JP2010100877A - Method for manufacturing hot-rolled ferritic stainless steel sheet excellent in toughness - Google Patents

Method for manufacturing hot-rolled ferritic stainless steel sheet excellent in toughness Download PDF

Info

Publication number
JP2010100877A
JP2010100877A JP2008271569A JP2008271569A JP2010100877A JP 2010100877 A JP2010100877 A JP 2010100877A JP 2008271569 A JP2008271569 A JP 2008271569A JP 2008271569 A JP2008271569 A JP 2008271569A JP 2010100877 A JP2010100877 A JP 2010100877A
Authority
JP
Japan
Prior art keywords
mass
hot
less
toughness
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008271569A
Other languages
Japanese (ja)
Inventor
Hiroki Ota
裕樹 太田
Tomohiro Ishii
知洋 石井
Takumi Ugi
工 宇城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008271569A priority Critical patent/JP2010100877A/en
Publication of JP2010100877A publication Critical patent/JP2010100877A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a hot-rolled ferritic stainless steel sheet excellent in the toughness, with high efficiency and at a low cost. <P>SOLUTION: A steel material containing, by mass, ≤0.03% C, ≤0.03% N, ≤0.05% C+N, ≤0.70% Si, ≤0.50% Mn, ≤0.04% P, ≤0.02% S, 20.5-25% Cr, 0.3-0.8% Cu, ≤1.0% Ni, 4×(C+N) to 0.4% Ti, ≤0.1% V, ≤0.5% Nb, ≤0.1% Mo, 0.02-0.08% Al and the balance Fe with inevitable impurities, is hot-rolled to form the steel sheet, and then reheated to the temperature of ≥550°C and a water-toughening treatment is applied in the method for manufacturing the hot-rolled ferritic stanless steel sheet excellent in toughness. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、フェライト系ステンレス熱延鋼板を製造する方法に関し、特に、靭性に優れることにより製造性の改善や製造範囲の拡大を図ることができるフェライト系ステンレス熱延鋼板の製造方法に関するものである。   The present invention relates to a method for producing a ferritic stainless hot rolled steel sheet, and more particularly to a method for producing a ferritic stainless hot rolled steel sheet capable of improving productivity and expanding the production range by being excellent in toughness. .

ステンレス鋼は、耐食性に優れることが特徴である。中でも、Niを多量に含有するSUS304(18%Cr−8%Ni)に代表されるオーステナイト系ステンレス鋼は、その優れた耐食性によって、広い分野で用いられている。しかし、この鋼は、耐食性に優れる反面、Niを含んでいるため非常に高価でかつ価格が不安定である。   Stainless steel is characterized by excellent corrosion resistance. Among these, austenitic stainless steel represented by SUS304 (18% Cr-8% Ni) containing a large amount of Ni is used in a wide range of fields due to its excellent corrosion resistance. However, while this steel is excellent in corrosion resistance, it contains Ni and is very expensive and unstable in price.

また、Niを添加しないフェライト系ステンレス鋼において、上記SUS304と同等の耐食性を有する鋼としては、Moを添加したSUS436L(18%Cr−1%Mo)が知られている。しかし、この鋼もMoを含有しているため、非常に高価な材料となっている。   Moreover, in the ferritic stainless steel to which Ni is not added, SUS436L (18% Cr-1% Mo) to which Mo is added is known as a steel having corrosion resistance equivalent to that of SUS304. However, since this steel also contains Mo, it is a very expensive material.

そこで、Moを含有しないでSUS304あるいはSUS436L相当の耐食性を有するフェライト系ステンレス鋼の開発が求められている。しかし、高耐食性フェライト系ステンレス鋼として知られているMoを含有していないSUS430J1L(19%Cr−0.5%Cu−0.4%Nb)は、SUS304やSUS436Lに比べると、やはり耐食性に劣る。   Therefore, there is a demand for the development of ferritic stainless steel that does not contain Mo and has corrosion resistance equivalent to SUS304 or SUS436L. However, SUS430J1L (19% Cr-0.5% Cu-0.4% Nb) that does not contain Mo, which is known as a high corrosion resistance ferritic stainless steel, is still inferior in corrosion resistance to SUS304 and SUS436L. .

一方、NiやMoを含有していない耐食性に優れたステンレス鋼が幾つか提案されている。例えば、特許文献1には、Cr:9〜30%、Cu:0.1〜0.6%、Ti:5×C〜15×C%、Sb:0.02〜0.2%の成分組成からなるフェライト系ステンレス鋼が、また、特許文献2には、Cr:11〜23%、Cu:0.5〜2.0%、Ti,Nb,ZrおよびTaのうちの少なくとも1種を0.01〜1%、V:0.05〜2.0%の成分組成からなるフェライト系ステンレス鋼が、さらに、特許文献3には、Cr:5〜60%、Cu:0.15〜3.0%、Ti:4×(C+N)〜0.5%、Nb:0.003〜0.020%の成分組成からなるステンレス鋼が提案されている。   On the other hand, several stainless steels excellent in corrosion resistance that do not contain Ni or Mo have been proposed. For example, Patent Document 1 discloses a component composition of Cr: 9 to 30%, Cu: 0.1 to 0.6%, Ti: 5 × C to 15 × C%, and Sb: 0.02 to 0.2%. In addition, in Patent Document 2, at least one of Cr: 11 to 23%, Cu: 0.5 to 2.0%, Ti, Nb, Zr, and Ta is described in Patent Document 2. Ferritic stainless steel having a component composition of 01 to 1%, V: 0.05 to 2.0% is further disclosed in Patent Document 3, Cr: 5 to 60%, Cu: 0.15 to 3.0. %, Ti: 4 × (C + N) to 0.5%, and Nb: 0.003 to 0.020%, a stainless steel having a component composition has been proposed.

しかし、高耐食性ステンレス鋼を安価に製造するには、高価なMoを含有していないことに加えて、さらに高効率で大量生産できることが必要である。この点、上記特許文献1〜3のステンレス鋼は、SUS304やSUS436Lほどの耐食性が得られないだけでなく、以下に説明するように、熱延板や冷延板を高効率で連続焼鈍できないため、生産性に劣るという問題がある。   However, in order to produce high corrosion resistance stainless steel at a low cost, it is necessary to be capable of mass production with higher efficiency in addition to not containing expensive Mo. In this respect, the stainless steels of Patent Documents 1 to 3 not only provide corrosion resistance as high as SUS304 and SUS436L, but also cannot hot-roll and cold-rolled sheets with high efficiency and continuous annealing as described below. There is a problem that productivity is inferior.

耐食性を向上させるにはCrの添加量を増やすことが有効であるが、Cr含有量が多くなると、熱延板の靭性が低下する。そのため、熱間圧延したままの鋼板は、冷間圧延に先立って、連続焼鈍・酸洗ライン(APライン)に通板し、焼鈍と酸洗を施す必要がある。しかし、熱延板の靭性が低いと、連続焼鈍・酸洗ラインに通板できない場合がある。また、高効率な生産性を確保するという観点からは、普通鋼の冷延鋼板の焼鈍に用いられている高速連続焼鈍ラインでも焼鈍が行えることが好ましい。   In order to improve the corrosion resistance, it is effective to increase the amount of Cr added, but as the Cr content increases, the toughness of the hot-rolled sheet decreases. Therefore, it is necessary to pass the steel sheet as hot-rolled through a continuous annealing / pickling line (AP line) prior to cold rolling, and to perform annealing and pickling. However, if the toughness of the hot-rolled sheet is low, it may not be possible to pass through the continuous annealing / pickling line. Further, from the viewpoint of ensuring high-efficiency productivity, it is preferable that annealing can be performed even in a high-speed continuous annealing line used for annealing of cold rolled steel sheets of ordinary steel.

また、多量のCrを含有するフェライト系ステンレス鋼は、再結晶温度が高いため、熱間圧延中に再結晶を十分に起こさせて組織を微細化することが困難であり、粗大な組織に起因して熱延板の靭性が低下することがある。この問題を解決する手段の1つとしては、鋼中に含まれるCやN,S,P,Oなどの不純物を低減して高純度化し、再結晶を促進する方法がある。しかし、この方法は、凝固組織の粗大化が著しく、冷延板のリジングが大きくなるという別の問題を引き起こす。したがって、熱延板の組織を微細化して靭性を改善すると同時に冷延板のリジングを改善するには、凝固組織の微細化と熱間圧延中における再結晶の促進による組織の微細化を図る必要がある。   In addition, ferritic stainless steel containing a large amount of Cr has a high recrystallization temperature, which makes it difficult to sufficiently recrystallize during hot rolling to refine the structure, resulting in a coarse structure. As a result, the toughness of the hot-rolled sheet may decrease. As one means for solving this problem, there is a method of promoting recrystallization by reducing impurities such as C, N, S, P, and O contained in the steel to achieve high purity. However, this method causes another problem that the solidification structure is greatly coarsened and the ridging of the cold-rolled sheet becomes large. Therefore, in order to improve the toughness by refining the hot rolled sheet structure, it is necessary to refine the solidified structure and promote recrystallization during hot rolling in order to improve ridging of the cold rolled sheet. There is.

熱間圧延中の再結晶を促進するには、圧延時に強圧下を加えることが有効である。しかし、Crを多く含むフェライト系ステンレス鋼は、耐酸化性が良好であるため、鋼板表面に生成されるスケール層が薄く、圧延ロールと焼付きを起こして表面痕が発生し、いわゆる肌荒れを起こしやすいという問題がある。熱延板に肌荒れが起こると、酸洗での溶解量を増加する必要があるため、酸洗速度を低下したり、ひどい場合には、熱延板の表面をグラインダー等によって研削したりする必要が生じるため、生産性や経済性が著しく低下する。   In order to promote recrystallization during hot rolling, it is effective to apply a strong reduction during rolling. However, since ferritic stainless steel containing a large amount of Cr has good oxidation resistance, the scale layer produced on the surface of the steel sheet is thin, causing seizure with the rolling rolls, resulting in surface scratches and so-called rough skin. There is a problem that it is easy. If the surface of the hot-rolled sheet becomes rough, it is necessary to increase the amount of dissolution in pickling, so it is necessary to reduce the pickling speed or, in severe cases, to grind the surface of the hot-rolled sheet with a grinder. As a result, productivity and economy are significantly reduced.

また、凝固組織を微細化させる方法としては、種々の介在物を凝固核として利用する方法や、電磁攪拌を適用する方法などが知られている。しかし、これらの方法は、多量の金属元素や非金属元素の添加が必要であったり、凝固時の過熱温度(ΔT)を小さく制御する必要があり、安定鋳造が難しくなったりするという問題がある。   As a method for refining a solidified structure, a method using various inclusions as solidification nuclei, a method using electromagnetic stirring, and the like are known. However, these methods have problems that it is necessary to add a large amount of metal elements or non-metal elements, or to control the superheat temperature (ΔT) at the time of solidification to be small, which makes stable casting difficult. .

そこで、上記問題点を解決する技術として、Nbを添加せずにTiやV,Bの添加量を最適化することによって、熱延板の靭性を改善する方法が特許文献4に開示されている。
特公昭50−6167号公報 特公昭64−4576号公報 特許第3420371号公報 特開平9−176801号公報
Therefore, as a technique for solving the above problems, Patent Document 4 discloses a method for improving the toughness of a hot-rolled sheet by optimizing the addition amount of Ti, V, and B without adding Nb. .
Japanese Patent Publication No. 50-6167 Japanese Patent Publication No. 64-4576 Japanese Patent No. 3420371 JP-A-9-176801

しかしながら、特許文献4に開示された技術は、熱延板の靭性を改善するために、熱間圧延した直後の鋼板に水靭(水冷)処理を施すため、そのための専用設備が必要となる他、また生産性の面でも優れているとは言い難かった。また、特許文献4の鋼板は、高価なMoの添加を必須としているため、コスト的にも有利な技術とは言い難かった。   However, in the technique disclosed in Patent Document 4, in order to improve the toughness of the hot-rolled sheet, the steel sheet immediately after hot rolling is subjected to a water toughness (water cooling) process, and thus a dedicated facility for that purpose is required. Also, it was hard to say that it was excellent in productivity. Moreover, since the steel plate of patent document 4 requires addition of expensive Mo, it was hard to say that it was a technique advantageous also in terms of cost.

そこで、本発明は、従来技術が抱える上記問題点に鑑みてなされたものであって、その目的は、靭性に優れたフェライト系ステンレス熱延鋼板を高効率でかつ安価に生産することができる製造方法を提案することにある。   Therefore, the present invention has been made in view of the above-described problems of the prior art, and the purpose thereof is manufacturing that can produce a ferritic stainless hot rolled steel sheet having excellent toughness with high efficiency and at low cost. To propose a method.

発明者らは、上述した課題を解決するため、高価なNiやMoを含まないでも耐食性や靭性に優れたフェライト系ステンレス熱延鋼板を製造する方法について鋭意研究を重ねた。その結果、耐食性と製造性とをバランスさせる観点から、鋼中のCr含有量を20.5〜25mass%の範囲に限定するとともに、不純物元素としての炭素や窒素を極力低減し、さらに適量のCuおよびTiを添加することによって、SUS304やSUS436L相当の優れた耐食性が得られること、また、上記鋼を熱間圧延し、巻き取った熱延鋼板を550℃以上の温度に再加熱し、水靭処理を施すことで、熱延鋼板の靭性を著しく改善できることを見出し、本発明を完成させるに至った。   In order to solve the above-described problems, the inventors have conducted intensive research on a method for producing a ferritic stainless hot-rolled steel sheet having excellent corrosion resistance and toughness without containing expensive Ni or Mo. As a result, from the viewpoint of balancing corrosion resistance and manufacturability, the Cr content in the steel is limited to a range of 20.5 to 25 mass%, carbon and nitrogen as impurity elements are reduced as much as possible, and an appropriate amount of Cu By adding Ti and Ti, excellent corrosion resistance equivalent to SUS304 and SUS436L can be obtained, and the above steel is hot-rolled and re-heated to a temperature of 550 ° C. or higher, By performing the treatment, it was found that the toughness of the hot-rolled steel sheet can be remarkably improved, and the present invention has been completed.

すなわち、本発明は、C:0.03mass%以下、N:0.03mass%以下、C+N:0.05mass%以下、Si:0.70mass%以下、Mn:0.50mass%以下、P:0.04mass%以下、S:0.02mass%以下、Cr:20.5〜25mass%、Cu:0.3〜0.8mass%、Ni:1.0mass%以下、Ti:4×(C+N)〜0.40mass%、V:0.1mass%以下、Nb:0.5mass%以下、Mo:0.1mass%以下、Al:0.02〜0.08mass%を含有し、残部がFeおよび不可避的不純物からなる鋼素材を熱間圧延して鋼板とした後、550℃以上の温度に再加熱し、水靭処理を施すことを特徴とする靭性に優れるフェライト系ステンレス熱延鋼板の製造方法である。   That is, the present invention includes C: 0.03 mass% or less, N: 0.03 mass% or less, C + N: 0.05 mass% or less, Si: 0.70 mass% or less, Mn: 0.50 mass% or less, P: 0.00. 04 mass% or less, S: 0.02 mass% or less, Cr: 20.5 to 25 mass%, Cu: 0.3 to 0.8 mass%, Ni: 1.0 mass% or less, Ti: 4 × (C + N) to 0. 40 mass%, V: 0.1 mass% or less, Nb: 0.5 mass% or less, Mo: 0.1 mass% or less, Al: 0.02 to 0.08 mass%, with the balance being Fe and inevitable impurities A method for producing a ferritic stainless hot rolled steel sheet with excellent toughness, characterized by hot rolling a steel material into a steel sheet and then reheating to a temperature of 550 ° C. or higher and applying a water toughness treatment. It is.

本発明のフェライト系ステンレス熱延鋼板の製造方法は、上記熱間圧延における巻取温度を550℃以下とすることを特徴とする。   The method for producing a ferritic stainless hot rolled steel sheet according to the present invention is characterized in that the coiling temperature in the hot rolling is set to 550 ° C. or less.

本発明によれば、高価なNiやMoを添加することなく、SUS304あるいはSUS316Lに相当する優れた耐食性を有し、しかも、靭性に優れるフェライト系ステンレス熱延鋼板を得ることができる。また、靭性に優れる本発明の熱延鋼板は、熱延板における連続焼鈍・酸洗ラインでの焼鈍や、その後の冷延板における高速連続焼鈍ラインでの焼鈍を、容易にかつ高効率で行うことができる。さらに、本発明によれば、焼鈍可能な板厚範囲も広がるので、本発明の熱延鋼板を素材とする冷延鋼板の製造可能な板厚範囲も拡大し、機械的特性も向上するため、フェライト系スンレス鋼板の適用範囲の拡大にも寄与することができる。   According to the present invention, a ferritic stainless hot rolled steel sheet having excellent corrosion resistance equivalent to SUS304 or SUS316L and having excellent toughness can be obtained without adding expensive Ni or Mo. Moreover, the hot-rolled steel sheet of the present invention having excellent toughness easily and efficiently performs annealing in a continuous annealing / pickling line in a hot-rolled sheet and subsequent annealing in a high-speed continuous annealing line in a cold-rolled sheet. be able to. Furthermore, according to the present invention, the range of thickness that can be annealed also expands, so the range of thickness of the cold-rolled steel sheet that can be manufactured from the hot-rolled steel sheet of the present invention is expanded, and the mechanical properties are also improved. It can also contribute to the expansion of the application range of ferritic stainless steel sheets.

また、本発明のステンレス熱延鋼板は、高価なNiやMoを添加していないため、安価に製造することができる。さらに、本発明のステンレス熱延鋼板は、不純物元素を低減し、鋼中のCやNを固定し安定化するTiを添加しているため、溶接性や溶接部加工性、溶接部耐食性にも優れるので、適用範囲のさらなる拡大を可能とする。   Moreover, since the stainless hot rolled steel sheet of the present invention does not contain expensive Ni or Mo, it can be manufactured at low cost. Furthermore, the stainless hot-rolled steel sheet of the present invention adds Ti, which reduces impurity elements and fixes and stabilizes C and N in the steel, so that weldability, weld zone workability, and weld zone corrosion resistance are also improved. Since it is excellent, the application range can be further expanded.

本発明のフェライト系ステンレス鋼の成分組成について説明する。
C:0.03mass%以下、N:0.03mass%以下、C+N:0.05mass%以下
CおよびNは、熱延板の靭性を低下させる有害な元素であるので極力少なくすることが望ましく、C,Nはそれぞれ0.03mass%以下、合計(C+N)でも0.05mass%以下に制限する。好ましくは、C:0.015mass%以下、N:0.015mass%以下、C+N:0.03mass%以下である。特に高い耐食性が要求される場合には、さらに、C:0.010mass%以下、N:0.010mass%以下、C+N:0.015mass%以下に低減するのが好ましい。
The component composition of the ferritic stainless steel of the present invention will be described.
C: 0.03 mass% or less, N: 0.03 mass% or less, C + N: 0.05 mass% or less C and N are harmful elements that reduce the toughness of hot-rolled sheets, so it is desirable to reduce them as much as possible. , N are each 0.03 mass% or less, and the total (C + N) is limited to 0.05 mass% or less. Preferably, C: 0.015 mass% or less, N: 0.015 mass% or less, and C + N: 0.03 mass% or less. In particular, when high corrosion resistance is required, it is preferable to further reduce to C: 0.010 mass% or less, N: 0.010 mass% or less, and C + N: 0.015 mass% or less.

Si:0.70mass%以下
Siは、脱酸剤として添加される元素である。しかし、0.70mass%を超えて多量に添加すると、熱延板の靭性が低下するので、Siは0.70mass%以下とする。好ましくは、0.3mass%以下である。
Si: 0.70 mass% or less Si is an element added as a deoxidizer. However, if added in a large amount exceeding 0.70 mass%, the toughness of the hot-rolled sheet decreases, so Si is set to 0.70 mass% or less. Preferably, it is 0.3 mass% or less.

Mn:0.50mass%以下
Mnは、脱酸作用がある元素である。しかし、Mnは、鋼中で硫化物を形成し、耐食性を著しく低下させる元素でもあるため、少ないほど望ましいが、製造時の経済性を考慮し、0.50mass%以下とする。好ましくは0.3mass%以下である。
Mn: 0.50 mass% or less Mn is an element having a deoxidizing action. However, Mn is an element that forms sulfides in steel and significantly lowers corrosion resistance. Therefore, Mn is preferably as small as possible. However, in consideration of economics at the time of manufacture, it is set to 0.50 mass% or less. Preferably it is 0.3 mass% or less.

P:0.04mass%以下
Pは、熱間加工性を害するため少ないほど好ましいが、0.04mass%以下であれば許容することができる。
P: 0.04 mass% or less P is preferably as small as possible because it impairs hot workability, but is acceptable if it is 0.04 mass% or less.

S:0.02mass%以下
Sは、熱間加工性および耐食性を害する有害な元素であるため、極力低減することが望ましく、0.02mass%以下に制限する。好ましくは0.005mass%以下である。
S: 0.02 mass% or less Since S is a harmful element that impairs hot workability and corrosion resistance, it is desirable to reduce it as much as possible, and it is limited to 0.02 mass% or less. Preferably it is 0.005 mass% or less.

Cr:20.5〜25mass%
Crは、本発明の鋼板に十分な耐食性を付与するための最も重要な元素であり、SUS304あるいはSUS436L相当の耐食性を得るためには20.5mass%以上の添加が必要である。一方、25mass%を超えて添加すると、本発明の特徴である水靭処理を施しても、熱延板の靭性を高めることができないため、熱延板を連続焼鈍することが難しくなる。よって、Crは20.5〜25mass%の範囲とする。特に高い熱延板の靭性が必要な場合には、20.5〜21.5mass%の範囲が好ましい。
Cr: 20.5-25 mass%
Cr is the most important element for imparting sufficient corrosion resistance to the steel sheet of the present invention. In order to obtain corrosion resistance equivalent to SUS304 or SUS436L, addition of 20.5 mass% or more is necessary. On the other hand, if added over 25 mass%, the toughness of the hot-rolled sheet cannot be increased even if the water-toughening process, which is a feature of the present invention, is performed, so that it becomes difficult to continuously anneal the hot-rolled sheet. Therefore, Cr is set to a range of 20.5 to 25 mass%. In particular, when high toughness of hot-rolled sheet is required, the range of 20.5 to 21.5 mass% is preferable.

Cu:0.3〜0.8mass%
Cuは、耐食性を向上させる元素であり、特に隙間腐食を低減させるのに有効な元素である。この効果を得るには0.3mass%以上の添加が必要である。一方、0.8mass%を超えて添加すると、熱間脆性により加工性が低下する。よって、Cuは0.3〜0.8mass%の範囲とする。好ましくは0.3mass%以上0.5mass%未満である。なお、高い耐食性が要求されない場合には、Cuは添加しなくても良い。
Cu: 0.3 to 0.8 mass%
Cu is an element that improves corrosion resistance, and is particularly effective in reducing crevice corrosion. In order to obtain this effect, addition of 0.3 mass% or more is necessary. On the other hand, if added over 0.8 mass%, the workability deteriorates due to hot brittleness. Therefore, Cu is set to a range of 0.3 to 0.8 mass%. Preferably it is 0.3 mass% or more and less than 0.5 mass%. Note that if high corrosion resistance is not required, Cu does not have to be added.

Ni:1.0mass%以下
Niは、Cu添加による熱間脆性を防ぐ効果がある元素である。また、隙間腐食を低減させる効果も有する。しかし、高価な元素であることに加え、1.0mass%を超える過剰な添加は、その効果が飽和するばかりでなく、かえって熱間加工性を低下させる。よって、Niは1.0mass%以下とする。好ましくは0.1〜0.4mass%の範囲である。
Ni: 1.0 mass% or less Ni is an element having an effect of preventing hot brittleness due to addition of Cu. It also has the effect of reducing crevice corrosion. However, in addition to being an expensive element, an excessive addition exceeding 1.0 mass% not only saturates the effect but also reduces hot workability. Therefore, Ni is set to 1.0 mass% or less. Preferably it is the range of 0.1-0.4 mass%.

Ti:4×(C+N)〜0.40mass%
Tiは、溶接部の加工性や耐食性に有害なCやNを、TiCやTiN,Ti(C,N)として固定し、無害化する効果を有する有用な元素である。また、連続焼鈍による鋭敏化を防止するためにもTiの添加が必要である。これらの効果を得るためには、4×(C+N)mass%以上の添加が必要である。一方、0.40mass%を超えて過剰に添加すると、熱延板の靭性が低下する。よって、Tiは4×(C+N)〜0.40mass%の範囲とする。好ましくは、8×(C+N)〜0.35mass%、さらに好ましくは、8×(C+N)〜0.30mass%の範囲である。
Ti: 4 × (C + N) to 0.40 mass%
Ti is a useful element having an effect of fixing and detoxifying C and N harmful to the workability and corrosion resistance of the welded portion as TiC, TiN, and Ti (C, N). In addition, addition of Ti is necessary to prevent sensitization due to continuous annealing. In order to obtain these effects, addition of 4 × (C + N) mass% or more is necessary. On the other hand, when it adds exceeding 0.40 mass%, the toughness of a hot-rolled sheet will fall. Therefore, Ti is set to a range of 4 × (C + N) to 0.40 mass%. The range is preferably 8 × (C + N) to 0.35 mass%, and more preferably 8 × (C + N) to 0.30 mass%.

V:0.1mass%以下、
Vは、Tiと同様、C,Nの固定に有効な元素である。しかし、0.1mass%を超えて添加すると、熱延板の靭性が低下するため、0.1mass%以下とする。好ましくは、0.05mass%未満である。
V: 0.1 mass% or less,
V, like Ti, is an element effective for fixing C and N. However, if added over 0.1 mass%, the toughness of the hot-rolled sheet decreases, so the content is made 0.1 mass% or less. Preferably, it is less than 0.05 mass%.

Nb:0.5mass%以下
Nbは、C,Nの固定に有効な元素である他、熱延板の結晶粒を微細化させることによって、熱延板の靭性を向上させる効果をもつ有用な元素である。しかし、Nbを0.5mass%を超えて添加すると、鋼板の硬化が著しくなるため、添加量は0.5mass%以下とする。なお、Nbは、再結晶温度を上昇させる元素でもあるため、過剰に添加すると、普通鋼の冷延板を焼鈍する高速連続焼鈍ラインでは焼鈍が不十分となり、焼鈍後の加工性が低下することがある。よって、生産性を重視する場合には、Nbの添加量は0.01mass%以下とするのが好ましく、0.005mass%以下であればより好ましい。
Nb: 0.5 mass% or less Nb is an element effective for fixing C and N, and a useful element having an effect of improving the toughness of the hot-rolled sheet by refining the crystal grains of the hot-rolled sheet It is. However, if Nb is added in excess of 0.5 mass%, the steel sheet is markedly hardened, so the addition amount is set to 0.5 mass% or less. Nb is also an element that raises the recrystallization temperature, so if added excessively, annealing will be insufficient in a high-speed continuous annealing line that anneals cold-rolled sheet of plain steel, and workability after annealing will decrease. There is. Therefore, when importance is attached to productivity, the amount of Nb added is preferably 0.01 mass% or less, and more preferably 0.005 mass% or less.

Mo:0.1mass%以下
Moは、耐食性を向上させるのに有効な元素であるが、高価であることに加えて、熱延板の靭性を低下させて、製造性を低下させるおそれがある。さらに、冷延焼鈍板を硬質化して加工性を低下させるので、0.1mass%以下に制限する。好ましくは、0.05mass%以下である。
Mo: 0.1 mass% or less Mo is an element effective for improving the corrosion resistance. However, in addition to being expensive, there is a possibility that the toughness of the hot-rolled sheet is lowered and the productivity is lowered. Furthermore, since a cold-rolled annealing board is hardened and workability is reduced, it is limited to 0.1 mass% or less. Preferably, it is 0.05 mass% or less.

Al:0.02〜0.08mass%
Alは、脱酸剤として添加するが、その効果を得るには0.02mass%以上の添加が必要である。一方、過剰に添加すると大型のAlの酸化物系介在物が生成して表面欠陥の発生原因ともなるため、上限は0.08mass%とする。
Al: 0.02-0.08 mass%
Al is added as a deoxidizer, but 0.02 mass% or more is necessary to obtain the effect. On the other hand, if added excessively, large Al oxide inclusions are generated and cause surface defects, so the upper limit is made 0.08 mass%.

本発明のフェライト系ステンレス鋼は、上記必須元素に加え、必要に応じて、B,Zrを以下の範囲で添加することができる。
B:0.0002〜0.002mass%
Bは、深絞り成形時の耐二次加工脆性を改善するのに有効な元素である。その効果は、0.0002mass%以上の添加で得られる。一方、Bの過剰な添加は、熱間加工性と深絞り性を低下させる。よって、Bを添加する場合は、0.0002〜0.002mass%の範囲とするのが好ましい。
In addition to the above essential elements, B and Zr can be added to the ferritic stainless steel of the present invention within the following ranges, if necessary.
B: 0.0002 to 0.002 mass%
B is an element effective for improving secondary work embrittlement resistance during deep drawing. The effect is acquired by addition of 0.0002 mass% or more. On the other hand, excessive addition of B reduces hot workability and deep drawability. Therefore, when adding B, it is preferable to set it as the range of 0.0002-0.002 mass%.

Zr:0.01〜0.5mass%
Zrは、Tiと同様、CやNを無害化して、溶接部で粒界腐食が起こるのを防ぐ効果がある。その効果を得るには、0.01mass%以上添加するのが好ましい。しかし、0.5mass%を超えて添加すると、熱延板の靭性を低下させて、製造性を低下させる。また、過剰に添加すると、C,NあるいはOと結合したZr系介在物が多くなり、表面欠陥を増加させるおそれがある。よって、Zrを添加する場合は、0.01〜0.5mass%の範囲とするのが好ましい。
Zr: 0.01 to 0.5 mass%
Zr, like Ti, has the effect of detoxifying C and N and preventing intergranular corrosion from occurring in the weld. In order to acquire the effect, it is preferable to add 0.01 mass% or more. However, if added in excess of 0.5 mass%, the toughness of the hot-rolled sheet is lowered and the productivity is lowered. Moreover, when it adds excessively, there exists a possibility that the Zr type inclusion couple | bonded with C, N, or O may increase, and may increase a surface defect. Therefore, when adding Zr, it is preferable to set it as the range of 0.01-0.5 mass%.

次に、本発明に係るフェライト系ステンレス熱延鋼板の製造方法について説明する。
靭性に優れる熱延鋼板を高効率に製造する本発明の方法は、上記に説明した成分組成を満たす鋼を溶製し、連続鋳造してスラブとし、そのスラブを1100〜1300℃に加熱し、熱間圧延して熱延コイルとし、その後、その熱延コイルを550℃以上の温度に再加熱してから水靭(水冷)処理を施す方法であることが好ましい。この方法で製造することにより、耐食性に優れるだけでなく、靭性、耐肌荒れ性、耐リジング性にも優れるフェライト系ステンレス熱延鋼板を得ることができる。以下、詳細に説明する。
Next, the manufacturing method of the ferritic stainless hot rolled steel sheet according to the present invention will be described.
The method of the present invention for producing a hot-rolled steel sheet having excellent toughness with high efficiency melts steel satisfying the above-described component composition, continuously casts it into a slab, and heats the slab to 1100 to 1300 ° C. It is preferable to use a method in which hot rolling is performed to form a hot rolled coil, and then the hot rolled coil is reheated to a temperature of 550 ° C. or higher and then subjected to a water toughness (water cooling) treatment. By producing by this method, it is possible to obtain a ferritic stainless hot rolled steel sheet that not only has excellent corrosion resistance but also has excellent toughness, rough skin resistance, and ridging resistance. Details will be described below.

まず、鋼を転炉または電気炉等の通常公知の溶製炉にて溶製したのち、真空脱ガス法(RH法)、VOD(Vacuum Oxygen Decarburizationn)法あるいはAOD(Argon Oxygen Decarburization)法等通常公知の精錬方法で精練し、先述した本発明の成分組成に調整した鋼とし、その後、連続鋳造法あるいは造塊−分塊法を経て鋼スラブ(鋼素材)とする。上記スラブの製造法は、生産性や品質面からは連続鋳造法が好ましい。また、スラブの厚みは、後述する熱間粗圧延での圧下率を確保する観点から、100mm以上とするのが好ましい。より好ましくは200mm以上である。   First, after melting steel in a generally known melting furnace such as a converter or an electric furnace, a vacuum degassing method (RH method), a VOD (Vacuum Oxygen Decarburization) method, an AOD (Argon Oxygen Decarburization) method, etc. The steel is refined by a known refining method, adjusted to the above-described component composition of the present invention, and then steel slab (steel material) through a continuous casting method or an ingot-bundling method. The manufacturing method of the slab is preferably a continuous casting method in terms of productivity and quality. Moreover, it is preferable that the thickness of a slab shall be 100 mm or more from a viewpoint of ensuring the reduction rate in the hot rough rolling mentioned later. More preferably, it is 200 mm or more.

次いで、上記鋼スラブを、加熱炉で1100〜1300℃に加熱した後、熱間粗圧延し、熱間仕上圧延して熱延鋼板とする。上記スラブの加熱温度は、熱延板の肌荒れ防止や冷延焼鈍後の耐リジング性を向上するには高い方が望ましいが、1300℃を超えると、スラブ垂れが著しくなり、また、結晶粒が粗大化して熱延板の靭性が低下するようになる。一方、加熱温度が1100℃未満では、熱間圧延での圧延機の負荷が大きくなり、熱延ロールへの焼き付きによる肌荒れが著しくなるうえ、熱延中における再結晶が不十分となって、冷延焼鈍後のリジング特性が劣るようになる。   Subsequently, after heating the said steel slab to 1100-1300 degreeC with a heating furnace, it hot-rolls roughly and carries out hot finish rolling to make a hot-rolled steel sheet. The heating temperature of the slab is preferably high in order to prevent rough skin of the hot-rolled sheet and improve ridging resistance after cold rolling annealing, but when it exceeds 1300 ° C., dripping of the slab becomes remarkable, and crystal grains It becomes coarse and the toughness of the hot-rolled sheet decreases. On the other hand, if the heating temperature is less than 1100 ° C., the load on the rolling mill in hot rolling becomes large, the surface roughness due to seizure on the hot rolling roll becomes significant, and recrystallization during hot rolling becomes insufficient, resulting in cooling. Ridging properties after annealing are inferior.

次に、熱間圧延における粗圧延の工程は、1000℃超の温度域で、圧下率が30%以上の圧延を少なくとも1パス以上行うことが好ましい。この強圧下圧延により、粗大な鋳造組織が破壊されて、鋼板組織が微細化され、リジング特性が向上する。続く熱間仕上圧延は、通常公知の条件で行えばよいが、後述する理由から、熱延コイルの巻取温度は、550℃以下とするのが好ましい。   Next, it is preferable that the rough rolling process in the hot rolling is performed in a temperature range exceeding 1000 ° C., and rolling with a rolling reduction of 30% or more is performed at least one pass. By this strong rolling, the coarse cast structure is destroyed, the steel sheet structure is refined, and the ridging characteristics are improved. The subsequent hot finish rolling may be performed under generally known conditions, but for the reason described later, the winding temperature of the hot rolled coil is preferably 550 ° C. or lower.

次に、本発明の特徴である水靭処理について説明する。
本発明のフェライト系ステンレス鋼のように、20mass%を超えるCrを含有する鋼では、熱間圧延後の冷却過程において、いわゆる「シグマ脆性」や「475℃脆性」を起こすことが懸念される。上記シグマ脆性は、鋼が600〜800℃に加熱された際に、σ相が析出することが原因であるといわれており、Cr含有量が高いほど起こりやすい。また、上記475℃脆性は、475℃付近に加熱された際に、鋼組織がFe濃度の高い(Cr濃度が低い)α相とCr濃度の高いα’相とに2相分離することが原因といわれている。したがって、これらの脆性による熱延板の靭性低下を防止するには、熱間圧延後の上記温度域での滞留時間を短くすることが有効であり、熱間圧延後の巻取温度は、450℃以下にすることが一般的に推奨されている。しかし、巻取温度を低くすると、巻取機への負荷が大きくなる。そのため、板厚が厚い熱延板では、巻取温度を高くしなければならず、シグマ脆性や475℃脆性による靭性の低下を防ぐことが難しくなるという問題があった。
Next, the water toughness process that is a feature of the present invention will be described.
As in the ferritic stainless steel of the present invention, a steel containing Cr exceeding 20 mass% is likely to cause so-called “sigma brittleness” or “475 ° C. brittleness” in the cooling process after hot rolling. The sigma brittleness is said to be caused by the precipitation of the σ phase when the steel is heated to 600 to 800 ° C., and is more likely to occur as the Cr content is higher. The 475 ° C. brittleness is caused by the fact that when heated to around 475 ° C., the steel structure undergoes two-phase separation into an α phase having a high Fe concentration (low Cr concentration) and an α ′ phase having a high Cr concentration. It is said that. Therefore, in order to prevent toughness reduction of the hot rolled sheet due to these brittlenesses, it is effective to shorten the residence time in the above temperature range after hot rolling, and the coiling temperature after hot rolling is 450 It is generally recommended to keep it below ℃. However, when the winding temperature is lowered, the load on the winder increases. For this reason, in a hot-rolled sheet having a large thickness, it is necessary to increase the winding temperature, and there is a problem that it is difficult to prevent a decrease in toughness due to sigma brittleness or 475 ° C brittleness.

この問題に対して、発明者らは、コイルに巻き取ったままの状態で、靭性を回復させる方法について検討した。図1は、21mass%Cr含有鋼を板厚4.5mmの熱延鋼板としたのち巻取温度550℃でコイルに巻き取り、その後、そのコイルを450〜800℃の所定温度に1時間以上保持後、水靭処理を施したコイルから、試験片を採取してシャルピー衝撃試験を行い、0℃におけるシャルピー衝撃値を測定した結果を示したものである。この図から、熱延ままの状態では、シャルピー衝撃値が約40J/cmであったが、550℃以上の温度に加熱後、水靭処理を施した場合には、シャルピー衝撃値が150J/cm以上にまで改善されること、特に、750℃以上に加熱した場合には、さらに靭性が向上することがわかる。加熱する温度の上限については、特に制限はないが、加熱中のクリープ変形による形状不良の発生を抑えるという観点からは、950℃程度である。 In order to solve this problem, the inventors examined a method for recovering toughness while being wound around a coil. Fig. 1 shows a 21 mass% Cr-containing hot rolled steel sheet with a thickness of 4.5 mm, which is then wound around a coil at a coiling temperature of 550 ° C, and then held at a predetermined temperature of 450-800 ° C for 1 hour or longer. Thereafter, a test piece was sampled from a coil subjected to a water toughness treatment and subjected to a Charpy impact test, and the Charpy impact value at 0 ° C. was measured. From this figure, in the state of hot rolling, the Charpy impact value was about 40 J / cm 2 , but when heated to a temperature of 550 ° C. or higher and subjected to water toughness treatment, the Charpy impact value was 150 J / cm 2. It can be seen that the toughness is further improved when it is improved to cm 2 or more, particularly when heated to 750 ° C. or more. Although there is no restriction | limiting in particular about the upper limit of the temperature to heat, From a viewpoint of suppressing generation | occurrence | production of the shape defect by the creep deformation during heating, it is about 950 degreeC.

上記のように、本発明のフェライト系ステンレス鋼の製造方法においては、熱間圧延後の熱延コイルに水靭処理を施すことにより靭性を回復させることができるので、熱延後の巻取温度を特に制限する必要はない。しかし、より高い熱延板の靭性が要求される場合には、巻取温度を550℃以下、より好ましくは450℃以下とするのが好ましい。   As described above, in the method for producing a ferritic stainless steel of the present invention, the toughness can be recovered by subjecting the hot-rolled coil after hot rolling to a water-tough treatment, so that the coiling temperature after hot-rolling There is no need to specifically limit. However, when higher hot rolled sheet toughness is required, the coiling temperature is preferably 550 ° C. or lower, more preferably 450 ° C. or lower.

なお、上記水靭処理に先立つ熱延板コイルの加熱は、バッチ式加熱炉や連続式加熱炉等を用いることができるが、靭性に乏しい鋼板をコイルに巻き取ったままの状態で熱処理するため、コイル破断等の心配がないという点からはバッチ式の加熱炉を用いるのが好ましい。また、水靭処理は、水槽にコイルごとどぶ漬けする方法、連続焼鈍ライン内にて水槽中を通過させる方法等があるが、コイルごとどぶ漬けする方法が、コイル破断等のトラブルを防止する観点からは好ましい。   In addition, although heating of a hot-rolled sheet coil prior to the water toughening treatment can be performed using a batch-type heating furnace, a continuous heating furnace, or the like, in order to heat-treat the steel sheet having poor toughness while being wound around the coil. From the viewpoint that there is no concern about coil breakage or the like, it is preferable to use a batch type heating furnace. In addition, the water toughening process includes a method of immersing the entire coil in the water tank, a method of passing through the water tank in the continuous annealing line, etc. Is preferable.

次に、上記のようにして得た本発明の熱延鋼板のその後の工程について説明する。
水靭処理を施した本発明の熱延鋼板は、靭性に優れるので、その後、連続焼鈍・酸洗ライン(APライン)で焼鈍・酸洗を施し、高効率で生産性よく熱延焼鈍板とすることができる。この熱延焼鈍板は、そのままでも各種用途の素材として用いてもよいが、冷延鋼板用の素材としても用いることができる。この場合、冷間圧延後の焼鈍は、普通鋼の冷延鋼板用の高速連続焼鈍ラインで、効率的な焼鈍と酸洗を行う方法が推奨される。
Next, the subsequent process of the hot-rolled steel sheet of the present invention obtained as described above will be described.
Since the hot-rolled steel sheet of the present invention that has been subjected to water toughness is excellent in toughness, it is then subjected to annealing and pickling in a continuous annealing / pickling line (AP line), and a hot-rolled annealing sheet with high efficiency and high productivity. can do. This hot-rolled annealed sheet may be used as it is or as a material for various uses, but it can also be used as a material for cold-rolled steel sheets. In this case, for the annealing after cold rolling, an efficient annealing and pickling method is recommended in a high-speed continuous annealing line for cold rolled steel sheets of ordinary steel.

まず、熱間圧延し、水靭処理した板厚が2.0〜9.0mmの熱延板は、その後、800〜1000℃の温度で連続焼鈍し、酸洗して表面の酸化スケールを除去するのが好ましい。上記熱延板の焼鈍温度が800℃未満では、十分な加工性が得られない。一方、1000℃を超えると、結晶粒の粗大化が著しくなり、靭性が低下するからである。なお、Nbを0.1mass%以上添加している場合には、焼鈍温度を900〜1100℃とするのが好ましい。   First, a hot-rolled sheet having a thickness of 2.0 to 9.0 mm that has been hot-rolled and subjected to water toughness is subsequently annealed at a temperature of 800 to 1000 ° C. and pickled to remove the oxide scale on the surface. It is preferable to do this. When the annealing temperature of the hot-rolled sheet is less than 800 ° C., sufficient workability cannot be obtained. On the other hand, when the temperature exceeds 1000 ° C., the coarsening of crystal grains becomes remarkable and the toughness is lowered. In addition, when adding Nb 0.1 mass% or more, it is preferable that an annealing temperature shall be 900-1100 degreeC.

次に、上記焼鈍・酸洗後の熱延板は、その後、冷間圧延、仕上焼鈍、酸洗の各工程を順次経て、板厚が0.03〜6.0mmの冷延焼鈍板とすることができる。冷間圧延の圧下率は、靭性・加工性等の機械的特性を確保するためには25%以上とするのが好ましく、より好ましくは50%以上である。上記冷間圧延は、1回または中間焼鈍を挟んで2回以上行ってもよい。また、冷間圧延、仕上焼鈍、酸洗の各工程は繰り返し行ってもよい。さらに、上記仕上焼鈍、酸洗は、普通鋼の冷延鋼板と兼用の高速連続焼鈍ラインで効率的な冷延焼鈍と酸洗を行う方法が推奨される。しかし、生産性は低下するものの、通常のステンレス鋼の焼鈍・酸洗ラインで焼鈍・酸洗を行ってもよく、また、光輝焼鈍ライン(BAライン)で焼鈍を行ってもよいことは勿論である。また、焼鈍、酸洗後、各種研磨処理等を施して、所定の表面状態に仕上げてもよい。   Next, the hot-rolled sheet after annealing and pickling is subsequently subjected to the steps of cold rolling, finish annealing, and pickling to form a cold-rolled annealed sheet having a thickness of 0.03 to 6.0 mm. be able to. The rolling reduction of cold rolling is preferably 25% or more, more preferably 50% or more in order to ensure mechanical properties such as toughness and workability. The cold rolling may be performed once or twice or more with intermediate annealing. Further, the steps of cold rolling, finish annealing, and pickling may be repeated. Furthermore, for the above-mentioned finish annealing and pickling, a method of performing efficient cold rolling annealing and pickling in a high-speed continuous annealing line that is also used as a cold rolled steel sheet of ordinary steel is recommended. However, although productivity is lowered, it is possible to perform annealing / pickling in an ordinary stainless steel annealing / pickling line, and of course, annealing may be performed in a bright annealing line (BA line). is there. Further, after annealing and pickling, various polishing treatments and the like may be performed to finish to a predetermined surface state.

なお、上述した熱延焼板や冷延板を、上記各工程の製造ラインに通板する際の溶接には、TIG、MIGをはじめとするアーク溶接、シーム溶接、スポット溶接等の抵抗溶接、レーザー溶接など通常の溶接方法であればいずれも適用が可能である。   For welding when the above-mentioned hot-rolled and cold-rolled plates are passed through the production line in each of the above processes, resistance welding such as TIG, MIG, arc welding, seam welding, spot welding, etc., laser Any ordinary welding method such as welding can be applied.

表1に示す成分組成を有するフェライト系ステンレス鋼を転炉−VODプロセスで溶製し、連続鋳造法で鋳造して厚さが200mmの鋼素材(スラブ)とした。このスラブの表面をグラインダー研削してから、1200℃の温度に再加熱し、熱間圧延して板厚:6.0mmの熱延コイルとした。なお、熱延後の巻取温度は、No.10の鋼板については650℃としたが、他は、450〜550℃の範囲で巻き取りを行った。
この熱延コイルから試験片を採取し、熱延ままの状態で、シャルピー衝撃試験を行い、0℃における吸収エネルギーを測定し、断面積で除してシャルピー衝撃値を求めたところ、いずれも50J/cm以下であった。
Ferritic stainless steel having the composition shown in Table 1 was melted by a converter-VOD process and cast by a continuous casting method to obtain a steel material (slab) having a thickness of 200 mm. The surface of this slab was grinder ground, reheated to a temperature of 1200 ° C., and hot-rolled to obtain a hot rolled coil having a plate thickness of 6.0 mm. The coiling temperature after hot rolling is No. About 10 steel plates, it was set as 650 degreeC, but others wound up in the range of 450-550 degreeC.
A test piece was taken from the hot rolled coil, a Charpy impact test was performed in the hot rolled state, the absorbed energy at 0 ° C. was measured, and the Charpy impact value was obtained by dividing by the cross-sectional area. / Cm 2 or less.

Figure 2010100877
Figure 2010100877

次いで、上記熱延コイル(orから採取した試験片)を、バッチ式加熱炉で、表1に記載した各種温度に1〜8時間保持した後、併設した水槽中に浸漬して水靭処理し、上記と同様にしてシャルピー衝撃値を求めた。   Next, the hot-rolled coil (test piece taken from or) was held at various temperatures listed in Table 1 for 1 to 8 hours in a batch-type heating furnace, and then immersed in a water tank provided for water toughness treatment. The Charpy impact value was determined in the same manner as described above.

上記評価結果を表1に併せて示す。この結果から、本発明の成分組成を満たすNo.1〜3の鋼(発明鋼)では、水靭後の靭性(シャルピー衝撃値)がいずれも150J/cm以上に向上しているのに対して、本発明の成分組成を満たさないNo.4および5の鋼(比較鋼)では、靭性の改善は認められなかった。 The evaluation results are also shown in Table 1. From this result, No. 1 satisfying the component composition of the present invention was obtained. In steels 1 to 3 (invention steel), the toughness (Charpy impact value) after water toughness is improved to 150 J / cm 2 or more, while No. 1 does not satisfy the composition of the present invention. For steels 4 and 5 (comparative steel), no improvement in toughness was observed.

本発明の技術は、熱間圧延機を用いて製造されるステンレス熱延鋼板に限定されるものではなく、例えば、厚板圧延機を用いて製造されるステンレス厚鋼板にも適用することができる。   The technology of the present invention is not limited to a stainless hot-rolled steel sheet manufactured using a hot rolling mill, and can be applied to, for example, a stainless thick steel sheet manufactured using a thick-sheet rolling mill. .

21mass%Cr含有鋼の熱延鋼板における再加熱温度と水靭後の靭性(シャルピー衝撃値)との関係を示すグラフである。It is a graph which shows the relationship between the reheating temperature in the hot rolled steel plate of 21 mass% Cr containing steel, and the toughness (Charpy impact value) after water toughness.

Claims (2)

C:0.03mass%以下、
N:0.03mass%以下、
C+N:0.05mass%以下、
Si:0.70mass%以下、
Mn:0.50mass%以下、
P:0.04mass%以下、
S:0.02mass%以下、
Cr:20.5〜25mass%、
Cu:0.3〜0.8mass%、
Ni:1.0mass%以下、
Ti:4×(C+N)〜0.40mass%、
V:0.1mass%以下、
Nb:0.5mass%以下、
Mo:0.1mass%以下、
Al:0.02〜0.08mass%を含有し、
残部がFeおよび不可避的不純物からなる鋼素材を熱間圧延して鋼板とした後、550℃以上の温度に再加熱し、水靭処理を施すことを特徴とする靭性に優れるフェライト系ステンレス熱延鋼板の製造方法。
C: 0.03 mass% or less,
N: 0.03 mass% or less,
C + N: 0.05 mass% or less,
Si: 0.70 mass% or less,
Mn: 0.50 mass% or less,
P: 0.04 mass% or less,
S: 0.02 mass% or less,
Cr: 20.5-25 mass%,
Cu: 0.3 to 0.8 mass%,
Ni: 1.0 mass% or less,
Ti: 4 × (C + N) to 0.40 mass%,
V: 0.1 mass% or less,
Nb: 0.5 mass% or less,
Mo: 0.1 mass% or less,
Al: 0.02 to 0.08 mass% is contained,
Hot-rolled ferritic stainless steel with excellent toughness characterized by hot-rolling a steel material consisting of Fe and unavoidable impurities into a steel sheet and then reheating to a temperature of 550 ° C. or higher and applying a water toughness treatment. A method of manufacturing a steel sheet.
上記熱間圧延における巻取温度を550℃以下とすることを特徴とする請求項1に記載のフェライト系ステンレス熱延鋼板の製造方法。 The method for producing a ferritic stainless hot-rolled steel sheet according to claim 1, wherein a coiling temperature in the hot rolling is 550 ° C or lower.
JP2008271569A 2008-10-22 2008-10-22 Method for manufacturing hot-rolled ferritic stainless steel sheet excellent in toughness Pending JP2010100877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008271569A JP2010100877A (en) 2008-10-22 2008-10-22 Method for manufacturing hot-rolled ferritic stainless steel sheet excellent in toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008271569A JP2010100877A (en) 2008-10-22 2008-10-22 Method for manufacturing hot-rolled ferritic stainless steel sheet excellent in toughness

Publications (1)

Publication Number Publication Date
JP2010100877A true JP2010100877A (en) 2010-05-06

Family

ID=42291767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008271569A Pending JP2010100877A (en) 2008-10-22 2008-10-22 Method for manufacturing hot-rolled ferritic stainless steel sheet excellent in toughness

Country Status (1)

Country Link
JP (1) JP2010100877A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012140687A (en) * 2011-01-05 2012-07-26 Nisshin Steel Co Ltd Ti CONTAINING FERRITIC STAINLESS STEEL HOT ROLLED COIL AND MANUFACTURING METHOD
WO2013085005A1 (en) * 2011-12-09 2013-06-13 新日鐵住金ステンレス株式会社 Hot-rolled ferritic stainless steel sheet with excellent cold cracking resistance and manufacturing process therefor
WO2014045476A1 (en) * 2012-09-24 2014-03-27 Jfeスチール株式会社 Ferritic stainless steel
WO2014080078A1 (en) * 2012-11-20 2014-05-30 Outokumpu Oyj Ferritic stainless steel
US9885099B2 (en) 2012-03-09 2018-02-06 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet
US10385429B2 (en) 2013-03-27 2019-08-20 Nippon Steel & Sumikin Stainless Steel Corporation Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
CN110885951A (en) * 2019-11-25 2020-03-17 南通市腾飞金属铸造有限公司 Fire grate formula
JP2022514575A (en) * 2018-12-21 2022-02-14 オウトクンプ オサケイティオ ユルキネン Ferritic stainless steel

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012140687A (en) * 2011-01-05 2012-07-26 Nisshin Steel Co Ltd Ti CONTAINING FERRITIC STAINLESS STEEL HOT ROLLED COIL AND MANUFACTURING METHOD
WO2013085005A1 (en) * 2011-12-09 2013-06-13 新日鐵住金ステンレス株式会社 Hot-rolled ferritic stainless steel sheet with excellent cold cracking resistance and manufacturing process therefor
JPWO2013085005A1 (en) * 2011-12-09 2015-04-27 新日鐵住金ステンレス株式会社 Ferritic stainless steel hot-rolled steel sheet with excellent cold cracking property and method for producing the same
US9885099B2 (en) 2012-03-09 2018-02-06 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet
WO2014045476A1 (en) * 2012-09-24 2014-03-27 Jfeスチール株式会社 Ferritic stainless steel
EA027178B1 (en) * 2012-11-20 2017-06-30 Оутокумпу Оий Ferritic stainless steel
EP2922978A4 (en) * 2012-11-20 2015-12-16 Outokumpu Oy Ferritic stainless steel
JP2016503459A (en) * 2012-11-20 2016-02-04 オウトクンプ オサケイティオ ユルキネンOutokumpu Oyj Ferritic stainless steel
CN104903483A (en) * 2012-11-20 2015-09-09 奥托库姆普联合股份公司 Ferritic stainless steel
AU2013349589B2 (en) * 2012-11-20 2017-07-20 Outokumpu Oyj Ferritic stainless steel
WO2014080078A1 (en) * 2012-11-20 2014-05-30 Outokumpu Oyj Ferritic stainless steel
US11384405B2 (en) 2012-11-20 2022-07-12 Outokumpu Oyj Ferritic stainless steel
US10385429B2 (en) 2013-03-27 2019-08-20 Nippon Steel & Sumikin Stainless Steel Corporation Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
JP2022514575A (en) * 2018-12-21 2022-02-14 オウトクンプ オサケイティオ ユルキネン Ferritic stainless steel
JP7464606B2 (en) 2018-12-21 2024-04-09 オウトクンプ オサケイティオ ユルキネン Ferritic stainless steel manufacturing method
CN110885951A (en) * 2019-11-25 2020-03-17 南通市腾飞金属铸造有限公司 Fire grate formula

Similar Documents

Publication Publication Date Title
JP6779320B2 (en) Clad steel sheet with excellent strength and formability and its manufacturing method
CN109642286B (en) Ferritic stainless steel hot-rolled annealed steel sheet and method for producing same
JP2010100877A (en) Method for manufacturing hot-rolled ferritic stainless steel sheet excellent in toughness
JP7261822B2 (en) Al-Fe alloy plated steel sheet for hot forming with excellent TWB welding properties, and method for producing hot formed member
JP2015096648A (en) Ferritic stainless steel
JP5904306B2 (en) Ferritic stainless steel hot-rolled annealed steel sheet, manufacturing method thereof, and ferritic stainless steel cold-rolled annealed steel sheet
CN110366601B (en) Ferritic stainless steel sheet, hot-rolled coil, and flange member for automobile exhaust system
JP6093210B2 (en) Heat-resistant ferritic stainless steel sheet with excellent low-temperature toughness and method for producing the same
JP7268182B2 (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
JP4239257B2 (en) Method for producing Ti-containing ferritic stainless steel sheet having excellent ridging resistance
JP6311633B2 (en) Stainless steel and manufacturing method thereof
CN110337503B (en) Ferritic stainless steel sheet, hot-rolled coil, and flange member for automobile exhaust system
JP2011214063A (en) Ferritic stainless steel sheet and method for manufacturing the same
JP5811686B2 (en) Steel plate for high-strength can and manufacturing method thereof
JP6411881B2 (en) Ferritic stainless steel and manufacturing method thereof
JPH09111354A (en) Production of ferritic stainless steel sheet
JP3941363B2 (en) Ferritic stainless cold-rolled steel sheet excellent in ductility, workability and ridging resistance, and method for producing the same
JP2011246813A (en) Ferritic stainless steel sheet and method of manufacturing the same
JP2011214060A (en) Ferritic stainless steel sheet and method for manufacturing the same
JP2017095789A (en) Ferritic stainless steel hot rolled steel sheet for flange and manufacturing method therefor
JPH0617519B2 (en) Method for producing steel plate or strip of ferritic stainless steel with good workability
JP2011246814A (en) Ferritic stainless steel sheet and method of manufacturing the same
KR102463485B1 (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
JP2001098328A (en) Method of producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP2002363650A (en) Method for producing ultrahigh strength cold rolled steel sheet having excellent seam weldability