KR100345703B1 - A method of manufacturing high strength steel with good for mability for enamel application - Google Patents
A method of manufacturing high strength steel with good for mability for enamel application Download PDFInfo
- Publication number
- KR100345703B1 KR100345703B1 KR1019970062730A KR19970062730A KR100345703B1 KR 100345703 B1 KR100345703 B1 KR 100345703B1 KR 1019970062730 A KR1019970062730 A KR 1019970062730A KR 19970062730 A KR19970062730 A KR 19970062730A KR 100345703 B1 KR100345703 B1 KR 100345703B1
- Authority
- KR
- South Korea
- Prior art keywords
- steel
- enamel
- less
- steel sheet
- temperature
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
본 발명은 가전제품의 부분품 또는 건축외장재등으로 사용되는 법랑용 냉연강판의 제조방법에 관한 것으로, 보다 상세하게는 내피쉬스케일성(Fishscale) 및 성형성이 우수하고, 특히 법랑처리후 강도가 높은 법랑용 냉연강판의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing an enameled cold rolled steel sheet used as a part of a home appliance or a building exterior material, and more particularly, has excellent fish scale and moldability, and particularly high strength after enameling. The present invention relates to a method for producing an enameled cold rolled steel sheet.
종래의 법랑용 강판은 법랑제품에서 가장 치명적인 결함으로 알려진 피쉬스케일(Fishcale)결함을 방지하기 위해 개발된 강종들이다. 피쉬스케일(Fishcale)이란 법랑제품 제조공정에서 소성전 또는 고온소성시 강중에 고용되었던 수소가 냉각될 때 다시 표면으로 방출되어야만 하는데, 이때 강판표면의 법랑층은 이미 경화되어 있으므로 법랑층이 수소의 압력에 의해 물고기 비늘모양으로 깨어지는 결함을 말한다. 피쉬스케일 결함의 방지를 위해서는 강 내부에 수소를 흡착할 수 있는 위치를 만들어 줄 필요가 있으며, 주로 개재물이나 석출물이 이러한 작용을 하는 것으로 알려져 있다. 이제까지 피쉬스케일을 방지하기 위해 제시된 강종들은 티타늄, 보론, 질소 및 산소 등을 첨가하여 티타늄황하물, 티타늄질화물, 티타늄탄화물, 보론질화물 또는 망간산화물 등의 수소흡장원으로 알려진 석출물 또는 산화물을 석출시키거나, 고탄소강을 탈탄소둔하여 내피쉬스케일성을 확보한 티타늄첨가강, 보론첨가강, 고산소강 및 탈탄소둔강이 대부분이다.Conventional enamel steel sheets are steel grades developed to prevent fish scale defects known as the most fatal defects in enamel products. Fishcale means that hydrogen, which has been dissolved in steel before firing or at high temperature firing in the enamel product manufacturing process, must be released to the surface again. At this time, the enamel layer on the surface of the steel sheet is already hardened, so the enamel layer is hydrogen pressure. Refers to a defect that breaks into fish scales. In order to prevent fish scale defects, it is necessary to make a position to adsorb hydrogen inside the steel, and inclusions or precipitates are known to have such a function. Until now, steel grades proposed to prevent fish scale have added titanium, boron, nitrogen and oxygen to precipitate or oxides or precipitates known as hydrogen storage sources such as titanium sulfide, titanium nitride, titanium carbide, boron nitride or manganese oxide. Most of these are titanium-added steel, boron-added steel, high-oxygen steel and decarbonized steel which have decarbonized steel and high carbon steel to secure fish scale resistance.
이러한 종래강들은 고온에서 처리하는 법랑처리후 강도가 크게 낮아져 적은 충격에도 법랑제품이 쉽게 변형되며, 법랑층이 탈락하는 문제점이 있다. 특히, 건축외장재나 욕조와 같은 강도가 요구되는 용도에는 강도에 대한 문제점을 해결하기 위해 두꺼운 강판을 사용하여 제품의 무게가 매우 무거워지는 문제점이 있었다.These conventional steels have a low strength after enamel processing at high temperature, so the enamel product is easily deformed even with a small impact, and there is a problem that the enamel layer is dropped. In particular, in applications requiring strength, such as building exterior materials or bathtubs, there is a problem that the weight of the product is very heavy using a thick steel sheet to solve the problem of strength.
이에, 본 발명은 상술한 종래문제를 해결하기 위해 안출된 것으로써, 법랑처리후 법랑제품의 강도를 향상시키면서 내피쉬스케일성, 내새깅성(Sagging), 표면결함 및 법랑밀착성 등의 법랑특성을 만족하고, 성형 가공성이 우수한 고강도 법랑용 강판의 제조방법을 제공하는데, 그 목적이 있다.Accordingly, the present invention has been made to solve the above-mentioned conventional problem, while improving the strength of the enamel product after enamel processing, satisfies the enamel characteristics such as fish scale resistance, sagging resistance, surface defects and enamel adhesion In addition, an object of the present invention is to provide a method for producing a high strength enamel steel sheet excellent in molding processability.
상기 목적을 달성하기 위한 본 발명의 제조방법은, 중량%로, C:0.01% 이하, Mn:0.3%이하, S:0.02%-0.04%, P:0.05%-0.10%, Ti:0.04-0.10%, N:0.005%이하 및 Ti/(C+N+S)의 원자비가 1.0이상을 만족하고, 나머지 Fe와 기타 불가피하게 함유되는 불순물로 이루어지는 알루미늄킬드강을 재가열하여 마무리 압연온도를 Ar3변태점 이상으로 하는 조건으로 열간압연한 후 통상의 방법으로 권취한 다음, 이어 50-85%압하율로 냉간압연하고, 이어 재결정온도 이상의 온도에서 연속소둔하는 것을 포함하여 구성된다.The manufacturing method of the present invention for achieving the above object, in weight%, C: 0.01% or less, Mn: 0.3% or less, S: 0.02% -0.04%, P: 0.05% -0.10%, Ti: 0.04-0.10 %, N: 0.005% or less, and the atomic ratio of Ti / (C + N + S) satisfies 1.0 or more, and reheats the aluminum-kilted steel made of the remaining Fe and other unavoidable impurities to change the finish rolling temperature to Ar 3 transformation point. After hot rolling under the above conditions, it is wound by a usual method, followed by cold rolling at a 50-85% reduction rate, and then continuous annealing at a temperature above the recrystallization temperature.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
상기 C는 0.01% 이상 첨가할 경우 강중 고용탄소의 양이 많아 소둔시 집합조직의 발달을 방해하거나 미세한 티타늄탄화물의 석출량이 많아 결정립이 미세화되어 성형성이 크게 낮아지므로 0.01%이하로 제한한다.When C is added at 0.01% or more, the amount of solid solution in steel is high so that it hinders the development of the aggregate structure during annealing or the amount of fine titanium carbide is precipitated.
상기 Mn은 강중 고용 황을 망간황화물로 석출하여 고용 황에 의한 적열취성(Hot shortness)을 방지하기 위해 첨가하지만, 본 발명강의 경우 티타늄을 첨가하여 티타늄황화물을 석출함으로써 고용상태로 잔존하는 황을 완전히 제거하므로 망간을 별도로 첨가할 필요가 없다. 또한 망간의 경우 강중에 고용상태로 존재할 경우 강도를 증가하는 효과는 있지만, 강화효과는 크지 않으면서 성형성을 해치므로 0.3%이하로 제한한다.The Mn is added to prevent hot shortness due to solid solution of precipitated sulfur in steel as manganese sulfide, but in the case of the present invention steel, titanium is added to precipitate titanium sulfide to completely remove sulfur remaining in solid solution. This eliminates the need to add manganese separately. In addition, manganese has the effect of increasing strength when present in solid solution in the steel, but the reinforcing effect is not so large that the formability impairs the formability and is limited to 0.3% or less.
상기 S은 일반적으로 강의 물성을 저해하는 원소로 알려져 있으나, 본 발명강의 경우 티타늄황화물을 석출하여 내피쉬스케일성을 확보하기 위해 첨가한다. 황의 함량 0.02% 미만에서 티타늄황화물의 생성량 및 크기가 적어 내피쉬스케일성을 확보하지 못하며, 0.04% 이상 첨가할 경우 적열취성에 의한 표면결함이 발생할 가능성이 있고 성형성도 저하하므로 0.02-0.04%로 첨가하는 것이 바람직하다.S is generally known as an element that inhibits the physical properties of steel, but in the case of the present invention steel, titanium sulfide is added to secure fish scale resistance. Less than 0.02% of sulfur content, the amount and size of titanium sulfide is not enough to secure fish scale resistance. If it is added more than 0.04%, surface defects may occur due to redness and brittleness, and moldability decreases, so it is added at 0.02-0.04%. It is desirable to.
상기 P은 냉연강판에서는 성형성을 크게 저하하지 않으면서도 강도를 효과적으로 상승시키는 원소로 알려져 있다. 본 발명에서 특정 첨가범위에서 인의 고용 강화 효과와 티타늄과 반응하여 Ti(Fe, P)석출물을 생성함으로써 얻어지는 내피쉬스케일성 향상 효과가 동시에 나타나기 때문에 0.05-0.1%의 범위로 첨가한다. 즉, P의 함량이 0.05% 미만인 경우 소성후 항복강도가 낮아 쉽게 변형이 일어나며,0.1% 이상인 경우 법랑처리후 강도는 높지만 가공전 소재의 항복강도가 높아지고 소성이방성지수인 r값이 낮아져 성형가공성이 저하되므로 0.05-0.1%로 첨가하는 것이 바람직하다.P is known as an element in the cold rolled steel sheet that effectively increases the strength without significantly reducing the formability. In the present invention, it is added in the range of 0.05-0.1% because the solid solution strengthening effect of phosphorus in the specific addition range and the effect of improving fish scale resistance obtained by reacting with titanium to form Ti (Fe, P) precipitates simultaneously appear. In other words, if the P content is less than 0.05%, deformation easily occurs due to low yield strength after firing.In the case of 0.1% or more, the strength is high after enameling, but the yield strength of the material before processing increases and the value of plastic anisotropy index is low, so that the molding processability Since it is lowered, it is preferable to add it at 0.05-0.1%.
상기 Ti은 강중 고용탄소 및 질소를 티타늄탄,질화물로 석출하여 제거함으로써 소지강판의 성형성을 향상시키고, 티타늄황화물(TiS) 및 Ti(Fe, P)석출물을 석출하여 내피쉬스케일성을 향상시키는 원소로서, 그 첨가량이 0.04% 이하에서는 석출되는 티타늄석출물의 양이 적어 내피쉬스케일성을 확보할 수 없으며, 0.10% 이상 첨가할 경우 티타늄 석출물의 양이 많아 내피쉬스케일성은 확보할 수 있지만 법랑밀착성을 저하하므로 0.04-0.10%로 첨가하는 것이 바람직하다.The Ti improves the formability of the steel sheet by precipitating and removing solid carbon and nitrogen in the steel with titanium carbon and nitride, and precipitates titanium sulfide (TiS) and Ti (Fe, P) precipitates to improve fish scale resistance. As an element, when the added amount is 0.04% or less, the amount of titanium precipitates precipitated is small so that the fish scale resistance cannot be secured. When 0.10% or more is added, the amount of titanium precipitates is large, the fish scale resistance can be secured, but enamel adhesion It is preferable to add it at 0.04-0.10% because it lowers.
상기 N는 티타늄과 결합하여 티타늄질화물로 석출하여 내피쉬스케일성을 향상시키지만, 본 발명강에서는 티타늄질화물외 티타늄황하물 및 Ti(Fe, P)석출물만으로도 내피쉬스케일성을 충분히 확보하도록 하였으므로 티타늄질화물에 의한 내피쉬스케일성 강화는 필요없다. 따라서, N의 경우 고용상태로 강중에 잔존할 경우 소지강판의 성형성을 해치므로 가능한 낮게하는 것이 바람직한데 본 발명강의 경우 0.005% 이상 함유할 경우 성형성이 크게 낮아지므로 0.005%이하로 한다.The N is combined with titanium to precipitate as titanium nitride to improve the fish scale resistance, but in the present invention, titanium nitride and titanium (Fe, P) precipitates to ensure sufficient enough fish scale resistance, titanium nitride It is not necessary to enhance fish scale resistance by. Therefore, in the case of N, if it remains in solid solution in the steel, it is desirable to reduce the moldability of the steel sheet as low as possible. In the case of the present invention, when the content of 0.005% or more is contained, the moldability is greatly lowered, so it is 0.005% or less.
상기 Ti/(C+N+S)의 원자비를 1이상으로 제한한 것은 강에서 석출하여 소둔시 가공성에 유리한 집합조직의 발달을 저해하는 고용탄소 또는 질소를 완전히 제거하여 성형성을 향상시키기 위한 것으로, Ti/(C+N+S)의 원자비가 1.0 이하에서는 고용탄소 및 질소가 잔존하여 성형성이 낮아지므로 1.0이상으로 한다.The atomic ratio of Ti / (C + N + S) is limited to 1 or more to completely remove solid solution carbon or nitrogen that inhibits the development of an aggregate structure favorable for workability during precipitation and annealing, thereby improving moldability. If the atomic ratio of Ti / (C + N + S) is 1.0 or less, since the solid solution carbon and nitrogen remain and moldability becomes low, it is made into 1.0 or more.
상기와 같이 조성되는 알루미늄킬드강을 재가열하여 열간압연하는데, 이때의열간압연은 마무리 압연온도를 Ar3변태이상의 온도로 하는 것이 바람직하다. 그 이유는 Ar3변태온도 미만에서 열간압연할 경우 압연립의 생성으로 가공성을 저하하기 때문이다.Re-heating the aluminum-kilted steel, which is formed as described above, is hot rolled. In this case, the hot rolling is preferably performed at a finish rolling temperature of at least Ar 3 transformation. The reason for this is that hot rolling at an Ar 3 transformation temperature lowers workability due to the formation of rolled grains.
상기와 같이 열간압연하고 통상의 방법으로 권취한 다음, 냉간압연하는데, 이때의 냉간압하율은 50-85%로 제한하는 것이 바람직하다. 이는 열간압연시 생성하여 성장한 석출물이 냉간압연과정에서 파괴 또는 연신되는 과정에서 미세한 틈이 생성되며, 이 틈은 연속소둔후에 대부분 그대로 잔존하여 중요한 수소흡장원으로 작용하는데, 이를 위해서는 냉간압하율의 제어가 필요하다. 즉, 냉간압하율이 50% 미만일 경우 미세한 틈의 생성면적이 적어 수소흡장능이 저하하여 피쉬스케일 발생 확율이 높으며, 85% 이상의 냉간압하율로 압연할 경우 압하율이 너무 높아 미세한 틈이 압착되어 미세한 틈의 면적이 오히려 감소하여 수소흡장능이 급격히 감소하게 되기 때문이다.As described above, the hot rolling is carried out and wound in a usual manner, followed by cold rolling. The cold rolling reduction is preferably limited to 50-85%. It is produced during hot rolling, and the fine cracks are generated in the process of breaking or stretching in the cold rolling process, and these gaps remain mostly after continuous annealing and serve as an important hydrogen storage source. Is needed. In other words, if the cold reduction rate is less than 50%, the formation area of fine gaps is small, and the hydrogen absorption ability is low, and thus the probability of fish scale generation is high. This is because the area of the gap is rather reduced and the hydrogen storage capacity is drastically reduced.
상기와 같이 냉간압연한 다음 통상의 방법으로 연속소둔한다. 즉, 재가열온도이상으로 연속소둔하면 된다.Cold rolling as above and then continuous annealing in the usual manner. That is, it is good to continuously anneal above reheating temperature.
이하, 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.
[실시예]EXAMPLE
하기 표 1과 같은 조성을 만족하도록 용해되어 제조된 강괴를 1250℃ 가열로에 1시간 유지후 열간압연을 실시하였다. 이때 열간마무리 압연온도는 900℃, 권취온도는 650℃로 하였으며, 최종두께를 3.2mm로 하였다. 열간압연된 시편은 산세처리하여 표면의 산화피막을 제거한 후 70%의 압하율로 냉간압연 하였다. 이때, 냉간압하율의 효과를 조사하기 위한 비교강(6)은 냉간압하율을 40%로 하였다.The steel ingot prepared to be dissolved so as to satisfy the composition shown in Table 1 was maintained for 1 hour in a 1250 ℃ heating furnace and then hot rolled. At this time, the hot finishing rolling temperature was 900 ℃, winding temperature was 650 ℃, the final thickness was 3.2mm. The hot rolled specimens were pickled to remove the oxide film on the surface and then cold rolled at a 70% reduction rate. At this time, the comparative steel 6 for investigating the effect of cold reduction ratio made cold reduction rate 40%.
냉간압연이 완료된 시편은 법랑특성을 조사하기 위한 법랑처리시편 및 기계적 특성을 조사하기 위한 인장시편으로 가공한후 연속소둔을 실시하였다. 법랑처리시편은 70mm×150mm의 크기로 절단하였으며, 인장시편은 ASTM(ASTM E-8 standard)에 의한 표준시편으로 가공하였다. 연속소둔은 소둔온도 830℃로 하여 소둔을 실시하였다.Cold rolled specimens were processed into enameled specimens for enameling and tensile specimens for mechanical properties, followed by continuous annealing. The enameled specimens were cut to 70mm × 150mm, and the tensile specimens were processed into standard specimens according to ASTM (ASTM E-8 standard). Continuous annealing was performed at an annealing temperature of 830 ° C.
상기와 같이 연속소둔이 완료된 시편중 인장시편은 인장시험기(INSTRON사, Model 6025)를 이용하여 항복강도, 인장강도, 연신율 및 r값을 측정하고 그 결과를 하기 표 2에 나타내었다.As described above, the tensile specimens of the specimens in which continuous annealing was completed were measured using a tensile tester (INSTRON, Model 6025) to measure yield strength, tensile strength, elongation, and r, and the results are shown in Table 2 below.
그리고, 법랑처리용 시편은 완전히 탈지한후 70℃, 10% 황산용액에서 5분간 침적하는 산처리를 실시하고, 온수로 세척한후 85℃로 유지한 3.6g/ℓ 탄산소다 + 1.2g/ℓ 붕사수용액에 5분간 침적하는 중화처리하였다. 전처리가 완료된 시편에 유약(해광요업, 초벌법랑용 유약 소성온도 830℃)을 도포한후 200℃에서 10분간 건조하여 수분을 완전히 제거하였다. 건조가 끝난 시편은 830℃에서 7분간 유지하여 소성처리를 실시한후 공냉하는 법랑처리를 하였다. 이때 소성로의 분위기 조건은 노점온도 30℃로 피쉬스케일결함이 가장 발생하기 쉬운 가혹한 조건이다. 법랑처리가 끝난 시편은 200℃ 유지로에 20시간동안 유지하여 피쉬스케일 가속처리후 발생한 피쉬스케일 결함수를 육안으로 조사하고 그 결과를 하기 표 2에 나타내었다.The enameled specimens were completely degreased and then acid-treated for 5 minutes at 70 ° C. and 10% sulfuric acid solution, washed with warm water, and then maintained at 85 ° C., 3.6 g / l sodium carbonate + 1.2 g / l. It was neutralized by dipping in borax aqueous solution for 5 minutes. After the pretreatment was completed, the glaze (Haewang ceramics, glaze firing temperature of 830 ° C for the first enamel) was applied and dried at 200 ° C for 10 minutes to completely remove moisture. The dried specimens were kept at 830 ° C. for 7 minutes and subjected to calcination, followed by enameling of air cooling. At this time, the atmosphere condition of the kiln is a harsh condition where fish scale defects are most likely to occur at a dew point temperature of 30 ° C. The enameled specimens were kept in a 200 ° C. holding furnace for 20 hours to visually examine the number of fish scale defects generated after the fish scale acceleration treatment, and the results are shown in Table 2 below.
이때, 법랑밀착성 평가는 밀착시험기기(ASTM C313-78규격에 의한 시험 기기)를 이용하여 밀착지수를 측정하였다. 한편 법랑처리후 소지강판의 강도를 측정하기 위하여 연속소둔된 강판을 830℃에서 7분간 유지하는 법랑처리조건에 해당하는 열처리를 실시한후 항복강도를 측정하였다.At this time, the enamel adhesion evaluation was measured by using the adhesion test equipment (test equipment according to ASTM C313-78 standard). Meanwhile, in order to measure the strength of the steel sheet after enameling, the yield strength was measured after heat treatment corresponding to the enameling condition of maintaining the continuously annealed steel sheet at 830 ° C for 7 minutes.
상기 표 1 및 2에 나타난 바와 같이, 발명재(1-4)는 법랑처리후 항복강도는 17kgf/mm2이상으로 종래재의 9.8kgf/mm2에 비해 소성변형이 시작되는 강도가 월등히 높아 적은 충격에도 법랑제품에 손상이 휠씬 적다는 것을 알 수 있었다. 또한, 법랑밀착지수의 경우 97%이상으로 매우 우수한 법랑밀착성을 나타내었으며, 가장 가혹한 조건에서도 법랑의 치명적인 결함인 피쉬스케일 결함의 발생이 전혀 없었다. 그리고, 소지강판의 가공성을 나타내는 r값의 경우 1.8이상으로 거의 모든 법랑제품을 매우 용이하게 가공할 수 있었다.As shown in Tables 1 and 2, the invention material (1-4) has a yield strength of more than 17kgf / mm 2 after enamel processing, significantly higher than the 9.8kgf / mm 2 of the conventional material, the strength of the plastic deformation is significantly higher Edo enamel product was found to be much less damage. In addition, the enamel adhesion index was more than 97%, and the enamel adhesion was excellent. Even in the harshest conditions, there was no occurrence of fish scale defect, which is a fatal defect of the enamel. In the case of the r value indicating the workability of the base steel sheet, almost all of the enameled products could be easily processed to 1.8 or more.
이에 반해, 비교재(1)은 기계적 성질과 법랑특성은 우수하나, 법랑처리후 항복강도가 9.6kgf/mm2으로 적은 충격에도 손상을 받을 수 있다. 이는 인의 함량이 본 발명강의 범위보다 휠씬 적었기 때문이다. 또한, 비교재(2)는 망간의 함량이 본발명의 범위보다 높아 법랑처리후 강도는 높지만, 가공성 지수인 r값이 매우 낮아 복잡한 형상을 갖는 제품을 가공할 경우 크랙이 발생할 가능성이 매우 높다. 또한, 비교재(3)의 경우 황의 함량이 본 발명의 범위보다 낮아 법랑제품의 치명적인 결함인 피쉬스케일이 발생하였다. 또한, 비교재(4)는 티타늄함량이 본 발명의 범위보다 낮아 티타늄석출물의 석출량이 적어 피쉬스케일이 발생하였으며, Ti/(C+N+S) 원자비도 0.43으로 본 발명의 범위보다 매우 낮아 r값은 1.42로 매우 낮다. 또한, 비교재(5)의 경우 탄소함량이 본 발명의 범위보다 높아 r값이 매우 낮으며, 티타늄의 함량이 높아 법랑밀착지수가 85%로 매우 낮았다. 또한, 비교재(6)의 경우 냉간압하율이 본발명의 범위보다 낮은 경우인데, 피쉬스케일 결함이 발생하였으며 r값도 낮았다.On the contrary, the comparative material (1) has excellent mechanical and enamel properties, but can be damaged even with a small impact of yield strength of 9.6 kgf / mm 2 after enameling. This is because the phosphorus content was much less than the range of the present invention steel. In addition, the comparative material (2) has a high manganese content higher than the scope of the present invention, the strength is high after enamel processing, but the r value, which is a workability index is very low, so the crack is very likely to occur when processing a product having a complex shape. In addition, in the case of the comparative material (3), the sulfur content is lower than the range of the present invention generated a fish scale which is a fatal defect of the enamel product. In addition, the comparative material 4 has a titanium content is lower than the scope of the present invention, the precipitation amount of titanium precipitates less, the fish scale was generated, Ti / (C + N + S) atomic ratio of 0.43 is very low than the scope of the present invention r The value is very low, 1.42. In addition, in the case of the comparative material 5, the carbon content is higher than the range of the present invention, the r value is very low, and the titanium content is high, so that the enamel adhesion index is very low, which is 85%. In addition, in the case of the comparative material 6, the cold reduction rate is lower than the range of the present invention, a fish scale defect occurred and the r value was also low.
그리고, 종래재(1)은 종래강의 예인데 r값은 다소 높으나 법랑처리후 항복강도가 본 발명강에 비해 매우 낮아 적은 충격에도 제품에 손상을 입을 수 있다. 또한 법랑밀착성도 본 발명강 대비 낮았다. 또한 가혹한 분위기에서 피쉬스케일이 발생하여 하절기와 같은 습도가 높은 분위기에서 법랑처리를 할 경우 피쉬스케일이 발생할 가능성이 있다.In addition, the conventional material (1) is an example of conventional steel, but the r value is rather high, but the yield strength after enamel processing is much lower than that of the present invention steel, which may damage the product even with a small impact. In addition, the enamel adhesion was also lower than the inventive steel. In addition, the fish scale is generated in the harsh atmosphere, the fish scale may occur when the enamel treatment in a high humidity environment such as summer.
상술한 바와 같이, 본 발명에 의하면, 내피쉬스케일성(Fishscale) 및 성형성이 우수하고, 특히 법랑처리후 강도가 높은 법랑용 냉연강판의 제조방법을 제공할 수 있으며, 이러한 법랑용 냉연강판은 가스렌지, 전자렌지 등 가전제품의 부분품 또는 건축외장재등의 소지강판으로 사용되어 제품의 무게를 줄일 수 있는 효과가있는 것이다.As described above, according to the present invention, it is possible to provide a method for producing an enameled cold rolled steel sheet which is excellent in fish scale and moldability, and particularly high in strength after enameling. It is used as parts of household appliances such as gas stoves and microwave ovens, or as steel sheets for building exterior materials, which can reduce the weight of products.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970062730A KR100345703B1 (en) | 1997-11-25 | 1997-11-25 | A method of manufacturing high strength steel with good for mability for enamel application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970062730A KR100345703B1 (en) | 1997-11-25 | 1997-11-25 | A method of manufacturing high strength steel with good for mability for enamel application |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19990042030A KR19990042030A (en) | 1999-06-15 |
KR100345703B1 true KR100345703B1 (en) | 2002-09-18 |
Family
ID=37488610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019970062730A KR100345703B1 (en) | 1997-11-25 | 1997-11-25 | A method of manufacturing high strength steel with good for mability for enamel application |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100345703B1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010018906A1 (en) * | 2008-08-14 | 2010-02-18 | 주식회사 포스코 | Steel sheet for enamelling, and a production method therefor |
KR100951256B1 (en) | 2002-12-27 | 2010-04-02 | 주식회사 포스코 | Method of manufacturing hot rolled steel sheet for porcelain enameling |
US7869844B2 (en) | 2004-09-15 | 2011-01-11 | Laird Technologies, Inc. | Sliding mechanism for opening and closing of cellular phone |
US7969748B2 (en) | 2008-04-17 | 2011-06-28 | Laird Technologies, Inc. | EMI shielding slide assemblies for slidably opening and closing portable electronic devices and for providing EMI shielding for board-mounted electronic components |
US7967346B2 (en) | 2007-07-30 | 2011-06-28 | Laird Technologies Korea Yh | Slider mechanisms for opening and closing portable terminals |
KR20230081180A (en) | 2021-11-30 | 2023-06-07 | 주식회사 포스코 | Steel sheet for enamel and method for manufacturing the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101290468B1 (en) * | 2011-06-28 | 2013-07-26 | 현대제철 주식회사 | Cold-rolled steel sheet and method of manufacturing the cold-rolled steel sheet |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR950004680A (en) * | 1993-07-30 | 1995-02-18 | 윌리엄 이. 힐러 | Built-in battery overheat protection and voltage regulation circuit |
-
1997
- 1997-11-25 KR KR1019970062730A patent/KR100345703B1/en not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR950004680A (en) * | 1993-07-30 | 1995-02-18 | 윌리엄 이. 힐러 | Built-in battery overheat protection and voltage regulation circuit |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100951256B1 (en) | 2002-12-27 | 2010-04-02 | 주식회사 포스코 | Method of manufacturing hot rolled steel sheet for porcelain enameling |
US7869844B2 (en) | 2004-09-15 | 2011-01-11 | Laird Technologies, Inc. | Sliding mechanism for opening and closing of cellular phone |
US7967346B2 (en) | 2007-07-30 | 2011-06-28 | Laird Technologies Korea Yh | Slider mechanisms for opening and closing portable terminals |
US7969748B2 (en) | 2008-04-17 | 2011-06-28 | Laird Technologies, Inc. | EMI shielding slide assemblies for slidably opening and closing portable electronic devices and for providing EMI shielding for board-mounted electronic components |
WO2010018906A1 (en) * | 2008-08-14 | 2010-02-18 | 주식회사 포스코 | Steel sheet for enamelling, and a production method therefor |
KR20230081180A (en) | 2021-11-30 | 2023-06-07 | 주식회사 포스코 | Steel sheet for enamel and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
KR19990042030A (en) | 1999-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20100021274A (en) | Enameling steel sheet and manufacturing method thereof | |
AU621204B2 (en) | Steel sheets for porcelain enameling and method of producing the same | |
KR100345703B1 (en) | A method of manufacturing high strength steel with good for mability for enamel application | |
KR100360095B1 (en) | Manufacturing method of high adhesion enameled steel sheet with excellent formability | |
KR970011629B1 (en) | Method of manufacturing cold rolling sheet | |
KR20200073788A (en) | Porcelain enamel steel sheet excellent in fish scale resistance and enamel adhesion property and manufacturing method thereof | |
KR102271301B1 (en) | Steel sheet for enamel and method of manufacturing the same | |
KR102265183B1 (en) | Porcelain enamel steel sheet excellent in fish scale resistance and enamel adhesion property and manufacturing method thereof | |
KR20150049253A (en) | Porcelain anamel steel sheet having no surface defects and excellent formability and manufacturing method thereof | |
KR100470056B1 (en) | A cold rolled steel sheet for direct-on enamel applications with excellent adherence | |
KR100402001B1 (en) | A method for manufacturing the cold rolled sheet steel for the direct-on enamel coating | |
KR20100134547A (en) | Enameling steel sheet and manufacturing method thereof | |
KR102501947B1 (en) | Steel sheet for enamel and method of manufacturing the same | |
KR100347570B1 (en) | Method for manufacturing steel sheet for enameled ironware with excellent formability and surface property | |
KR100236162B1 (en) | Method for manufacturing hot rolled sheets | |
KR101142500B1 (en) | Enameling steel sheet with bubble defect free and manufacturing method thereof | |
KR100525646B1 (en) | Fabrication method of hot rolled steel plate for enamel | |
KR101630959B1 (en) | Porcelain anamel steel sheet having surface qualities and excellent formability and manufacturing method thereof | |
KR100525645B1 (en) | Fabrication method of hot rolled steel plate for enamel | |
KR101536427B1 (en) | Porcelain anamel steel sheet having no surface defects and excellent formability and manufacturing method thereof | |
KR101630965B1 (en) | Porcelain anamel steel sheet having excellent formability and fishscale resistance and manufacturing method thereof | |
KR20230094867A (en) | Steel sheet for enamel and method of manufacturing the same | |
KR20230092603A (en) | Cold rolled steel sheet for enamel having excellent anti-fishscale and method of manufacturing thereof | |
WO2023057106A1 (en) | Hot-rolled enamelling steel sheet and method for its production | |
KR20040048027A (en) | A method for manufacturing enameling steel plate with excellent formability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130626 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20140709 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20150703 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20160707 Year of fee payment: 15 |
|
LAPS | Lapse due to unpaid annual fee |