JPS62199721A - Production of steel sheet or strip of ferritic stainless steel having good workability - Google Patents

Production of steel sheet or strip of ferritic stainless steel having good workability

Info

Publication number
JPS62199721A
JPS62199721A JP4235186A JP4235186A JPS62199721A JP S62199721 A JPS62199721 A JP S62199721A JP 4235186 A JP4235186 A JP 4235186A JP 4235186 A JP4235186 A JP 4235186A JP S62199721 A JPS62199721 A JP S62199721A
Authority
JP
Japan
Prior art keywords
less
rolling
hot
stainless steel
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4235186A
Other languages
Japanese (ja)
Other versions
JPH0617519B2 (en
Inventor
Yoshihiro Uematsu
植松 美博
Kazuo Hoshino
和夫 星野
Katsuhisa Miyakusu
宮楠 克久
Isamu Shimizu
勇 清水
Koichi Yamazaki
浩一 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP61042351A priority Critical patent/JPH0617519B2/en
Publication of JPS62199721A publication Critical patent/JPS62199721A/en
Publication of JPH0617519B2 publication Critical patent/JPH0617519B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To produce a sheet or strip of a ferritic stainless steel having good workability by starting rough rolling of the slab of the ferritic stainless steel at a specific temp. and subjecting the slab to many passes of rough rolling under adequate conditions. CONSTITUTION:The slab of the ferritic stainless steel having substantially the single phase structure of ferritic is subjected to hot rough rolling and hot finish rolling at a hot rolling temp. to obtain a hot rolled sheet. The rough rolling is executed in multiple passes and is started at the slab temp. in a 1,050-1,180 deg.C range. The pass of >=30% draft is executed at least once in the passes before and after the rough rolling until the sheet thickness is reduced down to 1/2 the initial slab thickness. The next pass of the rough rolling is executed after >=30sec of delay in succession to said pass. The hot rolled sheet is annealed upon ending of the hot rolling or, if necessary, the annealing of the hot rolling sheet is omitted and immediately the hot rolled sheet is subjected to one pass of cold rolling or >=2 passes of cold rolling including intermediate annealing. The generation of ridging in the press forming stage is thereby decreased and the sheet or strip of the ferritic stainless steel having excellent secondary working characteristic after deep drawing is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は加工性の優れたフェライト系ステンレス鋼の鋼
板または調帯の製造法に関する。より詳しくは、プレス
成形時のりジンクの発生が少なくまた深絞り加工後の二
次加工性に優れたフェライト系ステンレス鋼の鋼板また
は鋼帯の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a steel plate or band made of ferritic stainless steel with excellent workability. More specifically, the present invention relates to a method for manufacturing a ferritic stainless steel plate or steel strip that causes less occurrence of welding and zinc during press forming and has excellent secondary workability after deep drawing.

〔従来の技術〕[Conventional technology]

5US430に代表されるフェライト系ステンレス鋼は
、 5US304に代表されるオーステナイト系ステン
レス鋼に比べて成形後に時期割れ現象がなくまた応力腐
食割れ感受性が小さいなどの特質を有し、そして、高価
なニッケルを含有しないので廉価である等から、耐久消
費材として多用されている。しかし、フェライト系ステ
ンレス鋼はオーステナイト系ステンレス鋼に比べてプレ
ス成形性および耐食性が劣り、且つ深絞り加工時にしば
しばりジンクと呼ばれる独特のシワ模様状の表面肌荒れ
が発生する。また 一部のフェライト系ステンレス鋼種
では大きな深絞り加工を施した後の二次加工時に縦割れ
と呼ばれる脆化割れが発生する。
Ferritic stainless steel represented by 5US430 has characteristics such as no period cracking phenomenon after forming and low stress corrosion cracking susceptibility compared to austenitic stainless steel represented by 5US304. It is widely used as a durable consumable material because it is inexpensive because it does not contain any carbonaceous substances. However, ferritic stainless steels have inferior press formability and corrosion resistance compared to austenitic stainless steels, and moreover, during deep drawing, a unique wrinkle-like surface roughness called zinc often occurs. Furthermore, in some ferritic stainless steel types, embrittlement cracks called longitudinal cracks occur during secondary processing after large deep drawing.

従来より、フェライト系ステンレス鋼の耐食性およびプ
レス成形性の向上に関しては、C,Nの低減並びにTi
、Nbなどの炭窒化物形成元素を比較的多量に添加した
鋼が開発され1例えばJT、5G4305において5U
S430LXとして規定されている。しかし、前述のり
ジンクおよび縦割れについては未だ問題は解決されてい
ない。
Conventionally, in order to improve the corrosion resistance and press formability of ferritic stainless steel, reduction of C and N and Ti
Steels with relatively large amounts of carbonitride-forming elements such as Nb have been developed.1For example, JT, 5G4305 has 5U
It is specified as S430LX. However, the above-mentioned problems regarding zinc and vertical cracking have not yet been solved.

リジング現象についてはこれまでにも多くの報告がある
が、工業的にこれを解消するとなるとその技術は必ずし
も充分ではない。リジングの成因は例えば金属学会誌、
31 (1967) 、 P、519に報告されている
ように、熱延板中心層に残存する粗大フェライトバンド
にあると考えられており、従って。
Although there have been many reports on the ridging phenomenon, the technology is not necessarily sufficient to eliminate it industrially. The cause of ridging is, for example, the Journal of the Japan Institute of Metals,
31 (1967), P, 519, it is thought to reside in the coarse ferrite band remaining in the center layer of the hot rolled sheet, and therefore.

リジングの改善にあたっては、この熱延板の粗大フェラ
イトバンドの分断および微細化に集約される。従来の発
表されている報告または特許においてフェライト系ステ
ンレス鋼のりジンク改善のための処法を要約すれば、(
1)スラブの等軸品率を増す3(2)低4L熱延を施す
、(3)熱延板焼鈍を施すなどが挙げられる。
In order to improve ridging, the main focus is on dividing and refining the coarse ferrite bands of the hot rolled sheet. To summarize the treatments for improving zinc in ferritic stainless steel in previously published reports and patents, (
1) Increasing the equiaxed quality of the slab 3 (2) Performing low 4L hot rolling, (3) Performing hot rolled plate annealing, etc.

フェライト系ステンレス鋼の深絞り後の二次加工時に発
生する縦割れの問題については1本発明者らは特願昭6
0−168626号において、鋼成分の面からこれを改
善することを提案した。これはAβ。
Regarding the problem of vertical cracking that occurs during secondary processing after deep drawing of ferritic stainless steel, the present inventors have
In No. 0-168626, it was proposed to improve this from the viewpoint of steel composition. This is Aβ.

TiまたはNbの含有量を適切に規制することによって
、二次加工性の改善を図ったものである。
By appropriately regulating the content of Ti or Nb, the secondary processability is improved.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述のように、フェライト系ステンレス鋼はりジンクの
問題と二次加工性の問題が付随するが。
As mentioned above, ferritic stainless steel beams are accompanied by zinc problems and secondary workability problems.

この問題を同時に且つ工業的に有利に解決する処法は未
だ完成されていない。本発明はこの点の解決を目的とし
たものである。
A treatment method that simultaneously solves this problem and is industrially advantageous has not yet been completed. The present invention aims to solve this problem.

〔問題点を解決する手段〕[Means to solve problems]

本発明は、前記の問題を解決するフェライトミステンレ
ス鋼の鋼板または鋼帯の製造法として。
The present invention provides a method for producing a ferritic stainless steel plate or strip that solves the above problems.

熱間圧延温度で実質上フェライト単相組織を呈するフェ
ライト系ステンレス鋼のスラブを粗熱間圧延および仕上
熱間圧延して熱延板を製造し、ついで冷間圧延するにあ
たり2 該粗圧延を多パスで実施すると共にこの粗圧延開始のス
ラブの温度を1050℃〜1180℃の範囲とすること
、および。
In manufacturing a hot rolled sheet by rough hot rolling and finish hot rolling a slab of ferritic stainless steel that exhibits a substantially ferritic single phase structure at hot rolling temperature, and then cold rolling, 2. The rough rolling is carried out in passes, and the temperature of the slab at the start of this rough rolling is in the range of 1050°C to 1180°C.

板厚が初期スラブの1/2になるまでの粗圧延前段パス
において、圧下率が30%以上のパスを少なくとも一回
行ない、このパスのあと、30秒以上のディレィをおい
てから次パス粗圧延を行なうこと。
In the first pass of rough rolling until the plate thickness becomes 1/2 of the initial slab, perform at least one pass with a reduction ratio of 30% or more, and after this pass, wait for a delay of 30 seconds or more before starting the next roughing pass. To perform rolling.

そして、(1)以降は熱延板焼鈍を含む1回冷延または
中間焼鈍を含む2回以上の冷延により冷間圧延を行うこ
と、または、(2)特に、耐縦割れ性が厳しく要求され
る場合には、熱間圧延終了後。
(1) After that, cold rolling is performed by one cold rolling including hot-rolled plate annealing or two or more cold rolling including intermediate annealing, or (2) In particular, strict longitudinal cracking resistance is required. If so, after hot rolling is completed.

熱延板焼鈍を省略して一回冷延または中間焼鈍を含む二
回以上の冷延により冷間圧延を行うこと。
Cold rolling is performed by omitting hot-rolled plate annealing and performing cold rolling once or twice or more including intermediate annealing.

を特徴とする加工性の優れたフェライト系ステンレス鋼
の鋼板または鋼帯の製造法を提供するものである。
The present invention provides a method for manufacturing a ferritic stainless steel plate or strip having excellent workability.

本発明法は、熱間圧延工程で実質上フェライト単相Mi
織を呈するフェライト系ステンレス鋼であれば適用可能
である。そして、熱間圧延工程のあとでは、熱延板焼鈍
を実施してから通常の冷間圧延を実施することもできる
が、Tiおよび/またはNbを含む鋼の場合に特に二次
加工時の縦割れが著しく厳しい要求となる場合には、上
記の方法で熱延後、熱延板焼鈍を省略して冷間圧延を実
施することによって、かような縦割れの問題のない鋼板
または調帯を得ることができる。
In the method of the present invention, substantially ferrite single-phase Mi is formed in the hot rolling process.
Any ferritic stainless steel that exhibits texture can be used. After the hot rolling process, it is also possible to carry out hot-rolled plate annealing and then normal cold rolling, but in the case of steel containing Ti and/or Nb, especially in the longitudinal direction during secondary processing. If cracking is a particularly severe requirement, it is possible to produce steel sheets or strips that do not have such longitudinal cracking problems by performing cold rolling after hot rolling using the above method and omitting hot-rolled sheet annealing. Obtainable.

本発明法はプレス成形性の良好な鋼に対して適用するこ
とが特に望ましく1本発明の目的が有利に達成できる鋼
としては、c:o、o3%以下、Si:0.75%以下
、Mn:0.40%以下、P:0.04%以下。
It is particularly desirable to apply the method of the present invention to steels with good press formability. Steels that can advantageously achieve the object of the present invention include c: o, o 3% or less, Si: 0.75% or less, Mn: 0.40% or less, P: 0.04% or less.

s:0.01%以下、Cr:12.O%〜22.0%、
Ni:0.5%以下、  N j 0.03%以下、 
 O:0.01s%以下。
s: 0.01% or less, Cr: 12. O%~22.0%,
Ni: 0.5% or less, N j 0.03% or less,
O: 0.01s% or less.

sol、^j!:0.05%以下、そして、 0.04
%〜0.40%のTiまたは0.10%〜0.80%の
Nbの一種または二種を含有し、場合によっては、さら
に2%以下のMoまたは1%以下のCuを含有し、残部
が鉄および不可避的に混入する不純物からなる鋼がある
Sol, ^j! : 0.05% or less, and 0.04
% to 0.40% Ti or 0.10% to 0.80% Nb, and in some cases further contains 2% or less Mo or 1% or less Cu, with the balance There is steel that consists of iron and unavoidably mixed impurities.

以下に本発明法の内容を具体的に説明する。The content of the method of the present invention will be specifically explained below.

リジングの成因は種々考えられるが5本発明者らは前述
したように熱延仮中心層に残存する粗大フェライトバン
ドにあると考えており、粗大フェライトバンドが形成さ
れる熱延工程にまず注目した。5115430のように
一般に高温でオーステナイトが析出し2相となる鋼では
熱間圧延中に析出したオーステナイトの分散などの効果
によって組織が微細化されるが1本発明で対象とするよ
うな高温まで(熱間加工温度で)実質上フェライト単相
であるフェライト系ステンレス鋼では別の手段によるM
i織の微細化が必要である。本発明者らはこの点につい
て系統的な研究を行い、既に「鉄と鋼」70(1984
) 、P2152において、変形帯によって組織が分断
される可能性について報告した。しかし、これは鍛造材
を対象としたものであり、十分な工業的技術にまでは至
らなかった。
Various causes of ridging can be considered, but as mentioned above, the present inventors believe that it is due to the coarse ferrite band remaining in the hot-rolled temporary center layer, and first focused on the hot rolling process in which the coarse ferrite band is formed. . Generally, in steels such as No. 5115430, in which austenite precipitates and forms two phases at high temperatures, the structure is refined due to effects such as dispersion of austenite precipitated during hot rolling, but up to the high temperatures targeted by the present invention ( In ferritic stainless steels, which are essentially a single phase of ferrite (at hot working temperatures), M by other means.
It is necessary to make the i-weave finer. The present inventors have conducted systematic research on this point and have already published "Tetsu to Hagane" 70 (1984).
), P2152, reported on the possibility of tissue division due to deformation zones. However, this was aimed at forged materials and did not reach the level of sufficient industrial technology.

そこで、実際のフェライト系ステンレス鋼のスラブの板
厚中心部から、リジングの成因と考えられる柱状晶部を
採取し、これらの試料をもとにその組織を微細化する処
決を開発すべく種々の試験研究を重ねた。とくに、柱状
晶を微細化するには熱延工程での組織の微細化が必要で
あることから柱状晶の膜圧過程の組織変化について、温
度1膜圧過程の圧下率、圧下後の保持時間並びにその保
持時間の経時的な位置等の条件を種々に変動させてリジ
ングに及ぼす影響を詳細に調べた。その結果、第1図〜
第4図に示される興味深い関係を見出すことができた。
Therefore, we collected columnar crystals, which are thought to be the cause of ridging, from the center of the thickness of actual ferritic stainless steel slabs, and based on these samples, we conducted various treatments to refine the structure. We conducted a number of experimental studies. In particular, since it is necessary to refine the structure in the hot rolling process to make columnar crystals finer, we investigated the changes in the structure of columnar crystals during the film thickness process. In addition, the effects on ridging were investigated in detail by varying conditions such as the chronological position of the holding time. As a result, Figure 1~
We were able to find an interesting relationship shown in Figure 4.

まず第1図〜第4図に示した結果を得た試験条件につい
て説明する。供試鋼の化学成分値を第1表に示した。A
1鋼はNbを含み、A2鋼はTiを含むフェライト系ス
テンレス鋼である。これらの鋼は、40トン電気炉、転
炉および真空脱ガス装置を経て溶製され、これを連続鋳
造設備によって連鋳スラブとした。そして、このスラブ
の断面をマクロエッチ後1柱状品の部分より、4o1m
F2み×100fi幅×I11長さの圧延用試料を採取
した。そして、この試料を加熱後、ロール径が330m
mφの熱間圧延機を用いて第2表に示すように各種の熱
延条件で板厚3.6mmまで熱延した。熱延条件は圧延
開始の温度(加熱炉からのスラブの抽出温度)。
First, the test conditions under which the results shown in FIGS. 1 to 4 were obtained will be explained. The chemical composition values of the test steel are shown in Table 1. A
Steel No. 1 is a ferritic stainless steel containing Nb, and steel A2 is a ferritic stainless steel containing Ti. These steels were melted through a 40-ton electric furnace, a converter, and a vacuum degassing device, and were continuously cast into slabs using continuous casting equipment. Then, after macro-etching the cross section of this slab, a 4o1m
A rolling sample of F2 diameter x 100fi width x I11 length was taken. After heating this sample, the roll diameter was 330 m.
The sheets were hot-rolled to a thickness of 3.6 mm using a mφ hot rolling mill under various hot-rolling conditions as shown in Table 2. The hot rolling conditions are the temperature at the start of rolling (the temperature at which the slab is extracted from the heating furnace).

膜圧1パス目の圧下率9膜圧lパス後2次パスまでの保
持時間(ディレィ時間)、のそれぞれを変動因子とした
。得られた熱延板は、A+鋼については1000℃×1
分の均熱、A2鋼については900゜°C×1分の均熱
の短時間焼鈍を実施し、二回冷延二回焼鈍で最終的に0
.7flの厚さの冷延焼鈍板とした。
The retention time (delay time) from the 9th film pressure 1 pass to the second pass was used as a variation factor. The obtained hot-rolled sheet was heated at 1000°C x 1 for A+ steel.
For A2 steel, short-time annealing at 900°C x 1 minute was carried out, and cold-rolled twice and annealed twice to finally achieve 0.
.. A cold-rolled annealed plate with a thickness of 7 fl was used.

得られた冷延焼鈍板から、圧延方向と平行に平行部35
f1幅X 120mm長さの引張試験片を採取し。
From the obtained cold-rolled annealed plate, a parallel portion 35 is formed parallel to the rolling direction.
A tensile test piece with a width of f1 and a length of 120 mm was taken.

これを20%引張後に表面に現れるリジングを測定した
After this was stretched by 20%, ridging that appeared on the surface was measured.

リジングの測定は表面粗さ計を用いて中心線平均粗さR
aを測定すると共に表面の外観判定を行い。
Rigging is measured by using a surface roughness meter to measure the center line average roughness R.
At the same time as measuring a, the appearance of the surface was judged.

これらを次の5段階で評価した。外観判定にあたっては
、パックリングの大きいものについてはランクを1ラン
クダウンさせた。
These were evaluated on the following five levels. When judging the appearance, items with large pack rings were ranked down by one rank.

リジング評点 中心線平均粗さRa    外観(Cu
toffイ直2.5mm) 良 I          Ra<2.2  pm  
 ランクl↑ 2     2.2≦Ra < 2.8
 p m  ランク2否 5     4.5≦Ra 
       ランク5第1図は第1表の^1鋼につい
て抽出温度(粗圧延開始温度)およびlパス後のディレ
ィの存無とりジング評点の関係を示したものである。l
パス後のディレィの間はパス後の材温とほぼ等しい温度
に保持し、ディレィ時間はいずれも120秒である。
Rigging rating Center line average roughness Ra Appearance (Cu
toff straight 2.5mm) Good I Ra<2.2 pm
Rank l↑ 2 2.2≦Ra <2.8
p m Rank 2 No 5 4.5≦Ra
Rank 5 Figure 1 shows the relationship between the extraction temperature (rough rolling start temperature) and the presence/absence of delay after 1 pass for the ^1 steel in Table 1 and the rating. l
During the delay after the pass, the temperature was maintained at approximately the same temperature as the material temperature after the pass, and the delay time was 120 seconds in both cases.

第1図の結果から明らかなように、抽出温度が低下する
と全体にリジングは改善され1 またディレィを設けた
場合にはディレィ無しの場合に比べてリジングが改善さ
れることがわかる。例えば1ディレィ無しの場合には抽
出温度が1100℃前後でリジング評点2以下が得られ
たものもあるが、平均すると評点は3近辺でありバラツ
キが大きく工業的に安定した特性が得られないし、抽出
温度をさらに下げても十分なりジング評点は安定して得
られない。これに対してディレィを設けた場合には抽出
温度が1050〜1180′Cの範囲でリジング評点2
が安定して得られている。このリジング評点2のレベル
はプレス成形用材料において非常に厳しいリジング特性
要件を満足する水準である。
As is clear from the results in FIG. 1, when the extraction temperature is lowered, the ridging is improved overall1, and when a delay is provided, the ridging is improved compared to the case without a delay. For example, in the case without 1 delay, there are cases where the extraction temperature was around 1100℃ and a ridging score of 2 or less was obtained, but on average the score was around 3, and there was a large variation and industrially stable characteristics could not be obtained. Even if the extraction temperature is further lowered, a sufficient and stable extraction score cannot be obtained. On the other hand, when a delay is provided, the extraction temperature is in the range of 1050 to 1180'C and the ridging rating is 2.
has been obtained stably. This level of ridging rating of 2 is a level that satisfies very strict requirements for ridging properties in materials for press molding.

第2図はディレィを設けるパス位置とりジングとの関係
を示したものである。第2図において○印は各抽出温度
において1パス後に30−120秒のディレィを設けた
もの、Δ印は3パス後に各抽出温度において30〜12
0秒のディレィを設けたものである。第3図はこのディ
レィの位置を図解したものである。第2図の結果に見ら
れるように、粗圧延前段のパスでディレィを設けた方が
リジング評点が全体によくなる。1050〜1180℃
の抽出温度において1パス後にディレィを設けた場合で
は2点を除いてリジング評点2が得られている。この評
点2を外れたものの一つは例外的に圧下率が20%のも
のであり、それ以外のものは圧下率が30%以上のもの
であり、他の一つは例外的にディレィ時間が10秒のも
のであり、それ以外のディレィ時間は30秒以上のもの
であった。
FIG. 2 shows the relationship with path positioning in which a delay is provided. In Figure 2, the ○ mark indicates a delay of 30-120 seconds after 1 pass at each extraction temperature, and the Δ mark indicates a delay of 30-120 seconds at each extraction temperature after 3 passes.
A delay of 0 seconds is provided. Figure 3 illustrates the position of this delay. As can be seen from the results in FIG. 2, providing a delay in the pass before rough rolling improves the overall ridging score. 1050-1180℃
When a delay was provided after one pass at an extraction temperature of , a ridging score of 2 was obtained with the exception of 2 points. One of the items that did not receive a rating of 2 had an exceptional rolling reduction of 20%, the others had a rolling reduction of 30% or more, and the other one had an exceptional delay time. The delay time was 10 seconds, and the other delay times were 30 seconds or more.

以上の基礎試験からフェライト系ステンレス鋼のりジン
グを改善するには、熱間圧延工程における熱延開始温度
(加熱炉からのスラブ抽出llμ度)を1050〜11
80℃の範囲とし、粗圧延の段階で少なくとも30秒の
ディレィ時間を探ること、そしてそのディレィは粗圧延
での早いパス回数の時点で採ることが必要であり5 こ
のディレィ前のパスでは少なくとも30%以上の圧下率
とすることが良いことが判明した。これを実操業の条件
で云えば、粗圧延の過程でスラブの抽出温度を1050
“0〜1180℃の範囲とし、板厚が初期スラブ厚の1
72になるまでの粗圧延前段パスにおいて圧下率が30
%以上のパスを少なくとも一回行ない、このパスのあと
From the above basic tests, in order to improve the soldering of ferritic stainless steel, the hot rolling start temperature in the hot rolling process (slab extraction from the heating furnace) should be set at 1050 to 11 degrees.
It is necessary to set the temperature in the range of 80°C, and to find a delay time of at least 30 seconds at the stage of rough rolling, and to take this delay at the time of an early pass in rough rolling. It has been found that it is better to set the rolling reduction ratio to % or more. In terms of actual operating conditions, the extraction temperature of the slab is set to 1050 during the rough rolling process.
"The temperature range is 0 to 1180℃, and the plate thickness is 1 of the initial slab thickness.
The rolling reduction rate is 30 in the first pass of rough rolling until it reaches 72.
% or more passes at least once and after this pass.

30秒以上のディレィをおいてから次パス粗圧延を行う
ことがよいことになる。
It is better to carry out the next pass rough rolling after a delay of 30 seconds or more.

このような有益な結果が得られた理由については、第4
図〜第7図の組織写真から判断すると次のように考える
ことができる。第4図および第5図は840龍から12
龍まで3パス圧延したさいに。
The reason for such beneficial results can be found in Section 4.
Judging from the organizational photographs shown in Figures 7 to 7, the following can be considered. Figures 4 and 5 are from 840 dragons to 12
When rolling 3 passes to the dragon.

第4図では抽出温度を1200℃、第5図では抽出温度
を1100℃とし、各々lパス後に120秒のディレィ
をおいた場合の圧延組織(3パス圧延後の熱延組m>を
示したものである。第4図の1200℃抽出のものはデ
ィレィを施しても粗大な回復フェライト組織であるが、
第5図の1100℃抽出でディレィを施したものは多数
の変形帯(第5図の写真で斜め方向に縞状に見える)を
含む回復Mi織(一部再結晶)となっている。すなわち
、抽出温度が低下したことにより熱延で変形帯が導入さ
れU織が著しく細分化され、つぎにディレィを直くこと
によりこの変形帯を中心にして回復(一部再結晶)が進
行したことを示唆している。この変形帯を利用して熱延
中の組織を微細化することおよびその後のディレィ中の
回復・再結晶の進行により得られた組織がリジング改善
に寄与するようになることは9次の第6図および第7図
の写真かられかる。
Figure 4 shows the extraction temperature at 1200°C, and Figure 5 shows the extraction temperature at 1100°C, with a delay of 120 seconds after each pass. The one extracted at 1200°C in Figure 4 has a coarse recovered ferrite structure even after a delay is applied.
The sample shown in FIG. 5, which was extracted at 1100° C. and subjected to a delay, has a recovered Mi texture (partially recrystallized) containing many deformed bands (which appear as diagonal stripes in the photograph of FIG. 5). That is, as the extraction temperature was lowered, a deformation zone was introduced during hot rolling and the U weave was significantly fragmented, and then by correcting the delay, recovery (partial recrystallization) progressed around this deformation zone. It suggests that. The use of this deformation zone to refine the structure during hot rolling, and the progress of recovery and recrystallization during the subsequent delay, allows the resulting structure to contribute to the improvement of ridging, which is the 6th point of the 9th process. It can be seen from the figure and the photograph in Figure 7.

第6図および第7図は、それぞれ第4図および第5図の
熱延組織のものから熱延板を作製し、 1000”c 
x 1分の均熱後水冷の焼鈍を施した場合の再結晶の状
態を調べた写真である。第6図の熱延焼鈍板では板厚中
心部に粗大な未再結晶フェライトが存在するのに対し、
第7図の熱延焼鈍板では板厚中心部まで十分に再結晶し
ていることがわかる。
Figures 6 and 7 show hot-rolled sheets prepared from the hot-rolled structures shown in Figures 4 and 5, respectively.
This is a photograph showing the state of recrystallization when water-cooled annealing was performed after soaking for 1 minute. In the hot-rolled annealed sheet shown in Figure 6, coarse unrecrystallized ferrite exists in the center of the sheet thickness;
It can be seen that the hot-rolled annealed plate shown in Figure 7 is sufficiently recrystallized up to the center of the plate thickness.

ずなわら2本発明法による熱延条件では変形帯組織の導
入と回復が行われ微細な熱延組織を得ることができ2こ
れがリジング改善に寄与することになると考えられる。
Zunawara 2 Under the hot rolling conditions according to the method of the present invention, a deformed band structure is introduced and recovered, and a fine hot rolled structure can be obtained, 2 which is thought to contribute to the improvement of ridging.

このようにして従来より問題のあったフェライト系ステ
ンレス鋼のりジングは解決することができたが2本発明
者らが泡えた次の問題は二次加工時に発生ずる縦割れの
問題であった。この縦割れは高度の一次絞り加工後に形
状修正などの二次加工を行ったさいに発生し、特に冬場
に多発する傾向がある。フェライト系ステンレス鋼の加
工性および耐食性の改善にはTiやNbの添加が有益で
あるが、かようなTi、Nb添加鋼では著しくこの縦割
れが助長される。本発明者らはこの問題を解決すべく成
分面のみならず冷延配分率や焼鈍条件などの製造条件の
面から試験研究を行ったが、前記のりジング改善の熱延
条件をそのまま採用し。
In this way, we were able to solve the conventional problem of ferritic stainless steel gluing, but the next problem that the inventors encountered was vertical cracking that occurs during secondary processing. These vertical cracks occur when secondary processing such as shape correction is performed after high-level primary drawing processing, and they tend to occur frequently especially in winter. Although the addition of Ti and Nb is beneficial for improving the workability and corrosion resistance of ferritic stainless steel, such longitudinal cracking is significantly promoted in steels containing Ti and Nb. In order to solve this problem, the present inventors conducted test research not only from the viewpoint of composition but also from the viewpoint of manufacturing conditions such as cold rolling distribution ratio and annealing conditions, but the hot rolling conditions for improving the rolling properties described above were adopted as they were.

得られた熱延板を焼鈍することなく、つまり熱延板焼鈍
を省略して、a常の冷延を行うならば、この縦割れ遷移
温度を約20℃下げることができることが判明した。第
8図にその結果を示す。
It has been found that if the obtained hot rolled sheet is not annealed, that is, the hot rolled sheet annealing is omitted and conventional cold rolling is carried out, this longitudinal cracking transition temperature can be lowered by about 20°C. Figure 8 shows the results.

第8図は第1表の二種の鋼について、熱延板焼鈍を省略
した場合(As Hot)、 850℃×1時間(炉冷
)の焼鈍を行った場合、950℃×1分(空冷)の焼鈍
を行った場合の、冷延焼鈍板の縦割れ遷移温度(to、
 z)を調べたものである。焼鈍の有無とその条件を変
えた以外の製造条件は同一である。すなわち熱延条件、
冷延条件は前述のりジング試験の項で述べた範囲で同一
とした。また縦割れ遷移温度(To、 z)は第9図に
示すような落電試験法によって決定した。この落雷試験
は供試冷延焼鈍板を段絞りによって絞り比3.:外径2
7韻の深絞りカップとし、耳を落としてカップ高さを4
2龍とした試験カップlを、第9図のように横置きにし
、その上に重錘2を落下させて縦割れの発生の有無を調
べるものである。そのさい1重錘2の落下高さを変える
ことにより衝撃エネルギーを変化させると共に試験温度
を変化させ、衝撃エネルギーが0.2KBf−■となる
温度を「縦割れ遷移温度(T6. z) Jとした。
Figure 8 shows the two types of steel in Table 1, when hot rolled plate annealing is omitted (As Hot), when annealing is performed at 850°C for 1 hour (furnace cooling), and when annealing is performed at 950°C for 1 minute (air cooling). ), the vertical cracking transition temperature (to,
z) was investigated. The manufacturing conditions were the same except for the presence or absence of annealing and the conditions. In other words, hot rolling conditions,
The cold rolling conditions were the same as described in the section of the sliding test above. In addition, the longitudinal cracking transition temperature (To, z) was determined by an electric drop test method as shown in Figure 9. In this lightning test, the cold-rolled annealed sheet was subjected to step drawing with a drawing ratio of 3. :Outer diameter 2
Make a deep drawn cup with 7 rhymes, drop the ears and make the cup height 4.
A test cup 1 made up of two dragons is placed horizontally as shown in FIG. 9, and a weight 2 is dropped onto it to examine whether or not vertical cracks occur. At that time, the impact energy was changed by changing the falling height of 1 weight 2, and the test temperature was also changed. did.

第8図の結果に見られるように、熱延板焼鈍を省略した
方が焼鈍を実施した場合よりもむしろ縦割れ遷移温度(
ro、z)が低下し、その低下の程度も約20℃に達す
る。したがって、二次加工性が特に問題となる場合には
、前記のりジング改善処決を採用した上で77、 %i
仮焼鈍を省略すればよいことになる。
As seen in the results in Figure 8, it is better to omit hot-rolled sheet annealing than to perform annealing at the longitudinal crack transition temperature (
ro, z) decreases, and the degree of decrease also reaches about 20°C. Therefore, if secondary workability is a particular problem, the above-mentioned gluing improvement measures should be adopted and 77%i
This means that temporary annealing can be omitted.

この意味で本発明法が有利に適用できるフェライト系ス
テンレス鋼は加工性および耐食性を向上させたTi、N
b添加鋼であり1本発明においては重量%で、c:o、
o3%以下、  S i : 0.75%以下。
In this sense, ferritic stainless steels to which the method of the present invention can be advantageously applied are Ti, N, and Ti, which have improved workability and corrosion resistance.
It is a b-added steel, and in the present invention, c: o,
o3% or less, Si: 0.75% or less.

Mn : 0.40%以下、  P :0.04%以下
、S:0.01%以下、Cr:12.O%〜22.0%
、Ni:0.5%以下。
Mn: 0.40% or less, P: 0.04% or less, S: 0.01% or less, Cr: 12. O%~22.0%
, Ni: 0.5% or less.

N:0.03%以下、  O: 0.015%以下、 
sol、Af :0.05%以下、そして、 0.04
%〜0.40シロのTiまたは0.10%〜0.80%
のNbの一種または二種を含有し。
N: 0.03% or less, O: 0.015% or less,
sol, Af: 0.05% or less, and 0.04
% ~ 0.40 Shiro Ti or 0.10% ~ 0.80%
containing one or two types of Nb.

場合によっては、さらに2%以下のMoまたは1%以下
のCuを含をし5残部が鉄および不可避的に混入する不
純物からなるフェライト系ステンレス鋼が推奨される。
In some cases, it is recommended to use a ferritic stainless steel that further contains 2% or less Mo or 1% or less Cu, and the balance is iron and unavoidably mixed impurities.

この鋼の成分範囲を限定する理由を概説すると次のとお
りである。
The reason for limiting the range of components of this steel is as follows.

Cは成形性および耐食性に有害な元素であり。C is an element harmful to formability and corrosion resistance.

またCを高くすることはそれだけTi、NbO量を増す
ことになり、ひいては二次加工性の低下につながるので
上限を0.03%とする。Siは脱酸剤として添加され
るが、その含有量が高いと材料が硬化するので0,75
%以下とする。MnはMnSとしてSを固定して熱間加
工性を向上させるが、一方でM n Sは孔食の起点と
なって耐食性を劣下させる。そのために、Sを厳しく規
制してMn添加量を低く抑えるのが有利となり、この意
味で0.40%以下とする。Pは二次加工性に悪影響を
及ぼすので低い方が好ましく 0.04%以下とする。
Furthermore, increasing the C content increases the amounts of Ti and NbO, which in turn leads to a decrease in secondary workability, so the upper limit is set at 0.03%. Si is added as a deoxidizing agent, but if its content is high, the material will harden, so 0.75
% or less. Mn fixes S as MnS and improves hot workability, but on the other hand, MnS becomes a starting point for pitting corrosion and deteriorates corrosion resistance. Therefore, it is advantageous to strictly control S and keep the amount of Mn added low, and in this sense it is set to 0.40% or less. Since P has a negative effect on secondary processability, the lower the content, the better it is 0.04% or less.

Sは耐食性に有害で低い方が好ましいので0,01%以
下とする。Crの下限は熱間圧延温度で実質上フェライ
ト単相組織を得るうえから、また耐食性の見地から12
.0%以上とし、一方、22%を越えると熱延板の靭性
が低下するので12.0〜22.0%の範囲とする。
Since S is harmful to corrosion resistance and is preferably lower, it is set to 0.01% or less. The lower limit of Cr is 12 to obtain a substantially single-phase ferrite structure at the hot rolling temperature and from the viewpoint of corrosion resistance.
.. The content should be 0% or more. On the other hand, if it exceeds 22%, the toughness of the hot rolled sheet will decrease, so the content should be in the range of 12.0 to 22.0%.

Niはスクラップなどの副原料から混入するが。Ni is mixed in from auxiliary raw materials such as scrap.

0.5%を越える債ではコスト上昇となるので0.5%
以下とする。NはCと共に成形性および耐食性に有害な
ので0.03%以下とする。○は鋼中の非金属介在物を
増し加工性に有害であるが、二次加工性の見地からA1
を制限する関係上、酸素の上限を規制する必要がある。
If the bond exceeds 0.5%, the cost will increase, so 0.5%.
The following shall apply. Since N, together with C, is harmful to formability and corrosion resistance, the content should be 0.03% or less. ○ increases non-metallic inclusions in the steel, which is harmful to workability, but from the standpoint of secondary workability, A1
In order to limit oxygen consumption, it is necessary to regulate the upper limit of oxygen.

靭性および成形特性1曲げ加工性からみて酸素が0.0
15%を越えると、これらの特性が低下するので0.0
15%以下とする。
Toughness and forming properties 1 Oxygen content is 0.0 in terms of bending workability.
If it exceeds 15%, these characteristics will deteriorate, so 0.0
15% or less.

八1は脱酸剤として添加するが、加工性の向上にも有用
である。しかし縦割れを助長する元素でもあり、この意
味から0.05%以下とする。Tiは加工性および耐食
性の向上を目的として添加するが0.40%を越えて添
加する。%割れ性が著しく低下する。NbもTiと同様
に加工性および耐食性の向上を目的として添加するが、
Tiに比べて縦割れの害がすくないことから、高Nbま
で添加することができるが、 0.80%を越えるよう
になると熱延板の靭性が低下するので0.80%以下と
する。
81 is added as a deoxidizing agent, but it is also useful for improving processability. However, it is also an element that promotes vertical cracking, and for this reason it is set at 0.05% or less. Ti is added for the purpose of improving processability and corrosion resistance, but it is added in an amount exceeding 0.40%. % crackability decreases significantly. Like Ti, Nb is also added for the purpose of improving processability and corrosion resistance.
Nb can be added up to a high content because it causes fewer vertical cracks than Ti, but if it exceeds 0.80%, the toughness of the hot rolled sheet will decrease, so it should be kept at 0.80% or less.

以下に実際操業により本発明法を実施した代表的な実施
例を挙げる。
Typical examples in which the method of the present invention was implemented in actual operation are listed below.

実施例 溶製した鋼の化学成分を第3表に示す。これらの鋼を連
続鋳造によりスラブを製造し、第4表に示す条件でホン
トコイルを製造した。粗圧延は6〜8パスで200賞自
から25謙寵までの圧下を行い、イ士上圧延は6パスで
25fiから3.6龍までの圧下を行なった。第4表に
おいて、圧下率の欄はディレィを置いたパス(ディレィ
処置前のパス)での圧下率を示している。得られた熱延
板を1000℃で連続焼鈍し、中間焼鈍を含む二回冷延
で0.7鶴厚の冷延焼鈍板を製造した。ホットコイルの
表面状態並びに冷延焼鈍板のりジング評点を第4表に併
記した。リジング評点は本文に記載した基準である。
Table 3 shows the chemical composition of the steel produced in Example. Slabs were manufactured from these steels by continuous casting, and real coils were manufactured under the conditions shown in Table 4. Rough rolling was carried out in 6 to 8 passes to reduce the rolling thickness from 200 fi to 25 fi, and rolling was carried out in 6 passes to reduce the rolling from 25 fi to 3.6 fi. In Table 4, the rolling reduction column shows the rolling reduction in the pass with the delay (the pass before the delay treatment). The obtained hot rolled sheet was continuously annealed at 1000° C. and cold rolled twice including intermediate annealing to produce a cold rolled annealed sheet having a thickness of 0.7 mm. The surface condition of the hot coil and the gluing score of the cold rolled annealed plate are also listed in Table 4. The ridging score is based on the criteria described in the main text.

第4表から1本発明で規定する熱延条件によって製造し
た冷延焼鈍板のりジング評点はいずれも2以下であり、
優れたりジング特性を示すことがわかる。これに対し抽
出温度が高い隘1や、ディレィ直前のパスでの圧下率が
低い磁2や、またディレィを1采ったパスが1麦段であ
るN113.ディレィ時間の短い隘4ではりジング評点
が高く本発明のような効果は得られていない。また、ホ
ットコイルの表面状態について見ると、隘5のように抽
出温度が1050℃以下の場合には線状の表面疵が多発
してくる。この表面疵が発生すると次工程で研磨が必要
となり、コスト上界の原因となる。Ik5ではりジング
評点は2以下と良好であるが、この表面疵の点から問題
があり1本発明の実施におし)では、抽出温度は105
0℃以上とするのがよい。
From Table 4, all of the gluing scores of cold-rolled annealed sheets manufactured under the hot-rolling conditions specified in the present invention are 2 or less,
It can be seen that it exhibits excellent rinsing properties. On the other hand, No. 1 has a high extraction temperature, Magneto No. 2 has a low reduction rate in the pass just before the delay, and N113 has one pass with one delay. At No. 4, where the delay time is short, the sliding score is high and the effect as in the present invention is not obtained. Moreover, looking at the surface condition of the hot coil, when the extraction temperature is 1050° C. or lower as in No. 5, linear surface defects occur frequently. When this surface flaw occurs, polishing is required in the next step, which causes an increase in cost. Although Ik5 has a good peeling score of 2 or less, there is a problem with this surface flaw, and when implementing the present invention, the extraction temperature is 105
The temperature is preferably 0°C or higher.

第5表は熱延板焼鈍の有無(焼鈍有は前記の連続焼鈍を
行った場合、焼鈍熱はこれを行わなかった場合)による
冷延焼鈍板の機械的性質、深絞り性の指標であるランク
フォード値r、および二次加工割れ発生率〔本文に記載
した縦割れ遷移温度(T6. z) )を示したもので
ある。第5表の結果から明らかなように、いずれの綱も
伸びおよびランクフォード値が良好で優れた加工性を示
すが、 Tiを過剰に添加したA4綱は熱延板焼鈍を行
った場合には二次加工割れ発生率が高いのに対し、熱延
板焼鈍を省略した場合には(To、 z)値が0℃以下
となっている。なお、この熱延板焼鈍を省略した冷延板
焼鈍板はりジング評点は2であった。
Table 5 shows the mechanical properties and deep drawability of cold rolled annealed sheets depending on the presence or absence of hot rolled sheet annealing (with annealing means when the above-mentioned continuous annealing is performed, and when annealing heat means when the above mentioned continuous annealing is not performed). It shows the Lankford value r and the secondary processing cracking incidence [vertical cracking transition temperature (T6.z) described in the text]. As is clear from the results in Table 5, all steels have good elongation and Lankford values and exhibit excellent workability, but A4 steel with excessive Ti added has a high hardness when hot-rolled sheet annealing is performed. While the incidence of secondary processing cracks is high, when hot-rolled sheet annealing is omitted, the (To, z) value is below 0°C. Note that the gluing score of the cold-rolled annealed sheet obtained by omitting this hot-rolled sheet annealing was 2.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はフェライト系ステンレス鋼の粗熱間圧延におけ
る粗圧延開始l1度(抽出温度)およびlパス後のディ
レィの有無とりジング評点との関係図、第2図は該抽出
温度並びにディレィ位πとリジング評点との関係図、第
3図は第2図のディレィの位置を図解的に示した図、第
4図および第5図は、40111から12龍まで3パス
圧延したさいに。 第4図では抽出温度を1200℃、第5図では抽出温度
をttoo℃とし、各々1パス後に120秒のディレィ
をおいた場合の圧延Mi織(3パス圧延後の熱延Mi織
)を示した顕微鏡写真、第6図および第7図は、それぞ
れ第4図および第5図の熱延組織のものから熱延板を作
製し、 1000℃×1分の均熱後水冷の焼鈍を施した
場合の再結晶の状態を示した顕微鏡写真、第8図は熱延
板焼鈍の有無と縦割れ遷移温度T0.2との関係図、第
9図は第8図の縦割れ遷移温度試験における試験カップ
と重錘との関係を示す図である。 1・・試験カップ、  2・・重錘。
Figure 1 is a diagram showing the relationship between the rough rolling start l1 degree (extraction temperature) and the presence or absence of delay after 1 pass in rough hot rolling of ferritic stainless steel, and the rolling rating, and Figure 2 is the relationship between the extraction temperature and the delay position π. FIG. 3 is a diagram illustrating the position of the delay in FIG. 2, and FIGS. 4 and 5 are for 3 passes of rolling from 40111 to 12 dragon. Fig. 4 shows the rolled Mi weave (hot rolled Mi weave after 3-pass rolling) when the extraction temperature is 1200°C, and Fig. 5 shows the extraction temperature at ttoo°C, with a delay of 120 seconds after each pass. The micrographs, Figures 6 and 7, show hot-rolled sheets prepared from the hot-rolled structures shown in Figures 4 and 5, respectively, soaked at 1000°C for 1 minute, and water-cooled annealed. Figure 8 is a diagram showing the relationship between the presence or absence of hot rolled sheet annealing and the longitudinal crack transition temperature T0.2, Figure 9 is the test in the longitudinal crack transition temperature test shown in Figure 8. It is a figure showing the relationship between a cup and a weight. 1. Test cup, 2. Weight.

Claims (4)

【特許請求の範囲】[Claims] (1)熱間圧延温度で実質上フェライト単相組織を呈す
るフェライト系ステンレス鋼のスラブを粗熱間圧延およ
び仕上熱間圧延して熱延板を製造し、ついで通常の焼鈍
および冷間圧延によりフェライト系ステンレス鋼の鋼板
または鋼帯を製造する方法において、 該粗圧延を多パスで実施すると共にこの粗圧延開始のス
ラブの温度を1050℃〜1180℃の範囲とすること
、および、 板厚が初期スラブ厚の1/2になるまでの粗圧延前段パ
スにおいて、圧下率が30%以上のパスを少なくとも一
回行ない、このパスのあと、30秒以上のディレイをお
いてから次パス粗圧延を行うことを特徴とする加工性の
良好なフェライト系ステンレス鋼の鋼板または鋼帯の製
造法。
(1) A slab of ferritic stainless steel that exhibits a ferritic single-phase structure at hot rolling temperature is roughly hot rolled and finished hot rolled to produce a hot rolled sheet, and then subjected to normal annealing and cold rolling. In a method for manufacturing a steel plate or steel strip of ferritic stainless steel, the rough rolling is performed in multiple passes, and the temperature of the slab at the start of the rough rolling is in the range of 1050°C to 1180°C, and the plate thickness is In the first pass of rough rolling until the initial slab thickness is reduced to 1/2, a pass with a reduction ratio of 30% or more is performed at least once, and after this pass, there is a delay of 30 seconds or more before the next pass of rough rolling. A method for producing a ferritic stainless steel plate or strip with good workability.
(2)フェライト系ステンレス鋼は、重量%で、C:0
.03%以下、Si:0.75%以下、Mn:0.40
%以下、P:0.04%以下、S:0.01%以下、C
r:12.0%〜22.0%、Ni:0.5%以下、N
:0.03%以下、O:0.015%以下、sol.A
l:0.05%以下、そして、0.04%〜0.40%
のTiまたは0.10%〜0.80%のNbの一種また
は二種を含有し、場合によっては、さらに2%以下のM
oまたは1%以下のCuを含有し、残部が鉄および不可
避的に混入する不純物からなる鋼である特許請求の範囲
第1項記載の製造法。
(2) Ferritic stainless steel has C:0 in weight%.
.. 03% or less, Si: 0.75% or less, Mn: 0.40
% or less, P: 0.04% or less, S: 0.01% or less, C
r: 12.0% to 22.0%, Ni: 0.5% or less, N
: 0.03% or less, O: 0.015% or less, sol. A
l: 0.05% or less, and 0.04% to 0.40%
of Ti or 0.10% to 0.80% of Nb, and in some cases, further contains 2% or less of M.
2. The manufacturing method according to claim 1, wherein the steel contains 0 or 1% or less of Cu, with the balance consisting of iron and unavoidably mixed impurities.
(3)熱間圧延温度で実質上フェライト単相組織を呈す
るフェライト系ステンレス鋼のスラブを粗熱間圧延およ
び仕上熱間圧延して熱延板を製造し、ついで冷間圧延に
よりフェライト系ステンレス鋼の鋼板または鋼帯を製造
する方法において、該粗圧延を多パスで実施すると共に
この粗圧延開始のスラブの温度を1050℃〜1180
℃の範囲とすること、 板厚が初期スラブ厚の1/2になるまでの粗圧延前段パ
スにおいて、圧下率が30%以上のパスを少なくとも一
回行ない、このパスのあと、30秒以上のディレイをお
いてから次パス粗圧延を行うこと、そして、 熱間圧延終了後、熱延板焼鈍を省略して一回冷延または
中間焼鈍を含む二回以上の冷延により冷間圧延を行うこ
と。 を特徴とする加工性の優れたフェライト系ステンレス鋼
の鋼板または鋼帯の製造法。
(3) A slab of ferritic stainless steel that exhibits a substantially ferritic single-phase structure at hot rolling temperature is rough hot rolled and finished hot rolled to produce a hot rolled sheet, and then cold rolled to produce a ferritic stainless steel slab. In the method for manufacturing a steel plate or steel strip, the rough rolling is performed in multiple passes, and the temperature of the slab at the start of the rough rolling is set at 1050°C to 1180°C.
In the first pass of rough rolling until the plate thickness becomes 1/2 of the initial slab thickness, perform at least one pass with a reduction ratio of 30% or more, and after this pass, for at least 30 seconds. After a delay, the next pass rough rolling is performed, and after hot rolling is completed, hot rolled sheet annealing is omitted and cold rolling is performed by cold rolling once or two or more times including intermediate annealing. thing. A method for manufacturing ferritic stainless steel plates or strips with excellent workability.
(4)フェライト系ステンレス鋼は、重量%で、C:0
.03%以下、Si:0.75%以下、Mn:0.40
%以下、P:0.04%以下、S:0.01%以下、C
r:12.0%〜22.0%、Ni:0.5%以下、N
:0.03%以下、O:0.015%以下、sol.A
l:0.05%以下、そして、0.04%〜0.40%
のTiまたは0.10%〜0.80%のNbの一種また
は二種を含有し、場合によっては、さらに2%以下のM
oまたは1%以下のCuを含有し、残部が鉄および不可
避的に混入する不純物からなる鋼である特許請求の範囲
第3項記載の製造法。
(4) Ferritic stainless steel has C:0 in weight%.
.. 03% or less, Si: 0.75% or less, Mn: 0.40
% or less, P: 0.04% or less, S: 0.01% or less, C
r: 12.0% to 22.0%, Ni: 0.5% or less, N
: 0.03% or less, O: 0.015% or less, sol. A
l: 0.05% or less, and 0.04% to 0.40%
of Ti or 0.10% to 0.80% of Nb, and in some cases, further contains 2% or less of M.
4. The manufacturing method according to claim 3, wherein the steel contains 0 or 1% or less of Cu, with the remainder consisting of iron and unavoidably mixed impurities.
JP61042351A 1986-02-27 1986-02-27 Method for producing steel plate or strip of ferritic stainless steel with good workability Expired - Lifetime JPH0617519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61042351A JPH0617519B2 (en) 1986-02-27 1986-02-27 Method for producing steel plate or strip of ferritic stainless steel with good workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61042351A JPH0617519B2 (en) 1986-02-27 1986-02-27 Method for producing steel plate or strip of ferritic stainless steel with good workability

Publications (2)

Publication Number Publication Date
JPS62199721A true JPS62199721A (en) 1987-09-03
JPH0617519B2 JPH0617519B2 (en) 1994-03-09

Family

ID=12633610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61042351A Expired - Lifetime JPH0617519B2 (en) 1986-02-27 1986-02-27 Method for producing steel plate or strip of ferritic stainless steel with good workability

Country Status (1)

Country Link
JP (1) JPH0617519B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6475652A (en) * 1987-09-17 1989-03-22 Kawasaki Steel Co Ferritic stainless steel excellent in workability in weld zone as well as in bulging property
JPH03219013A (en) * 1989-08-22 1991-09-26 Acos Especiais Itabira Acesita:Co Method and equipment for manufacturing ferrite stainless steel
WO1993022471A1 (en) * 1992-04-30 1993-11-11 Kawasaki Steel Corporation Fe-Cr ALLOY EXCELLENT IN WORKABILITY
JPH1053817A (en) * 1996-08-08 1998-02-24 Nippon Steel Corp Manufacture of ferritic stainless steel sheet excellent in roping resistance, ridging resistance, and formability
JPH11100617A (en) * 1997-09-24 1999-04-13 Sumitomo Metal Ind Ltd Production of cold rolled ferritic stainless steel sheet
EP1219719A1 (en) * 2000-12-25 2002-07-03 Nisshin Steel Co., Ltd. A ferritic stainless steel sheet good of workability and a manufacturing method thereof
JP6617858B1 (en) * 2018-07-18 2019-12-11 Jfeスチール株式会社 Ferritic stainless steel sheet and manufacturing method thereof
WO2020017123A1 (en) * 2018-07-18 2020-01-23 Jfeスチール株式会社 Ferrite stainless steel sheet and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266816A (en) * 1975-12-01 1977-06-02 Nippon Steel Corp Preparation of rigging free ferritic stainless steel plate
JPS5913026A (en) * 1982-07-09 1984-01-23 Nippon Steel Corp Manufacture of ferritic stainless steel sheet with superior workability
JPS6119688A (en) * 1984-07-06 1986-01-28 Toshiba Corp Blue-emitting phosphor and blue-emitting cathode ray tube containing the same for use in color projection type picture tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266816A (en) * 1975-12-01 1977-06-02 Nippon Steel Corp Preparation of rigging free ferritic stainless steel plate
JPS5913026A (en) * 1982-07-09 1984-01-23 Nippon Steel Corp Manufacture of ferritic stainless steel sheet with superior workability
JPS6119688A (en) * 1984-07-06 1986-01-28 Toshiba Corp Blue-emitting phosphor and blue-emitting cathode ray tube containing the same for use in color projection type picture tube

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6475652A (en) * 1987-09-17 1989-03-22 Kawasaki Steel Co Ferritic stainless steel excellent in workability in weld zone as well as in bulging property
JPH03219013A (en) * 1989-08-22 1991-09-26 Acos Especiais Itabira Acesita:Co Method and equipment for manufacturing ferrite stainless steel
WO1993022471A1 (en) * 1992-04-30 1993-11-11 Kawasaki Steel Corporation Fe-Cr ALLOY EXCELLENT IN WORKABILITY
JPH1053817A (en) * 1996-08-08 1998-02-24 Nippon Steel Corp Manufacture of ferritic stainless steel sheet excellent in roping resistance, ridging resistance, and formability
JPH11100617A (en) * 1997-09-24 1999-04-13 Sumitomo Metal Ind Ltd Production of cold rolled ferritic stainless steel sheet
EP1219719A1 (en) * 2000-12-25 2002-07-03 Nisshin Steel Co., Ltd. A ferritic stainless steel sheet good of workability and a manufacturing method thereof
JP6617858B1 (en) * 2018-07-18 2019-12-11 Jfeスチール株式会社 Ferritic stainless steel sheet and manufacturing method thereof
WO2020017123A1 (en) * 2018-07-18 2020-01-23 Jfeスチール株式会社 Ferrite stainless steel sheet and manufacturing method thereof
US11377702B2 (en) 2018-07-18 2022-07-05 Jfe Steel Corporation Ferritic stainless steel sheet and method of producing same

Also Published As

Publication number Publication date
JPH0617519B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
JP5884714B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP5349015B2 (en) Method for producing Ni-saving austenitic stainless hot-rolled steel sheet, slab and hot-rolled steel sheet
KR101561358B1 (en) High-strength cold rolled steel sheet having excellent deep drawability and bake hardenability and method for manufacturing the same
US6500280B2 (en) Ferritic Cr-containing steel sheet having excellent ductility, formability, and anti-ridging properties
JP5924459B1 (en) Stainless steel for cold rolled steel
JP4239257B2 (en) Method for producing Ti-containing ferritic stainless steel sheet having excellent ridging resistance
JP2017179596A (en) High carbon steel sheet and manufacturing method therefor
JP2010100877A (en) Method for manufacturing hot-rolled ferritic stainless steel sheet excellent in toughness
JP7010418B1 (en) High-strength hot-rolled steel sheet and its manufacturing method
JP4214671B2 (en) Ferritic Cr-containing cold-rolled steel sheet excellent in ductility, workability and ridging resistance and method for producing the same
JPS62199721A (en) Production of steel sheet or strip of ferritic stainless steel having good workability
JP6950723B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP4102284B2 (en) {100} &lt;011&gt; Cold rolled steel sheet manufacturing method with excellent shape freezing property with developed orientation
JP3941363B2 (en) Ferritic stainless cold-rolled steel sheet excellent in ductility, workability and ridging resistance, and method for producing the same
JP2001098328A (en) Method of producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
EP0535238A1 (en) High-strength steel sheet for forming and production thereof
JP3995822B2 (en) Method for producing high purity ferritic stainless steel sheet with excellent ridging resistance
JP3144228B2 (en) Method for producing high-chromium cold-rolled steel strip excellent in ridging resistance and workability and method for producing hot-rolled steel strip for the material
JP5167314B2 (en) Method for producing ferritic stainless steel with excellent ridging resistance
JP2007211337A (en) Cold-rolled steel sheet having excellent strain-aging resistance and low in-plane anisotropy and method for manufacture thereof
JP2001098327A (en) Method of producing ferritic stainless steel excellent in ductility, workability and ridging resistance
JP2001089814A (en) Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JPH10130734A (en) Production of austenitic stainless steel sheet for roll forming
JP2001107149A (en) Method for producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JPH07268561A (en) High strength stainless steel excellent in hot workability and free from welding softening