되는 강도 대비 월등한 강도의 향상을 기대할 수 있을 뿐만 아니라, 강도 향상과 더불어 인성(toughness) 향상시킬 수 있어, 소재의 기계적 성질을 향상시키는 유용한 수단으로 활용되고 있다.Methods for improving the strength of a material include solid solution strengthening, precipitation strengthening, dispersion strengthening, generation of martensite phase, crystal grain refinement, and the like. The method of refining the crystal grains of the material can not only expect an improvement in superior strength compared to the strength obtained through a conventional level of heat treatment, but also improve the strength and toughness, thereby improving the mechanical properties of the material. It is used as a useful tool to improve.
또한, 소재의 결정립을 미세화하는 방법은 소재 내부의 결함을 줄이고, 균일한 소재를 얻을 수 있을 뿐만 아니라, 추가적인 합금원소의 첨가를 요하지 않아 다양한 합금분야에서 주목을 받고 있다.In addition, the method of refining the crystal grains of the material is attracting attention in various alloy fields because it can reduce defects inside the material, obtain a uniform material, and does not require the addition of additional alloying elements.
구체적으로, 소재의 결정립을 미세화하는 방법으로는 가공 열처리 기술(Thermo Mechanical Control Process)의 일 예로, 가공유기 변태 공정(SIMRT, Strain-Induced Martensite and its Reverse Transformation)이 많이 이용되고 있다. Specifically, as a method of refining the crystal grains of a material, as an example of a thermomechanical control process, a process induced transformation process (SIMRT, Strain-Induced Martensite and its Reverse Transformation) is widely used.
가공유기 변태 공정은, 상온에서 준안정 오스테나이트 조직을 갖는 소재를 냉간 가공한 후, 600℃ 이상의 온도로 가열하여 냉간 가공 시 도입된 마르텐사이트상이 오스테나이트상으로 역변태하는 특성을 이용한 방법이다. The processing induced transformation process is a method using the characteristic of reverse transformation of the martensite phase introduced during cold working to an austenite phase by cold working a material having a metastable austenite structure at room temperature and heating it to a temperature of 600° C. or higher.
역변태 오스테나이트상은 미변태 오스테나이트에 비해 전위밀도가 높고, 결정립이 미세하므로 소재의 강도를 향상시킬 수 있고, 역변태 전 오스테나이트상 보다 연신율이 더 크다는 장점을 갖는다.Compared to untransformed austenite, the reverse transformation austenite phase has a higher dislocation density and fine grains, so the strength of the material can be improved, and the elongation rate is greater than that of the austenite phase before reverse transformation.
본 발명자들은 오스테나이트계 스테인리스강의 강도 및 가공성을 확보하기 위해, 냉간 가공 시 마르텐사이트의 생성량 및 오스테나이트계 스테인리스강의 결정립 크기와 관계있는 역변태 온도를 모두 고려한 오스테나이트상의 안정화도 범위를 도출하였다. In order to secure the strength and workability of the austenitic stainless steel, the present inventors derived the stability range of the austenite phase considering both the amount of martensite produced during cold working and the reverse transformation temperature related to the grain size of the austenitic stainless steel.
본 발명의 일 측면에 따른 고온 연화저항성이 향상된 오스테나이트계 스테인리스강은, 중량%로, C: 0.02 내지 0.15%, N: 0.1 내지 0.3%, Si: 0.2 내지 0.7%, Mn: 2.0 내지 5.0%, Cr: 17.0 내지 19.0%, Ni: 2.5 내지 5.0%, Cu: 1.0 내지 3.0%, 나머지 Fe 및 불가피한 불순물을 포함한다.The austenitic stainless steel having improved resistance to high temperature softening according to an aspect of the present invention is, by weight, C: 0.02 to 0.15%, N: 0.1 to 0.3%, Si: 0.2 to 0.7%, Mn: 2.0 to 5.0% , Cr: 17.0 to 19.0%, Ni: 2.5 to 5.0%, Cu: 1.0 to 3.0%, remaining Fe and unavoidable impurities.
이하, 본 발명의 실시예에서의 합금성분 원소 함량의 수치한정 이유에 대하여 설명한다. 이하에서는 특별한 언급이 없는 한 단위는 중량%이다.Hereinafter, the reason for numerical limitation of the alloying element content in the embodiment of the present invention will be described. Hereinafter, unless otherwise specified, the unit is % by weight.
C의 함량은 0.02 내지 0.15%이다.The content of C is 0.02 to 0.15%.
탄소(C)는 오스테나이트상 안정화에 효과적인 원소로, 본 발명에서는 소재의 강도를 확보하기 위해 0.02% 이상 첨가할 수 있다. 다만 그 함량이 과도할 경우, 고용강화에 따른 냉간 가공성을 저하시킬 뿐만 아니라, Cr과 결합함으로써 Cr탄화물의 입계 석출을 유도하여 연성, 인성 및 내식성이 저하되고, 마르텐사이트 변태 개시온도(Martensite Start temperature, Ms)가 낮아져 냉간가공 시 응력 유기 마르텐사이트의 생성이 원활하지 않아 강도를 확보할 수 없다는 문제가 있는 바, 그 상한을 0.15%로 한정할 수 있다.Carbon (C) is an effective element for stabilizing the austenite phase, and in the present invention, 0.02% or more may be added to secure the strength of the material. However, when the content is excessive, it not only reduces cold workability due to solid solution strengthening, but also induces grain boundary precipitation of Cr carbides by combining with Cr, thereby reducing ductility, toughness and corrosion resistance, and martensite transformation start temperature (Martensite Start temperature). , Ms) is lowered, so there is a problem that strength cannot be secured because the generation of stress-induced martensite is not smooth during cold working, and the upper limit can be limited to 0.15%.
N의 함량은 0.1 내지 0.3%이다.The content of N is 0.1 to 0.3%.
질소(N)는 탄소와 마찬가지로 오스테나이트상 안정화에 효과적인 원소로, 내식성 확보를 위해 0.01% 이상 첨가할 수 있다. 다만 그 함량이 과도할 경우, 고용강화에 따른 냉간 가공성을 저하시킬 뿐만 아니라, 주조 시, 기공 형성에 의해 표면 품질을 저하시키고, 마르텐사이트 변태 개시온도(Ms)가 낮아져 냉간가공 시 응력 마르텐사이트의 생성이 원활하지 않아 강도를 확보할 수 없다는 문제가 있는 바, 그 상한을 0.3%로 한정할 수 있다.Nitrogen (N), like carbon, is an effective element for stabilizing the austenite phase, and may be added in an amount of 0.01% or more to secure corrosion resistance. However, if the content is excessive, it not only reduces the cold workability due to solid solution strengthening, but also reduces the surface quality by forming pores during casting, and the martensite transformation initiation temperature (Ms) is lowered to reduce the stress martensite during cold working. Since there is a problem that strength cannot be secured due to poor production, the upper limit can be limited to 0.3%.
Si의 함량은 0.2 내지 0.7%이다.The content of Si is 0.2 to 0.7%.
실리콘(Si)은 제강공정 중 탈산제의 역할을 하는 우너소로, 내식성 확보를 위해 0.2% 이상 첨가할 수 있다. 다만, 페라이트상 안정화 원소인 실리콘의 함량이 과다할 경우, 주조 슬라브 내 델타(δ)-페라이트를 형성하여 열간가공성을 저하시킬 뿐만 아니라, 고용강화 효과에 강재의 연성, 인성이 저하되는 문제가 있어, 본 발명에서는 그 상한을 0.7%로 한정할 수 있다.Silicon (Si) is an element that acts as a deoxidizer during the steelmaking process, and may be added in an amount of 0.2% or more to secure corrosion resistance. However, when the content of silicon, which is a ferrite phase stabilizing element, is excessive, delta (δ)-ferrite is formed in the cast slab to reduce hot workability, and there is a problem in that the ductility and toughness of the steel are lowered in the solid solution strengthening effect. , in the present invention, the upper limit may be limited to 0.7%.
Mn의 함량은 2.0 내지 5.0%이다.The content of Mn is 2.0 to 5.0%.
망간(Mn)은 본 발명에서 니켈(Ni) 대신 첨가되는 오스테나이트상 안정화 원소로, 가공유기 마르텐사이트 생성을 억제하여 냉간 압연성을 향상시키는데 효과적이고, 제강 공정 중 질소(N)의 용해도를 증가시키는 원소로 2.0% 이상 첨가할 수 있다. 다만 그 함량이 과도할 경우, 마르텐사이트 변태 개시온도(Ms)가 낮아져 냉간가공 시 응력 유기 마르텐사이트의 생성이 원활하지 않을 뿐만 아니라, 열간 압연 및 역변태 열처리시 표면 산화로 인해 표면 품질이 저하되고, S계 개재물(MnS)의 증가를 초래함에 따라 강재의 연성, 인성 및 내식성을 저하시킬 수 있으므로 그 상한을 5.0%로 한정할 수 있다. Manganese (Mn) is an austenite phase stabilizing element added instead of nickel (Ni) in the present invention. It is effective in improving cold rolling properties by suppressing processing-induced martensite formation, and increasing the solubility of nitrogen (N) during the steelmaking process. 2.0% or more can be added as an element to However, if the content is excessive, the martensite transformation initiation temperature (Ms) is lowered, so that the generation of stress-induced martensite during cold working is not smooth, and the surface quality is reduced due to surface oxidation during hot rolling and reverse transformation heat treatment. , since the increase in S-based inclusions (MnS) may reduce the ductility, toughness and corrosion resistance of the steel, the upper limit thereof may be limited to 5.0%.
Cr의 함량은 17.0 내지 19.0%이다. The content of Cr is 17.0 to 19.0%.
크롬(Cr)은 페라이트를 안정화하고, 스테인리스강의 내식성 향상 원소 중 가장 많이 함유되어 기본이 되는 원소이다. 본 발명에서는 마르텐사이트상 생성을 억제하기 위해 17.0% 이상 첨가할 수 있다. 다만, 페라이트상 안정화 원소인 크롬의 함량이 과다할 경우, 주조 슬라브 내 델타(δ)-페라이트를 형성하여 열간가공성을 저하시킬 뿐만 아니라, 냉간가공 시 응력 유기 마르텐사이트의 생성이 원활하지 않고, 마르텐사이트상에서 오스테나이트상으로의 역변태 온도를 상승시켜 역변태 소둔 시, 오스테나이트의 결정립이 급격히 성장하는 문제가 있어, 본 발명에서는 그 상한을 19.0%로 한정할 수 있다.Chromium (Cr) is a basic element that stabilizes ferrite and contains the most among elements for improving corrosion resistance of stainless steel. In the present invention, 17.0% or more may be added to suppress the formation of martensite phase. However, when the content of chromium, which is a ferrite phase stabilizing element, is excessive, delta (δ)-ferrite is formed in the cast slab to reduce hot workability, and stress-induced martensite is not smoothly generated during cold working, and martensite is formed. During reverse transformation annealing by increasing the reverse transformation temperature from the site phase to the austenite phase, there is a problem in that crystal grains of austenite rapidly grow, and the upper limit thereof may be limited to 19.0% in the present invention.
Ni의 함량은 2.5 내지 5.0%이다.The content of Ni is 2.5 to 5.0%.
니켈(Ni)은 가장 강력한 오스테나이트상 안정화 원소로써 그 함량이 증가할수록 오스테나이트상이 안정화되어 소재를 연질화한다. 본 발명에서는, Mn을 일정량 이상 첨가함에도 소재의 열간 가공성 및 냉간 가공성을 확보하고, 마르텐사이트상에서 오스테나이트상으로의 역변태 온도를 낮추어 오스테나이트 결정립의 성장을 억제하기 위해 Ni을 2.5% 이상 첨가하는 것이 필수적이다. 다만 그 함량이 과도할 경우, Ni은 고가의 원소임에 따라 원료비용의 상승을 초래하고, 마르텐사이트 변태 개시온도(Ms)가 낮아져 냉간가공 시 응력 유기 마르텐사이트의 생성이 원활하지 않아 강도를 확보할 수 없다는 문제가 있는 바, 그 상한을 5.0%로 한정할 수 있다.Nickel (Ni) is the most powerful austenite phase stabilizing element, and as its content increases, the austenite phase is stabilized to soften the material. In the present invention, in order to secure hot workability and cold workability of the material even when Mn is added in a certain amount or more, and to suppress the growth of austenite grains by lowering the reverse transformation temperature from martensite to austenite, Ni is added by 2.5% or more. it is essential However, if the content is excessive, as Ni is an expensive element, it causes an increase in raw material cost, and the martensite transformation initiation temperature (Ms) is lowered, so that the generation of stress-induced martensite is not smooth during cold working, so strength is secured. Since there is a problem that it cannot be done, the upper limit can be limited to 5.0%.
Cu의 함량은 1.0 내지 3.0%%이다.The content of Cu is 1.0 to 3.0%%.
구리(Cu)는 오스테나이트상 안정화 원소로, 본 발명에서는 적층 결함 에너지(Stacking Fault Energy, SFE)를 감소시켜 소재를 연질화하기 위해 1.0% 이상 첨가한다. 다만 그 함량이 과도할 경우, 마르텐사이트 변태 개시온도(Ms)가 낮아져 냉간가공 시 응력 유기 마르텐사이트의 생성이 원활하지 않을 뿐만 아니라, 원료비용의 상승을 초래하고, 열간취성을 유발하는 바 그 상한을 3.0%로 한정할 수 있다.Copper (Cu) is an austenite phase stabilizing element, and in the present invention, it is added by 1.0% or more in order to soften the material by reducing Stacking Fault Energy (SFE). However, if the content is excessive, the martensite transformation initiation temperature (Ms) is lowered, so that the generation of stress-induced martensite during cold working is not smooth, and the raw material cost is increased, and hot brittleness is caused. can be limited to 3.0%.
또한, 본 발명의 일 실시예에 따르면, Ca: 0.001 내지 0.003%, B: 0.001 내지 0.005%, P: 0.1% 이하(0은 제외) 및 S: 0.01% 이하(0은 제외) 중 1종 이상을 더 포함할 수 있다.In addition, according to an embodiment of the present invention, Ca: 0.001 to 0.003%, B: 0.001 to 0.005%, P: 0.1% or less (excluding 0) and S: 0.01% or less (excluding 0) at least one of may further include.
Ca 의 함량은 0.001 내지 0.003%이다.The content of Ca is 0.001 to 0.003%.
칼슘(Ca)은 Mn을 다량 함유할 경우, 입계에 생성되는 MnS 제강성 개재물의 형성을 억제하는 원소로, 본 발명에서는 소재의 청정도를 향상시키기 위해, 0.001% 이상 첨가할 수 있다. 다만 그 함량이 과도할 경우, Ca계 개재물이 생성되어 소재의 열간가공성 및 표면품질을 저하시키는 문제가 있는 바, 그 상한을 0.003%로 한정할 수 있다.Calcium (Ca) is an element that suppresses the formation of MnS steel-making inclusions generated at grain boundaries when Mn is contained in a large amount. In the present invention, 0.001% or more may be added to improve the cleanliness of the material. However, when the content is excessive, there is a problem that Ca-based inclusions are generated to deteriorate the hot workability and surface quality of the material, so the upper limit can be limited to 0.003%.
B의 함량은 0.001 내지 0.005%이다.The content of B is 0.001 to 0.005%.
보론(B)은 주조 중의 크랙 발생을 억제하여 양호한 표면 품질을 확보하는데 효과적인 원소로, 0.001% 이상 첨가할 수 있다. 다만 그 함량이 과도할 경우, 소둔/산세 공정 중 제품 표면에 질화물(BN)을 형성시켜 표면품질을 저하시키는 문제가 있어 그 상한을 0.005%로 한정할 수 있다.Boron (B) is an effective element for suppressing crack generation during casting and securing good surface quality, and may be added in an amount of 0.001% or more. However, if the content is excessive, there is a problem that nitride (BN) is formed on the surface of the product during the annealing/pickling process to deteriorate the surface quality, so the upper limit may be limited to 0.005%.
P의 함량은 0.1% 이하(0은 제외)이다.The content of P is 0.1% or less (excluding 0).
인(P)은 강 중 불가피하게 함유되는 불순물로, 입계 부식을 일으키거나 열간가공성을 저해하는 주요 원인이 되는 원소이므로, 그 함량을 가능한 낮게 제어하는 것이 바람직하다. 본 발명에서는 상기 P 함량의 상한을 0.1%로 관리한다.Phosphorus (P) is an impurity that is unavoidably contained in steel and is an element that causes intergranular corrosion or inhibits hot workability. In the present invention, the upper limit of the P content is managed as 0.1%.
S의 함량은 0.01% 이하(0은 제외)이다.The content of S is 0.01% or less (excluding 0).
황(S)은 강 중 불가피하게 함유되는 불순물로, 결정립계에 편석되어 열간가공성을 저해하는 주요 원인이 되는 원소이므로, 그 함량을 가능한 낮게 제어하는 것이 바람직하다. 본 발명에서는 상기 S 함량의 상한을 0.015%로 관리한다.Sulfur (S) is an impurity that is unavoidably contained in steel, and is an element that segregates at grain boundaries and is a major cause of inhibiting hot workability, so it is desirable to control its content as low as possible. In the present invention, the upper limit of the S content is managed as 0.015%.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다. The remaining component of the present invention is iron (Fe). However, since unintended impurities from raw materials or the surrounding environment may inevitably be mixed in the normal manufacturing process, this cannot be excluded. Since these impurities are known to any person skilled in the art of manufacturing processes, all details thereof are not specifically mentioned in the present specification.
전술한 바와 같이, 준안정 오스테나이트계 스테인리스강은, 마르텐사이트 변태 개시온도(Ms) 이상의 온도에서 소성(냉간)가공에 의해 마르텐사이트 변태가 발생한다. As described above, in metastable austenitic stainless steel, martensitic transformation occurs by plastic (cold) working at a temperature higher than or equal to the martensitic transformation initiation temperature (Ms).
인가되는 변형이 계속됨에 따라 지속적인 상변태가 일어나고, 이러한 상변태는 오스테나이트계 스테인리스강이 파손되기 전까지 강도를 증가시키는 바, Ni 함량이 상대적으로 낮은 준안정 오스테나이트계 스테인리스강의 경우, 합금성분과 함께 추가적으로 냉간가공 시 생성되는 마르텐사이트상의 분율을 제어해야만 강도를 확보할 수 있다.As the applied strain continues, a continuous phase transformation occurs, and this phase transformation increases the strength until the austenitic stainless steel is damaged. Strength can be secured only by controlling the fraction of martensite phase generated during cold working.
한편, 전술한 마르텐사이트상 분율은 오스테나이트 상안정도에 의존한다. On the other hand, the above-mentioned martensitic phase fraction depends on the austenite phase stability.
이러한 소성가공에 의해 상변태를 일으키는 상한 온도는 Md 값으로 나타내며, 가공에 의해 상변태가 일어나는 정도를 나타내는 척도이다. The upper limit temperature at which the phase transformation occurs by such plastic working is expressed by the Md value, and is a measure of the degree of phase transformation occurring by the processing.
특히, 30% 변형을 부여할 때 마르텐사이트로의 상변태가 50% 일어나는 온도(℃)를 Md30 라고 정의한다. Md30 값이 높으면 가공유기 마르텐사이트상의 생성이 쉬운 것에 반해, Md30 값이 낮으면 가공유기 마르텐사이트상의 생성이 상대적으로 어려운 강종으로 판단할 수 있다. 일반적으로 Md30 값은 통상의 오스테나이트계 스테인리스강의 오스테나이트 안정화도를 판단할 수 있는 지표로 사용되며, 하기 식(1)의 성분관계식으로 표현할 수 있다. In particular, when 30% strain is applied, the temperature (°C) at which 50% of the phase transformation to martensite occurs is defined as Md 30 . When the Md 30 value is high, it is easy to generate the processing-induced martensite phase, whereas when the Md 30 value is low, it can be determined that the processing-induced martensite phase is relatively difficult to form. In general, the Md 30 value is used as an index for determining the degree of austenite stabilization of conventional austenitic stainless steels, and can be expressed by the component relational expression of Equation (1) below.
식(1): 551-462*(C+N)-9.2*Si-8.1*Mn-13.7*Cr-29*(Ni+Cu)Formula (1): 551-462*(C+N)-9.2*Si-8.1*Mn-13.7*Cr-29*(Ni+Cu)
본 발명자들은 식(1)의 값이 높을수록, 외부 응력에 의해 오스테나이트상으로부터 마르텐사이트상으로의 변태가 활발히 일어났으나, 그에 따른 표면 결함이 발생하고, 가공성이 감소하는 것을 확인하고, Md30 값을 통해 가공유기 마르텐사이트의 변태량을 제어하고자 하였다. The present inventors confirmed that the higher the value of Equation (1), the more active the transformation from the austenite phase to the martensite phase occurred due to external stress, but surface defects occurred and the workability decreased. It was tried to control the transformation amount of processing-induced martensite through the value.
본 발명의 일 실시예에 따른 고온 연화저항성이 향상된 오스테나이트계 스테인리스강은 상기 식 (1) 로 표현되는 Md30 값이 -30℃ 내지 30℃의 범위를 만족한다.In the austenitic stainless steel having improved resistance to high temperature softening according to an embodiment of the present invention, the Md 30 value expressed by Equation (1) satisfies the range of -30°C to 30°C.
식 (1)의 값이 -30℃ 미만인 경우, 핵생성 사이트로 작용하는 가공유기 마르텐사이트상을 확보할 수 없어, 평균 결정립 크기를 10㎛이하로 도출할 수 없다. 반면, 식 (1)의 값이 지나치게 높으면, 외부 변형에 의해 전술한 합금성분계의 오스테나이트계 스테인리스강은 급격한 가공유기 마르텐사이트 변태거동을 수반한다. 이에 따라, 오스테나이트계 스테인리스강의 표면 결함이 발생하고, 가공성이 감소하는 문제가 있어, 식(1)의 상한값을 30℃로 한정하고자 한다. When the value of Equation (1) is less than -30°C, the processing-induced martensite phase acting as a nucleation site cannot be secured, and the average grain size cannot be derived to 10 μm or less. On the other hand, when the value of Equation (1) is too high, the austenitic stainless steel of the above-mentioned alloy composition is accompanied by a sharp work-induced martensitic transformation behavior due to external deformation. Accordingly, there is a problem that surface defects of the austenitic stainless steel occur and workability is reduced, so that the upper limit of Equation (1) is limited to 30°C.
다음으로, 본 발명의 다른 일 측면에 따른 고온 연화저항성이 향상된 오스테나이트계 스테인리스강을 제조하는 방법에 대하여 설명한다. Next, a method for manufacturing an austenitic stainless steel having improved resistance to high temperature softening according to another aspect of the present invention will be described.
본 발명의 일 실시예에 따른 고온 연화저항성이 향상된 오스테나이트계 스테인리스강의 제조 방법은 중량%로, 중량%로, C: 0.02 내지 0.15%, N: 0.1 내지 0.3%, Si: 0.2 내지 0.7, Mn: 2.0 내지 5.0%, Cr: 17.0 내지 19.0%, Ni: 2.5 내지 5.0%, Cu: 1.0 내지 3.0%, 나머지 Fe 및 불가피한 불순물을 포함하고, 하기 식(1)을 만족하는 슬라브를 열간압연 및 열연소둔하는 단계; 상기 열연 소둔재를, 총압하율 50% 이상으로 제어하여 냉간압연하는 단계; 및 상기 냉간 압연재를 900℃ 내지 1000℃에서 냉연소둔하는 단계;를 포함한다.A method of manufacturing austenitic stainless steel having improved resistance to high temperature softening according to an embodiment of the present invention, in weight%, in weight%, C: 0.02 to 0.15%, N: 0.1 to 0.3%, Si: 0.2 to 0.7, Mn : 2.0 to 5.0%, Cr: 17.0 to 19.0%, Ni: 2.5 to 5.0%, Cu: 1.0 to 3.0%, including the remaining Fe and unavoidable impurities, hot rolling and hot rolling a slab satisfying the following formula (1) annealing; cold-rolling the hot-rolled annealing material to a total reduction ratio of 50% or more; and cold-rolling and annealing the cold-rolled material at 900°C to 1000°C.
식(1): -30≤ 551-462*(C+N)-9.2*Si-8.1*Mn-13.7*Cr-29*(Ni+Cu) ≤30Formula (1): -30≤ 551-462*(C+N)-9.2*Si-8.1*Mn-13.7*Cr-29*(Ni+Cu) ≤30
여기서, C, N, Si, Mn, Cr, Ni, Cu는 각 원소의 중량%를 의미한다. Here, C, N, Si, Mn, Cr, Ni, and Cu mean weight % of each element.
합금성분 함량의 수치 한정 이유에 대한 설명은 상술한 바와 같다.The explanation of the reason for limiting the numerical value of the alloy component content is the same as described above.
상기의 조성을 포함하는 슬라브를 통상의 주조, 열간압연, 용체화 열처리 및 산세 처리 하여 열연 소둔재를 제조할 수 있다.A slab having the above composition may be subjected to conventional casting, hot rolling, solution heat treatment and pickling to manufacture a hot-rolled annealed material.
예를 들어, 슬라브는 통상의 압연온도인 1,050 내지 1,300℃의 온도에서 열간압연할 수 있으며, 열연강판의 표면 결함을 제거하고, 석출물을 용해시키기 위해 1,050 내지 1,200℃의 온도 범위에서 용체화 열처리가 수행될 수 있다. 이때, 용체화 열처리는 60 내지 120초 동안 진행될 수 있다.For example, the slab can be hot rolled at a temperature of 1,050 to 1,300 ° C, which is a normal rolling temperature, and solution heat treatment is performed in a temperature range of 1,050 to 1,200 ° C to remove surface defects of the hot-rolled steel sheet and dissolve precipitates. can be performed. In this case, the solution heat treatment may be performed for 60 to 120 seconds.
이후, 열연강판을 산세하여 표면 스케일을 제거하고, 냉간압연하여 박물로 제조할 수 있다.Thereafter, the hot-rolled steel sheet may be pickled to remove surface scale, and then cold-rolled to manufacture a thin film.
냉간압연 시, 열연소둔강판의 오스테나이트상이 가공에 의해 가공유기 마르텐사이트상으로 변태되고, 압하율이 증가할수록 마르텐사이트상의 분율이 증가하여 소재의 항복강도는 증가한다. During cold rolling, the austenite phase of the hot-rolled annealed steel sheet is transformed into a processing-induced martensitic phase by processing, and as the rolling reduction increases, the fraction of the martensite phase increases, thereby increasing the yield strength of the material.
본 발명에서는 냉간압연 시, 50% 이상의 비교적 높은 압하율을 적용하여 가공 유기 마르텐사이트의 생성을 촉진시킴으로써 500Mpa 이상의 항복강도를 확보하고자 하였다. 바람직하게, 총 압하율은 70% 이상으로 제어할 수 있다. In the present invention, during cold rolling, a relatively high reduction ratio of 50% or more is applied to promote the production of processed induced martensite to secure a yield strength of 500Mpa or more. Preferably, the total reduction ratio can be controlled to 70% or more.
다음으로, 냉간압연에 의해 생성된 가공 유기 마르텐사이트를 오스테나이트로 역변태시키는 열처리 과정을 거친다. Next, a heat treatment process of reverse transformation of the processed organic martensite produced by cold rolling into austenite is performed.
역변태 오스테나이트상을 형성시키기 위한 열처리는 오스테나이트 역변태 완료 온도(Austenite finish temperature, 이하 AF) 내지 AF+50℃의 범위에서 수행될 수 있다. The heat treatment for forming the reverse transformation austenite phase may be performed in the range of the austenite reverse transformation completion temperature (Austenite finish temperature, hereinafter AF) to AF+50°C.
오스테나이트 역변태가 진행될 때, 역변태 열처리 온도가 낮을수록 결정립의 핵생성이 용이하고, 동시에 역변태 오스테나이트상의 결정립 성장을 억제하여, 최종 강재의 결정립을 미세하게 도출할 수 있다. 따라서, 역변태 열처리 온도는, 오스테나이트 역변태 완료 온도(AF) 근방에서 낮게 제어하는 것이 바람직하다.When the reverse austenite transformation proceeds, the lower the reverse transformation heat treatment temperature, the easier it is to nucleate the grains, and at the same time suppress the grain growth of the reverse transformation austenite phase, so that the grains of the final steel can be finely derived. Accordingly, the reverse transformation heat treatment temperature is preferably controlled to be low in the vicinity of the austenite reverse transformation completion temperature AF.
개시된 실시예에 따른 준안정 오스테나이트계 스테인리스강의 경우에는, 900℃ 내지 1000℃에서 10초 내지 10분간 역변태 열처리를 진행할 수 있다.In the case of metastable austenitic stainless steel according to the disclosed embodiment, reverse transformation heat treatment may be performed at 900°C to 1000°C for 10 seconds to 10 minutes.
이와 같이, 합금성분과 함께 냉간 압하율 및 열처리 온도을 제어하여 냉연재를 제조할 경우, 강도 및 가공성 확보에 유리한 미세 결정립을 확보할 수 있다. In this way, when the cold-rolled material is manufactured by controlling the cold-rolling ratio and the heat treatment temperature together with the alloy component, it is possible to secure fine grains advantageous for securing strength and workability.
이에 따라 제조된 냉간 압연재는 평균 결정립 지름이 10㎛이하이다. The cold-rolled material thus manufactured has an average grain size of 10 μm or less.
또한, 제조된 냉간 압연재는 항복강도가 450MPa 이상이다. In addition, the manufactured cold rolled material has a yield strength of 450 MPa or more.
또한, 제조된 냉간 압연재는 500 ℃ 이상의 온도에서도, 450Hv 이상의 경도를 확보할 수 있다. In addition, the manufactured cold-rolled material can secure a hardness of 450 Hv or more even at a temperature of 500 ° C. or more.
이하 본 발명의 바람직한 실시예를 통해 보다 상세히 설명하기로 한다.Hereinafter, it will be described in more detail through preferred embodiments of the present invention.
실시예Example
하기 [표 1]의 성분범위에 대하여, 잉곳(Ingot) 용해를 통해 슬라브를 제조하고, 1,230℃에서 2시간 동안 가열한 후 열간압연을 실시하여 3mm 두께까지 열간압연을 진행 하였으며, 열간압연 이후 1,050℃에서 용체화 열처리를 진행하였다. 다음으로, 열연코일은 50%의 압하율을 적용하요 냉간압연을 진행하고, 900℃에서 1분 동안 열처리를 진행하였다. With respect to the component ranges in [Table 1] below, a slab was prepared through ingot melting, heated at 1,230 ° C. for 2 hours, and then hot rolled to a thickness of 3 mm was performed. After hot rolling, 1,050 Solution heat treatment was performed at ℃. Next, the hot-rolled coil was subjected to cold rolling at a reduction ratio of 50%, and heat treatment was performed at 900° C. for 1 minute.
하기 표 1에서, 식(1) 값은, 각 합금원소의 중량%를 하기 식 (1)에 대입하여 도출한 값이다. In Table 1 below, the value of Formula (1) is a value derived by substituting the weight % of each alloy element into the following Formula (1).
식(1): 551-462*(C+N)-9.2*Si-8.1*Mn-13.7*Cr-29*(Ni+Cu)Formula (1): 551-462*(C+N)-9.2*Si-8.1*Mn-13.7*Cr-29*(Ni+Cu)
CC NN SiSi MnMn CrCr NiNi CuCu PP SS 식(1)Formula (1)
실시예 1Example 1 0.110.11 0.2100.210 0.450.45 3.93.9 18.018.0 3.53.5 1.51.5 0.040.04 0.0040.004 -24.17-24.17
실시예 2Example 2 0.050.05 0.1800.180 0.30.3 3.63.6 17.717.7 3.73.7 2.02.0 0.040.04 0.0040.004 5.035.03
비교예 1Comparative Example 1 0.060.06 0.22 0.22 0.550.55 4.34.3 18.718.7 4.24.2 1.41.4 0.040.04 0.0040.004 -36.84-36.84
비교예 2Comparative Example 2 0.080.08 0.16 0.16 0.40.4 3.23.2 17.317.3 3.23.2 1.31.3 0.040.04 0.0040.004 43.0143.01
열처리 후, 각 강판의 항복강도 및 결정립 크기를 측정하였다. After heat treatment, the yield strength and grain size of each steel sheet were measured.
구체적으로, JIS 13B 규격에 맞게 가공한 시험편을 활용하여 20mm/min의 속도로 인장시험을 실시하여, 항복강도(Yield Strength, MPa)를 측정하였다. Specifically, a tensile test was performed at a speed of 20 mm/min using a test piece processed according to the JIS 13B standard, and yield strength (MPa) was measured.
결정립 평균 크기는, 냉연강판에 질산전해 산세를 수행한 후, 광학현미경(Optical Microscope, OM)으로 촬영하여 측정하였다. 확보한 미세조직 사진의 이미지 분석(image analyzer)을 통해, 강판 임의의 3지점을 측정한 후 평균값으로 나타내었다.The average grain size was measured by photographing with an optical microscope (Optical Microscope, OM) after performing nitric acid electrolytic pickling on the cold-rolled steel sheet. Through an image analyzer of the obtained microstructure photograph, arbitrary 3 points of the steel plate were measured, and then the average value was expressed.
한편, 오스테나이트계 스테인리스강의 경도를 향상시키기 위하여 평균 거칠기가 #600 이상의 워크 롤로 조질 압연(Skin Pass Rolling)을 수행하고, 조질 압연재의 경도 및 성형성 평가를 실시하였다.Meanwhile, in order to improve the hardness of the austenitic stainless steel, temper rolling was performed with a work roll having an average roughness of #600 or more, and the hardness and formability of the temper rolling material were evaluated.
조질 압연재의 경도는, 비커스 경도(1kg/f)의 조건으로 표면부의 경도값을 측정하여 하기 표 2에 기재하였다. The hardness of the temper rolling material was shown in Table 2 below by measuring the hardness value of the surface portion under the condition of Vickers hardness (1 kg/f).
조질 압연재의 성형성 실험은 에릭슨 평가를 도입하였다. 구체적으로, Black load 1ton, blank speed 10mm/min의 속도로 소성가공성 평가를 수행하였다. For the formability test of the temper rolling material, Ericsson evaluation was introduced. Specifically, plastic workability evaluation was performed at a speed of 1 ton of black load and 10 mm/min of blank speed.
한편, 조질 압연재의 표면을 육안으로 관찰하여 표면 요철 및 거칠음 발생 유/무를 확인하여 표면품질의 판단 지표로 하였다.On the other hand, by visually observing the surface of the temper rolling material, the presence/absence of surface irregularities and roughness was confirmed as an index for judging the surface quality.
다음으로, 조질 압연재를 각각 500℃, 600℃ 에서 1시간 동화 연화 열처리를 실시한 후, 비커스 경도(1kg/f)의 조건으로 표면부의 경도값을 측정하여 하기 표 2에 기재하였다. Next, after the temper rolling material was subjected to annealing softening heat treatment at 500° C. and 600° C. for 1 hour, respectively, the hardness value of the surface part was measured under the condition of Vickers hardness (1 kg/f), and it is shown in Table 2 below.
열처리재heat-treated material 조질 압연재temper rolling material 연화 처리재softening material
항복강도yield strength 평균 결정립 크기(㎛)Average grain size (㎛) 경도(Hv)Hardness (Hv) 성형성
연신율
formability
elongation
표면품질surface quality 500℃500℃ 600℃600℃
실시예 1Example 1 552552 ≤ 10≤ 10 496496 양호Good 양호Good 517517 463463
실시예 2Example 2 564564 ≤ 10≤ 10 498498 양호Good 양호Good 543543 457457
비교예 1Comparative Example 1 486486 ≥ 10≥ 10 493493 양호Good 양호Good 472472 403403
비교예 2Comparative Example 2 612612 ≤ 10≤ 10 492492 불량error 불량error 502502 472472
도 1은 비교예 1 및 실예에 1 강재를 광학현미경(Optical Microscope, OM)으로 촬영한 미세조직 사진이다.1 is a microstructure photograph taken with an optical microscope (Optical Microscope,  OM) of Comparative Example 1 and Example 1 steel.
도 1을 참조하면, 일반적인 열처리 조건을 적용시킨 비교예 3의 경우에는 평균 결정립 크기가 32㎛로, 10㎛ 초과하는 반면, 오스테나이트 역변태 완료 온도(AF) 근방의 온도에서 열처리한 실시예 3의 경우에는 평균 결정립 크기가 8㎛로 미세하였다. Referring to FIG. 1 , in Comparative Example 3 to which general heat treatment conditions were applied, the average grain size was 32 μm and exceeded 10 μm, whereas Example 3 was heat treated at a temperature near the austenite reverse transformation completion temperature (AF). In the case of , the average grain size was as fine as 8 μm.
표 2를 참조하면, 본 발명이 제시하는 합금 조성, 식(1)의 값의 범위 및 평균 결정립 크기 조건을 만족하는 실시예 1 내지 4의 경우, 450MPa 이상의 항복강도 확보가 가능할 뿐만 아니라, 조질 압연 시, 35% 이상의 우수한 연신율 및 표면품질을 확보할 수 있음을 확인하였다. 또한, 500 내지 600℃의 고온에서도 450Hv 이상의 경도를 확보할 수 있어, 연화를 방지할 수 있으므로 가스켓 소재로 적용이 가능함을 확인하였다. Referring to Table 2, in the case of Examples 1 to 4 that satisfy the alloy composition, the range of values of Equation (1), and the average grain size conditions suggested by the present invention, it is possible to secure a yield strength of 450 MPa or more, as well as temper rolling It was confirmed that excellent elongation of 35% or more and surface quality could be secured. In addition, it was possible to secure a hardness of 450 Hv or more even at a high temperature of 500 to 600 ° C, and it was confirmed that softening can be prevented, so that it can be applied as a gasket material.
식(1)의 값이 -30에 미달하는 비교예 1의 경우, 조질압연재의 물성은 양호한 반면, 고온에서의 내연화성이 상대적으로 열위한 것을 확인할 수 있다. In the case of Comparative Example 1 in which the value of Equation (1) is less than -30, it can be seen that the physical properties of the temper rolling material are good, but the softening resistance at high temperature is relatively poor.
식(1)의 값이 30을 초과하는 비교예 2의 경우, 조질압연 시 마르텐사이트가 다량 생성되고, 성형성 및 표면품질이 열위하게 도출되는 것을 확인할 수 있다. In the case of Comparative Example 2 in which the value of Equation (1) exceeds 30, it can be confirmed that a large amount of martensite is generated during temper rolling, and formability and surface quality are poorly derived.
이와 같이, 개시된 실시예에 따르면, 합금성분과 관계식을 제어하여 결정립 크기를 10 ㎛ 이하로 도출함으로써, 조질 압연 시, 35% 이상의 우수한 연신율 및 표면품질을 확보할 수 있고, 가스켓 적용 온도인 500 내지 600℃의 온도구간에서 연화를 방지할 수 있는 오스테나이트계 스테인리스강을 제조할 수 있다. As such, according to the disclosed embodiment, by controlling the alloy component and the relational expression to derive the grain size to 10 μm or less, excellent elongation and surface quality of 35% or more can be secured during temper rolling, and the gasket application temperature is 500 to It is possible to manufacture austenitic stainless steel that can prevent softening in the temperature range of 600 °C.
상술한 바에 있어서, 본 발명의 예시적인 실시예들을 설명하였지만, 본 발명은 이에 한정되지 않으며 해당 기술 분야에서 통상의 지식을 가진 자라면 다음에 기재하는 특허청구범위의 개념과 범위를 벗어나지 않는 범위 내에서 다양한 변경 및 변형이 가능함을 이해할 수 있을 것이다.In the foregoing, exemplary embodiments of the present invention have been described, but the present invention is not limited thereto, and those of ordinary skill in the art are within the scope not departing from the concept and scope of the claims described below. It will be understood that various changes and modifications are possible.
본 발명의 일 예에 따르면, 강도 및 가공성을 확보하면서도, 500℃ 이상의 온도에서 연화저항성을 확보할 수 있어 가스켓 소재로 적용이 가능하다. 또한, 기존 301 스테인리스강 수준의 연신율 및 내식성을 확보하면서도 니켈 함량이 저감된 오스테나이트계 스테인리스강을 제공할 수 있다.According to an example of the present invention, while ensuring strength and workability, it is possible to secure softening resistance at a temperature of 500° C. or higher, so that it can be applied as a gasket material. In addition, it is possible to provide an austenitic stainless steel having a reduced nickel content while securing elongation and corrosion resistance comparable to the existing 301 stainless steel.

Claims (10)

  1. 중량%로, C: 0.02 내지 0.15%, N: 0.1 내지 0.3%, Si: 0.2 내지 0.7, Mn: 2.0 내지 5.0%, Cr: 17.0 내지 19.0%, Ni: 2.5 내지 5.0%, Cu: 1.0 내지 3.0%, 나머지 Fe 및 불가피한 불순물을 포함하고,By weight, C: 0.02 to 0.15%, N: 0.1 to 0.3%, Si: 0.2 to 0.7, Mn: 2.0 to 5.0%, Cr: 17.0 to 19.0%, Ni: 2.5 to 5.0%, Cu: 1.0 to 3.0 %, including the remainder Fe and unavoidable impurities,
    하기 식(1)을 만족하는 고온 연화저항성이 향상된 오스테나이트계 스테인리스강.Austenitic stainless steel with improved resistance to softening at high temperatures satisfying the following formula (1).
    식(1): -30≤ 551-462*(C+N)-9.2*Si-8.1*Mn-13.7*Cr-29*(Ni+Cu) ≤30Formula (1): -30≤ 551-462*(C+N)-9.2*Si-8.1*Mn-13.7*Cr-29*(Ni+Cu) ≤30
    (여기서, C, N, Si, Mn, Cr, Ni, Cu는 각 원소의 중량%를 의미한다)(Here, C, N, Si, Mn, Cr, Ni, and Cu mean weight% of each element)
  2. 제1항에 있어서, The method of claim 1,
    평균 결정립 지름이 10㎛이하인 고온 연화저항성이 향상된 오스테나이트계 스테인리스강.Austenitic stainless steel with improved resistance to high temperature softening with an average grain diameter of 10 μm or less.
  3. 제1항에 있어서,The method of claim 1,
    Ca: 0.001 내지 0.003%, B: 0.001 내지 0.005%, P: 0.1% 이하(0은 제외) 및 S: 0.01% 이하(0은 제외) 중 1종 이상을 더 포함하는 고온 연화저항성이 향상된 오스테나이트계 스테인리스강.Ca: 0.001 to 0.003%, B: 0.001 to 0.005%, P: 0.1% or less (excluding 0), and S: 0.01% or less (excluding 0) Austenite with improved resistance to softening at high temperature further comprising at least one of series stainless steel.
  4. 제1항에 있어서, According to claim 1,
    항복강도가 450MPa 이상인 고온 연화저항성이 향상된 오스테나이트계 스테인리스강.Austenitic stainless steel with improved high temperature softening resistance with a yield strength of 450 MPa or more.
  5. 제1항에 있어서, The method of claim 1,
    500 ℃ 이상의 온도에서, 경도가 450Hv 이상인 고온 연화저항성이 향상된 오스테나이트계 스테인리스강.Austenitic stainless steel with improved resistance to high temperature softening with hardness of 450 Hv or higher at a temperature of 500 °C or higher.
  6. 제1항에 있어서, The method of claim 1,
    연신율이 35% 이상인 고온 연화저항성이 향상된 오스테나이트계 스테인리스강.Austenitic stainless steel with improved high temperature softening resistance with an elongation of 35% or more.
  7. 중량%로, C: 0.02 내지 0.15%, N: 0.1 내지 0.3%, Si: 0.2 내지 0.7, Mn: 2.0 내지 5.0%, Cr: 17.0 내지 19.0%, Ni: 2.5 내지 5.0%, Cu: 1.0 내지 3.0%, 나머지 Fe 및 불가피한 불순물을 포함하고, 하기 식(1)을 만족하는 슬라브를 열간압연 및 열연소둔하는 단계;By weight, C: 0.02 to 0.15%, N: 0.1 to 0.3%, Si: 0.2 to 0.7, Mn: 2.0 to 5.0%, Cr: 17.0 to 19.0%, Ni: 2.5 to 5.0%, Cu: 1.0 to 3.0 %, including the remaining Fe and unavoidable impurities, and hot rolling and hot annealing of a slab satisfying the following formula (1);
    상기 열연 소둔재를, 총압하율 50% 이상으로 제어하여 냉간압연하는 단계; 및 cold-rolling the hot-rolled annealed material to a total reduction ratio of 50% or more; and
    상기 냉간 압연재를 900℃ 내지 1000℃에서 열처리하는 단계;를 포함하는 고온 연화저항성이 향상된 오스테나이트계 스테인리스강의 제조 방법.Heat-treating the cold-rolled material at 900°C to 1000°C;
    식(1): -30≤ 551-462*(C+N)-9.2*Si-8.1*Mn-13.7*Cr-29*(Ni+Cu) ≤30Formula (1): -30≤ 551-462*(C+N)-9.2*Si-8.1*Mn-13.7*Cr-29*(Ni+Cu) ≤30
    (여기서, C, N, Si, Mn, Cr, Ni, Cu는 각 원소의 중량%를 의미한다)(Here, C, N, Si, Mn, Cr, Ni, and Cu mean weight% of each element)
  8. 제7항에 있어서, 8. The method of claim 7,
    냉간압연 시, 총 압하율은 70% 이상인 고온 연화저항성이 향상된 오스테나이트계 스테인리스강의 제조 방법.A method of manufacturing austenitic stainless steel with improved resistance to high temperature softening, with a total rolling reduction of 70% or more during cold rolling.
  9. 제7항에 있어서, 8. The method of claim 7,
    상기 열간압연은, 1,050 내지 1,300℃에서 수행되는 고온 연화저항성이 향상된 오스테나이트계 스테인리스강의 제조 방법.The hot rolling is a method of manufacturing an austenitic stainless steel having improved resistance to high temperature softening performed at 1,050 to 1,300°C.
  10. 제7항에 있어서, 8. The method of claim 7,
    열간압연 후, 1050 내지 1200℃에서 용체화 처리하는 단계;를 더 포함하는 고온 연화저항성이 향상된 오스테나이트계 스테인리스강의 제조 방법.After hot rolling, the step of solution heat treatment at 1050 to 1200 ℃; Method for producing austenitic stainless steel with improved resistance to high temperature softening further comprising.
PCT/KR2021/014158 2020-12-14 2021-10-14 Austenitic stainless steel with improved high temperature softening resistance WO2022131504A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0174138 2020-12-14
KR1020200174138A KR102537950B1 (en) 2020-12-14 2020-12-14 Austenitic stainless steel with improved high temperature softening resistance

Publications (1)

Publication Number Publication Date
WO2022131504A1 true WO2022131504A1 (en) 2022-06-23

Family

ID=82059607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014158 WO2022131504A1 (en) 2020-12-14 2021-10-14 Austenitic stainless steel with improved high temperature softening resistance

Country Status (2)

Country Link
KR (1) KR102537950B1 (en)
WO (1) WO2022131504A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100011989A (en) * 2007-08-02 2010-02-03 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Ferritic-austenitic stainless steel excellent in corrosion resistance and workability and process for manufacturing the same
KR20120083930A (en) * 2009-11-18 2012-07-26 수미도모 메탈 인더스트리즈, 리미티드 Austenite stainless steel sheet and method for producing same
JP5308726B2 (en) * 2008-06-17 2013-10-09 新日鐵住金ステンレス株式会社 Austenitic stainless steel sheet for press forming having a fine grain structure and method for producing the same
CN103924163A (en) * 2014-04-11 2014-07-16 广东广青金属科技有限公司 Austenite stainless steel and production method thereof
JP2017145460A (en) * 2016-02-17 2017-08-24 新日鐵住金ステンレス株式会社 Ferrite-austenitic stainless steel sheet for structural member excellent in puncture resistance at low temperature and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538726B2 (en) * 1972-03-30 1978-03-31
JP5014915B2 (en) * 2007-08-09 2012-08-29 日新製鋼株式会社 Ni-saving austenitic stainless steel
JP5794945B2 (en) * 2012-03-30 2015-10-14 新日鐵住金ステンレス株式会社 Heat resistant austenitic stainless steel sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100011989A (en) * 2007-08-02 2010-02-03 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Ferritic-austenitic stainless steel excellent in corrosion resistance and workability and process for manufacturing the same
JP5308726B2 (en) * 2008-06-17 2013-10-09 新日鐵住金ステンレス株式会社 Austenitic stainless steel sheet for press forming having a fine grain structure and method for producing the same
KR20120083930A (en) * 2009-11-18 2012-07-26 수미도모 메탈 인더스트리즈, 리미티드 Austenite stainless steel sheet and method for producing same
CN103924163A (en) * 2014-04-11 2014-07-16 广东广青金属科技有限公司 Austenite stainless steel and production method thereof
JP2017145460A (en) * 2016-02-17 2017-08-24 新日鐵住金ステンレス株式会社 Ferrite-austenitic stainless steel sheet for structural member excellent in puncture resistance at low temperature and manufacturing method thereof

Also Published As

Publication number Publication date
KR20220084555A (en) 2022-06-21
KR102537950B1 (en) 2023-05-31

Similar Documents

Publication Publication Date Title
WO2017222159A1 (en) High-strength cold-rolled steel sheet with excellent workability and manufacturing method therefor
WO2012043984A2 (en) Steel plate for line pipe, having excellent hydrogen induced crack resistance, and preparation method thereof
WO2019039768A1 (en) Low-ni austenitic stainless steel with excellent hot workability and hydrogen embrittlement resistance
WO2018117477A1 (en) Duplex stainless steel having excellent corrosion resistance and moldability, and manufacturing method therefor
WO2022050635A1 (en) Austenitic stainless steel and manufacturing method thereof
WO2021187706A1 (en) Highly anticorrosive martensitic stainless steel, and manufacturing method therefor
WO2019004540A1 (en) Hot-stamped part and method for manufacturing same
WO2020111857A1 (en) Chromium-molybdenum steel plate having excellent creep strength and method for manufacturing same
WO2021010599A2 (en) Austenitic stainless steel having improved strength, and method for manufacturing same
WO2022131504A1 (en) Austenitic stainless steel with improved high temperature softening resistance
WO2019132226A1 (en) Lean duplex steel having improved bendability and manufacturing method therefor
WO2022139214A1 (en) Martensitic stainless steel with improved strength and corrosion resistance, and manufacturing method therefor
WO2015099214A1 (en) Quenched steel sheet having excellent strength and ductility and method for manufacturing same
WO2021221246A1 (en) Ferritic stainless steel having improved corrosion resistance, and method for manufacturing same
WO2021261884A1 (en) High-strength austenitic stainless steel with excellent productivity and cost reduction effect and method for producing same
WO2017111303A1 (en) High-strength hot-rolled steel sheet with excellent bending workability and production method therefor
WO2021085800A1 (en) Austenitic stainless steel having increased yield ratio and manufacturing method thereof
WO2022045595A1 (en) Austenitic stainless steel with improved deep drawability
WO2022119134A1 (en) Ferritic stainless steel with improved grain boundary erosion, and manufacturing method thereof
WO2020036370A1 (en) Austenitic stainless steel having improved strength
WO2019039774A1 (en) Ferritic stainless steel having enhanced low-temperature impact toughness and method for producing same
WO2021125471A1 (en) Wire rod for ultra-high strength spring, steel wire and manufacturing method thereof
WO2022124526A1 (en) Ferrite-based stainless steel having improved ridging resistance and method for manufacturing same
WO2023234525A1 (en) Austenite stainless steel and manufacturing method therefor
WO2020130614A2 (en) High strength hot-rolled steel sheet having excellent hole expansion ratio and manufacturing method for same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906809

Country of ref document: EP

Kind code of ref document: A1