WO2010018906A1 - Steel sheet for enamelling, and a production method therefor - Google Patents

Steel sheet for enamelling, and a production method therefor Download PDF

Info

Publication number
WO2010018906A1
WO2010018906A1 PCT/KR2009/000901 KR2009000901W WO2010018906A1 WO 2010018906 A1 WO2010018906 A1 WO 2010018906A1 KR 2009000901 W KR2009000901 W KR 2009000901W WO 2010018906 A1 WO2010018906 A1 WO 2010018906A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
enamel
steel
value
less
Prior art date
Application number
PCT/KR2009/000901
Other languages
French (fr)
Korean (ko)
Inventor
윤정봉
조항식
박수범
김우성
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2011522890A priority Critical patent/JP5699076B2/en
Priority to CN200980131505.9A priority patent/CN102124132B/en
Publication of WO2010018906A1 publication Critical patent/WO2010018906A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Definitions

  • the present invention relates to a steel sheet for enamel. More specifically, the present invention relates to an enameled steel sheet excellent in formability without surface defects occurring and a manufacturing method thereof.
  • Enameled steel sheet is used for home appliances, chemical appliances, kitchen appliances, sanitary appliances and interior and exterior materials of buildings.
  • Enameled steel sheet includes hot rolled steel sheet or cold rolled steel sheet, but cold rolled steel sheet is mainly used in fields requiring high functionality and high processability.
  • Examples of enameled steel sheets include rimmed steel, OCA steel (open coil aluminum steel), titanium-added steel, and high oxygen steel.
  • High oxygen steel is a steel containing a large amount of oxygen in the limped steel. Increasing the oxygen content in the steel, like high-oxygen steel, can prevent fishscale, one of the defects of enamel steel sheet.
  • Fish scale refers to a phenomenon in which hydrogen gas condensed inside a river is released between the surface of the river and the enamel layer and lifts the surface of the enamel layer like fish scales.
  • fish scale is to release hydrogen dissolved in the steel to the surface of the steel in a cooled state.
  • the enamel layer on the steel surface is already hardened, hydrogen is not released to the outside, and thus a fish scale phenomenon occurs.
  • Such hydrogen adsorption sites may be micro-voids, inclusions, precipitates, dislocations, grain boundaries, and the like.
  • Limed steels have a high oxygen content, so large amounts of inclusions can be produced to prevent the occurrence of fish scales.
  • rimd steel can only be manufactured by ingot casting, productivity is low. Therefore, there is a need for an enameled steel that can be produced by high productivity continuous casting.
  • Titanium (Ti) -added steel can be produced by continuous casting.
  • this enameled steel has to add a lot of expensive titanium, which increases the manufacturing cost.
  • the added titanium blocks the nozzle, and other defects occur on the surface of the steel sheet due to the large amount of inclusions.
  • the recrystallization temperature of the steel is increased due to the added titanium, and annealing is required at the temperature, thereby increasing the production cost of the product.
  • the present invention provides an enamel steel sheet which can be made by continuous casting, has high productivity, has no surface defects and is excellent in formability.
  • Enamel steel sheet according to an embodiment of the present invention in weight% C: greater than 0 and less than 0.005%, Mn: 0.2-1.0%, S: 0.04 ⁇ 0.08%, P: 0.005-0.02%, Al; 0.01-0.1 %, Ti; 0.06-0.1%, greater than N: 0, containing less than 0.003% and containing the remaining Fe and other unavoidable impurities, TiS or (Ti, Mn) S precipitates of 0.01-0.4 ⁇ m, per cm 2 3X10 can be 8 or more.
  • an L value defined as L ((Ti / 48-N / 14-C / 12) + Mn / 58) / (S / 32) may be 2 to 10.
  • the F value defined by F (Ti / 48-N / 14-C / 12-S / 32) / (N / 14 + C / 12) may be greater than 0 and 5 or less.
  • Method for producing an enameled steel sheet i) by weight% C: greater than 0 and less than 0.005%, Mn: 0.2-1.0%, S: 0.04 ⁇ 0.08%, P: 0.005-0.02%, Preparing a slab comprising Al; 0.01-0.1%, Ti; 0.06-0.1%, N: 0 and less than 0.003% and containing the remaining Fe and other unavoidable impurities; Ii) heating the slab to 1200 ° C. or higher; Iii) manufacturing the hot rolled steel sheet by rough rolling the heated slab and then finishing rolling at a temperature of Ar3 or higher; And iii) a winding step of winding the hot rolled steel sheet at 550 to 750 ° C.
  • the method for manufacturing the enamel steel sheet may further include the step of cold rolling the hot rolled steel sheet at 50 to 90% of a rolling reduction rate after the winding step to manufacture a cold rolled steel sheet.
  • the method for producing an enamel steel sheet may further include a step of continuously annealing the cold rolled steel sheet at a temperature of 700 ° C. or more for 20 seconds after the step of manufacturing the cold rolled steel sheet.
  • the enamel steel sheet thus prepared may have a TiS or (Ti, Mn) S precipitates of 0.01 to 0.4 ⁇ m, and 3 ⁇ 10 8 or more per cm 2.
  • Enamel steel sheet according to an embodiment of the present invention can properly control the correlation between the titanium, nitrogen, carbon, manganese and sulfur content defined by the L value, it is possible to prevent the occurrence of surface defects due to red light brittleness.
  • the steel sheet for enamel according to an embodiment of the present invention can improve the formability during processing by appropriately controlling the correlation of titanium, nitrogen, carbon and sulfur defined by the F value.
  • the content of component elements means all weight percent unless otherwise specified.
  • Enamel steel sheet according to an embodiment of the present invention by weight% C: greater than 0 and less than 0.005%, Mn: 0.2-1.0%, S: 0.04 ⁇ 0.08%, P: 0.005-0.02%, Al; 0.01-0.1 %, Ti; 0.06-0.1%, greater than N: 0 and less than 0.003% and the remaining Fe and other unavoidable impurities.
  • the steel sheet for enamel according to an embodiment of the present invention is L value of 2 to 10.
  • L value is defined by the following equation (1).
  • the F value is 0 to 5.
  • the F value is defined by the following equation (2).
  • the steel sheet for enamel according to an embodiment of the present invention has the size of TiS or (Ti, Mn) S precipitates of 0.01 ⁇ 0.4 ⁇ m, and has 3X10 8 or more per cm 2.
  • Carbon (C) is greater than zero and less than 0.005%. If the carbon is 0.005% or more, the amount of solid solution carbon in the steel increases. When the amount of solid solution carbon increases, the annealing prevents the development of the aggregate structure, resulting in low moldability and aging. Therefore, if the steel sheet for enamel is produced and then left for a long time, plastic processing is likely to cause surface defects such as stretcher strain. Therefore, the upper limit of carbon is limited to 0.005%.
  • Manganese (Mn) is 0.2-1.0%. Manganese is combined with sulfur dissolved in the river to precipitate as manganese sulfide. Precipitated manganese sulfide prevents hot shortness. However, in one embodiment of the present invention, since titanium is added, titanium sulfide is precipitated earlier than manganese sulfide, and the first precipitated titanium sulfide can also prevent red brittleness. If the titanium and manganese contained in the steel is low, red brittleness may occur. That is, in one embodiment of the present invention, when the content of manganese is 0.2% or less, there is a high possibility that red light brittleness occurs. Therefore, the content of manganese is made 0.2% or more. On the other hand, when manganese content is 1.0% or more, moldability will become low at the time of processing. Therefore, the content of manganese is made 1.0% or less.
  • S Sulfur
  • S is generally known as an element that degrades the physical properties of steel.
  • sulfur combines with titanium to form fine titanium sulfide.
  • the formed titanium sulfide absorbs and stores hydrogen from the enameling process, thus preventing fishscale defects. If the sulfur content is less than 0.04%, less titanium sulfide is produced, so it is not possible to occlude a lot of hydrogen, so fish scale is likely to occur. Therefore, the content of sulfur is limited to 0.04% or more. On the other hand, when the sulfur content is 0.08% or more, the ductility of the steel sheet is greatly lowered, and red brittleness by sulfur is likely to occur. Therefore, the sulfur content is limited to 0.08% or less.
  • Phosphorus (P), like sulfur (S), is known as an element that inhibits the properties of steel.
  • Ti (Fe, P) precipitates are precipitated and the precipitates prevent fish scales from occurring. Therefore, in the embodiment of the present invention, an appropriate amount of phosphorus is added. If the content of phosphorus is 0.005% or less, Ti (Fe, P) precipitates are small and hydrogen cannot be occluded much. Therefore, phosphorus is added at 0.005% or more. On the other hand, when phosphorus is added 0.02% or more, moldability worsens when processing. Therefore, the upper limit of phosphorus content is made into 0.02%.
  • Aluminum (Al) is a deoxidizer. Aluminum suppresses the formation of oxides in steel and increases ductility. When the content of aluminum is 0.01% or less, a lot of oxides are generated in the steel, resulting in poor ductility. Therefore, the lower limit of the amount of aluminum added is made 0.01%. On the other hand, when 0.1% or more of aluminum is added, the aluminum oxide remains in steel or on the surface, so that ductility deteriorates or surface defects are likely to occur. Therefore, the upper limit of the amount of aluminum added is limited to 0.1%.
  • Titanium (Ti) combines with sulfur (S) and phosphorus (P) to produce titanium sulfides and Ti (Fe, P) precipitates. These precipitates prevent fish scales.
  • S sulfur
  • P phosphorus
  • the lower limit of the amount of titanium added is 0.06%.
  • the upper limit of the amount of titanium addition is made into 0.1%.
  • the upper limit of the amount of nitrogen addition is limited to 0.003%.
  • the amount of titanium sulfide (TiS) precipitate which is a hydrogen adsorption site is appropriately adjusted.
  • the amount of titanium sulfide deposited is correlated with the titanium content.
  • the titanium content is high, defects occur on the surface of the steel sheet or the enamel adhesion is poor.
  • the content of titanium is small, less precipitates are generated, and fish scales are more likely to occur, and when processing, the moldability is lowered, or the probability of surface defects due to redness brittle is increased. Therefore, the relationship between titanium, nitrogen, carbon, manganese and sulfur content in the enamel steel sheet according to an embodiment of the present invention should be properly controlled.
  • the L value is correlated with the occurrence of surface defects due to red light brittleness. If L is less than 2, there is a high probability of surface defects. Therefore, the lower limit of the L value is set to 2. On the other hand, when L value is larger than 10, enamel adhesion worsens. Therefore, the upper limit of L value shall be 10.
  • the lower limit of the F value is 0. If the F value is 5 or more, the probability of bubble defects is high. Therefore, the upper limit of the F value is set to 5.
  • the size and number of TiS or (Ti, Mn) S precipitates are limited. This is because the place where hydrogen can be occluded in the enamel steel sheet is a fine pore generated at the interface between the precipitate and the matrix steel sheet or cold rolling.
  • the reason for limiting the size of the precipitate to 0.01 ⁇ 0.4 ⁇ m is as follows. If the size of the precipitate is smaller than 0.01 ⁇ m, micropores are made too small when cold rolling. If the size of the micropores is too small, it is impossible to occlude much hydrogen. If the size of the precipitate is larger than 0.4 mu m, the area ratio between the interface of the precipitate and the base metal becomes too small. If the area ratio between the precipitate and the base metal interface is too small, it is difficult to prevent fish scale.
  • the number of precipitates in the enamel steel sheet according to an embodiment of the present invention is limited to 3X10 8 / cm 2 or more.
  • the number of precipitates is less than 3 ⁇ 10 8 / cm 2, it is difficult to prevent fish scale.
  • the produced slab is heated to 1200 ° C. or higher.
  • the reheated slab is rough rolled and then finish rolled at a temperature above Ar3 to produce a hot rolled steel sheet.
  • the prepared hot rolled steel sheet is wound at 550 to 750 ° C.
  • the wound hot rolled steel sheet is pickled to remove the oxide film on the surface of the steel sheet and then cold rolled to produce a cold rolled steel sheet.
  • the reduction ratio is 50 to 90%.
  • Cold-rolled steel sheet is continuously annealed for 20 seconds or more at 700 degreeC or more.
  • the reason for limiting the temperature for heating the slab to 1200 °C or more in the manufacturing method of the enamel steel sheet according to an embodiment of the present invention is as follows.
  • the TiS or (Ti, Mn) S precipitates become too large in the steelmaking process. If the precipitate is too large, the grain boundary area between the precipitate and the base metal is reduced. On the other hand, when the slab is heated at 1200 ° C. or higher, the precipitate is re-dissolved to a suitable size, thereby increasing the grain boundary area between the precipitate and the base metal. Therefore, fish scale can be prevented.
  • the reason for limiting the temperature for finishing hot rolling to Ar3 or more is as follows. This is because when finish hot rolling is carried out at a temperature of Ar3 or lower, crystal grains formed by hot rolling are formed, thereby decreasing the formability of the annealing plate.
  • the reason for limiting the coiling temperature to less than 700 °C when hot rolling is as follows. If the coiling temperature is 700 ° C or higher, the precipitate is too large to prevent the fish scale because the grain boundary area between the precipitate and the base metal is small. Therefore, the upper limit of a coiling temperature shall be 700 degreeC. On the other hand, when the coiling temperature is 550 ° C. or less, the crystal grains by hot rolling become too small and the moldability deteriorates. Therefore, the minimum of winding temperature shall be 550 degreeC.
  • the cold reduction rate is limited to 50 to 90%.
  • Continuous annealing produces ductility and formability in the cold rolled steel sheet. Continuous annealing at 700 ° C. or lower does not result in recrystallization and thus does not produce ductility and formability. Therefore, the lower limit of the temperature for continuous annealing is set at 700 ° C. On the other hand, even if the time of continuous annealing is too short, recrystallization is not completed and ductility and moldability do not occur. Therefore, continuous annealing is performed for 20 seconds or more.
  • a steel ingot having a composition as shown in Table 1 was maintained in a 1250 ° C. heating furnace for 1 hour, and then hot rolled to prepare a hot rolled steel sheet. Finish hot rolling was performed at 900 ° C. and wound up at 650 ° C. After hot rolling, the final thickness of the steel sheet was 3.2 mm. The hot rolled steel sheet thus prepared was pickled to remove the surface oxide film, and then cold rolled to prepare a cold rolled steel sheet. At this time, the cold reduction ratio was 75%, and the thickness of the steel sheet after cold rolling was 0.8 mm.
  • an enameled specimen for investigating the properties of enamel and a tensile specimen for investigating mechanical properties were prepared.
  • the enameled and tensile specimens were annealed continuously.
  • the enameled specimen was cut into 70mm X 150mm, and the tensile specimen was processed into a standard specimen according to ASTM E-8 standard.
  • Plastic anisotropy index (r m ) shows moldability.
  • the enameled specimens were completely degreased, dried with glaze, and dried at 200 ° C. for 10 minutes to completely remove moisture.
  • the dried specimens were maintained at 830 ° C. for 7 minutes, and then cooled to room temperature.
  • the specimen was coated with an oil glaze and dried at 200 ° C. for 10 minutes to completely remove moisture.
  • the dried specimen was held at 800 ° C. for 7 minutes, and then cooled in air.
  • the atmosphere of the kiln was a harsh condition where fish scale was most likely to occur at a dew point temperature of 30 ° C.
  • the enameled specimens were kept in a 200 ° C. holding furnace for 20 hours to generate fish scale and then visually examined the number of fish scales generated.
  • the enamel adhesion evaluation was performed using the adhesion index.
  • the adhesion index was measured using an adhesion test device (a test device according to ASTM C313-78 standard).
  • Table 2 below shows the mechanical properties, enamel characteristics, and size and number of precipitates of the inventive and comparative steels, respectively.
  • the inventive steels 1 to 4 have good mechanical properties because the r m value is 1.5 or more and the elongation is 45% or more.
  • the inventive steels 1 to 4 can be seen that the fish scale can be prevented even in the harsh conditions because the number and size of the precipitate falls within the limit of the present invention.
  • inventive steels 1 to 4 have high enamel adhesion indexes of 95% or more, indicating good adhesion.
  • the L value of Comparative Steel 1 was 1.44, which is smaller than 2.0, and a defect occurred on the surface of Comparative Steel 1.
  • the F value of the comparative steel 1 is -1.14, which is smaller than zero.
  • the r m value of Comparative Steel 1 is 1.65.
  • Comparative steel 1 machining cracks are more likely to occur when making parts with complicated shapes or requiring deep soiling. Comparative steel 1 also had 21 small fish scale defects due to small precipitates and low number of titanium.
  • Comparative steel 2 had an L value of 2.69 and no defects on the surface. However, since the F value of Comparative Steel 2 is negative and the r m value is small, there is a high possibility of cracking when forming. In addition, Comparative Steel 2 had a small amount of titanium, a small precipitate and a small number, resulting in 42 fish scales.
  • Comparative Steel 3 contained more nitrogen than the inventive steel, so bubble defects occurred after enameling. Comparative steel 3 also contains less sulfur and the size of precipitates is within the range defined by the present invention. However, the number of precipitates was small and fish scale occurred.
  • Comparative Steel 4 contained less sulfur. And precipitates were outside the scope of the present invention and the number of precipitates was also small. In addition, fish scale occurred in Comparative Steel 4. On the other hand, Comparative Steel 4 contained a large amount of nitrogen bubble defects after the enamel treatment. In addition, Comparative Steel 4 contained a large amount of titanium and had low enamel adhesion of 85%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

The present invention provides a steel sheet for enamelling which comprises, on a percent by weight basis, more than 0 and less than 0.005% carbon, 0.2-1.0% manganese, 0.04-0.08% sulphur, 0.005-0.02% phosphorus, 0.01-0.1% aluminium, 0.06-0.1% titanium and more than 0 and less than 0.003% nitrogen, and a balance of iron and unavoidable impurities, and in which there is a titanium sulphide or (titanium / manganese) sulphide precipitate having a size of 0.01-0.4 mm in an amount of at least 3x108 particles per cm2.

Description

법랑용 강판 및 그 제조방법Enamel steel plate and its manufacturing method
본 발명은 법랑용 강판에 관한 것이다. 보다 구체적으로, 본 발명은 표면 결함이 발생하지 않고 성형성도 우수한 법랑용 강판 및 그 제조방법에 관한 것이다.The present invention relates to a steel sheet for enamel. More specifically, the present invention relates to an enameled steel sheet excellent in formability without surface defects occurring and a manufacturing method thereof.
법랑용 강판은 가전기기, 화학기기, 주방기기, 위생기기 및 건물 내외장재 등에 사용된다.Enameled steel sheet is used for home appliances, chemical appliances, kitchen appliances, sanitary appliances and interior and exterior materials of buildings.
법랑용 강판은 열연강판이나 냉연강판이 있으나 고기능성과 고가공성을 요하는 분야에는 주로 냉연강판이 이용된다. 법랑용 강판으로는 림드강(rimmed steel), OCA강(open coil aluminum 강), 티타늄 첨가강, 고산소강 등이 있다. 고산소강은 림드강에 산소를 다량 함유시킨 강이다. 고산소강처럼 강중 산소함량을 높이면 법랑용 강판의 결함 중 하나인 피쉬스케일(fishscale)을 방지할 수 있다. Enameled steel sheet includes hot rolled steel sheet or cold rolled steel sheet, but cold rolled steel sheet is mainly used in fields requiring high functionality and high processability. Examples of enameled steel sheets include rimmed steel, OCA steel (open coil aluminum steel), titanium-added steel, and high oxygen steel. High oxygen steel is a steel containing a large amount of oxygen in the limped steel. Increasing the oxygen content in the steel, like high-oxygen steel, can prevent fishscale, one of the defects of enamel steel sheet.
피쉬스케일이란 강의 내부에 응집된 수소가스가 강의 표면과 법랑층 사이로 방출되어 법랑층 표면을 마치 물고기 비늘처럼 들어 올리는 현상을 말한다. 피쉬스케일은 법랑용 강판을 제조하는 과정에서, 강중에 고용되어 있던 수소가 냉각된 상태로 강의 표면으로 방출되려 하는 것이다. 그런데 이미 강 표면의 법랑층이 경화되어 있어서 수소가 외부로 방출되지 못하므로 피쉬스케일 현상이 발생한다. Fish scale refers to a phenomenon in which hydrogen gas condensed inside a river is released between the surface of the river and the enamel layer and lifts the surface of the enamel layer like fish scales. In the process of manufacturing the enamel steel sheet, fish scale is to release hydrogen dissolved in the steel to the surface of the steel in a cooled state. However, since the enamel layer on the steel surface is already hardened, hydrogen is not released to the outside, and thus a fish scale phenomenon occurs.
이와 같이 피쉬스케일은 수소가 원인이므로 이 결함이 발생되는 것을 방지하기 위해서는 수소를 흡착할 수 있는 장소를 강 내부에 만들어 줄 필요가 있다. 이러한 수소 흡착 장소로는 미세한 공공(micro-void), 개재물, 석출물, 전위, 결정립계 등이 될 수 있다. Thus, since fish scale is caused by hydrogen, it is necessary to make a place in the river where hydrogen can be adsorbed in order to prevent this defect from occurring. Such hydrogen adsorption sites may be micro-voids, inclusions, precipitates, dislocations, grain boundaries, and the like.
림드강은 산소 함량이 높기 때문에 개재물이 다량으로 생성될 수 있어서 피쉬 스케일의 발생을 방지한다. 그러나 림드강은 강괴 주조법에 의해서만 제조할 수 있어서 생산성이 낮다. 따라서 생산성이 높은 연속 주조에 의해 제조할 수 있는 법랑용 강이 필요하다.  Limed steels have a high oxygen content, so large amounts of inclusions can be produced to prevent the occurrence of fish scales. However, since rimd steel can only be manufactured by ingot casting, productivity is low. Therefore, there is a need for an enameled steel that can be produced by high productivity continuous casting.
티타늄(Ti) 첨가 강은 연속 주조로 제조할 수 있다. 그러나 이 법랑용 강은 고가의 티타늄을 많이 첨가해야 하므로 제조 비용이 증가한다. 또한, 티타늄 첨가 강은 연속으로 주조할 경우, 첨가된 티타늄이 노즐을 막고, 다량의 개재물 때문에 강판의 표면에 다른 결함이 발생한다. 또한 티타늄 첨가 강의 경우 첨가된 티타늄 때문에 강의 재결정 온도가 높아지고 그 온도에서 소둔을 하여야 하므로 제품의 생산비용이 많이 든다. Titanium (Ti) -added steel can be produced by continuous casting. However, this enameled steel has to add a lot of expensive titanium, which increases the manufacturing cost. In addition, when the titanium-added steel is continuously cast, the added titanium blocks the nozzle, and other defects occur on the surface of the steel sheet due to the large amount of inclusions. In addition, in the case of titanium-added steel, the recrystallization temperature of the steel is increased due to the added titanium, and annealing is required at the temperature, thereby increasing the production cost of the product.
이상 나열한 법랑용 강은 대부분 피쉬스케일을 방지하고 성형성을 높이기 위하여 탈탄 소둔 공정이나 상 소둔 공정을 거친다. 그러나 이러한 공정은 소둔 비용과 시간 때문에 생산원가가 높다. Most of the enameled steels listed above undergo decarburization annealing or phase annealing in order to prevent fish scale and improve formability. However, these processes are expensive due to the cost and time of annealing.
한편, 고산소강도 연속 주조로 만들 수 있다. 그러나 고산소강은 산소의 함유량이 높기 때문에 연속 주조시 내화물이 용손되어 생산성이 낮다. On the other hand, high oxygen strength can be made by continuous casting. However, high-oxygen steels have high oxygen content, so refractory is melted during continuous casting, resulting in low productivity.
본 발명은 연속 주조로 만들 수 있고 생산성이 높으며 표면 결함도 없고 성형성도 우수한 법랑용 강판을 제공한다.The present invention provides an enamel steel sheet which can be made by continuous casting, has high productivity, has no surface defects and is excellent in formability.
본 발명의 실시예에 따른 법랑용 강판은, 중량%로 C: 0보다 크고 0.005%미만, Mn:0.2-1.0%, S:0.04~0.08%, P:0.005-0.02%, Al;0.01-0.1%, Ti;0.06-0.1%, N:0보다 크고 0.003%미만을 포함하고 나머지 Fe 및 기타 불가피한 불순물을 포함하며, TiS 또는 (Ti, Mn)S 석출물의 크기가 0.01~0.4㎛이면서, ㎠ 당 3X108개 이상일 수 있다. Enamel steel sheet according to an embodiment of the present invention, in weight% C: greater than 0 and less than 0.005%, Mn: 0.2-1.0%, S: 0.04 ~ 0.08%, P: 0.005-0.02%, Al; 0.01-0.1 %, Ti; 0.06-0.1%, greater than N: 0, containing less than 0.003% and containing the remaining Fe and other unavoidable impurities, TiS or (Ti, Mn) S precipitates of 0.01-0.4 μm, per cm 2 3X10 can be 8 or more.
이러한 법랑용 강판에서 L=((Ti/48-N/14-C/12)+Mn/58)/(S/32)로 정의되는 L값이 2~10일 수 있다. In such an enamel steel sheet, an L value defined as L = ((Ti / 48-N / 14-C / 12) + Mn / 58) / (S / 32) may be 2 to 10.
그리고 이러한 법랑용 강판에서 F=(Ti/48-N/14-C/12-S/32)/(N/14+C/12) 로 정의되는 F값이 0보다 크고 5 이하일 수 있다. In this enamel steel sheet, the F value defined by F = (Ti / 48-N / 14-C / 12-S / 32) / (N / 14 + C / 12) may be greater than 0 and 5 or less.
본 발명의 실시예에 따른 법랑용 강판의 제조방법은, ⅰ) 중량%로 C: 0보다 크고 0.005%미만, Mn:0.2-1.0%, S:0.04~0.08%, P:0.005-0.02%, Al;0.01-0.1%, Ti;0.06-0.1%, N:0보다 크고 0.003%미만을 포함하고 나머지 Fe 및 기타 불가피한 불순물을 포함하는 슬래브를 제조하는 단계; ⅱ) 상기 슬래브를 1200℃ 이상으로 가열하는 단계; ⅲ) 상기 가열된 슬래브는 조압연을 한 다음 Ar3 이상의 온도에서 마무리 압연을 하여 열연 강판을 제조하는 단계; 및 ⅳ) 상기 열연 강판을 550~750℃에서 권취하는 권취 단계를 포함할 수 있다. Method for producing an enameled steel sheet according to an embodiment of the present invention, i) by weight% C: greater than 0 and less than 0.005%, Mn: 0.2-1.0%, S: 0.04 ~ 0.08%, P: 0.005-0.02%, Preparing a slab comprising Al; 0.01-0.1%, Ti; 0.06-0.1%, N: 0 and less than 0.003% and containing the remaining Fe and other unavoidable impurities; Ii) heating the slab to 1200 ° C. or higher; Iii) manufacturing the hot rolled steel sheet by rough rolling the heated slab and then finishing rolling at a temperature of Ar3 or higher; And iii) a winding step of winding the hot rolled steel sheet at 550 to 750 ° C.
이러한 법랑용 강판의 제조방법은, 상기 권취 단계 이후에 ⅴ) 압하율 50~90%로 상기 열연 강판을 냉간 압연하여 냉연 강판을 제조하는 단계를 더욱 포함할 수 있다. The method for manufacturing the enamel steel sheet may further include the step of cold rolling the hot rolled steel sheet at 50 to 90% of a rolling reduction rate after the winding step to manufacture a cold rolled steel sheet.
또한, 이러한 법랑용 강판의 제조방법은, 상기 냉연 강판을 제조하는 단계 이후에 ⅵ) 상기 냉연 강판을 700℃ 이상의 온도에서 20초 이상 연속 소둔하는 단계를 더욱 포함할 수 있다. In addition, the method for producing an enamel steel sheet may further include a step of continuously annealing the cold rolled steel sheet at a temperature of 700 ° C. or more for 20 seconds after the step of manufacturing the cold rolled steel sheet.
그리고 법랑용 강판을 제조하기 위한 슬래브는 L=((Ti/48-N/14-C/12) + Mn/58)/(S/32)로 정의되는 L값이 2~10이고, F=(Ti/48-N/14-C/12-S/32)/(N/14+C/12) 로 정의되는 F값이 0보다 크고 5이하일 수 있다. And the slab for producing the enamel steel sheet has an L value defined by L = ((Ti / 48-N / 14-C / 12) + Mn / 58) / (S / 32) is 2 ~ 10, F = The F value defined by (Ti / 48-N / 14-C / 12-S / 32) / (N / 14 + C / 12) may be greater than zero and less than or equal to five.
또한 이와 같이 제조된 법랑용 강판은 TiS 또는 (Ti, Mn)S 석출물의 크기가 0.01~0.4㎛이면서, ㎠ 당 3X108개 이상일 수 있다.In addition, the enamel steel sheet thus prepared may have a TiS or (Ti, Mn) S precipitates of 0.01 to 0.4 μm, and 3 × 10 8 or more per cm 2.
본 발명의 일 실시예에 따른 법랑용 강판은 TiS 또는 (Ti, Mn)S 석출물이 균일하게 분산되므로 수소를 흡착하여 피쉬스케일의 발생을 방지할 수 있다.In the steel sheet for enamel according to an embodiment of the present invention, since TiS or (Ti, Mn) S precipitates are uniformly dispersed, hydrogen may be adsorbed to prevent generation of fish scale.
본 발명의 일 실시예에 따른 법랑용 강판은 L값으로 정의된 티타늄, 질소, 탄소, 망간 및 황 함유량간의 상관관계를 적절히 제어하여, 적열취성에 의한 표면 결함의 발생을 방지할 수 있다. Enamel steel sheet according to an embodiment of the present invention can properly control the correlation between the titanium, nitrogen, carbon, manganese and sulfur content defined by the L value, it is possible to prevent the occurrence of surface defects due to red light brittleness.
본 발명의 일 실시예에 따른 법랑용 강판은 F값으로 정의된 티타늄, 질소, 탄소, 그리고 황의 상관관계를 적절히 제어하여, 가공시의 성형성을 향상시킬 수 있다. The steel sheet for enamel according to an embodiment of the present invention can improve the formability during processing by appropriately controlling the correlation of titanium, nitrogen, carbon and sulfur defined by the F value.
본 발명의 실시예에 따르면 연속 주조로 만들 수 있고 생산성이 높으며 표면 결함도 없고 성형성도 우수한 법랑용 강판을 제공할 수 있다.According to an embodiment of the present invention it can be provided by continuous casting, high productivity, there is no surface defects and excellent moldability can provide an enamel steel sheet.
이하, 본 발명에 따른 법랑용 강판 및 그 제조방법에 대한 실시예들을 상세하게 설명하겠지만 본 발명이 하기의 실시예들에 제한되는 것은 아니다. 따라서 해당 분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 본 발명을 다양한 다른 형태로 구현할 수 있을 것이다. Hereinafter, embodiments of the enamel steel sheet according to the present invention and a manufacturing method thereof will be described in detail, but the present invention is not limited to the following examples. Therefore, those skilled in the art may implement the present invention in various other forms without departing from the technical spirit of the present invention.
본 발명에서 성분원소의 함유량은 특별한 설명이 없는 한 모두 중량%를 의미한다. In the present invention, the content of component elements means all weight percent unless otherwise specified.
이하, 본 발명의 실시예에 따른 법랑용 강판에 대해서 상세히 설명한다. Hereinafter, the steel sheet for enamel according to the embodiment of the present invention will be described in detail.
본 발명의 일 실시예에 따른 법랑용 강판은 중량%로 C: 0보다 크고 0.005%미만, Mn:0.2-1.0%, S:0.04~0.08%, P:0.005-0.02%, Al;0.01-0.1%, Ti;0.06-0.1%, N:0보다 크고 0.003%미만을 포함하고 나머지 Fe 및 기타 불가피한 불순물을 포함한다. Enamel steel sheet according to an embodiment of the present invention by weight% C: greater than 0 and less than 0.005%, Mn: 0.2-1.0%, S: 0.04 ~ 0.08%, P: 0.005-0.02%, Al; 0.01-0.1 %, Ti; 0.06-0.1%, greater than N: 0 and less than 0.003% and the remaining Fe and other unavoidable impurities.
그리고 본 발명의 일 실시예에 따른 법랑용 강판은 L값을 2~10으로 한다. 여기서 L값은 다음 식(1)에 의하여 정의 된다. And the steel sheet for enamel according to an embodiment of the present invention is L value of 2 to 10. Where L value is defined by the following equation (1).
L = ((Ti/48-N/14-C/12)+Mn/58)/(S/32) (1) L = ((Ti / 48-N / 14-C / 12) + Mn / 58) / (S / 32) (1)
또한 본 발명의 일 실시예에 따른 법랑용 강판은 F값을 0~5로 한다. 여기서 F값은 다음 식(2)에 의하여 정의 된다. In addition, in the steel sheet for enamel according to an embodiment of the present invention, the F value is 0 to 5. The F value is defined by the following equation (2).
F=(Ti/48-N/14-C/12-S/32)/(N/14+C/12) (2) F = (Ti / 48-N / 14-C / 12-S / 32) / (N / 14 + C / 12) (2)
그리고 본 발명의 일 실시예에 따른 법랑용 강판은 TiS 또는 (Ti, Mn)S 석출물의 크기가 0.01~0.4㎛이면서, ㎠ 당 3X108개 이상을 가진다.And the steel sheet for enamel according to an embodiment of the present invention has the size of TiS or (Ti, Mn) S precipitates of 0.01 ~ 0.4㎛, and has 3X10 8 or more per cm 2.
이하에서는 본 발명의 일 실시예에 따른 법랑용 강판에서 성분 원소를 한정한 이유를 설명한다. Hereinafter, the reason for limiting the component elements in the enamel steel sheet according to an embodiment of the present invention.
탄소(C)는 0 보다 크고 0.005% 미만이다. 탄소가 0.005% 이상이면 강 중에 고용탄소의 양이 많아진다. 고용 탄소의 양이 많아지면 소둔할 때 집합조직의 발달이 방해되어 성형성이 낮아지고 시효 현상이 발생한다. 따라서 법랑용 강판을 생산한 다음 장기간 방치했다가 소성 가공을 할 경우 스트레처 스트레인(Stretcher Strain)과 같은 표면결함이 발생할 가능성이 높다. 따라서 탄소의 상한값을 0.005%로 제한한다.  Carbon (C) is greater than zero and less than 0.005%. If the carbon is 0.005% or more, the amount of solid solution carbon in the steel increases. When the amount of solid solution carbon increases, the annealing prevents the development of the aggregate structure, resulting in low moldability and aging. Therefore, if the steel sheet for enamel is produced and then left for a long time, plastic processing is likely to cause surface defects such as stretcher strain. Therefore, the upper limit of carbon is limited to 0.005%.
망간(Mn)은 0.2~1.0%이다. 망간은 강 중에 고용된 황과 결합하여 망간 황화물로 석출된다. 석출된 망간황화물은 적열취성(Hot shortness)을 방지한다. 그러나 본 발명의 일 실시예에서는 티타늄이 첨가되어 있으므로 망간황화물보다 티타늄 황화물이 먼저 석출되고, 먼저 석출된 티타늄 황화물 역시 적열취성을 방지할 수 있다. 만약 강 중에 포함된 티타늄과 망간이 적으면 적열취성이 발생할 수도 있다. 즉, 본 발명의 일 실시예에서 망간의 함유량이 0.2%이하가 되면 적열취성이 발생할 가능성이 높다. 따라서 망간의 함유량을 0.2%이상으로 한다. 한편, 망간의 함유량이 1.0% 이상이면 가공할 때 성형성이 낮아진다. 따라서 망간의 함유량을 1.0% 이하로 한다.  Manganese (Mn) is 0.2-1.0%. Manganese is combined with sulfur dissolved in the river to precipitate as manganese sulfide. Precipitated manganese sulfide prevents hot shortness. However, in one embodiment of the present invention, since titanium is added, titanium sulfide is precipitated earlier than manganese sulfide, and the first precipitated titanium sulfide can also prevent red brittleness. If the titanium and manganese contained in the steel is low, red brittleness may occur. That is, in one embodiment of the present invention, when the content of manganese is 0.2% or less, there is a high possibility that red light brittleness occurs. Therefore, the content of manganese is made 0.2% or more. On the other hand, when manganese content is 1.0% or more, moldability will become low at the time of processing. Therefore, the content of manganese is made 1.0% or less.
황(S)은 일반적으로 강의 물리적 특성을 나쁘게 하는 원소로 알려져 있다. 그러나 본 발명의 일 실시예에서 황은 티타늄과 결합하여 미세한 티타늄 황화물을 형성한다. 형성된 티타늄 황화물은 법랑 처리 공정에서 발생하는 수소를 흡수하고 저장하므로 피쉬스케일 결함을 방지한다. 황의 함유량이 0.04% 이하이면 티타늄 황화물이 적게 생성되므로 수소를 많이 흡장할 수 없어서 피쉬스케일이 발생할 가능성이 높다. 따라서 황의 함유량은 0.04% 이상으로 제한한다. 한편, 황의 함유량이 0.08%이상이면 강판의 연성이 크게 낮아지고 황에 의한 적열취성이 발생하기 쉽다. 따라서 황의 함유량은 0.08%이하로 제한한다.  Sulfur (S) is generally known as an element that degrades the physical properties of steel. However, in one embodiment of the present invention, sulfur combines with titanium to form fine titanium sulfide. The formed titanium sulfide absorbs and stores hydrogen from the enameling process, thus preventing fishscale defects. If the sulfur content is less than 0.04%, less titanium sulfide is produced, so it is not possible to occlude a lot of hydrogen, so fish scale is likely to occur. Therefore, the content of sulfur is limited to 0.04% or more. On the other hand, when the sulfur content is 0.08% or more, the ductility of the steel sheet is greatly lowered, and red brittleness by sulfur is likely to occur. Therefore, the sulfur content is limited to 0.08% or less.
인(P)도 황(S)과 마찬가지로 강의 물성을 저해하는 원소로 알려져 있다. 그러나 본 발명의 일 실시예에서는 티타늄이 첨가되면 Ti(Fe, P) 석출물이 석출되고 이 석출물은 피쉬스케일이 발생하는 것을 막는다. 따라서 본 발명의 실시예에서는 인을 적당량 첨가한다. 인의 함유량이 0.005% 이하이면 Ti(Fe,P) 석출물이 적어서 수소를 많이 흡장할 수 없다. 따라서 인은 0.005% 이상으로 첨가한다. 한편, 인을 0.02% 이상 첨가하면 가공할 때 성형성이 나빠진다. 따라서 인 함유량의 상한값을 0.02%로 한다. Phosphorus (P), like sulfur (S), is known as an element that inhibits the properties of steel. However, in one embodiment of the present invention, when titanium is added, Ti (Fe, P) precipitates are precipitated and the precipitates prevent fish scales from occurring. Therefore, in the embodiment of the present invention, an appropriate amount of phosphorus is added. If the content of phosphorus is 0.005% or less, Ti (Fe, P) precipitates are small and hydrogen cannot be occluded much. Therefore, phosphorus is added at 0.005% or more. On the other hand, when phosphorus is added 0.02% or more, moldability worsens when processing. Therefore, the upper limit of phosphorus content is made into 0.02%.
알루미늄(Al)은 탈산제이다. 알루미늄은 강 중에서 산화물의 생성을 억제하여 연성을 높인다. 알루미늄의 함량이 0.01% 이하이면 강 중에 산화물이 많이 생성되어 연성이 나빠진다. 따라서 알루미늄 첨가량의 하한값을 0.01%로 한다. 한편, 알루미늄을 0.1% 이상 첨가하면 알루미늄 산화물이 강 중이나 표면에 잔존하여 연성이 나빠지거나 표면 결함이 발생할 가능성이 높다. 따라서 알루미늄 첨가량의 상한값은 0.1%로 제한한다.  Aluminum (Al) is a deoxidizer. Aluminum suppresses the formation of oxides in steel and increases ductility. When the content of aluminum is 0.01% or less, a lot of oxides are generated in the steel, resulting in poor ductility. Therefore, the lower limit of the amount of aluminum added is made 0.01%. On the other hand, when 0.1% or more of aluminum is added, the aluminum oxide remains in steel or on the surface, so that ductility deteriorates or surface defects are likely to occur. Therefore, the upper limit of the amount of aluminum added is limited to 0.1%.
티타늄(Ti)은 황(S) 및 인(P)과 결합하여 티타늄 황화물 및 Ti(Fe, P) 석출물을 생성한다. 이러한 석출물은 피쉬스케일을 방지한다. 티타늄의 함유량을 0.06% 이하로 하면, 티타늄계 석출물이 적어서 피쉬스케일이 발생할 가능성이 높다. 따라서 티타늄 첨가량의 하한값은 0.06%로 한다. 한편, 티타늄의 함유량이 많으면 기포 결함이 발생할 가능성이 높고, 법랑밀착성도 낮다. 따라서 티타늄 첨가량의 상한값은 0.1%로 한다.  Titanium (Ti) combines with sulfur (S) and phosphorus (P) to produce titanium sulfides and Ti (Fe, P) precipitates. These precipitates prevent fish scales. When the content of titanium is made 0.06% or less, there is a high possibility that fish scale is generated due to the small amount of titanium-based precipitates. Therefore, the lower limit of the amount of titanium added is 0.06%. On the other hand, when there is much content of titanium, a bubble defect is likely to arise and enamel adhesion is low. Therefore, the upper limit of the amount of titanium addition is made into 0.1%.
질소(N)가 많이 첨가될수록 강의 성형성이 나빠지고, 기포 결함이 발생할 가능성이 높다. 따라서 질소 첨가량의 상한값은 0.003%로 제한한다.  The more nitrogen (N) is added, the worse the formability of the steel and the higher the possibility of bubble defects. Therefore, the upper limit of the amount of nitrogen addition is limited to 0.003%.
본 발명의 일 실시예에서는 수소 흡착 장소인 티타늄 황화물(TiS) 석출물의 양을 적절히 조절한다. 티타늄 황화물의 석출량은 티타늄 함량과 상관이 있다. 또한 티타늄의 함량이 많아면 강판의 표면에 결함이 발생하거나 법랑밀착성이 떨어진다. 반면, 티타늄의 함량이 적으면 석출물이 적게 생성되어 피쉬스케일이 발생하기 쉬우며, 가공할 때 성형성이 낮아지거나, 적열취성에 의한 표면 결함이 발생할 확률이 높아진다. 따라서 본 발명의 일 실시예에 따른 법랑용 강판에서 티타늄, 질소, 탄소, 망간 및 황 함유량간의 관계를 적절히 제어해야 한다. 이들 원소의 상관관계를 식(1)에서와 같이 L값{ L = ((Ti/48-N/14-C/12)+Mn/58)/(S/32)}으로 정의한다. In one embodiment of the present invention, the amount of titanium sulfide (TiS) precipitate which is a hydrogen adsorption site is appropriately adjusted. The amount of titanium sulfide deposited is correlated with the titanium content. In addition, when the titanium content is high, defects occur on the surface of the steel sheet or the enamel adhesion is poor. On the other hand, if the content of titanium is small, less precipitates are generated, and fish scales are more likely to occur, and when processing, the moldability is lowered, or the probability of surface defects due to redness brittle is increased. Therefore, the relationship between titanium, nitrogen, carbon, manganese and sulfur content in the enamel steel sheet according to an embodiment of the present invention should be properly controlled. The correlation between these elements is defined as L value {L = ((Ti / 48-N / 14-C / 12) + Mn / 58) / (S / 32)} as in the formula (1).
L값은 적열취성에 의한 표면 결함의 발생 여부와 상관이 있다. L값이 2 보다 작으면 표면 결함일 발생할 확률이 높다. 따라서 L값의 하한을 2로 한다. 한편, L값이 10보다 크면 법랑밀착성이 나빠진다. 따라서 L값의 상한은 10으로 한다.  The L value is correlated with the occurrence of surface defects due to red light brittleness. If L is less than 2, there is a high probability of surface defects. Therefore, the lower limit of the L value is set to 2. On the other hand, when L value is larger than 10, enamel adhesion worsens. Therefore, the upper limit of L value shall be 10.
그리고 본 발명의 일 실시예에 따른 법랑용 강판에서 티타늄, 질소, 탄소, 그리고 황의 관계는 가공할 때 성형성과 관련이 있다. 이들 원소의 상관관계를 식(2)에서와 같이 F값 {F=(Ti/48-N/14-C/12-S/32)/(N/14+C/12)}으로 정의한다.  And the relationship between titanium, nitrogen, carbon, and sulfur in the enamel steel sheet according to an embodiment of the present invention is related to the formability when processing. The correlation between these elements is defined as F value {F = (Ti / 48-N / 14-C / 12-S / 32) / (N / 14 + C / 12)} as in the formula (2).
F값이 0 보다 작으면 성형성이 너무 낮아서 가공할 때 결함이 발생할 가능성이 높다. 따라서 F값의 하한은 0으로 한다. F값이 5 이상이면 기포 결함이 발생할 확률이 높다. 따라서 F값의 상한은 5로 한다.  If the F value is less than 0, the moldability is too low, so defects are likely to occur during machining. Therefore, the lower limit of the F value is 0. If the F value is 5 or more, the probability of bubble defects is high. Therefore, the upper limit of the F value is set to 5.
본 발명의 일 실시예에 따른 법랑용 강판에서는 피쉬스케일을 방지하기 위하여 TiS 또는 (Ti,Mn)S 석출물의 크기와 수를 한정한다. 법랑용 강판에서 수소를 흡장할 수 있는 장소가 석출물과 기지강판의 계면 또는 냉간 압연할 때 생성되는 미세한 공공이기 때문이다.  In the steel sheet for enamel according to an embodiment of the present invention, in order to prevent fish scale, the size and number of TiS or (Ti, Mn) S precipitates are limited. This is because the place where hydrogen can be occluded in the enamel steel sheet is a fine pore generated at the interface between the precipitate and the matrix steel sheet or cold rolling.
석출물의 크기를 0.01~0.4㎛로 한정한 이유는 다음과 같다. 석출물의 크기가 0.01㎛ 보다 작으면 냉간 압연할 때 미세공공이 너무 작게 생성된다. 미세공공의 크기가 너무 작으면 수소를 많이 흡장할 수 없다. 석출물의 크기가 0.4㎛보다 크면 석출물과 기지금속의 계면 간에 면적 비가 너무 작아진다. 석출물과 기지금속의 계면 간에 면적 비가 너무 작으면 피쉬스케일을 방지하기 어렵다.  The reason for limiting the size of the precipitate to 0.01 ~ 0.4㎛ is as follows. If the size of the precipitate is smaller than 0.01 μm, micropores are made too small when cold rolling. If the size of the micropores is too small, it is impossible to occlude much hydrogen. If the size of the precipitate is larger than 0.4 mu m, the area ratio between the interface of the precipitate and the base metal becomes too small. If the area ratio between the precipitate and the base metal interface is too small, it is difficult to prevent fish scale.
그리고 본 발명의 일 실시예에 따른 법랑용 강판에서 석출물의 수를 3X108개/㎠ 이상으로 한정한다. 석출물의 수가 3X108개/㎠ 보다 적으면 피쉬스케일을 방지하기 어렵다. And the number of precipitates in the enamel steel sheet according to an embodiment of the present invention is limited to 3X10 8 / cm 2 or more. When the number of precipitates is less than 3 × 10 8 / cm 2, it is difficult to prevent fish scale.
이하에서는 본 발명의 일 실시예에 따른 법랑용 강판의 제조 방법에 대하여 설명한다. Hereinafter, a method of manufacturing an enamel steel sheet according to an embodiment of the present invention.
먼저 중량%로 C: 0보다 크고 0.005% 미만, Mn:0.2-1.0%, S:0.04~0.08%, P:0.005-0.02%, Al;0.01-0.1%, Ti;0.06-0.1%, N:0보다 크고 0.003%미만을 포함하고 나머지 Fe 및 기타 불가피한 불순물을 포함하는 슬래브를 제조한다. First by weight C: greater than 0 and less than 0.005%, Mn: 0.2-1.0%, S: 0.04-0.08%, P: 0.005-0.02%, Al; 0.01-0.1%, Ti; 0.06-0.1%, N: Slabs containing greater than 0 and less than 0.003% and the remaining Fe and other unavoidable impurities are prepared.
다음으로, 제조된 슬래브를 1200℃ 이상으로 가열한다. 재가열된 슬래브를 조압연한 다음 Ar3 이상의 온도에서 마무리 압연을 하여 열연 강판을 제조한다. Next, the produced slab is heated to 1200 ° C. or higher. The reheated slab is rough rolled and then finish rolled at a temperature above Ar3 to produce a hot rolled steel sheet.
제조된 열연 강판을 550~750℃에서 권취한다. 권취된 열연 강판을 산세처리하여 강판의 표면에 있는 산화피막을 제거한 다음 냉간 압연을 하여 냉연 강판을 제조한다. 냉간 압연을 할 때 압하율은 50~90%로 한다. 냉연 강판은 700℃ 이상에서 20초 이상 연속 소둔한다.  The prepared hot rolled steel sheet is wound at 550 to 750 ° C. The wound hot rolled steel sheet is pickled to remove the oxide film on the surface of the steel sheet and then cold rolled to produce a cold rolled steel sheet. When cold rolling, the reduction ratio is 50 to 90%. Cold-rolled steel sheet is continuously annealed for 20 seconds or more at 700 degreeC or more.
본 발명의 일 실시예에 따른 법랑용 강판의 제조방법에서 슬래브를 가열하는 온도를 1200℃ 이상으로 제한한 이유는 다음과 같다. The reason for limiting the temperature for heating the slab to 1200 ℃ or more in the manufacturing method of the enamel steel sheet according to an embodiment of the present invention is as follows.
1200℃ 보다 낮은 온도에서 슬래브를 가열하면 제강공정에서 TiS 또는 (Ti,Mn)S 석출물이 너무 커진다. 석출물이 너무 크면 석출물과 기지금속 간 입계 면적이 줄어든다. 반면, 1200℃ 이상에서 슬래브를 가열하면 석출물이 재용해하여 적당한 크기가 되므로 석출물과 기지금속 간 입계면적이 넓어진다. 따라서 피쉬스케일을 방지할 수 있다. If the slab is heated at a temperature lower than 1200 ° C, the TiS or (Ti, Mn) S precipitates become too large in the steelmaking process. If the precipitate is too large, the grain boundary area between the precipitate and the base metal is reduced. On the other hand, when the slab is heated at 1200 ° C. or higher, the precipitate is re-dissolved to a suitable size, thereby increasing the grain boundary area between the precipitate and the base metal. Therefore, fish scale can be prevented.
그리고 본 발명의 일 실시예에 따른 법랑용 강판의 제조방법에서 마무리 열간 압연을 하는 온도를 Ar3 이상으로 제한한 이유는 다음과 같다. Ar3 이하의 온도에서 마무리 열간 압연을 하면 열간 압연에 의한 결정립이 생성되어 소둔판의 성형성이 낮아지기 때문이다. In the manufacturing method of the enamel steel sheet according to an embodiment of the present invention, the reason for limiting the temperature for finishing hot rolling to Ar3 or more is as follows. This is because when finish hot rolling is carried out at a temperature of Ar3 or lower, crystal grains formed by hot rolling are formed, thereby decreasing the formability of the annealing plate.
그리고 열간 압연을 할 때 권취 온도를 700℃미만으로 제한한 이유는 다음과 같다. 권취 온도가 700℃ 이상이면 석출물이 너무 커서 석출물과 기지금속 간 입계면적이 작아지므로 피쉬스케일을 방지하기 어렵다. 따라서 권취 온도의 상한을 700℃로 한다. 한편, 권취 온도가 550℃이하이면 열간 압연에 의한 결정립이 너무 작아져 성형성이 나빠진다. 따라서 권취온도의 하한을 550℃로 한다.  And the reason for limiting the coiling temperature to less than 700 ℃ when hot rolling is as follows. If the coiling temperature is 700 ° C or higher, the precipitate is too large to prevent the fish scale because the grain boundary area between the precipitate and the base metal is small. Therefore, the upper limit of a coiling temperature shall be 700 degreeC. On the other hand, when the coiling temperature is 550 ° C. or less, the crystal grains by hot rolling become too small and the moldability deteriorates. Therefore, the minimum of winding temperature shall be 550 degreeC.
냉간 압연을 할 때 냉간 압하율이 너무 낮으면 재결정 집합조직이 잘 발달하지 않으므로 성형성이 나빠진다. 반대로 냉간 압하율이 너무 높으면 연성이 저하된다. 따라서 냉간압하율을 50 ~ 90%로 제한한다.  If the cold reduction rate is too low during cold rolling, the recrystallized texture does not develop well, resulting in poor formability. Conversely, if the cold reduction rate is too high, the ductility is lowered. Therefore, the cold reduction rate is limited to 50 to 90%.
연속 소둔을 하면 냉연 강판에 연성과 성형성이 생긴다. 700℃ 이하에서 연속 소둔을 하면 재결정이 완료되지 않으므로 연성과 성형성이 생기지 않는다. 따라서 연속 소둔을 하는 온도의 하한을 700℃로 한다. 한편, 연속 소둔을 하는 시간이 너무 짧아도 재결정이 완료되지 않아 연성과 성형성이 생기지 않는다. 따라서 20초 이상 연속 소둔을 한다.  Continuous annealing produces ductility and formability in the cold rolled steel sheet. Continuous annealing at 700 ° C. or lower does not result in recrystallization and thus does not produce ductility and formability. Therefore, the lower limit of the temperature for continuous annealing is set at 700 ° C. On the other hand, even if the time of continuous annealing is too short, recrystallization is not completed and ductility and moldability do not occur. Therefore, continuous annealing is performed for 20 seconds or more.
[실시예] EXAMPLE
표1과 같은 조성을 갖는 강괴를 제조하였다. Steel ingots having the composition shown in Table 1 were prepared.
표 1
구분 C Mn P S Al N Ti L F
발명강1 0.0013 0.32 0.011 0.055 0.035 0.0021 0.078 4.01 1.96
발명강2 0.0016 0.46 0.009 0.049 0.032 0.0025 0.087 6.16 2.36
발명강3 0.0021 0.58 0.012 0.055 0.04 0.0018 0.059 6.36 0.22
발명강4 0.0012 0.29 0.015 0.071 0.042 0.0017 0.092 3.02 2.65
비교강1 0.0019 0.11 0.015 0.075 0.053 0.0024 0.054 1.15 -1.14
비교강2 0.0028 0.42 0.009 0.093 0.043 0.0018 0.045 2.69 -2.42
비교강3 0.0018 0.45 0.012 0.032 0.042 0.0048 0.072 8.77 1.03
비교강4 0.0024 0.12 0.009 0.022 0.036 0.0073 0.12 5.60 1.99
Table 1
division C Mn P S Al N Ti L F
Inventive Steel 1 0.0013 0.32 0.011 0.055 0.035 0.0021 0.078 4.01 1.96
Inventive Steel 2 0.0016 0.46 0.009 0.049 0.032 0.0025 0.087 6.16 2.36
Invention Steel 3 0.0021 0.58 0.012 0.055 0.04 0.0018 0.059 6.36 0.22
Inventive Steel 4 0.0012 0.29 0.015 0.071 0.042 0.0017 0.092 3.02 2.65
Comparative Steel 1 0.0019 0.11 0.015 0.075 0.053 0.0024 0.054 1.15 -1.14
Comparative Steel 2 0.0028 0.42 0.009 0.093 0.043 0.0018 0.045 2.69 -2.42
Comparative Steel 3 0.0018 0.45 0.012 0.032 0.042 0.0048 0.072 8.77 1.03
Comparative Steel 4 0.0024 0.12 0.009 0.022 0.036 0.0073 0.12 5.60 1.99
표1에서 성분 원소의 함유량은 중량%이며, 각 시편에 대한 L값 및 F값을 함께 나타내었다. In Table 1, the content of the component elements is in weight%, and the L value and the F value for each specimen are shown together.
표1과 같은 조성을 갖는 강괴를 1250℃가열로에 1시간 유지한 후 열간 압연을 하여 열연 강판을 제조하였다. 900℃에서 마무리 열간 압연을 하였고, 650℃에서 권취하였다. 열간 압연을 한 후 강판의 최종 두께는 3.2mm였다. 이와 같이 제조된 열연 강판을 산세 처리하여 표면의 산화 피막을 제거한 후 냉간 압연을 하여 냉연 강판을 제조하였다. 이 때 냉간 압하율을 75%로 하였으며, 냉간 압연을 한 후 강판의 두께는 0.8mm였다. A steel ingot having a composition as shown in Table 1 was maintained in a 1250 ° C. heating furnace for 1 hour, and then hot rolled to prepare a hot rolled steel sheet. Finish hot rolling was performed at 900 ° C. and wound up at 650 ° C. After hot rolling, the final thickness of the steel sheet was 3.2 mm. The hot rolled steel sheet thus prepared was pickled to remove the surface oxide film, and then cold rolled to prepare a cold rolled steel sheet. At this time, the cold reduction ratio was 75%, and the thickness of the steel sheet after cold rolling was 0.8 mm.
냉연 강판을 이용하여, 법랑의 특성을 조사하기 위한 법랑처리시편과 기계적 특성을 조사하기 위한 인장시편을 제조하였다. 법랑처리시편과 인장시편을 연속 소둔하였다.  Using a cold rolled steel sheet, an enameled specimen for investigating the properties of enamel and a tensile specimen for investigating mechanical properties were prepared. The enameled and tensile specimens were annealed continuously.
여기서 법랑처리시편은 70mm X 150mm의 크기로 절단하였으며, 인장시편은 ASTM규격(ASTM E-8 standard)에 의한 표준시편으로 가공하였다.  Here, the enameled specimen was cut into 70mm X 150mm, and the tensile specimen was processed into a standard specimen according to ASTM E-8 standard.
830℃에서 연속 소둔을 하였다. 소둔이 끝난 후 인장시험기(INSTRON사, Model 6025)로 인장시편의 항복강도, 인장강도, 연신율, 소성 이방성 지수(rm)를 측정하였다.Continuous annealing was performed at 830 ° C. After annealing was completed, the yield strength, tensile strength, elongation, and plastic anisotropy index (r m ) of the tensile specimens were measured with a tensile tester (INSTRON, Model 6025).
소성 이방성 지수(rm)는 성형성을 나타낸다. 인장시편을 압연 방향, 압연 직각 방향 및 압연 방향에 45°인 방향으로 각각 채취하여 15% 인장했을 때 폭 방향 및 두께 방향의 수축 비, 즉, r=ln(wf-w0)/ln(tf/t0)를 측정하여 소성 이방성 지수를 도출하였다. 도출된 값을 각각 r0, r45 및 r90이라 하고 rm은 rm=(r0 + 2r45 + r90)/4 로 하였다.Plastic anisotropy index (r m ) shows moldability. When the tensile specimens were taken in the rolling direction, the right angle to the rolling direction, and in the direction of 45 ° to the rolling direction, respectively, and were stretched at 15%, the shrinkage ratio in the width direction and the thickness direction, that is, r = ln (w f -w 0 ) / ln ( t f / t 0 ) was measured to derive the plastic anisotropy index. The derived values were r 0 , r 45 and r 90 , and r m was r m = (r 0 + 2r 45 + r 90 ) / 4.
법랑처리용 시편은 완전히 탈지한 후 하유 유약을 도포하여 200℃에서 10분간 건조하여 수분을 완전히 제거하였다. 건조된 시편은 830℃에서 7분간 유지하여 소성처리를 한 후 상온까지 냉각하였다. 하유 법랑처리가 완료된 시편은 상유 유약을 도포한 후 200℃에서 10분간 건조하여 수분을 완전히 제거하였다. 건조된 시편은 800℃에서 7분간 유지하여 소성처리를 한후 공냉하였다. 이때 소성로의 분위기는 노점온도 30℃로 피쉬스케일이 가장 발생하기 쉬운 가혹한 조건으로 하였다. 법랑처리가 끝난 시편은 200℃ 유지로에 20시간 동안 유지하여 피쉬스케일을 발생시킨 다음 발생한 피쉬스케일의 수를 육안으로 조사하였다. The enameled specimens were completely degreased, dried with glaze, and dried at 200 ° C. for 10 minutes to completely remove moisture. The dried specimens were maintained at 830 ° C. for 7 minutes, and then cooled to room temperature. After the lower enamel treatment was completed, the specimen was coated with an oil glaze and dried at 200 ° C. for 10 minutes to completely remove moisture. The dried specimen was held at 800 ° C. for 7 minutes, and then cooled in air. At this time, the atmosphere of the kiln was a harsh condition where fish scale was most likely to occur at a dew point temperature of 30 ° C. The enameled specimens were kept in a 200 ° C. holding furnace for 20 hours to generate fish scale and then visually examined the number of fish scales generated.
법랑밀착성 평가는 밀착지수를 이용했는데, 밀착시험기기(ASTM C313-78규격에 의한 시험기기)를 이용하여 밀착지수를 측정하였다.  The enamel adhesion evaluation was performed using the adhesion index. The adhesion index was measured using an adhesion test device (a test device according to ASTM C313-78 standard).
아래 표2는 발명강 및 비교강 각각의 기계적 성질, 법랑처리 조건 별 법랑 특성 및 석출물의 크기 및 수를 나타낸다. Table 2 below shows the mechanical properties, enamel characteristics, and size and number of precipitates of the inventive and comparative steels, respectively.
표 2
구분 YS(MPa) TS(MPa) El.(%) rm 소재결함 기포결함 피쉬스케일발생개수 법랑밀착지수 석출물크기(㎛) 석출물숫자(개/㎠)
발명강1 196 301 48 1.98 양호 양호 0 98% 0.21 5.5×108
발명강2 205 313 48 2.04 양호 양호 0 95% 0.27 4.8×108
발명강3 203 322 47 1.93 양호 양호 0 97% 0.18 6.7×108
발명강4 192 304 49 1.97 양호 양호 0 95% 0.26 6.5×108
비교강1 207 325 44 1.65 발생 양호 21 98% 0.007 0.8×108
비교강2 212 329 43 1.72 양호 양호 42 97% 0.006 0.54×108
비교강3 201 310 46 1.89 양호 발생 38 95% 0.018 0.7×108
비교강4 172 292 48 1.93 양호 발생 2 85% 0.64 4.5×108
TABLE 2
division YS (MPa) TS (MPa) El. (%) rm Material defect Bubble defect Fish Scale Generation Count Enamel adhesion index Precipitate size (㎛) Precipitate number (pieces / ㎠)
Inventive Steel 1 196 301 48 1.98 Good Good 0 98% 0.21 5.5 × 10 8
Inventive Steel 2 205 313 48 2.04 Good Good 0 95% 0.27 4.8 × 10 8
Invention Steel 3 203 322 47 1.93 Good Good 0 97% 0.18 6.7 × 10 8
Inventive Steel 4 192 304 49 1.97 Good Good 0 95% 0.26 6.5 × 10 8
Comparative Steel 1 207 325 44 1.65 Occur Good 21 98% 0.007 0.8 × 10 8
Comparative Steel 2 212 329 43 1.72 Good Good 42 97% 0.006 0.54 × 10 8
Comparative Steel 3 201 310 46 1.89 Good Occur 38 95% 0.018 0.7 × 10 8
Comparative Steel 4 172 292 48 1.93 Good Occur 2 85% 0.64 4.5 × 10 8
표2에서 발명강1~4는 rm값이 1.5 이상이고, 연신율이 45%이상이므로 기계적 성질이 좋다. 또한 발명강 1~4는 석출물의 수와 크기가 본 발명에서 제한한 범위에 속하므로 가혹한 조건에서도 피쉬스케일을 방지할 수 있음을 알 수 있다.In Table 2, the inventive steels 1 to 4 have good mechanical properties because the r m value is 1.5 or more and the elongation is 45% or more. In addition, the inventive steels 1 to 4 can be seen that the fish scale can be prevented even in the harsh conditions because the number and size of the precipitate falls within the limit of the present invention.
또한 발명강1~4는 법랑밀착지수도 95%이상으로 높아서 밀착성이 양호하다는 것을 알 수 있다. In addition, the inventive steels 1 to 4 have high enamel adhesion indexes of 95% or more, indicating good adhesion.
한편, 표1을 참조하면, 비교강1의 L값은 1.44로서 2.0보다 작으며, 비교강1의 표면에는 결함이 발생하였다. 또한, 비교강1의 F값은 -1.14로 0 보다 작다. 또한, 표2를 참조하면, 비교강1의 rm값은 1.65이다.On the other hand, referring to Table 1, the L value of Comparative Steel 1 was 1.44, which is smaller than 2.0, and a defect occurred on the surface of Comparative Steel 1. In addition, the F value of the comparative steel 1 is -1.14, which is smaller than zero. In addition, referring to Table 2, the r m value of Comparative Steel 1 is 1.65.
따라서 비교강1을 사용하여, 형상이 복잡하거나 깊은 오무림 가공이 필요한 부품을 만들 때 가공 크랙이 발생할 가능성이 높다. 또한 비교강1은 석출물이 작고 수도 적으며 티타늄의 첨가량이 낮아 피쉬스케일 결함이 21개 발생하였다.  Therefore, using comparative steel 1, machining cracks are more likely to occur when making parts with complicated shapes or requiring deep soiling. Comparative steel 1 also had 21 small fish scale defects due to small precipitates and low number of titanium.
비교강2는 L값이 2.69이며 표면에 결함이 발생하지 않았다. 그러나 비교강2의 F값이 음수이고 rm값이 작아 성형 가공을 할 때 크랙이 발생할 가능성이 매우 높다. 또한 비교강2는 티타늄 함량이 적고 석출물이 작으며 그 수 또한 적어서 피쉬스케일이 42개나 발생하였다. Comparative steel 2 had an L value of 2.69 and no defects on the surface. However, since the F value of Comparative Steel 2 is negative and the r m value is small, there is a high possibility of cracking when forming. In addition, Comparative Steel 2 had a small amount of titanium, a small precipitate and a small number, resulting in 42 fish scales.
비교강3의 L값 및 F값은 본 발명의 범위에 포함되고, 표면 결함이 발생하지 않았다. 또한, rm값도 1.89로 양호하다. 그러나 비교강3은 질소를 발명강보다 많이 포함하므로 법랑처리 후 기포 결함이 발생하였다. 또한 비교강3은 황을 적게 포함하고 석출물의 크기는 본 발명에서 규정한 범위 내에 속한다. 하지만 석출물의 수가 적었고, 피쉬스케일이 발생하였다. L value and F value of the comparative steel 3 were included in the scope of the present invention, and the surface defect did not generate | occur | produce. In addition, the r m value is good at 1.89. However, Comparative Steel 3 contained more nitrogen than the inventive steel, so bubble defects occurred after enameling. Comparative steel 3 also contains less sulfur and the size of precipitates is within the range defined by the present invention. However, the number of precipitates was small and fish scale occurred.
비교강4의 L값 및 F값은 본 발명의 범위에 포함되고, 표면 결함이 발생하지 않았다. 또한, rm값이 커서 성형성이 좋을 수 있다. 그러나 비교강4는 황을 적게 포함하였다. 그리고 석출물이 본 발명의 범위를 벗어났으며 석출물의 수 또한 적었다. 또한, 비교강4에서 피쉬스케일이 발생하였다. 한편, 비교강4는 질소를 많이 포함하여 법랑처리 후 기포 결함이 발생하였다. 또한 비교강4는 티타늄을 많이 포함하여 법랑밀착성이 85%로 낮았다. L value and F value of the comparative steel 4 were included in the scope of the present invention, and the surface defect did not generate | occur | produce. In addition, since the r m value is large, moldability may be good. However, Comparative Steel 4 contained less sulfur. And precipitates were outside the scope of the present invention and the number of precipitates was also small. In addition, fish scale occurred in Comparative Steel 4. On the other hand, Comparative Steel 4 contained a large amount of nitrogen bubble defects after the enamel treatment. In addition, Comparative Steel 4 contained a large amount of titanium and had low enamel adhesion of 85%.
상술한 바와 같이 본 발명의 바람직한 실시예들을 참조하여 법랑용 강판 및 그 제조방법에 대해서 설명하였지만, 해당 기술 분야의 숙련된 당업자라면 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.As described above, the steel sheet for enamel and its manufacturing method have been described with reference to the preferred embodiments of the present invention, but a person skilled in the art does not depart from the spirit and scope of the present invention described in the claims below. It will be understood that various modifications and variations can be made in the present invention.

Claims (8)

  1. 중량%로 C: 0보다 크고 0.005%미만, Mn:0.2-1.0%, S:0.04~0.08%, P:0.005-0.02%, Al;0.01-0.1%, Ti;0.06-0.1%, N:0보다 크고 0.003%미만을 포함하고 나머지 Fe 및 기타 불가피한 불순물을 포함하며, % By weight C: greater than 0 and less than 0.005%, Mn: 0.2-1.0%, S: 0.04-0.08%, P: 0.005-0.02%, Al; 0.01-0.1%, Ti; 0.06-0.1%, N: 0 Greater than 0.003% and containing the remaining Fe and other unavoidable impurities,
    TiS 또는 (Ti,Mn)S 석출물의 크기가 0.01~0.4㎛이면서, ㎠ 당 3X108개 이상인 법랑용 강판.An enamel steel sheet having a size of TiS or (Ti, Mn) S precipitates of 0.01 to 0.4 µm, with 3 × 10 8 or more per cm 2.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 법랑용 강판은 L = ((Ti/48-N/14-C/12) + Mn/58)/(S/32)로 정의되는 L값이 2~10인 법랑용 강판.  The enamel steel sheet is an enamel steel sheet having an L value of 2 to 10 defined by L = ((Ti / 48-N / 14-C / 12) + Mn / 58) / (S / 32).
  3. 제 2 항에 있어서, The method of claim 2,
    상기 법랑용 강판은 F=(Ti/48-N/14-C/12-S/32)/(N/14+C/12) 로 정의되는 F값이 0보다 크고 5이하인 법랑용 강판.  The enamel steel sheet is an enamel steel sheet having an F value greater than 0 and less than or equal to 5 defined by F = (Ti / 48-N / 14-C / 12-S / 32) / (N / 14 + C / 12).
  4. 중량%로 C: 0보다 크고 0.005%미만, Mn:0.2-1.0%, S:0.04~0.08%, P:0.005-0.02%, Al;0.01-0.1%, Ti;0.06-0.1%, N:0보다 크고 0.003%미만을 포함하고 나머지 Fe 및 불가피한 불순물로 이루어진 슬래브를 제조하는 단계; % By weight C: greater than 0 and less than 0.005%, Mn: 0.2-1.0%, S: 0.04-0.08%, P: 0.005-0.02%, Al; 0.01-0.1%, Ti; 0.06-0.1%, N: 0 Preparing a slab that is greater than 0.003% and consists of the remaining Fe and inevitable impurities;
    상기 슬래브를 1200℃ 이상으로 가열하는 단계; Heating the slab to at least 1200 ° C .;
    상기 가열된 슬래브는 조압연을 한 다음 Ar3이상의 온도에서 마무리 압연을 하여 열연 강판을 제조하는 단계 및 The heated slab is roughly rolled and then finish rolled at a temperature of Ar3 or higher to produce a hot rolled steel sheet and
    상기 열연강판을 550~750℃에서 권취하는 권취단계  Winding step of winding the hot rolled steel sheet at 550 ~ 750 ℃
    를 포함하는 법랑용 강판의 제조방법. Method for producing a steel sheet for enamel comprising a.
  5. 제 4 항에 있어서, The method of claim 4, wherein
    상기 권취단계 이후에 압하율 50~90%로 냉간 압연을 하여 냉연 강판을 제조하는 단계를 더욱 포함하는 법랑용 강판의 제조방법. After the winding step, by cold rolling at a reduction ratio of 50 to 90% further comprising the step of manufacturing a cold rolled steel sheet.
  6. 제 5 항에 있어서, The method of claim 5,
    상기 냉연 강판을 700℃ 이상의 온도에서 20초 이상 연속 소둔하는 단계를 더욱 포함하는 법랑용 강판의 제조방법.  Method for producing an enameled steel sheet further comprising the step of continuously annealing the cold rolled steel sheet at a temperature of 700 ℃ or more for 20 seconds or more.
  7. 제 4항 내지 제 6항 중 어느 한 항에 있어서, The method according to any one of claims 4 to 6,
    상기 슬래브는 L = ((Ti/48-N/14-C/12) + Mn/58)/(S/32)로 정의되는 L값이 2~10이고, F=(Ti/48-N/14-C/12-S/32)/(N/14+C/12) 로 정의되는 F값이 0보다 크고 5이하인 법랑용 강판의 제조방법.  The slab has an L value of 2 to 10 defined by L = ((Ti / 48-N / 14-C / 12) + Mn / 58) / (S / 32), and F = (Ti / 48-N / The manufacturing method of the enameled steel plate whose F value defined by 14-C / 12-S / 32) / (N / 14 + C / 12) is larger than 0 and 5 or less.
  8. 제 7 항에 있어서, The method of claim 7, wherein
    상기 법랑용 강판의 제조방법에 의하여 제조된 법랑용 강판은 TiS 또는 (Ti,Mn)S 석출물의 크기가 0.01~0.4㎛이면서, ㎠ 당 3X108개 이상인 법랑용 강판의 제조방법.The enameled steel sheet produced by the method for producing an enameled steel sheet has a TiS or (Ti, Mn) S precipitates having a size of 0.01 to 0.4 µm and having 3 × 10 8 or more per cubic centimeter.
PCT/KR2009/000901 2008-08-14 2009-02-25 Steel sheet for enamelling, and a production method therefor WO2010018906A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011522890A JP5699076B2 (en) 2008-08-14 2009-02-25 Steel plate for enamel and method for producing the same
CN200980131505.9A CN102124132B (en) 2008-08-14 2009-02-25 Steel sheet for enamelling, and a production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080080110A KR20100021274A (en) 2008-08-14 2008-08-14 Enameling steel sheet and manufacturing method thereof
KR10-2008-0080110 2008-08-14

Publications (1)

Publication Number Publication Date
WO2010018906A1 true WO2010018906A1 (en) 2010-02-18

Family

ID=41669039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/000901 WO2010018906A1 (en) 2008-08-14 2009-02-25 Steel sheet for enamelling, and a production method therefor

Country Status (4)

Country Link
JP (1) JP5699076B2 (en)
KR (1) KR20100021274A (en)
CN (1) CN102124132B (en)
WO (1) WO2010018906A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102899565A (en) * 2011-07-25 2013-01-30 宝山钢铁股份有限公司 Steel for cold rolling enamel, and manufacturing method thereof

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102747309A (en) * 2012-07-27 2012-10-24 宝山钢铁股份有限公司 Steel for enamel and production method thereof
CN103484757A (en) * 2013-10-17 2014-01-01 武汉钢铁(集团)公司 Enamel steel with scaling resistance and manufacturing method thereof
KR101536428B1 (en) * 2013-10-29 2015-07-13 주식회사 포스코 Porcelain anamel steel sheet having no surface defects and excellent formability and manufacturing method thereof
KR101536427B1 (en) * 2013-10-29 2015-07-13 주식회사 포스코 Porcelain anamel steel sheet having no surface defects and excellent formability and manufacturing method thereof
KR101630959B1 (en) * 2014-11-14 2016-06-16 주식회사 포스코 Porcelain anamel steel sheet having surface qualities and excellent formability and manufacturing method thereof
KR101630964B1 (en) * 2014-11-24 2016-06-16 주식회사 포스코 Porcelain anamel steel sheet having excellent adhesion and fishscale resistance and manufacturing method thereof
KR101630965B1 (en) * 2014-11-24 2016-06-16 주식회사 포스코 Porcelain anamel steel sheet having excellent formability and fishscale resistance and manufacturing method thereof
KR101657788B1 (en) * 2014-12-04 2016-09-20 주식회사 포스코 The steel sheet having excellent corrosion resistance to hydrochloric acid and adhesion and method for manufacturing the same
KR101657787B1 (en) * 2014-12-04 2016-09-20 주식회사 포스코 The steel sheet having excellent corrosion resistance to hydrochloric acid and adhesion and method for manufacturing the same
CN104894472B (en) * 2015-05-22 2017-03-08 武汉钢铁(集团)公司 Elevated oxygen level steel and its smelting process
WO2018188766A1 (en) * 2017-04-11 2018-10-18 Thyssenkrupp Steel Europe Ag Cold-rolled flat steel product annealed in a bell-type furnace, and method for the production of said product
CN108048735B (en) * 2017-11-23 2020-03-27 首钢集团有限公司 Steel plate for cold rolling enamel and production method thereof
CN108570598A (en) * 2018-05-17 2018-09-25 马鞍山钢铁股份有限公司 A kind of decoration panel enamel cold-reduced sheet and production method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320414A (en) * 1989-06-19 1991-01-29 Nippon Steel Corp Production of non-ageing cold rolled steel sheet for porcelain enameling having superior workability
KR100345703B1 (en) * 1997-11-25 2002-09-18 주식회사 포스코 A method of manufacturing high strength steel with good for mability for enamel application
KR100360095B1 (en) * 1998-08-28 2003-10-22 주식회사 포스코 Manufacturing method of high adhesion enameled steel sheet with excellent formability
JP2005510624A (en) * 2001-10-29 2005-04-21 新日本製鐵株式会社 Steel plate for enamel excellent in workability and resistance to tearing and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118755A (en) * 1993-10-22 1995-05-09 Nippon Steel Corp Production of steel sheet for porcelain enameling excellent in deep drawability
KR970011629B1 (en) * 1994-12-20 1997-07-12 김만제 Method of manufacturing cold rolling sheet
CN100473742C (en) * 2006-04-29 2009-04-01 宝山钢铁股份有限公司 Hot-rolled fine-grained steel for electrostatic enamel and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320414A (en) * 1989-06-19 1991-01-29 Nippon Steel Corp Production of non-ageing cold rolled steel sheet for porcelain enameling having superior workability
KR100345703B1 (en) * 1997-11-25 2002-09-18 주식회사 포스코 A method of manufacturing high strength steel with good for mability for enamel application
KR100360095B1 (en) * 1998-08-28 2003-10-22 주식회사 포스코 Manufacturing method of high adhesion enameled steel sheet with excellent formability
JP2005510624A (en) * 2001-10-29 2005-04-21 新日本製鐵株式会社 Steel plate for enamel excellent in workability and resistance to tearing and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102899565A (en) * 2011-07-25 2013-01-30 宝山钢铁股份有限公司 Steel for cold rolling enamel, and manufacturing method thereof

Also Published As

Publication number Publication date
KR20100021274A (en) 2010-02-24
JP2011530658A (en) 2011-12-22
CN102124132B (en) 2014-11-26
JP5699076B2 (en) 2015-04-08
CN102124132A (en) 2011-07-13

Similar Documents

Publication Publication Date Title
WO2010018906A1 (en) Steel sheet for enamelling, and a production method therefor
KR101289415B1 (en) Enameling steel sheet with surface defect free and manufacturing method thereof
WO2019117430A1 (en) Ferritic stainless steel having excellent high-temperature oxidation resistance, and manufacturing method therefor
WO2019039768A1 (en) Low-ni austenitic stainless steel with excellent hot workability and hydrogen embrittlement resistance
WO2019059660A1 (en) Low-alloy steel sheet having excellent strength and ductility and manufacturing method therefor
WO2021125858A2 (en) Enamel steel sheet and manufacturing method therefor
WO2020067702A1 (en) Cold-rolled steel plate for porcelain enameling having excellent fishscale resistance and method of manufacturing same
KR102169455B1 (en) Porcelain enamel steel sheet excellent in fish scale resistance and enamel adhesion property and manufacturing method thereof
WO2013154254A1 (en) High carbon hot rolled steel sheet having excellent uniformity and method for manufacturing same
KR100360095B1 (en) Manufacturing method of high adhesion enameled steel sheet with excellent formability
WO2010074458A2 (en) High-strength cold rolled steel sheet having superior deep drawability and a high yield ratio, galvanized steel sheet using same, alloyed galvanized steel sheet, and method for manufacturing same
WO2019039824A1 (en) Cold-rolled steel sheet for enameling and manufacturing method therefor
KR100345703B1 (en) A method of manufacturing high strength steel with good for mability for enamel application
KR20110070423A (en) Enameling steel sheet with surface defect free and manufacturing method thereof
WO2020111739A2 (en) Cold-rolled steel plate for enameling and method for manufacturing same
KR970011629B1 (en) Method of manufacturing cold rolling sheet
KR102265183B1 (en) Porcelain enamel steel sheet excellent in fish scale resistance and enamel adhesion property and manufacturing method thereof
KR101669003B1 (en) Porcelain anamel steel sheet and manufacturing method thereof
WO2021125564A1 (en) High-strength ferritic stainless steel for clamp, and manufacturing method therefor
KR101380407B1 (en) Enameling steel sheet with surface defect free and manufacturing method thereof
KR20100134547A (en) Enameling steel sheet and manufacturing method thereof
WO2023113558A1 (en) Cold-rolled steel sheet and galvanized steel sheet with excellent press formability and method of manufacturing thereof
WO2022139205A1 (en) Steel having excellent laser cutting properties and method of manufacturing same
KR20120073945A (en) Enameling steel sheet with surface defect free and manufacturing method thereof
WO2022139313A1 (en) Steel sheet for porcelain enamel, and method of manufacturing same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980131505.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09806768

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011522890

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09806768

Country of ref document: EP

Kind code of ref document: A1