WO2020130060A1 - Cr-based stainless steel having excellent hydrogen embrittlement resistance - Google Patents

Cr-based stainless steel having excellent hydrogen embrittlement resistance Download PDF

Info

Publication number
WO2020130060A1
WO2020130060A1 PCT/JP2019/049717 JP2019049717W WO2020130060A1 WO 2020130060 A1 WO2020130060 A1 WO 2020130060A1 JP 2019049717 W JP2019049717 W JP 2019049717W WO 2020130060 A1 WO2020130060 A1 WO 2020130060A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
stainless steel
embrittlement resistance
hydrogen
hydrogen embrittlement
Prior art date
Application number
PCT/JP2019/049717
Other languages
French (fr)
Japanese (ja)
Inventor
秦野 正治
佑一 田村
Original Assignee
日鉄ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ステンレス株式会社 filed Critical 日鉄ステンレス株式会社
Priority to JP2020561497A priority Critical patent/JP7121142B2/en
Priority to EP19899311.5A priority patent/EP3901292A4/en
Priority to US17/312,693 priority patent/US20220033944A1/en
Priority to CN201980083521.9A priority patent/CN113227414B/en
Priority to KR1020217018922A priority patent/KR102539588B1/en
Publication of WO2020130060A1 publication Critical patent/WO2020130060A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation

Definitions

  • the present invention relates to a Cr-based stainless steel sheet having excellent hydrogen embrittlement resistance, and particularly to a Cr-based stainless steel sheet suitable as a metal material for high-pressure hydrogen gas equipment.
  • the Ni equivalent (Ni+0. It specifies the use of a material (for example, Ni equivalent ⁇ 28.5) in which 65Cr+0.98Mo+1.05Mn+0.35Si+12.6C) is increased.
  • the operating temperature is -45°C or higher and 250°C or lower.
  • Patent Documents 1 and 2 also disclose stainless steels which are intended to improve the economical efficiency by increasing the strength of SUS316L and lowering expensive Mo.
  • Non-Patent Document 1 discloses hydrogen embrittlement characteristics evaluated in a high-pressure hydrogen gas at room temperature for all steel materials including stainless steel.
  • SUS304 which is a typical austenitic stainless steel
  • Cr-based stainless steel are easily hydrogen embrittled. Therefore, generally, it is recommended to use SUS316L or SUS316 even in a high-pressure hydrogen gas having a pressure of about 20 MPa.
  • the Cr-based stainless steel having a body-centered cubic structure also has a problem (low-temperature brittleness) that the toughness is lowered at a low temperature of room temperature or lower as compared with the austenitic stainless steel having a face-centered cubic structure.
  • Patent Document 3 discloses a high-pressure hydrogen gas pressure vessel and a high-pressure hydrogen gas pipe coated with Al or an Al alloy.
  • the coating of austenitic stainless steels and duplex stainless steels containing an austenitic phase is targeted, and the film formation and hydrogen penetration characteristics in steel materials that are susceptible to hydrogen embrittlement, such as Cr-based stainless steels, are not shown.
  • Patent Document 4 a steel material which is apt to be hydrogen embrittled by itself is subjected to hot dip plating using an Al-Si alloy with an added amount of Si of 1 to 5%, thereby forming a hydrogen permeation resistant film.
  • a formed substrate for a hydrogen appliance is disclosed.
  • the base material is carbon steel, low alloy steel, or Cr-based stainless steel to prevent hydrogen embrittlement and also keep manufacturing costs low.
  • the examples are limited to SUS304, SUS630 (15Cr-4Ni-3Cu) and SCM435 (low alloy steel).
  • SCM435 low alloy steel
  • Patent Documents 1 to 4 described above remain only in the austenite-type and two-phase and SUS630 (precipitation hardening type), and the Cr-type stainless steel disclosed in Non-Patent Document 1 is easily hydrogen embrittlement and is high-pressure hydrogen gas. It does not have hydrogen embrittlement resistance for use in applications. Cr-based stainless steel also has a problem of low temperature brittleness.
  • the present invention has been made in view of the above circumstances, has a hydrogen embrittlement resistance for use in high-pressure hydrogen gas, and is suitable as a metal material for high-pressure hydrogen gas equipment, and is excellent in hydrogen embrittlement resistance Cr-based stainless steel.
  • An object is to provide a steel plate. At the same time, it is an object to realize compatibility with low temperature brittleness.
  • the present invention adopts the following configurations. [1]% by mass, C: 0.020% or less, Si: 1.00% or less, Mn: 1.00% or less, P: 0.040% or less, S: 0.0030% or less, Cr: 10 0.0 to 18.0%, N: 0.020% or less, Al: 0.10% or less, Nb: 0.5% or less, Ti: 0.5% or less : 0 to 0.3%, B: 0 to 0.005%, Ni: 0 to 1%, Cu: 0 to 1%, Mo: 0 to 1%, Sb: 0.2% or less, V: 0 to 0.5%, W:0 to 0.5%, Zr:0 to 0.5%, Co:0 to 0.5%, Mg:0 to 0.005%, Ca:0 to 0.005%, Ga: 0 to 0.020%, La: 0 to 0.1%, Y: 0 to 0.1%, Hf: 0 to 0.1%, REM: 0 to 0.1%, the balance being Fe and impurities And
  • the element symbol means the content (mass %) of the element.
  • Ni 1% or less
  • Cu 1% or less
  • Mo 1% or less
  • Sb 0.2% or less
  • V 0.5% or less
  • W 0.5% or less
  • Zr 0.5% or less
  • Co 0.5% or less
  • Mg 0.005% or less
  • Ca 0.005% or less
  • Ga 0.020% or less
  • La 0.1% or less
  • group stainless steel plate of this invention characterized by containing 1 type or 2 types or more of 0.1% or less, Hf:0.1% or less, and REM:0.1% or less.
  • the Cr-based stainless steel sheet according to the present invention which is used as a metal material for a high-pressure hydrogen gas device.
  • a Cr-based stainless steel sheet having excellent hydrogen embrittlement resistance and low temperature toughness can be provided.
  • the Cr-based stainless steel sheet of the present invention can be suitably used as a metal material for high-pressure hydrogen gas equipment.
  • the properties required for the metal material of the high-pressure hydrogen gas device include hydrogen embrittlement resistance and low temperature embrittlement resistance.
  • Cr-based stainless steel sheets reduce the amount of hydrogen penetrating into steel materials from high-pressure hydrogen gas due to the crystal structure, as compared with austenitic stainless steel sheets, but those having hydrogen embrittlement resistance suitable for high-pressure hydrogen gas applications can be obtained. Has not been done.
  • hydrogen embrittlement is characterized as a decrease in mechanical properties (strength, elongation, drawing) involved in plastic deformation. Therefore, hydrogen embrittlement is an event in which the destruction of a material progresses due to the interaction between hydrogen that has penetrated into the steel material from high-pressure hydrogen gas and plastic deformation.
  • Non-Patent Document 2 Therefore, in order to realize a Cr-based stainless steel sheet suitable for high-pressure hydrogen gas, it is necessary to reduce the interaction between hydrogen and plastic deformation as much as possible. In particular, since Cr has a large hydrogen trapping ability, the Cr content is suppressed to 18% or less in the present invention. Furthermore, the present inventors have found that it is preferable to control the added amounts of Si, Mn, P, Ti, and Nb within a predetermined range.
  • Sn and B serves as a diffusion barrier at the crystal grain boundaries of hydrogen and reduces the interaction between hydrogen and plastic deformation.
  • impurity elements such as P and S are segregated at the grain boundaries, which facilitates low temperature brittleness. Therefore, the inventors of the present invention pay attention to a small amount of addition of Sn and B, and by containing these elements in a predetermined range, it is expected that the adverse effects of P, S, etc. are suppressed and hydrogen embrittlement resistance and low temperature embrittlement resistance are compatible. I found that.
  • the gist of the present invention made based on the above findings (a) to (c) is as follows.
  • the Cr-based stainless steel sheet of the present embodiment is, in mass %, C: 0.020% or less, Si: 1.00% or less, Mn: 1.00% or less, P: 0.040% or less, S: 0.0.
  • a Cr-based stainless steel sheet excellent in hydrogen embrittlement resistance and low temperature embrittlement resistance characterized in that it contains two kinds, the balance consisting of Fe and impurities, and the texture on the plate surface satisfies the following (i) and (ii): is there.
  • the Cr-based stainless steel sheet of the present embodiment is further mass %, Ni: 1% or less, Cu: 1% or less, Mo: 1% or less, Sb: 0.2% or less, V: 0.5% or less. , W: 0.5% or less, Zr: 0.5% or less, Co: 0.5% or less, Mg: 0.005% or less, Ca: 0.005% or less, Ga: 0.020% or less, La : 0.1% or less, Y: 0.1% or less, Hf: 0.1% or less, REM: 0.1% or less, or two or more thereof may be contained.
  • the Cr-based stainless steel sheet of the present embodiment is preferably used as a metal material for high-pressure hydrogen gas equipment.
  • C 0.020% or less C increases the work hardening of steel due to solid solution and precipitation of carbides to deteriorate hydrogen embrittlement resistance, and further lowers toughness to deteriorate low temperature embrittlement resistance. Is as small as possible, and the upper limit is made 0.020% or less. However, in order to reduce the amount of C, the refining process becomes complicated and the cost increases. Therefore, the C content is preferably 0.001% or more. Considering the refining cost, the preferable range is 0.003 to 0.015%, and the more preferable range is 0.003 to 0.010%.
  • Si 1.00% or less Si is effective as a deoxidizing element, but when contained in excess, it causes solid solution strengthening and work hardening to increase, leading to a reduction in hydrogen embrittlement resistance and low temperature embrittlement resistance. It should be 0.000% or less.
  • the lower limit is preferably 0.01% or more in order to secure deoxidizing ability.
  • the preferable range is 0.05 to 0.50% in view of manufacturability and characteristics, and may be 0.05 to 0.30%.
  • Mn 1.00% or less
  • Mn is an element effective as a deoxidizing element, and is also an element effective for fixing S to improve toughness and to obtain low temperature brittleness resistance.
  • the upper limit is made 1.00% or less.
  • the lower limit is preferably 0.01% or more.
  • the preferable range is 0.05 to 0.50%, and may be 0.05 to 0.30%.
  • P 0.040% or less P is an element that segregates at grain boundaries to reduce low temperature embrittlement resistance, and the lower the content, the better. Therefore, the upper limit is 0.040%. However, excessive reduction leads to an increase in refining cost, so the lower limit is preferably made 0.005% or more. A more preferable range is 0.010 to 0.030%, and may be 0.010 to 0.020% in consideration of manufacturing cost and characteristics.
  • S 0.0030% or less Since S forms grain boundary segregation and sulfides in steel to deteriorate low temperature embrittlement resistance, the smaller the content, the better.
  • the upper limit is 0.0030%. However, excessive reduction leads to an increase in raw materials and refining costs, so the lower limit is preferably made 0.0001% or more.
  • a more preferable range is 0.0002 to 0.0015%, and may be 0.0002 to 0.0008% in consideration of manufacturing cost and characteristics.
  • Cr 10.0-18.0%
  • Cr is a basic element of the Cr-based stainless steel of the present embodiment, and is an essential element for maintaining hydrogen embrittlement resistance and low temperature embrittlement resistance in addition to the corrosion resistance of the steel.
  • the lower limit is made 10.0% or more in order to obtain the above-mentioned characteristics for use in high-pressure hydrogen gas of this embodiment.
  • the upper limit is 18.0% or less from the viewpoint of achieving both hydrogen embrittlement resistance and low temperature embrittlement resistance.
  • Cr which has a high hydrogen trapping capacity, exceeds 18.0%, the amount of hydrogen penetrating into the steel from the high-pressure hydrogen gas environment increases, the hydrogen embrittlement resistance deteriorates, and the texture deviates from the preferred range of the present invention. is there.
  • a more preferable range of Cr may be 11.0 to less than 17.0%, or 12.0 to 15.0%.
  • N 0.020% or less
  • N increases work hardening of steel due to solid solution and precipitation of carbides to deteriorate hydrogen embrittlement resistance, and further reduces toughness to deteriorate low temperature embrittlement resistance. Therefore, the smaller the content, the better, and the upper limit is made 0.020% or less.
  • the N content is preferably 0.001% or more.
  • a preferable range is 0.005 to 0.015% in consideration of characteristics and manufacturing cost.
  • Al 0.10% or less
  • Al is an extremely effective element as a deoxidizing element.
  • the upper limit is set to 0.10% or less.
  • the lower limit is preferably 0.005% or more in consideration of the deoxidizing effect. Considering the characteristics and manufacturability, the preferable range is 0.01 to 0.07%, and may be 0.01 to 0.05%.
  • Nb 0.5% or less
  • Ti 0.5% or less 1 type or 2 types
  • Nb and Ti segregate at grain boundaries to suppress grain boundary segregation of P and S and improve low temperature brittleness resistance. There is an action to try.
  • Nb and Ti can be expected to improve hydrogen embrittlement resistance by suppressing work hardening of steel due to the action as a stabilizing element that fixes C, N, P, and S. Both Nb and Ti exhibit these two effects, and are effective elements for improving the hydrogen embrittlement resistance and the low temperature embrittlement resistance, which are the goals of the present invention.
  • the content is preferably 0.01% or more so that the respective effects are exhibited.
  • the upper limits are set to 0.5% or less, respectively.
  • the preferable range is 0.05 to 0.5% with respect to the total of one or two of Nb and Ti in consideration of the effect of improving the characteristics and alloy cost.
  • a more preferable range is 0.08 to 0.4% for one kind or the sum of two kinds, and it may be 0.1 to 0.3%.
  • Sn and B are contained in the following content ranges.
  • Sn is an element effective for improving the hydrogen embrittlement resistance and the low temperature embrittlement resistance which are the targets of the present invention.
  • Sn which is a grain boundary segregation element, serves as a diffusion barrier at hydrogen crystal grain boundaries and reduces the interaction between hydrogen and plastic deformation. It also suppresses the segregation of P and S at the crystal grain boundaries and alleviates the adverse effects of low temperature embrittlement resistance.
  • Sn in a predetermined range, both hydrogen embrittlement resistance and low temperature embrittlement resistance are expected to be compatible. Therefore, in the present invention, it is preferable to contain Sn in the range of 0.001 to 0.5%.
  • B 0.005% or less
  • B is a grain boundary segregation element and is an element that improves hydrogen embrittlement resistance and low temperature embrittlement resistance like Sn, and it is effective to contain Cr in the Cr-based stainless steel of the present embodiment. is there.
  • the content in order to improve the hydrogen embrittlement resistance, the content is preferably 0.0003% or more.
  • the upper limit is made 0.005% or less. It is preferably 0.0005 to 0.002%, and may be 0.001 to 0.002%.
  • Si, Mn, P, Nb, and Ti each satisfy the following formula (1) in order to improve the hydrogen embrittlement resistance and the low temperature embrittlement resistance, which are the targets of the present invention, in addition to the content ranges described above. It is preferable. Si+0.5Mn+10P+5Nb+2Ti ⁇ 2.00... Formula (1)
  • the element symbol means the content (mass %) of the element.
  • the formula (1) is less than 2.00, and the lower limit is 0.05 from the viewpoint of properties and manufacturability.
  • a preferred range is 0.35 to 1.80, and a more preferred range is 0.50 to 1.50.
  • Ni, Cu and Mo are effective elements for improving corrosion resistance and Ni and Cu for improving low temperature toughness.
  • each of Ni, Cu, and Mo may be contained in the range of 0.05% or more. Excessive content increases the solid solution strengthening and work hardening of stainless steel, leading to a decrease in hydrogen embrittlement resistance, so the upper limit is made 1% or less.
  • a more preferable range is 0.1% or more and 0.8% or less, and a still more preferable range is 0.2% or more and 0.5% or less.
  • Mg forms Mg oxide together with Al in molten steel and acts as a deoxidizing agent, and also acts as a crystallization nucleus of TiN.
  • TiN serves as a solidification nucleus of the ferrite phase in the solidification process, and promotes crystallization of TiN, so that the ferrite phase can be finely generated during solidification.
  • the content is preferably 0.0001% or more for exhibiting these effects.
  • Mg exceeds 0.005%, manufacturability and corrosion resistance deteriorate, so the upper limit is made 0.005% or less. It is preferably 0.0003 to 0.002%, and more preferably 0.0003 to 0.001%.
  • Ca and Ga are elements that improve the cleanliness of steel, and are contained as necessary to suppress an increase in work hardening and increase hydrogen embrittlement resistance. .. When they are contained, the content is preferably 0.0003% or more in order to exhibit these effects. However, since excessive content leads to deterioration in manufacturability and corrosion resistance, the upper limits are set to 0.005% or less for Ca and 0.020% or less for Ga. Preferably, Ca is 0.0003 to 0.0030% and Ga is 0.0030 to 0.015%.
  • La, Y, Hf, and REM improve the cleanliness of steel similarly to Ca and Ga. It is an element and may be contained if necessary in order to suppress an increase in work hardening and enhance hydrogen embrittlement resistance. When they are contained, they are preferably contained in an amount of 0.001% or more in order to exhibit the effect. However, excessive contents lead to an increase in alloy cost and deterioration in manufacturability, so the upper limits are made 0.1% or less. It is preferably 0.001 to 0.05%, and more preferably 0.001 to 0.03%.
  • REM rare earth element
  • Sc scandium
  • Y yttrium
  • Lu lutetium
  • the impurities contained in the balance are those that are mixed in from the ore as a raw material, scrap, or the manufacturing environment when steel is industrially manufactured, and are allowed within the limit of solving the problem of the present invention. Means what is done. If necessary, Ta: 0.1% or less, Bi: 0.01% or less, Zn: 0.05%, H: 0.0005% or less may be contained.
  • the Cr-based stainless steel of the present embodiment contains ferrite crystal grains, and may contain martensite crystal grains.
  • the texture on the plate surface satisfies the following (i) and (ii).
  • the area ratio of crystal grains ( ⁇ 211 ⁇ 10° oriented grains) in which the angle difference between the normal direction of the steel sheet surface and the ⁇ 211 ⁇ plane orientation on the plate surface is within 10° is less than 30%
  • ⁇ 211 ⁇ 10° oriented grains defined in (i) both the length in the rolling direction and the length in the strip width direction are less than 0.15 mm on average, where ⁇ 211 ⁇ plane orientation is ⁇ 211 ⁇ . It means the direction normal to the surface.
  • the ⁇ 211 ⁇ orientation is called ⁇ -fiber and is a rolling texture that accumulates in cold rolling.
  • the area ratio of ⁇ 211 ⁇ 10° oriented grains is set to less than 30%, and the presence ratio of ⁇ 111 ⁇ orientation, which is a recrystallization texture, on the plate surface can be contributed to the improvement of hydrogen embrittlement resistance.
  • the area ratio of ⁇ 211 ⁇ 10° oriented grains is preferably in the range of 5 to 20%, more preferably in the range of 3 to 15%.
  • the average grain size of ⁇ 211 ⁇ 10° grains on the plate surface is less than 0.15 mm in both rolling direction and plate width direction (rolling vertical direction).
  • the preferable size of the ⁇ 211 ⁇ 10° oriented grains is less than 0.10 mm, more preferably less than 0.07 mm.
  • the “plate surface” is a region up to t/8 of the plate thickness t of the steel plate, and a region from the surface of the steel plate to a thickness of 1/8 t in the surface direction on both sides of the steel plate.
  • the ⁇ 211 ⁇ 10° oriented grains mean, on the plate surface, crystal grains having a crystal orientation in which an angle difference between the normal line direction of the steel sheet surface and the ⁇ 211 ⁇ plane orientation is within 10°.
  • EBSD electron beam backscattering diffraction method
  • the above-mentioned texture can be analyzed using electron beam backscattering diffraction method (hereinafter referred to as EBSD).
  • EBSD is to measure and analyze the crystal orientation of each crystal grain in a micro region of the sample surface at high speed.
  • the crystal orientation group that contributes to hydrogen embrittlement resistance is displayed by displaying a crystal orientation map divided into ⁇ 211 ⁇ 10° oriented grains and other regions on the plate surface, and the area ratio and grain of the ⁇ 211 ⁇ 10° oriented grains are displayed. You can quantify the size.
  • EBSD is measured at a magnification of 100 in a measurement region of a plate width direction of 850 ⁇ m and a rolling direction of 2250 ⁇ m, and parallel to the steel plate surface.
  • the crystal orientation map of crystal grains that is, ⁇ 211 ⁇ 10° orientation grains
  • the size can be quantified. If the range from the steel plate surface to t/8 of the steel plate thickness t is used as the inspection surface, the texture of the plate surface can be evaluated with good reproducibility.
  • Hydrogen embrittlement resistance is evaluated by the tensile strength and elongation at break in the low strain rate tensile test described above, and the value in high-pressure hydrogen gas is less likely to decrease in comparison with the tensile strength and elongation at break in air or inert gas.
  • the value obtained by dividing the tensile strength in the high-pressure hydrogen gas by the tensile strength in the atmosphere or the inert gas is referred to as "relative tensile strength”.
  • the value obtained by dividing the elongation at break in high-pressure hydrogen gas by the elongation at break in air or an inert gas is called “relative elongation”.
  • the Cr-based stainless steel sheet of this embodiment preferably has a relative tensile strength of 0.98 or more and a relative elongation of 0.75 or more. More preferable ranges are a relative tensile strength of 0.98 to 1.05 and a relative elongation of 0.85 to 1.05.
  • the low temperature brittleness shall be evaluated by the Charpy impact test according to JIS Z 2242, and the absorbed energy shall be measured using, for example, a 2 mm thick test piece with a V notch.
  • the low temperature brittleness resistance is evaluated by the energy transition temperature according to JIS D, and the lower the energy transition temperature, the better.
  • the energy transition temperature is a temperature corresponding to 1/2 of the absorbed energy at the temperature at which the fracture surface ratio due to ductile fracture is 100%.
  • the Cr-based stainless steel sheet of the present embodiment preferably has an energy transition temperature of ⁇ 10° C. or lower in consideration of the use in outdoor or on-vehicle hydrogen equipment. More preferably, it is -40°C or lower in consideration of use in cold regions.
  • the steel having the above-described chemical composition it is annealed after hot rolling at 900° C. or less, then cold rolling at a reduction rate of 40% or more, and finish annealing at a temperature of more than 900° C. ..
  • the heat treatment after hot rolling is 900° C. or lower, more preferably 700 to 900° C., in order to suppress the growth of ⁇ 211 ⁇ oriented grains generated in the hot rolling stage.
  • Cold rolling may be carried out by a reversible 20-high Sendzimir rolling machine, a 6-high rolling mill or a 12-high rolling mill, or a tandem rolling mill that continuously rolls multiple passes.
  • the work roll diameter is preferably large. Therefore, the work roll diameter is preferably 200 mm or more.
  • Such large-diameter roll rolling is preferably carried out at the time of primary cold rolling (initial cold rolling when cold rolling is repeated a plurality of times). As a result, the ⁇ 111 ⁇ oriented grains that are recrystallized textures develop and the area ratio of the ⁇ 211 ⁇ 10° oriented grains that are the rolling textures is reduced, which is effective in forming the target texture of the present invention. Is.
  • Cold rolling is preferably carried out at a reduction rate of 40% or more. If the cold rolling ratio is less than 40%, the area ratio and size of the ⁇ 211 ⁇ 10° oriented grains in the recrystallized texture tend to increase, and the hydrogen embrittlement resistance may decrease. From the viewpoint of hydrogen embrittlement resistance and manufacturability, the preferable range of the rolling reduction is 40 to 90%, and the more preferable range is 50 to 80%.
  • finish annealing after cold rolling it is preferable to perform heat treatment at over 900°C in order to develop ⁇ 111 ⁇ oriented grains and reduce the area ratio and size of ⁇ 211 ⁇ oriented grains. Since the excessive temperature rise increases the size of ⁇ 211 ⁇ 10° oriented grains due to the grain growth, the upper limit of the finish annealing temperature is preferably 1050°C. Further, the atmosphere at the time of finish annealing is not particularly specified, but the atmosphere, the LNG fuel atmosphere, and the BA atmosphere are preferable.
  • the soaking time for heat treatment is preferably 10 seconds to 10 minutes.
  • a soaking time of 10 seconds or more is preferable because the material for cold rolling can be softened. Further, if the soaking time is 10 minutes or less, the growth of ⁇ 211 ⁇ 10° oriented grains can be suppressed, the size of the crystal grains can be suppressed small, and a texture effective for hydrogen embrittlement resistance can be secured. ..
  • the hot rolled steel sheet was annealed after hot rolling in the range of 700 to 900° C., pickled and then cold rolled in the range of sheet thickness of 1.5 to 2.5 mm to obtain a cold rolled steel sheet.
  • Cold rolling conditions are shown in Table 2.
  • Cold rolling was carried out on a Sendzimir rolling machine and a tandem rolling machine with different work roll diameters. The former is a small diameter roll (60 mm) (indicated as “S” in Table 2) and the latter is a large diameter roll (200 mm) (in Table 2). "L” is used).
  • the cold rolled steel sheet was subjected to finish annealing at 920 to 1020° C. and pickling to produce a Cr-based stainless steel sheet.
  • the organization was analyzed using EBSD.
  • the crystal orientation group contributing to the hydrogen embrittlement resistance was numerically displayed by displaying a crystal orientation map divided into ⁇ 211 ⁇ 10° oriented grains and other regions on the plate surface. That is, EBSD was measured at a magnification of 100 in a measurement region of 850 ⁇ m in the width direction and 2250 ⁇ m in the rolling direction on a plane parallel to the steel plate surface within a range of t/8 of the thickness t of the steel plate from the steel plate surface, and parallel to the steel plate surface.
  • a crystal orientation map of crystal grains that is, ⁇ 211 ⁇ 10° orientation grains in which the angle difference between the normal direction of the plane and the ⁇ 211 ⁇ plane orientation is within 10° is displayed, and the grain boundaries are also displayed.
  • the area ratio of the crystal grains and the average particle diameter were measured.
  • the notation in the “size” column of ⁇ 211 ⁇ 10° oriented grains in Table 2 means “rolling direction/plate width direction”. Further, for some of the comparative examples, the measurement results at the plate thickness center (t/2) are also shown for reference. The site where the crystal orientation differs by 15° or more was defined as a crystal grain boundary.
  • the obtained Cr-based stainless steel sheet was evaluated for hydrogen embrittlement and low temperature embrittlement.
  • a commercially available 2 mm thick SUS316L steel plate (17.5%Cr-12%Ni-2%Mo) and SUS316 steel plate (17.5%Cr-10%Ni-2%Mo) were used for evaluation. I was there.
  • the hydrogen embrittlement was evaluated by the following procedure.
  • a tensile test piece having a width of 4 mm and a length of 20 mm in the parallel portion was prepared, and immediately before the tensile test in high-pressure hydrogen gas, the surface was polished with dry type #600 emery paper and then degreased and washed with an organic solvent.
  • the tensile test in high-pressure hydrogen gas was carried out at a hydrogen gas pressure of 20 MPa or 45 MPa, a test temperature of ⁇ 40° C., and a strain rate of 10 ⁇ 5 /s, as shown in Table 1.
  • the comparative tensile test was carried out in 0.1 MPa nitrogen at -40°C.
  • the tensile strength in high-pressure hydrogen gas is divided by the tensile strength in 0.1 MPa nitrogen to obtain the relative tensile strength
  • the breaking elongation in high-pressure hydrogen gas is divided by the breaking elongation in 0.1 MPa nitrogen to obtain the relative elongation.
  • the hydrogen embrittlement resistance was evaluated using relative tensile strength and relative elongation as evaluation indexes. The evaluation criteria are as follows. A and B were passed. A: The relative tensile strength is 0.98 or more and the relative elongation is 0.85 or more. B: Other than the above, the relative tensile strength is 0.98 or more and the relative elongation is 0.75 or more.
  • X Either or both of the relative tensile strength of less than 0.98 and the relative elongation of less than 0.75.
  • the hydrogen gas pressure is 45 MPa and the test temperature is ⁇ 40° C.
  • the relative elongation of the SUS316L steel sheet is less than 0.75
  • the evaluation is X.
  • the hydrogen gas pressure is 20 MPa and the test temperature is ⁇ 40° C.
  • the relative elongation of the SUS316 steel sheet is less than 0.75, and the evaluation is X.
  • the evaluation of the low temperature brittleness was performed by the Charpy impact test according to JIS Z2242.
  • the test piece had a V-notch shape of 1.5 to 2.5 mm thickness ⁇ 10 mm width ⁇ 55 mm length, and the test temperature was in the range of ⁇ 100° C. to room temperature (20° C.).
  • the low temperature brittleness resistance was used as an evaluation index by obtaining the energy transition temperature from the absorbed energy measured by the Charpy test.
  • the evaluation criteria are as follows. A and B were passed. A: Energy transition temperature of ⁇ 40° C. or lower is satisfied. B: Energy transition temperature of more than ⁇ 40° C. and below ⁇ 10° C. is satisfied. X: Energy transition temperature is higher than ⁇ 10° C.
  • No. Nos. 1 to 11 were all Cr-based stainless steel sheets having the chemical composition and texture within the scope of the present invention, and had good hydrogen embrittlement resistance and low temperature embrittlement resistance.
  • No. 1 with the range of preferable components and textures.
  • 5, 6, 9, and 10 had a hydrogen embrittlement resistance index of "B" or "A” at a hydrogen gas pressure of 45 MPa, and the hydrogen embrittlement resistance was higher than that of SUS316L.
  • No. Nos. 6, 8 and 10 are obtained by reducing the ⁇ 211 ⁇ 10° oriented grains using a large-diameter roll and have the same chemical composition as No. The hydrogen embrittlement resistance was further improved as compared with 5, 7, and 9.
  • No. Nos. 12 to 20 are Cr-based stainless steel sheets that do not have chemical components within the scope of the present invention, cannot form a texture within the scope of the present invention, and either or both of hydrogen embrittlement resistance and low temperature embrittlement resistance are inferior. became.
  • the hydrogen embrittlement resistance of the Cr-based stainless steel sheet was higher than that of SUS316 in the market by having the components and the texture within the scope of the present invention. Further, it has been found that the hydrogen embrittlement resistance surpassing that of SUS316L can be obtained by controlling the texture to have a preferable texture by using a large diameter roll having a preferable component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Provides is a Cr-based stainless steel having excellent hydrogen embrittlement resistance, the Cr-based stainless steel being characterized by comprising one or two kinds of stainless steel having, by mass%: 0.020% or less of C; 1.00% or less of Si; 1.00% or less of Mn; 0.04% or less of P; 0.0030% or less of S; 10.0-18.0% of Cr; 0.0020% or less of N; 0.10% or less of Al; 0.5% or less of Nb; and 0.5% or less of Ti, wherein an aggregate structure on a sheet surface satisfies the following (i) and (ii): (i) on the sheet surface, the area proportion of crystal grains ({211}±10° oriented grains), in which an angle difference between the normal direction of a steel sheet surface and the {211} face orientation is less than 10°, is less than 30%; and (ii) in the {211}±10° orientated grains, both the length in the rolling direction and the length in the sheet width direction are less than 0.15 mm in average.

Description

耐水素脆性に優れたCr系ステンレス鋼板Cr-based stainless steel sheet with excellent hydrogen embrittlement resistance
 本発明は耐水素脆性に優れたCr系ステンレス鋼板に関するものであり、特に、高圧水素ガス用機器の金属材料として好適なCr系ステンレス鋼板に関する。 The present invention relates to a Cr-based stainless steel sheet having excellent hydrogen embrittlement resistance, and particularly to a Cr-based stainless steel sheet suitable as a metal material for high-pressure hydrogen gas equipment.
 近年、地球温暖化が一因となる異常気象から、二酸化炭素を主とする温室効果ガスの発生を抑制することが強く求められている。この一環として、燃料電池を電力源とする自動車や輸送機器の開発が進められている。燃料電池は水素を燃料として電力を発生させるため、二酸化炭素が発生せず、またエネルギー変換効率も高いので、有力な電力源と位置付けられている。 In recent years, it has been strongly demanded to suppress the generation of greenhouse gases, mainly carbon dioxide, due to the abnormal weather that contributes to global warming. As part of this, the development of automobiles and transportation equipment that use fuel cells as a power source is under way. Since the fuel cell uses hydrogen as a fuel to generate electric power, it does not generate carbon dioxide and has a high energy conversion efficiency. Therefore, it is positioned as an effective power source.
 水素を燃料とする燃料電池や、それに水素を供給するための水素ステーションを含む機器においては、構成部品が水素ガス環境に曝される。水素ガス環境に曝される金属材料では、材料内に侵入した水素によって引張強さや伸びあるいは絞りなどの機械的性質が低下する現象が知られている。これら現象は水素脆化と呼ばれている。このような水素脆化の問題から、日本自動車研究所技術標準JARIS001では圧力35MPaの自動車用高圧水素容器に対して、またKHKS0128では圧力70MPaの自動車用高圧水素容器に対して、いずれもオーステナイト系ステンレス鋼SUS316Lとアルミ合金6061-T6の使用を規定している。  In a fuel cell that uses hydrogen as fuel, and in equipment that includes a hydrogen station for supplying hydrogen to it, the components are exposed to a hydrogen gas environment. It is known that, in a metal material exposed to a hydrogen gas environment, mechanical properties such as tensile strength, elongation and drawing are deteriorated by hydrogen that has penetrated into the material. These phenomena are called hydrogen embrittlement. Due to such a problem of hydrogen embrittlement, both austenitic stainless steel is used for the high-pressure hydrogen container for automobiles having a pressure of 35 MPa in the Japan Automotive Research Institute Technical Standard JARIS001 and for a high-pressure hydrogen container for automobiles having a pressure of 70 MPa in KHKS0128. It specifies the use of steel SUS316L and aluminum alloy 6061-T6.
 一般高圧ガス保安規則の例示基準では、圧力20MPa以上、圧力82MPa以下の水素インフラ機器に対して、JIS G 4304およびJIS G 4305に規定するオーステナイト系ステンレス鋼板(SUS316とSUS316L)のNi当量(Ni+0.65Cr+0.98Mo+1.05Mn+0.35Si+12.6C)を高めた材料(例えばNi当量≧28.5)の使用を規定している。使用温度は-45℃以上、250℃以下である。これらオーステナイト系ステンレス鋼において、例えば、特許文献1や特許文献2ではSUS316Lの強度上昇や高価なMoの低下による経済性を改良しようとしたステンレス鋼も開示されている。 According to the example standard of the general high pressure gas safety regulation, the Ni equivalent (Ni+0. It specifies the use of a material (for example, Ni equivalent ≧28.5) in which 65Cr+0.98Mo+1.05Mn+0.35Si+12.6C) is increased. The operating temperature is -45°C or higher and 250°C or lower. Among these austenitic stainless steels, for example, Patent Documents 1 and 2 also disclose stainless steels which are intended to improve the economical efficiency by increasing the strength of SUS316L and lowering expensive Mo.
 前記した一般高圧ガス保安規則では、2016年の改正により圧力20MPa以下の水素機器に対する材料規制が撤廃された。これら規制緩和に伴い、高圧水素ガス中においても経済性の高いステンレス鋼板の使用ニーズが益々高くなっており、多様な鋼材において高圧水素ガス中での耐水素脆性の評価が望まれている。フェライト系およびマルテンサイト系ステンレス鋼板(以下、総称して「Cr系ステンレス鋼板」という。)は、レアメタルであるNiを殆ど含まないことから、オーステナイト系ステンレス鋼板と比べて経済性に優れる。従来、例えば、非特許文献1ではステンレス鋼を含む鉄鋼材料全般を対象として、室温・高圧水素ガス中で評価した水素脆化特性が開示されている。代表的なオーステナイト系ステンレス鋼であるSUS304、及びCr系ステンレス鋼は、水素脆化しやすいことが報告されている。そのため、一般的には圧力20MPa程度の高圧水素ガス中においてもSUS316LやSUS316の使用を推奨している。さらに、体心立方構造を有するCr系ステンレス鋼は面心立方構造のオーステナイト系ステンレス鋼と比べて、室温以下の低温で靭性が低下するという課題(低温脆性)もある。 In the above-mentioned general high pressure gas safety regulation, the regulation of materials for hydrogen equipment with a pressure of 20 MPa or less was abolished by revision in 2016. With the deregulation, there is an increasing demand for the use of highly economical stainless steel sheets even in high-pressure hydrogen gas, and it is desired to evaluate the hydrogen embrittlement resistance of various steel materials in high-pressure hydrogen gas. Ferrite-based and martensitic stainless steel sheets (hereinafter collectively referred to as "Cr-based stainless steel sheets") contain almost no Ni, which is a rare metal, and are therefore more economical than austenitic stainless steel sheets. Conventionally, for example, Non-Patent Document 1 discloses hydrogen embrittlement characteristics evaluated in a high-pressure hydrogen gas at room temperature for all steel materials including stainless steel. It has been reported that SUS304, which is a typical austenitic stainless steel, and Cr-based stainless steel are easily hydrogen embrittled. Therefore, generally, it is recommended to use SUS316L or SUS316 even in a high-pressure hydrogen gas having a pressure of about 20 MPa. Further, the Cr-based stainless steel having a body-centered cubic structure also has a problem (low-temperature brittleness) that the toughness is lowered at a low temperature of room temperature or lower as compared with the austenitic stainless steel having a face-centered cubic structure.
 高圧水素ガス環境で使用できる材料の拡大を目的として、耐水素脆性に優れるAlまたはAl合金で被覆した材料も考案されている。特許文献3には、AlまたはAl合金で被覆した高圧水素ガス用圧力容器と高圧水素ガス用配管が開示されている。実施例では、オーステナイト系ステンレス鋼とオーステナイト相を含む二相ステンレス鋼への皮膜付与を対象としており、水素脆化しやすい鋼材、例えばCr系ステンレス鋼における皮膜形成や水素侵入特性は示されていない。 For the purpose of expanding the materials that can be used in a high-pressure hydrogen gas environment, materials coated with Al or Al alloy that have excellent hydrogen embrittlement resistance have been devised. Patent Document 3 discloses a high-pressure hydrogen gas pressure vessel and a high-pressure hydrogen gas pipe coated with Al or an Al alloy. In the examples, the coating of austenitic stainless steels and duplex stainless steels containing an austenitic phase is targeted, and the film formation and hydrogen penetration characteristics in steel materials that are susceptible to hydrogen embrittlement, such as Cr-based stainless steels, are not shown.
 また、特許文献4には、単体では水素脆化しやすい鋼材に対して、Siの添加量を1~5%としたAl-Si系合金を用いた溶融めっきを施し、これにより耐水素透過皮膜を形成した水素機器用の基材が開示されている。基材の鋼材は炭素鋼、低合金鋼、Cr系ステンレス鋼とし、水素脆化を防止し、併せて製作コストを低く抑えられるとしている。しかしながら、実施例は、SUS304、SUS630(15Cr-4Ni-3Cu)並びにSCM435(低合金鋼)に限定されている。経済性の高いCr系ステンレス鋼板に関しては、その水素脆化特性についてもその使用についても全く言及されていない。 Further, in Patent Document 4, a steel material which is apt to be hydrogen embrittled by itself is subjected to hot dip plating using an Al-Si alloy with an added amount of Si of 1 to 5%, thereby forming a hydrogen permeation resistant film. A formed substrate for a hydrogen appliance is disclosed. The base material is carbon steel, low alloy steel, or Cr-based stainless steel to prevent hydrogen embrittlement and also keep manufacturing costs low. However, the examples are limited to SUS304, SUS630 (15Cr-4Ni-3Cu) and SCM435 (low alloy steel). Regarding highly economical Cr-based stainless steel sheets, there is no mention of their hydrogen embrittlement characteristics or their use.
特開2014-114471号公報JP, 2014-114471, A 特開2016-183412号公報Japanese Patent Laid-Open No. 2016-183412 特開2004-324800号公報JP-A-2004-324800 国際公開WO2015-098981号International publication WO2015-098981
 前記した特許文献1~4に記載されたステンレス鋼はオーステナイト系と二相およびSUS630(析出硬化型)にとどまり、さらに非特許文献1に開示されたCr系ステンレス鋼は水素脆化しやすく高圧水素ガス用途において使用する耐水素脆性を有するものではない。Cr系ステンレス鋼については、低温脆性の課題も有する。 The stainless steels described in Patent Documents 1 to 4 described above remain only in the austenite-type and two-phase and SUS630 (precipitation hardening type), and the Cr-type stainless steel disclosed in Non-Patent Document 1 is easily hydrogen embrittlement and is high-pressure hydrogen gas. It does not have hydrogen embrittlement resistance for use in applications. Cr-based stainless steel also has a problem of low temperature brittleness.
 本発明は上記事情に鑑みてなされたものであり、高圧水素ガス中で使用するための耐水素脆性を備え、高圧水素ガス用機器の金属材料として好適な、耐水素脆性に優れたCr系ステンレス鋼板を提供することを課題とする。併せて、耐低温脆性との両立を実現することを課題とする。 The present invention has been made in view of the above circumstances, has a hydrogen embrittlement resistance for use in high-pressure hydrogen gas, and is suitable as a metal material for high-pressure hydrogen gas equipment, and is excellent in hydrogen embrittlement resistance Cr-based stainless steel. An object is to provide a steel plate. At the same time, it is an object to realize compatibility with low temperature brittleness.
 上記課題を解決するため、本発明は以下の構成を採用する。
[1]質量%で、C:0.020%以下、Si:1.00%以下、Mn:1.00%以下、P:0.040%以下、S:0.0030%以下、Cr:10.0~18.0%、N:0.020%以下、Al:0.10%以下、さらにNb:0.5%以下、Ti:0.5%以下の1種または2種を含み、Sn:0~0.3%、B:0~0.005%、Ni:0~1%、Cu:0~1%、Mo:0~1%、Sb:0.2%以下、V:0~0.5%、W:0~0.5%、Zr:0~0.5%、Co:0~0.5%、Mg:0~0.005%、Ca:0~0.005%、Ga:0~0.020%、La:0~0.1%、Y:0~0.1%、Hf:0~0.1%、REM:0~0.1%、残部がFeおよび不純物からなり、板表面における集合組織が下記の(i)および(ii)を満たすことを特徴とするCr系ステンレス鋼板。
(i)板表面における鋼板表面の法線方向と{211}面方位との角度差が10°以内である結晶粒(以下「{211}±10°方位粒」という。)の面積率が30%未満
(ii)(i)で定義した{211}±10°方位粒において、圧延方向の長さおよび板幅方向の長さがいずれも平均で0.15mm未満
[2]さらに質量%で、Sn:0.001~0.3%、B:0.005%以下を含有し、
下記(1)式を満たすことを特徴とする本発明のCr系ステンレス鋼板。
 Si+0.5Mn+10P+5Nb+2Ti<2.00・・・(1)式
 上記式で元素記号は当該元素の含有量(質量%)を意味する。
[3]さらに質量%で、Ni:1%以下、Cu:1%以下、Mo:1%以下、Sb:0.2%以下、V:0.5%以下、W:0.5%以下、Zr:0.5%以下、Co:0.5%以下、Mg:0.005%以下、Ca:0.005%以下、Ga:0.020%以下、La:0.1%以下、Y:0.1%以下、Hf:0.1%以下、REM:0.1%以下の1種または2種以上を含有することを特徴とする本発明のCr系ステンレス鋼板。
[4]高圧水素ガス用機器の金属材料として用いられることを特徴とする本発明のCr系ステンレス鋼板。
In order to solve the above problems, the present invention adopts the following configurations.
[1]% by mass, C: 0.020% or less, Si: 1.00% or less, Mn: 1.00% or less, P: 0.040% or less, S: 0.0030% or less, Cr: 10 0.0 to 18.0%, N: 0.020% or less, Al: 0.10% or less, Nb: 0.5% or less, Ti: 0.5% or less : 0 to 0.3%, B: 0 to 0.005%, Ni: 0 to 1%, Cu: 0 to 1%, Mo: 0 to 1%, Sb: 0.2% or less, V: 0 to 0.5%, W:0 to 0.5%, Zr:0 to 0.5%, Co:0 to 0.5%, Mg:0 to 0.005%, Ca:0 to 0.005%, Ga: 0 to 0.020%, La: 0 to 0.1%, Y: 0 to 0.1%, Hf: 0 to 0.1%, REM: 0 to 0.1%, the balance being Fe and impurities And a texture on the plate surface satisfying the following (i) and (ii).
(I) The area ratio of crystal grains (hereinafter referred to as “{211}±10° oriented grains”) having an angle difference of 10° or less between the normal direction of the steel plate surface and the {211} plane orientation on the plate surface is 30. % (Ii) In the {211}±10° oriented grains defined by (i), the length in the rolling direction and the length in the strip width direction are both less than 0.15 mm on average [2] and further by mass%. Sn: 0.001 to 0.3%, B: 0.005% or less,
The Cr-based stainless steel sheet according to the present invention, which satisfies the following formula (1).
Si+0.5Mn+10P+5Nb+2Ti<2.00 (1) Formula In the above formula, the element symbol means the content (mass %) of the element.
[3] Further, in mass%, Ni: 1% or less, Cu: 1% or less, Mo: 1% or less, Sb: 0.2% or less, V: 0.5% or less, W: 0.5% or less, Zr: 0.5% or less, Co: 0.5% or less, Mg: 0.005% or less, Ca: 0.005% or less, Ga: 0.020% or less, La: 0.1% or less, Y: Cr type|system|group stainless steel plate of this invention characterized by containing 1 type or 2 types or more of 0.1% or less, Hf:0.1% or less, and REM:0.1% or less.
[4] The Cr-based stainless steel sheet according to the present invention, which is used as a metal material for a high-pressure hydrogen gas device.
 本発明によれば、耐水素脆性に優れるとともに、低温靭性にも優れたCr系ステンレス鋼板を提供できる。また、本発明のCr系ステンレス鋼板は、高圧水素ガス用機器の金属材料として好適に用いることができる。 According to the present invention, a Cr-based stainless steel sheet having excellent hydrogen embrittlement resistance and low temperature toughness can be provided. In addition, the Cr-based stainless steel sheet of the present invention can be suitably used as a metal material for high-pressure hydrogen gas equipment.
 本発明者らは、前記した課題を解決するために、Cr系ステンレス鋼板において、耐水素脆性及び耐低温脆性に及ぼす合金元素と集合組織の影響について鋭意検討を行い,下記の新しい知見を得て本発明をなすに至った。 In order to solve the above-mentioned problems, the present inventors have earnestly studied the effects of alloying elements and texture on hydrogen embrittlement resistance and low temperature embrittlement resistance in Cr-based stainless steel sheets, and have obtained the following new findings. The present invention has been completed.
 (a)上述のように、高圧水素ガス用機器の金属材料に求められる特性には、耐水素脆性及び耐低温脆性がある。Cr系ステンレス鋼板は、オーステナイト系ステンレス鋼板に比べて高圧水素ガス中から鋼材へ侵入する水素量が結晶構造に由来して低減するものの、高圧水素ガス用途に好適な耐水素脆性を有するものは得られていない。非特許文献2によれば、水素脆化は塑性変形の関与する機械的性質(強度、伸び、絞り)の低下として特徴づけられる。従って、水素脆化は、高圧水素ガス中から鋼材へ侵入した水素と塑性変形との相互作用により材料の破壊が進行する事象である。近年の研究成果から、水素脆化のメカニズムは水素と塑性変形との相互作用により鋼中において空孔性格子欠陥の生成を助長して破壊が進行する、水素助長歪誘起空孔理論が有力視されている[非特許文献2]。従って、高圧水素ガス用として好適なCr系ステンレス鋼板を実現するためには、水素と塑性変形との相互作用を可能な限り低減させる必要がある。特にCrは水素のトラップ能力が大きいために、本発明ではCr量については18%以下に抑制する。さらに本発明者らは、Si、Mn、P、Ti、Nbの添加量を所定の範囲に制御することが好ましいことを知見した。
 (b)さらに本発明者らは、高圧水素ガス中で低歪速度引張試験をした場合、水素と塑性変形との相互作用による割れの発生に対して結晶方位の影響があることを突きとめた。水素脆化が顕在化する場合、割れは結晶粒内から発生・進展する頻度が高くなる。結晶粒内の割れは、再結晶集合組織である{111}方位粒({111}面方位が鋼板表面の法線方向を向いた結晶粒)でなく、圧延集合組織である{211}方位粒({211}面方位が鋼板表面の法線方向を向いた結晶粒)で発生する場合が多いことが分かった。これらの事実より、{211}方位粒は水素と塑性変形との相互作用により歪が導入・蓄積しやすいものと推定される。そして、{211}方位粒において、前記した空孔性格子欠陥の生成が活発化することで、割れの発生サイトとして作用したものと推察している。このようなメカニズムで進行する水素脆化を抑制するためには、前記した合金元素の範囲を調整することに加えて、{211}方位粒の面積率とサイズを低下させることが効果的であり、そのしきい値を見出すに至った。
 (c)また、高圧水素ガス中から鋼材へ侵入した水素は、結晶粒界を主要な拡散経路として移動する。粒界偏析元素であるSn及びBの微量添加は、水素の結晶粒界における拡散障壁となって水素と塑性変形との相互作用を低減させる。従来のCr系ステンレス鋼では、結晶粒界にPやSの不純物元素が偏析して低温脆性を助長しやすい。そこで本発明者らはSnとBの微量添加に着目し、これら元素を所定の範囲で含有させることにより、PやS等の悪影響を抑制して耐水素脆性と耐低温脆性の両立が見込まれることを見出した。
(A) As described above, the properties required for the metal material of the high-pressure hydrogen gas device include hydrogen embrittlement resistance and low temperature embrittlement resistance. Cr-based stainless steel sheets reduce the amount of hydrogen penetrating into steel materials from high-pressure hydrogen gas due to the crystal structure, as compared with austenitic stainless steel sheets, but those having hydrogen embrittlement resistance suitable for high-pressure hydrogen gas applications can be obtained. Has not been done. According to Non-Patent Document 2, hydrogen embrittlement is characterized as a decrease in mechanical properties (strength, elongation, drawing) involved in plastic deformation. Therefore, hydrogen embrittlement is an event in which the destruction of a material progresses due to the interaction between hydrogen that has penetrated into the steel material from high-pressure hydrogen gas and plastic deformation. From the recent research results, the mechanism of hydrogen embrittlement is considered to be due to the hydrogen-assisted strain-induced vacancy theory, which promotes the formation of vacancy lattice defects in steel by the interaction between hydrogen and plastic deformation and promotes fracture. [Non-Patent Document 2]. Therefore, in order to realize a Cr-based stainless steel sheet suitable for high-pressure hydrogen gas, it is necessary to reduce the interaction between hydrogen and plastic deformation as much as possible. In particular, since Cr has a large hydrogen trapping ability, the Cr content is suppressed to 18% or less in the present invention. Furthermore, the present inventors have found that it is preferable to control the added amounts of Si, Mn, P, Ti, and Nb within a predetermined range.
(B) Furthermore, the present inventors have found that when a low strain rate tensile test is performed in high-pressure hydrogen gas, the crystal orientation has an influence on the occurrence of cracks due to the interaction between hydrogen and plastic deformation. .. When hydrogen embrittlement becomes apparent, cracks frequently occur and propagate from within crystal grains. The cracks in the crystal grains are not the recrystallized texture {111} oriented grains (the crystal grains whose {111} plane orientation is in the normal direction of the steel plate surface), but the rolling texture {211} oriented grains. It has been found that it often occurs in (crystal grains whose {211} plane orientation is in the direction normal to the surface of the steel sheet). From these facts, it is presumed that the {211} oriented grains are likely to introduce and accumulate strain due to the interaction between hydrogen and plastic deformation. It is speculated that, in the {211}-oriented grains, the generation of the above-mentioned vacancy lattice defects was activated, and thus it acted as a crack generation site. In order to suppress hydrogen embrittlement that proceeds by such a mechanism, it is effective to reduce the area ratio and size of {211} oriented grains in addition to adjusting the range of the alloying element described above. , Came to find that threshold.
(C) Further, the hydrogen that has entered the steel material from the high-pressure hydrogen gas moves through the crystal grain boundaries as the main diffusion path. The addition of a small amount of grain boundary segregation elements, Sn and B, serves as a diffusion barrier at the crystal grain boundaries of hydrogen and reduces the interaction between hydrogen and plastic deformation. In the conventional Cr-based stainless steel, impurity elements such as P and S are segregated at the grain boundaries, which facilitates low temperature brittleness. Therefore, the inventors of the present invention pay attention to a small amount of addition of Sn and B, and by containing these elements in a predetermined range, it is expected that the adverse effects of P, S, etc. are suppressed and hydrogen embrittlement resistance and low temperature embrittlement resistance are compatible. I found that.
 上記(a)~(c)の知見に基づいて成された本発明の要旨は、以下の通りである。
 本実施形態のCr系ステンレス鋼板は、質量%で、C:0.020%以下、Si:1.00%以下、Mn:1.00%以下、P:0.040%以下、S:0.0030%以下、Cr:10.0~18.0%、N:0.020%以下、Al:0.10%以下、さらにNb:0.5%以下、Ti:0.5%以下の1種または2種を含み、残部がFeおよび不純物からなり、板表面における集合組織が下記(i)および(ii)を満たすことを特徴とする耐水素脆性と耐低温脆性に優れたCr系ステンレス鋼板である。
(i)板表面における鋼板表面の法線方向と{211}面方位との角度差が10°以内である結晶粒({211}±10°方位粒)の面積率が30%未満
(ii)(i)で定義した{211}±10°方位粒において、圧延方向の長さおよび板幅方向の長さがいずれも平均で0.15mm未満
 また、本実施形態のCr系ステンレス鋼板は、さらに質量%で、Sn:0.001~0.3%、B:0.005%以下を含有し、下記(1)式を満たすことが好ましい。
 Si+0.5Mn+10P+5Nb+2Ti<2.00・・・(1)式
 上記式で元素記号は当該元素の含有量(質量%)を意味する。
 また、本実施形態のCr系ステンレス鋼板は、さらに質量%で、Ni:1%以下、Cu:1%以下、Mo:1%以下、Sb:0.2%以下、V:0.5%以下、W:0.5%以下、Zr:0.5%以下、Co:0.5%以下、Mg:0.005%以下、Ca:0.005%以下、Ga:0.020%以下、La:0.1%以下、Y:0.1%以下、Hf:0.1%以下、REM:0.1%以下の1種または2種以上を含有してもよい。
 また、本実施形態のCr系ステンレス鋼板は、高圧水素ガス用機器の金属材料として用いられることが好ましい。
The gist of the present invention made based on the above findings (a) to (c) is as follows.
The Cr-based stainless steel sheet of the present embodiment is, in mass %, C: 0.020% or less, Si: 1.00% or less, Mn: 1.00% or less, P: 0.040% or less, S: 0.0. 0030% or less, Cr: 10.0 to 18.0%, N: 0.020% or less, Al: 0.10% or less, Nb: 0.5% or less, Ti: 0.5% or less Alternatively, a Cr-based stainless steel sheet excellent in hydrogen embrittlement resistance and low temperature embrittlement resistance, characterized in that it contains two kinds, the balance consisting of Fe and impurities, and the texture on the plate surface satisfies the following (i) and (ii): is there.
(I) The area ratio of crystal grains ({211}±10° oriented grains) in which the angle difference between the normal direction of the steel sheet surface and the {211} plane orientation on the plate surface is within 10° is less than 30% (ii) In the {211}±10° oriented grains defined in (i), the length in the rolling direction and the length in the strip width direction are both less than 0.15 mm on average. It is preferable that the content of Sn is 0.001 to 0.3% and the content of B is 0.005% or less, and the following formula (1) is satisfied.
Si+0.5Mn+10P+5Nb+2Ti<2.00 (1) Formula In the above formula, the element symbol means the content (mass %) of the element.
Further, the Cr-based stainless steel sheet of the present embodiment is further mass %, Ni: 1% or less, Cu: 1% or less, Mo: 1% or less, Sb: 0.2% or less, V: 0.5% or less. , W: 0.5% or less, Zr: 0.5% or less, Co: 0.5% or less, Mg: 0.005% or less, Ca: 0.005% or less, Ga: 0.020% or less, La : 0.1% or less, Y: 0.1% or less, Hf: 0.1% or less, REM: 0.1% or less, or two or more thereof may be contained.
In addition, the Cr-based stainless steel sheet of the present embodiment is preferably used as a metal material for high-pressure hydrogen gas equipment.
 以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。 Below, each requirement of the present invention will be explained in detail. The “%” display of the content of each element means “mass %”.
 C:0.020%以下
 Cは、固溶および炭化物の析出により鋼の加工硬化を上昇させて耐水素脆性を劣化させ、更には靱性を低下させて耐低温脆性を悪化させるため、その含有量は少ないほどよく、上限を0.020%以下とする。ただし、C量を低減させるには精錬工程が煩雑になりコストが増大する。よってC量は0.001%以上とすることが好ましい。精錬コストも考慮した好ましい範囲は0.003~0.015%であり、更に好ましい範囲は0.003~0.010%である。
C: 0.020% or less C increases the work hardening of steel due to solid solution and precipitation of carbides to deteriorate hydrogen embrittlement resistance, and further lowers toughness to deteriorate low temperature embrittlement resistance. Is as small as possible, and the upper limit is made 0.020% or less. However, in order to reduce the amount of C, the refining process becomes complicated and the cost increases. Therefore, the C content is preferably 0.001% or more. Considering the refining cost, the preferable range is 0.003 to 0.015%, and the more preferable range is 0.003 to 0.010%.
 Si:1.00%以下
 Siは、脱酸元素として有効である一方、過剰に含有させると固溶強化と加工硬化を上昇させて耐水素脆性ならびに耐低温脆性の低下を招くため、上限を1.00%以下とする。脱酸能力を確保するために下限を0.01%以上とすることが好ましい。好ましい範囲は、製造性と特性を考慮して0.05~0.50%であり、0.05~0.30%であってもよい。
Si: 1.00% or less Si is effective as a deoxidizing element, but when contained in excess, it causes solid solution strengthening and work hardening to increase, leading to a reduction in hydrogen embrittlement resistance and low temperature embrittlement resistance. It should be 0.000% or less. The lower limit is preferably 0.01% or more in order to secure deoxidizing ability. The preferable range is 0.05 to 0.50% in view of manufacturability and characteristics, and may be 0.05 to 0.30%.
 Mn:1.00%以下
 Mnは、脱酸元素として有効であり、また、Sを固定して靭性を改善して耐低温脆性を得るために有効な元素でもある。一方、Mnは過剰に含有させると加工硬化を上昇させて耐水素脆性と耐低温靭性の低下を招くため、上限を1.00%以下とする。脱酸やS固定の作用を確保するため、下限は0.01%以上とすることが好ましい。好ましい範囲は、効果と製造性を考慮して0.05~0.50%であり、0.05~0.30%であってもよい。
Mn: 1.00% or less Mn is an element effective as a deoxidizing element, and is also an element effective for fixing S to improve toughness and to obtain low temperature brittleness resistance. On the other hand, if Mn is excessively contained, work hardening is increased and hydrogen embrittlement resistance and low temperature toughness are lowered, so the upper limit is made 1.00% or less. In order to secure the effects of deoxidation and S fixing, the lower limit is preferably 0.01% or more. Considering the effect and manufacturability, the preferable range is 0.05 to 0.50%, and may be 0.05 to 0.30%.
 P:0.040%以下
 Pは、粒界偏析して耐低温脆性を低下させる元素であり、その含有量は少ないほどよいため、上限を0.040%以下とする。但し、過度の低減は精錬コストの増加に繋がるため、下限を0.005%以上とすることが好ましい。より好ましい範囲は、製造コストと特性を考慮して0.010~0.030%であり、0.010~0.020%であってもよい。
P: 0.040% or less P is an element that segregates at grain boundaries to reduce low temperature embrittlement resistance, and the lower the content, the better. Therefore, the upper limit is 0.040%. However, excessive reduction leads to an increase in refining cost, so the lower limit is preferably made 0.005% or more. A more preferable range is 0.010 to 0.030%, and may be 0.010 to 0.020% in consideration of manufacturing cost and characteristics.
 S:0.0030%以下
 Sは、粒界偏析や鋼中に硫化物を形成して耐低温脆性を劣化させるため、その含有量は少ないほどよく、上限を0.0030%以下とする。但し、過度の低減は原料及び精錬コストの増加に繋がるため、下限を0.0001%以上とすることが好ましい。より好ましい範囲は、製造コストと特性を考慮して0.0002~0.0015%であり、0.0002~0.0008%であってもよい。
S: 0.0030% or less Since S forms grain boundary segregation and sulfides in steel to deteriorate low temperature embrittlement resistance, the smaller the content, the better. The upper limit is 0.0030%. However, excessive reduction leads to an increase in raw materials and refining costs, so the lower limit is preferably made 0.0001% or more. A more preferable range is 0.0002 to 0.0015%, and may be 0.0002 to 0.0008% in consideration of manufacturing cost and characteristics.
 Cr:10.0~18.0%
 Crは、本実施形態のCr系ステンレス鋼の基本元素であり、鋼の耐食性に加えて耐水素脆性および耐低温脆性を保持するために必須の元素である。本実施形態の高圧水素ガス用途を想定した前記特性を得るために下限を10.0%以上とする。上限は、耐水素脆性と耐低温脆性を両立する観点から18.0%以下とする。水素のトラップ能力が高いCrが18.0%を超えると高圧水素ガス環境から鋼中に侵入する水素量が増加して耐水素脆性が劣化するとともに、集合組織が本発明好適範囲から外れることがある。より好ましいCrの範囲は、11.0~17.0%未満としてもよく、12.0~15.0%でもよい。
Cr: 10.0-18.0%
Cr is a basic element of the Cr-based stainless steel of the present embodiment, and is an essential element for maintaining hydrogen embrittlement resistance and low temperature embrittlement resistance in addition to the corrosion resistance of the steel. The lower limit is made 10.0% or more in order to obtain the above-mentioned characteristics for use in high-pressure hydrogen gas of this embodiment. The upper limit is 18.0% or less from the viewpoint of achieving both hydrogen embrittlement resistance and low temperature embrittlement resistance. When Cr, which has a high hydrogen trapping capacity, exceeds 18.0%, the amount of hydrogen penetrating into the steel from the high-pressure hydrogen gas environment increases, the hydrogen embrittlement resistance deteriorates, and the texture deviates from the preferred range of the present invention. is there. A more preferable range of Cr may be 11.0 to less than 17.0%, or 12.0 to 15.0%.
 N:0.020%以下
 Nは、Cと同様に、固溶および炭化物の析出により鋼の加工硬化を上昇させて耐水素脆性を劣化させ、更には靱性を低下させて耐低温脆性を悪化させるため、その含有量は少ないほどよく上限を0.020%以下とする。ただし、N量を低減させるには精錬工程が煩雑になりコストが増大する。よってN量は0.001%以上とすることが好ましい。好ましい範囲は、特性と製造コストを考慮して0.005~0.015%である。
N: 0.020% or less N, like C, increases work hardening of steel due to solid solution and precipitation of carbides to deteriorate hydrogen embrittlement resistance, and further reduces toughness to deteriorate low temperature embrittlement resistance. Therefore, the smaller the content, the better, and the upper limit is made 0.020% or less. However, in order to reduce the amount of N, the refining process becomes complicated and the cost increases. Therefore, the N content is preferably 0.001% or more. A preferable range is 0.005 to 0.015% in consideration of characteristics and manufacturing cost.
 Al:0.10%以下
 Alは、脱酸元素として極めて有効な元素である。一方、鋼の靭性を低下させて耐低温脆性を劣化させるとともに、集合組織が本発明好適範囲から外れることがあるため、上限を0.10%以下とする。下限は、脱酸効果を考慮して0.005%以上とすることが好ましい。好ましい範囲は、特性と製造性を考慮して0.01~0.07%であり、0.01~0.05%であってもよい。
Al: 0.10% or less Al is an extremely effective element as a deoxidizing element. On the other hand, since the toughness of steel is deteriorated to deteriorate the low temperature brittleness resistance and the texture may deviate from the preferred range of the present invention, the upper limit is set to 0.10% or less. The lower limit is preferably 0.005% or more in consideration of the deoxidizing effect. Considering the characteristics and manufacturability, the preferable range is 0.01 to 0.07%, and may be 0.01 to 0.05%.
 Nb:0.5%以下、Ti:0.5%以下の1種または2種
 Nb、Tiは、粒界に偏析することでPやSの粒界偏析を抑制して耐低温脆性の改善を図る作用がある。また、Nb、Tiには、C,N,P,Sを固定する安定化元素としての作用により鋼の加工硬化を抑制して耐水素脆性の改善も見込める。Nb,Tiとも、これら2つの作用を発揮するため、本発明の目標とする耐水素脆性と耐低温脆性の改善に有効な元素となる。含有する場合は、それぞれその効果が発現する0.01%以上とすることが好ましい。但し、過度な含有は加工硬化を高めて耐水素脆性の低下や合金コストの上昇に繋がり、さらに、靱性が低下して耐低温脆性が劣化するとともに、集合組織が本発明好適範囲から外れることがあるため、上限をそれぞれ0.5%以下とする。好ましい範囲は、前記特性の向上効果と合金コストを考慮して、Nb、Tiの1種または2種の合計について0.05~0.5%とする。より好ましい範囲は1種または2種の合計について0.08~0.4%であり、0.1~0.3%であってもよい。
Nb: 0.5% or less, Ti: 0.5% or less 1 type or 2 types Nb and Ti segregate at grain boundaries to suppress grain boundary segregation of P and S and improve low temperature brittleness resistance. There is an action to try. In addition, Nb and Ti can be expected to improve hydrogen embrittlement resistance by suppressing work hardening of steel due to the action as a stabilizing element that fixes C, N, P, and S. Both Nb and Ti exhibit these two effects, and are effective elements for improving the hydrogen embrittlement resistance and the low temperature embrittlement resistance, which are the goals of the present invention. When it is contained, the content is preferably 0.01% or more so that the respective effects are exhibited. However, excessive content increases work hardening and leads to a decrease in hydrogen embrittlement resistance and an increase in alloy cost, and further, toughness decreases and low temperature embrittlement resistance deteriorates, and the texture may deviate from the preferred range of the present invention. Therefore, the upper limits are set to 0.5% or less, respectively. The preferable range is 0.05 to 0.5% with respect to the total of one or two of Nb and Ti in consideration of the effect of improving the characteristics and alloy cost. A more preferable range is 0.08 to 0.4% for one kind or the sum of two kinds, and it may be 0.1 to 0.3%.
 さらに好ましくは、SnとBを下記含有量範囲で含有する。
 Sn:0.001~0.3%
 Snは、本発明の目標とする耐水素脆性と耐低温脆性を向上させるために有効な元素である。粒界偏析元素であるSnは、水素の結晶粒界における拡散障壁となって水素と塑性変形との相互作用を低減させる。また、結晶粒界においてPやSの偏析を抑制して耐低温脆性の悪影響も緩和する。Snを所定の範囲で含有させることにより、耐水素脆性と耐低温脆性の両立が見込まれるので、本発明では0.001~0.5%の範囲で含有させることが好ましい。Snを0.001%以上含有させることで、前記の効果が発現されて耐水素脆性が向上する。但し、過度な含有は、結晶粒界におけるSn濃度を増大させて耐低温脆性や製造性の低下を招くため、上限を0.5%以下とする。好ましくは0.005~0.3%であり、0.010~0.2%でもよい。
More preferably, Sn and B are contained in the following content ranges.
Sn: 0.001-0.3%
Sn is an element effective for improving the hydrogen embrittlement resistance and the low temperature embrittlement resistance which are the targets of the present invention. Sn, which is a grain boundary segregation element, serves as a diffusion barrier at hydrogen crystal grain boundaries and reduces the interaction between hydrogen and plastic deformation. It also suppresses the segregation of P and S at the crystal grain boundaries and alleviates the adverse effects of low temperature embrittlement resistance. By incorporating Sn in a predetermined range, both hydrogen embrittlement resistance and low temperature embrittlement resistance are expected to be compatible. Therefore, in the present invention, it is preferable to contain Sn in the range of 0.001 to 0.5%. When Sn is contained in an amount of 0.001% or more, the above effect is exhibited and hydrogen embrittlement resistance is improved. However, an excessive content increases the Sn concentration at the crystal grain boundary, and causes low-temperature brittleness and manufacturability to decrease, so the upper limit is made 0.5% or less. It is preferably 0.005 to 0.3%, and may be 0.010 to 0.2%.
 B:0.005%以下
 Bは、粒界偏析元素であり、Snと同様に耐水素脆性と耐低温脆性を向上させる元素であり、本実施形態のCr系ステンレス鋼に含有させることは有効である。本発明では、耐水素脆化特性の向上を図るため0.0003%以上とすることが好ましい。しかし、過度のBの含有は、伸びや製造性の低下を招くため、上限を0.005%以下とする。好ましくは0.0005~0.002%とし、0.001~0.002%でもよい。
B: 0.005% or less B is a grain boundary segregation element and is an element that improves hydrogen embrittlement resistance and low temperature embrittlement resistance like Sn, and it is effective to contain Cr in the Cr-based stainless steel of the present embodiment. is there. In the present invention, in order to improve the hydrogen embrittlement resistance, the content is preferably 0.0003% or more. However, excessive B content causes elongation and a decrease in manufacturability, so the upper limit is made 0.005% or less. It is preferably 0.0005 to 0.002%, and may be 0.001 to 0.002%.
 Si、Mn、P、Nb、Tiは、それぞれ前記した含有量の範囲とするとともに、本発明の目標とする耐水素脆性と耐低温脆性を向上させるために、さらに以下の式(1)を満たすことが好ましい。
 Si+0.5Mn+10P+5Nb+2Ti<2.00・・・式(1)
 上記式で元素記号は当該元素の含有量(質量%)を意味する。
 本発明の目標とする前記特性を向上させるために、式(1)は2.00未満とし、下限は特性と製造性の観点から0.05とすることが好ましい。好ましい範囲は0.35~1.80、より好ましい範囲は0.50~1.50である。
Si, Mn, P, Nb, and Ti each satisfy the following formula (1) in order to improve the hydrogen embrittlement resistance and the low temperature embrittlement resistance, which are the targets of the present invention, in addition to the content ranges described above. It is preferable.
Si+0.5Mn+10P+5Nb+2Ti<2.00... Formula (1)
In the above formula, the element symbol means the content (mass %) of the element.
In order to improve the above-mentioned properties which are the targets of the present invention, it is preferable that the formula (1) is less than 2.00, and the lower limit is 0.05 from the viewpoint of properties and manufacturability. A preferred range is 0.35 to 1.80, and a more preferred range is 0.50 to 1.50.
 上記した元素以外は、Feおよび不純物からなる。但し、本発明の技術特徴が奏する効果を阻害しない範囲で、上記以外の以下に記載する元素を、選択的に含有させることができる。以下に限定理由を記載する。これらの元素の下限は0%である。 Other than the above elements, it consists of Fe and impurities. However, the elements described below other than the above can be selectively contained within a range that does not impair the effects exhibited by the technical features of the present invention. The reasons for limitation are described below. The lower limit of these elements is 0%.
 Ni:1%以下
 Cu:1%以下
 Mo:1%以下
 Ni、Cu、Moは耐食性ならびにNiとCuは耐低温靭性の改善にも有効な元素である。この効果を発揮させるため、Ni、Cu、Moはそれぞれ、0.05%以上の範囲で含有させてもよい。過度の含有は、ステンレス鋼の固溶強化と加工硬化を上昇させて耐水素脆性の低下を招くため、それぞれ上限は1%以下とする。より好ましい範囲はそれぞれ、0.1%以上0.8%以下であり、更に好ましくは0.2%以上0.5%以下である。
Ni: 1% or less Cu: 1% or less Mo: 1% or less Ni, Cu and Mo are effective elements for improving corrosion resistance and Ni and Cu for improving low temperature toughness. In order to exert this effect, each of Ni, Cu, and Mo may be contained in the range of 0.05% or more. Excessive content increases the solid solution strengthening and work hardening of stainless steel, leading to a decrease in hydrogen embrittlement resistance, so the upper limit is made 1% or less. A more preferable range is 0.1% or more and 0.8% or less, and a still more preferable range is 0.2% or more and 0.5% or less.
 Sb:0.2%以下
 V:0.5%以下
 W:0.5%以下
 Zr:0.5%以下
 Co:0.5%以下
 Sb、V、W、Zr、Coは、耐食性の改善とP、Sの粒界偏析を抑制して耐低温脆性の向上に有効な元素であり、必要に応じて含有させる。特にSbは強力な粒界偏析元素であり、SnやBと同様に、P、Sなど不純物元素の粒界偏析を排除する作用を持つ。これらの元素を含有させる場合は、それぞれその効果が発現する0.01%以上とすることが好ましい。過度な含有は製造性や耐低温脆性の低下に繋がるため、Sbを0.2%以下、V、W、Zr、Coをそれぞれ0.5%以下とする。より好ましいSbの範囲は、0.02~0.15%、更に好ましくは0.02~0.1%以下である。V、W、Zr、Coのより好ましい範囲は0.02~0.3%、更に好ましい範囲は0.02~0.2%である。
Sb: 0.2% or less V: 0.5% or less W: 0.5% or less Zr: 0.5% or less Co: 0.5% or less Sb, V, W, Zr, and Co improve corrosion resistance. It is an element effective in suppressing the grain boundary segregation of P and S and improving the low temperature embrittlement resistance, and is contained if necessary. In particular, Sb is a strong grain boundary segregation element and, like Sn and B, has a function of eliminating grain boundary segregation of impurity elements such as P and S. When these elements are contained, the content is preferably 0.01% or more so that the respective effects are exhibited. Excessive content leads to a reduction in manufacturability and low temperature brittleness, so Sb is made 0.2% or less, and V, W, Zr, and Co are made 0.5% or less, respectively. The more preferable range of Sb is 0.02 to 0.15%, and further preferably 0.02 to 0.1% or less. A more preferable range of V, W, Zr, and Co is 0.02 to 0.3%, and a further preferable range is 0.02 to 0.2%.
 Mg:0.005%以下
 Mgは、溶鋼中でAlとともにMg酸化物を形成し脱酸剤として作用する他、TiNの晶出核として作用する。TiNは凝固過程においてフェライト相の凝固核となり、TiNの晶出を促進させることで、凝固時にフェライト相を微細生成させることができる。凝固組織を微細化させることにより、耐低温脆性を向上させることもできる。含有させる場合は、これら効果を発現する0.0001%以上とすることが好ましい。但し、Mgが0.005%を超えると製造性や耐食性が劣化するため、上限を0.005%以下とする。好ましくは0.0003~0.002%とし、更に好ましくは0.0003~0.001%する。
Mg: 0.005% or less Mg forms Mg oxide together with Al in molten steel and acts as a deoxidizing agent, and also acts as a crystallization nucleus of TiN. TiN serves as a solidification nucleus of the ferrite phase in the solidification process, and promotes crystallization of TiN, so that the ferrite phase can be finely generated during solidification. By refining the solidified structure, the low temperature brittleness resistance can be improved. When it is contained, the content is preferably 0.0001% or more for exhibiting these effects. However, if Mg exceeds 0.005%, manufacturability and corrosion resistance deteriorate, so the upper limit is made 0.005% or less. It is preferably 0.0003 to 0.002%, and more preferably 0.0003 to 0.001%.
 Ca:0.005%以下
 Ga:0.020%以下
 Ca、Gaは、鋼の清浄度を向上させる元素であり、加工硬化の上昇を抑制して耐水素脆性を高めるため必要に応じて含有させる。含有させる場合は、これら効果を発現するためにそれぞれ0.0003%以上とすることが好ましい。しかし、過度の含有は製造性や耐食性の劣化に繋がるため、上限をCaは0.005%以下、Gaは0.020%以下とする。好ましくは、Caが0.0003~0.0030%とし、Gaは0.0030~0.015%する。
Ca: 0.005% or less Ga: 0.020% or less Ca and Ga are elements that improve the cleanliness of steel, and are contained as necessary to suppress an increase in work hardening and increase hydrogen embrittlement resistance. .. When they are contained, the content is preferably 0.0003% or more in order to exhibit these effects. However, since excessive content leads to deterioration in manufacturability and corrosion resistance, the upper limits are set to 0.005% or less for Ca and 0.020% or less for Ga. Preferably, Ca is 0.0003 to 0.0030% and Ga is 0.0030 to 0.015%.
 La:0.1%以下
 Y:0.1%以下
 Hf:0.1%以下
 REM:0.1%以下
 La、Y、Hf、REMは、Ca、Gaと同様に鋼の清浄度を向上させる元素であり、加工硬化の上昇を抑制して耐水素脆性を高めるため必要に応じて含有してもよい。含有させる場合は、効果が発現するためにそれぞれ0.001%以上とすることが好ましい。しかし、過度の含有は、合金コストの上昇と製造性の劣化に繋がるため、上限をそれぞれ0.1%以下とする。好ましくはそれぞれ0.001~0.05%とし、更に好ましくは0.001~0.03%とする。
La: 0.1% or less Y: 0.1% or less Hf: 0.1% or less REM: 0.1% or less La, Y, Hf, and REM improve the cleanliness of steel similarly to Ca and Ga. It is an element and may be contained if necessary in order to suppress an increase in work hardening and enhance hydrogen embrittlement resistance. When they are contained, they are preferably contained in an amount of 0.001% or more in order to exhibit the effect. However, excessive contents lead to an increase in alloy cost and deterioration in manufacturability, so the upper limits are made 0.1% or less. It is preferably 0.001 to 0.05%, and more preferably 0.001 to 0.03%.
 REM(希土類元素)は、スカンジウム(Sc)、イットリウム(Y)の2元素と、周期律表においてセリウム(Ce)からルテチウム(Lu)までの14元素(ランタノイド)の総称を指す。これらの元素は単独で含有させてもよいし、混合物であってもよい。 REM (rare earth element) is a general term for two elements, scandium (Sc) and yttrium (Y), and 14 elements (lanthanoids) from cerium (Ce) to lutetium (Lu) in the periodic table. These elements may be contained alone or in a mixture.
 なお、残部に含まれる不純物とは、鋼を工業的に製造する際に、原料としての鉱石、スクラップ、または製造環境などから混入されるものであって、本発明の課題を解決する限度において許容されるものを意味する。必要に応じてTa:0.1%以下、Bi:0.01%以下、Zn:0.05%、H:0.0005%以下を含有してもよい。本実施形態のCr系ステンレス鋼は、フェライトの結晶粒を含有するもので、マルテンサイトの結晶粒を含有するものであってもよい。 The impurities contained in the balance are those that are mixed in from the ore as a raw material, scrap, or the manufacturing environment when steel is industrially manufactured, and are allowed within the limit of solving the problem of the present invention. Means what is done. If necessary, Ta: 0.1% or less, Bi: 0.01% or less, Zn: 0.05%, H: 0.0005% or less may be contained. The Cr-based stainless steel of the present embodiment contains ferrite crystal grains, and may contain martensite crystal grains.
 次に本実施形態のCr系ステンレス鋼板の集合組織について説明する。本実施形態のCr系ステンレス鋼板は、板表面における集合組織が下記の(i)および(ii)を満たすものである。
(i)板表面における鋼板表面の法線方向と{211}面方位との角度差が10°以内である結晶粒({211}±10°方位粒)の面積率が30%未満
(ii)(i)で定義した{211}±10°方位粒において、圧延方向の長さおよび板幅方向の長さがいずれも平均で0.15mm未満
 ここで{211}面方位とは、{211}面の法線方向を意味する。
Next, the texture of the Cr-based stainless steel sheet of this embodiment will be described. In the Cr-based stainless steel sheet of this embodiment, the texture on the plate surface satisfies the following (i) and (ii).
(I) The area ratio of crystal grains ({211}±10° oriented grains) in which the angle difference between the normal direction of the steel sheet surface and the {211} plane orientation on the plate surface is within 10° is less than 30% (ii) In the {211}±10° oriented grains defined in (i), both the length in the rolling direction and the length in the strip width direction are less than 0.15 mm on average, where {211} plane orientation is {211}. It means the direction normal to the surface.
 {211}方位はα-fiberと呼ばれ、冷間圧延で集積する圧延集合組織である。本発明ではこれら耐水素脆性を向上させるために、板表面において割れの発生サイトとなる頻度が高い{211}±10°方位粒の面積率とサイズを制御することが効果的であることを知見した。{211}±10°方位粒の面積率は30%未満とし、板表面において再結晶集合組織である{111}方位の存在比率を高めることで耐水素脆性の向上に寄与することができる。耐水素脆性と製造性の観点から、{211}±10°方位粒の面積率の好ましい範囲は5~20%、より好ましい範囲は3~15%である。 The {211} orientation is called α-fiber and is a rolling texture that accumulates in cold rolling. In the present invention, in order to improve the hydrogen embrittlement resistance, it has been found that it is effective to control the area ratio and size of {211}±10° oriented grains that frequently become sites of crack generation on the plate surface. did. The area ratio of {211}±10° oriented grains is set to less than 30%, and the presence ratio of {111} orientation, which is a recrystallization texture, on the plate surface can be contributed to the improvement of hydrogen embrittlement resistance. From the viewpoint of hydrogen embrittlement resistance and manufacturability, the area ratio of {211}±10° oriented grains is preferably in the range of 5 to 20%, more preferably in the range of 3 to 15%.
 また、板表面において{211}±10°方位粒のサイズは圧延方向および板幅方向(圧延垂直方向)の長さはいずれも平均で0.15mm未満とする。{211}±10°方位粒のサイズを細分化することで{211}±10°方位粒への歪の導入・蓄積が緩和されて、耐水素脆性の向上に寄与する。耐水素脆性と製造性の観点から、{211}±10°方位粒の好ましいサイズは0.10mm未満であり、より好ましくは0.07mm未満である。 ∙ The average grain size of {211}±10° grains on the plate surface is less than 0.15 mm in both rolling direction and plate width direction (rolling vertical direction). By subdividing the size of the {211}±10° oriented grains, the introduction/accumulation of strain in the {211}±10° oriented grains is relaxed, which contributes to the improvement of hydrogen embrittlement resistance. From the viewpoint of hydrogen embrittlement resistance and manufacturability, the preferable size of the {211}±10° oriented grains is less than 0.10 mm, more preferably less than 0.07 mm.
 本発明において、「板表面」とは、鋼板の板厚tのt/8までの領域であり、鋼板の表面から当該鋼板の両側の面方向に1/8tの厚さまでの領域をいう。また、{211}±10°方位粒とは、上記板表面において、鋼板表面の法線方向と{211}面方位との角度差が10°以内である結晶方位を持つ結晶粒をいう。 In the present invention, the “plate surface” is a region up to t/8 of the plate thickness t of the steel plate, and a region from the surface of the steel plate to a thickness of 1/8 t in the surface direction on both sides of the steel plate. In addition, the {211}±10° oriented grains mean, on the plate surface, crystal grains having a crystal orientation in which an angle difference between the normal line direction of the steel sheet surface and the {211} plane orientation is within 10°.
 前記した集合組織については、電子線後方散乱回折法(以下、EBSD)を用いて解析することができる。EBSDは、試料表面のミクロ領域における結晶粒毎の結晶方位を高速に測定・解析するものである。耐水素脆性に寄与する結晶方位集団は、板表面における{211}±10°方位粒とその他の領域に分割した結晶方位マップを表示させて、{211}±10°方位粒の面積率や粒子サイズを数値化することができる。例えば、鋼板表面から鋼板の板厚tのt/8までの、鋼板表面に平行な面において、板幅方向850μm、圧延方向2250μmの測定領域で倍率100としてEBSDの測定を行い、鋼板表面に平行な面の法線方向と{211}面方位との角度差が10°以内である結晶粒(すなわち{211}±10°方位粒)の結晶方位マップを表示させてその面積率ならびに粒子径のサイズ(圧延方向、板幅方向)を数値化することができる。鋼板表面から鋼板の板厚tのt/8までの範囲を検査面とすれば、板表面の集合組織を再現性よく評価することができる。 The above-mentioned texture can be analyzed using electron beam backscattering diffraction method (hereinafter referred to as EBSD). EBSD is to measure and analyze the crystal orientation of each crystal grain in a micro region of the sample surface at high speed. The crystal orientation group that contributes to hydrogen embrittlement resistance is displayed by displaying a crystal orientation map divided into {211}±10° oriented grains and other regions on the plate surface, and the area ratio and grain of the {211}±10° oriented grains are displayed. You can quantify the size. For example, on a surface parallel to the steel plate surface from the steel plate surface to t/8 of the steel plate thickness t, EBSD is measured at a magnification of 100 in a measurement region of a plate width direction of 850 μm and a rolling direction of 2250 μm, and parallel to the steel plate surface. The crystal orientation map of crystal grains (that is, {211}±10° orientation grains) in which the angle difference between the normal direction of the plane and the {211} plane orientation is within 10° is displayed, and the area ratio and the grain size The size (rolling direction, plate width direction) can be quantified. If the range from the steel plate surface to t/8 of the steel plate thickness t is used as the inspection surface, the texture of the plate surface can be evaluated with good reproducibility.
 耐水素脆性は、歪速度の比較的小さい低歪速度引張試験で評価するものとし、歪速度は10-5/sとすることが好ましい。歪速度の比較的大きい10-4/s以上の場合、鋼中への水素の侵入と拡散が進行せずに鋼の水素脆性が軽減する場合もある。一方、歪速度の小さい10-6/sの場合、過度な試験時間を要するとともに水素脆化特性への影響も飽和する。耐水素脆性は、前記した低歪速度引張試験において引張強さや破断伸びで評価し、大気中もしくは不活性ガス中の引張強さや破断伸びと比較して高圧水素ガス中での値が低下し難いほど良好である。ここで、高圧水素ガス中の引張強さを大気中もしくは不活性ガス中の引張強さで除した値を「相対引張強さ」と呼ぶ。高圧水素ガス中の破断伸びを大気中もしくは不活性ガス中の破断伸びで除した値を「相対伸び」と呼ぶ。本実施形態のCr系ステンレス鋼板は、相対引張強さは0.98以上、相対伸びは0.75以上であることが好ましい。より好ましい範囲は、相対引張強さが0.98~1.05、相対伸びが0.85~1.05である。 The hydrogen embrittlement resistance is evaluated by a low strain rate tensile test having a relatively low strain rate, and the strain rate is preferably 10 −5 /s. If the strain rate is 10 −4 /s or more, which is relatively high, hydrogen penetration into the steel and diffusion of hydrogen do not proceed, and the hydrogen embrittlement of the steel may be reduced. On the other hand, when the strain rate is low, 10 −6 /s, an excessive test time is required and the effect on the hydrogen embrittlement property is saturated. Hydrogen embrittlement resistance is evaluated by the tensile strength and elongation at break in the low strain rate tensile test described above, and the value in high-pressure hydrogen gas is less likely to decrease in comparison with the tensile strength and elongation at break in air or inert gas. As good. Here, the value obtained by dividing the tensile strength in the high-pressure hydrogen gas by the tensile strength in the atmosphere or the inert gas is referred to as "relative tensile strength". The value obtained by dividing the elongation at break in high-pressure hydrogen gas by the elongation at break in air or an inert gas is called "relative elongation". The Cr-based stainless steel sheet of this embodiment preferably has a relative tensile strength of 0.98 or more and a relative elongation of 0.75 or more. More preferable ranges are a relative tensile strength of 0.98 to 1.05 and a relative elongation of 0.85 to 1.05.
 耐低温脆性は、JIS Z 2242に準拠するシャルピー衝撃試験で評価するものとし、例えばVノッチの2mm厚試験片を使用して吸収エネルギーを測定する。耐低温脆性は、前記JISの附属書Dに準拠したエネルギー遷移温度で評価し、エネルルギー遷移温度が低いほど良好である。エネルギー遷移温度とは、延性破壊による破面率100%となる温度における吸収エネルギーの1/2の値に相当する温度である。本実施形態のCr系ステンレス鋼板は、屋外や車載用の水素機器での使用を考慮してエネルギー遷移温度が-10℃以下であることが好ましい。より好ましくは寒冷地域での使用に配慮して-40℃以下である。 The low temperature brittleness shall be evaluated by the Charpy impact test according to JIS Z 2242, and the absorbed energy shall be measured using, for example, a 2 mm thick test piece with a V notch. The low temperature brittleness resistance is evaluated by the energy transition temperature according to JIS D, and the lower the energy transition temperature, the better. The energy transition temperature is a temperature corresponding to 1/2 of the absorbed energy at the temperature at which the fracture surface ratio due to ductile fracture is 100%. The Cr-based stainless steel sheet of the present embodiment preferably has an energy transition temperature of −10° C. or lower in consideration of the use in outdoor or on-vehicle hydrogen equipment. More preferably, it is -40°C or lower in consideration of use in cold regions.
 次に、本実施形態のCr系ステンレス鋼板の製造方法について説明する。
 本実施形態のCr系ステンレス鋼板は上記の化学成分を満足すれば、鋳造、熱間圧延、冷間圧延等の通常のプロセス条件で製造しても本発明の目標とする耐水素脆性と耐低温脆性を確保できる場合もある。
 本実施形態のCr系ステンレス鋼板は、本発明の集合組織を形成して耐水素脆性を向上させるために、上記の化学成分を満足するとともに、以下の製造方法が好ましい。
Next, a method for manufacturing the Cr-based stainless steel sheet of this embodiment will be described.
As long as the Cr-based stainless steel sheet of the present embodiment satisfies the above chemical composition, it can be manufactured under normal process conditions such as casting, hot rolling, cold rolling, etc. In some cases, brittleness can be secured.
In order to improve the hydrogen embrittlement resistance by forming the texture of the present invention, the Cr-based stainless steel sheet of the present embodiment satisfies the above chemical components, and the following manufacturing method is preferable.
 前記した化学組成を有する鋼を熱間圧延後、900℃以下で熱延後焼鈍し、その後に圧下率40%以上の冷間圧延を行い、900℃超の温度で仕上げ焼鈍を行うことが好ましい。熱間圧延後の熱処理(熱延後焼鈍)は、熱間圧延段階で生成した{211}方位粒の成長を抑制するために900℃以下、より好ましい範囲は700~900℃である。 It is preferable that after hot rolling the steel having the above-described chemical composition, it is annealed after hot rolling at 900° C. or less, then cold rolling at a reduction rate of 40% or more, and finish annealing at a temperature of more than 900° C. .. The heat treatment after hot rolling (annealing after hot rolling) is 900° C. or lower, more preferably 700 to 900° C., in order to suppress the growth of {211} oriented grains generated in the hot rolling stage.
 冷間圧延は、可逆式の20段ゼンジミア圧延機や6段あるいは12段圧延機で実施しても良く、複数パスを連続的に圧延するタンデム圧延機で実施しても良い。本発明の集合組織を形成するには、ワークロール径は大きい方が好ましい。そのため、ワークロール径は200mm以上とすることが好ましい。このような大径ロール圧延は、1次冷延(複数回冷延を繰返し行う場合の初期冷延)時に実施すると好ましい。これにより再結晶集合組織である{111}方位粒が発達し、圧延集合組織である{211}±10°方位粒の面積率が低減するので、本発明の目標とする集合組織の形成に有効である。冷間圧延は、40%以上の圧下率で実施することが好ましい。冷間圧延率が40%未満の場合、再結晶集合組織において{211}±10°方位粒の面積率とサイズが上昇しやすくなり、耐水素脆性の低下を招く場合がある。耐水素脆性と製造性の観点から、好ましい圧下率の範囲は40~90%であり、より好ましい範囲は50~80%である。 Cold rolling may be carried out by a reversible 20-high Sendzimir rolling machine, a 6-high rolling mill or a 12-high rolling mill, or a tandem rolling mill that continuously rolls multiple passes. In order to form the texture of the present invention, the work roll diameter is preferably large. Therefore, the work roll diameter is preferably 200 mm or more. Such large-diameter roll rolling is preferably carried out at the time of primary cold rolling (initial cold rolling when cold rolling is repeated a plurality of times). As a result, the {111} oriented grains that are recrystallized textures develop and the area ratio of the {211}±10° oriented grains that are the rolling textures is reduced, which is effective in forming the target texture of the present invention. Is. Cold rolling is preferably carried out at a reduction rate of 40% or more. If the cold rolling ratio is less than 40%, the area ratio and size of the {211}±10° oriented grains in the recrystallized texture tend to increase, and the hydrogen embrittlement resistance may decrease. From the viewpoint of hydrogen embrittlement resistance and manufacturability, the preferable range of the rolling reduction is 40 to 90%, and the more preferable range is 50 to 80%.
 冷間圧延後の仕上げ焼鈍は、{111}方位粒を発達させて{211}方位粒の面積率とサイズを低減させるために、900℃超で熱処理することが好ましい。過度な温度上昇は、結晶粒成長により{211}±10°方位粒のサイズを上昇させるため、仕上げ焼鈍温度の上限は1050℃であることが好ましい。また、仕上げ焼鈍時の雰囲気は特に規定するものではないが、大気中、LNG燃料雰囲気、BA雰囲気であることが好ましい。 In finish annealing after cold rolling, it is preferable to perform heat treatment at over 900°C in order to develop {111} oriented grains and reduce the area ratio and size of {211} oriented grains. Since the excessive temperature rise increases the size of {211}±10° oriented grains due to the grain growth, the upper limit of the finish annealing temperature is preferably 1050°C. Further, the atmosphere at the time of finish annealing is not particularly specified, but the atmosphere, the LNG fuel atmosphere, and the BA atmosphere are preferable.
 熱処理(仕上げ焼鈍)の均熱時間は、10秒~10分とすることが好ましい。均熱時間が10秒以上であれば、冷間圧延のための材料の軟質化が図れるので好ましい。また、均熱時間が10分以下であれば、{211}±10°方位粒の成長を抑制して当該結晶粒のサイズを小さく抑え、耐水素脆性に有効な集合組織を確保することができる。 The soaking time for heat treatment (finish annealing) is preferably 10 seconds to 10 minutes. A soaking time of 10 seconds or more is preferable because the material for cold rolling can be softened. Further, if the soaking time is 10 minutes or less, the growth of {211}±10° oriented grains can be suppressed, the size of the crystal grains can be suppressed small, and a texture effective for hydrogen embrittlement resistance can be secured. ..
 以下、本発明の実施例を説明する。 Hereinafter, examples of the present invention will be described.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の成分組成を有するCr系ステンレス鋼を溶製した。表1のNb、Ti、Sn、Bの含有量において、「0.0」と記載したものは当該元素を添加していないことを意味する。 -Cr-based stainless steel having the composition shown in Table 1 was melted. In the contents of Nb, Ti, Sn, and B in Table 1, those described as "0.0" mean that the element is not added.
 加熱温度1150~1250℃まで加熱して熱間圧延を行い、板厚5.0mmの熱延鋼板を製造した。熱延鋼板を700~900℃の範囲にて熱延後焼鈍し、酸洗後に板厚1.5~2.5mmの範囲で冷間圧延して冷延鋼板とした。冷延条件は表2に示す。冷間圧延は異なるワークロール径のゼンジミア圧延機とタンデム圧延機で実施し、前者は小径ロール(60mm)(表2で「S」と表示)、後者は大径ロール(200mm)(表2で「L」と表示)を使用した。冷延鋼板に対して920~1020℃の仕上げ焼鈍と酸洗を行い、Cr系ステンレス鋼板を製造した。 Heated to a heating temperature of 1150 to 1250°C and hot rolled to produce a hot rolled steel sheet with a thickness of 5.0 mm. The hot rolled steel sheet was annealed after hot rolling in the range of 700 to 900° C., pickled and then cold rolled in the range of sheet thickness of 1.5 to 2.5 mm to obtain a cold rolled steel sheet. Cold rolling conditions are shown in Table 2. Cold rolling was carried out on a Sendzimir rolling machine and a tandem rolling machine with different work roll diameters. The former is a small diameter roll (60 mm) (indicated as “S” in Table 2) and the latter is a large diameter roll (200 mm) (in Table 2). "L" is used). The cold rolled steel sheet was subjected to finish annealing at 920 to 1020° C. and pickling to produce a Cr-based stainless steel sheet.
 集合組織は、EBSDを用いて解析した。耐水素脆性に寄与する結晶方位集団は、板表面における{211}±10°方位粒とその他の領域に分割した結晶方位マップを表示させて数値化した。すなわち、鋼板表面から鋼板の板厚tのt/8範囲の、鋼板表面に平行な面において、板幅方向850μm、圧延方向2250μmの測定領域で倍率100としてEBSDの測定を行い、鋼板表面に平行な面の法線方向と{211}面方位との角度差が10°以内である結晶粒(すなわち{211}±10°方位粒)の結晶方位マップを表示し、併せて結晶粒界を表示し、当該結晶粒の面積率と平均粒子径(圧延方向および板幅方向)を測定した。表2の{211}±10°方位粒の「サイズ」欄の表記は、「圧延方向/板幅方向」を意味する。また、一部の比較例については、参考として板厚中心(t/2)における測定結果も併記した。結晶方位が15°以上異なる部位を結晶粒界とした。 The organization was analyzed using EBSD. The crystal orientation group contributing to the hydrogen embrittlement resistance was numerically displayed by displaying a crystal orientation map divided into {211}±10° oriented grains and other regions on the plate surface. That is, EBSD was measured at a magnification of 100 in a measurement region of 850 μm in the width direction and 2250 μm in the rolling direction on a plane parallel to the steel plate surface within a range of t/8 of the thickness t of the steel plate from the steel plate surface, and parallel to the steel plate surface. A crystal orientation map of crystal grains (that is, {211}±10° orientation grains) in which the angle difference between the normal direction of the plane and the {211} plane orientation is within 10° is displayed, and the grain boundaries are also displayed. Then, the area ratio of the crystal grains and the average particle diameter (rolling direction and plate width direction) were measured. The notation in the “size” column of {211}±10° oriented grains in Table 2 means “rolling direction/plate width direction”. Further, for some of the comparative examples, the measurement results at the plate thickness center (t/2) are also shown for reference. The site where the crystal orientation differs by 15° or more was defined as a crystal grain boundary.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 得られたCr系ステンレス鋼板は、水素脆性および低温脆性の評価に供した。耐水素脆性は比較材として市販の2mm厚SUS316L鋼板(17.5%Cr-12%Ni-2%Mo)およびSUS316鋼板(17.5%Cr-10%Ni-2%Mo)を評価に用いた。 The obtained Cr-based stainless steel sheet was evaluated for hydrogen embrittlement and low temperature embrittlement. For the hydrogen embrittlement resistance, a commercially available 2 mm thick SUS316L steel plate (17.5%Cr-12%Ni-2%Mo) and SUS316 steel plate (17.5%Cr-10%Ni-2%Mo) were used for evaluation. I was there.
 水素脆性の評価は、以下の手順で実施した。
 平行部の幅4mm、長さ20mmの引張試験片を作製し、高圧水素ガス中での引張試験直前に表面を乾式#600エメリー紙で研磨後に有機溶剤で脱脂洗浄した。高圧水素ガス中の引張試験は、表1に示すように水素ガスの圧力を20MPa又は45MPaとし、試験温度は-40℃、歪速度は10-5/sで行った。比較の引張試験は、-40℃の0.1MPa窒素中で実施した。高圧水素ガス中の引張強さを0.1MPa窒素中の引張強さで除して相対引張強さとし、高圧水素ガス中の破断伸びを0.1MPa窒素中の破断伸びで除して相対伸びとした。耐水素脆性は、相対引張強さと相対伸びを評価指標として評価した。評価基準は以下の通りとした。AおよびBを合格とした。
 A:相対引張強さ0.98以上かつ相対伸び0.85以上を満たす。
 B:上記以外で相対引張強さ0.98以上かつ相対伸び0.75以上を満たす。
 X:相対引張強さ0.98未満または相対伸び0.75未満の何れか一方または両方である。
 ここで、水素ガスの圧力45MPa、試験温度-40℃の場合、SUS316L鋼板は相対伸び0.75未満となり評価はXとなる。また、水素ガスの圧力20MPa、試験温度-40℃の場合、SUS316鋼板は相対伸び0.75未満となり評価はXとなる。
The hydrogen embrittlement was evaluated by the following procedure.
A tensile test piece having a width of 4 mm and a length of 20 mm in the parallel portion was prepared, and immediately before the tensile test in high-pressure hydrogen gas, the surface was polished with dry type #600 emery paper and then degreased and washed with an organic solvent. The tensile test in high-pressure hydrogen gas was carried out at a hydrogen gas pressure of 20 MPa or 45 MPa, a test temperature of −40° C., and a strain rate of 10 −5 /s, as shown in Table 1. The comparative tensile test was carried out in 0.1 MPa nitrogen at -40°C. The tensile strength in high-pressure hydrogen gas is divided by the tensile strength in 0.1 MPa nitrogen to obtain the relative tensile strength, and the breaking elongation in high-pressure hydrogen gas is divided by the breaking elongation in 0.1 MPa nitrogen to obtain the relative elongation. did. The hydrogen embrittlement resistance was evaluated using relative tensile strength and relative elongation as evaluation indexes. The evaluation criteria are as follows. A and B were passed.
A: The relative tensile strength is 0.98 or more and the relative elongation is 0.85 or more.
B: Other than the above, the relative tensile strength is 0.98 or more and the relative elongation is 0.75 or more.
X: Either or both of the relative tensile strength of less than 0.98 and the relative elongation of less than 0.75.
Here, when the hydrogen gas pressure is 45 MPa and the test temperature is −40° C., the relative elongation of the SUS316L steel sheet is less than 0.75, and the evaluation is X. When the hydrogen gas pressure is 20 MPa and the test temperature is −40° C., the relative elongation of the SUS316 steel sheet is less than 0.75, and the evaluation is X.
 低温脆性の評価は、JIS Z 2242に準拠したシャルピー衝撃試験で行った。試験片は1.5~2.5mm厚×10mm幅×55mm長さのVノッチ形状とし、試験温度は-100℃から室温(20℃)の範囲とした。耐低温脆性は、シャルピー試験で測定した吸収エネルギーから前記したエネルギー遷移温度を求めて評価指標とした。評価基準は以下の通りとした。AおよびBを合格とした。
 A:エネルギー遷移温度-40℃以下を満たす。
 B:エネルギー遷移温度-40℃超-10℃以下を満たす。
 X:エネルギー遷移温度-10℃超である。
The evaluation of the low temperature brittleness was performed by the Charpy impact test according to JIS Z2242. The test piece had a V-notch shape of 1.5 to 2.5 mm thickness×10 mm width×55 mm length, and the test temperature was in the range of −100° C. to room temperature (20° C.). The low temperature brittleness resistance was used as an evaluation index by obtaining the energy transition temperature from the absorbed energy measured by the Charpy test. The evaluation criteria are as follows. A and B were passed.
A: Energy transition temperature of −40° C. or lower is satisfied.
B: Energy transition temperature of more than −40° C. and below −10° C. is satisfied.
X: Energy transition temperature is higher than −10° C.
 表2に試験結果をまとめて示す。
 No.1~11は、何れも本発明範囲の化学成分と集合組織を有するCr系ステンレス鋼板であり、耐水素脆性及び耐低温脆性が良好であった。特に、好ましい成分と集合組織の範囲としたNo.5、6、9、10は、水素ガスの圧力45MPaにおいて耐水素脆性指標が「B」または「A」であり、その耐水素脆性はSUS316Lと比較しても高位であった。また、No.6、8、10は大径ロールを使用して{211}±10°方位粒を低減したものであり、同じ化学成分でありながらNo.5、7、9に比べて耐水素脆性が更に向上した。
The test results are summarized in Table 2.
No. Nos. 1 to 11 were all Cr-based stainless steel sheets having the chemical composition and texture within the scope of the present invention, and had good hydrogen embrittlement resistance and low temperature embrittlement resistance. In particular, No. 1 with the range of preferable components and textures. 5, 6, 9, and 10 had a hydrogen embrittlement resistance index of "B" or "A" at a hydrogen gas pressure of 45 MPa, and the hydrogen embrittlement resistance was higher than that of SUS316L. In addition, No. Nos. 6, 8 and 10 are obtained by reducing the {211}±10° oriented grains using a large-diameter roll and have the same chemical composition as No. The hydrogen embrittlement resistance was further improved as compared with 5, 7, and 9.
 No.12~20は、何れも本発明範囲の化学成分を有しないCr系ステンレス鋼板であり、本発明範囲の集合組織を形成できず、耐水素脆性または耐低温脆性のいずれか一方または両方が劣位となった。また、No.17、19、20は、板厚中心の{211}±10°方位粒の面積率は30%未満であるが板表面における当該面積率は30%を超えており、耐水素脆性と耐低温脆性を共に得るためには、板表面における面積率を制御することが重要であると分かる。 No. Nos. 12 to 20 are Cr-based stainless steel sheets that do not have chemical components within the scope of the present invention, cannot form a texture within the scope of the present invention, and either or both of hydrogen embrittlement resistance and low temperature embrittlement resistance are inferior. became. In addition, No. In Nos. 17, 19 and 20, the area ratio of {211}±10° oriented grains in the plate thickness center is less than 30%, but the area ratio on the plate surface exceeds 30%, and hydrogen embrittlement resistance and low temperature embrittlement resistance. It can be seen that it is important to control the area ratio on the plate surface in order to obtain
 以上の評価結果から、本発明範囲の成分と集合組織を有することでCr系ステンレス鋼板の耐水素脆性は市中のSUS316と比べて高位であった。さらに、好ましい成分を有して大径ロールを使用して好ましい集合組織に制御することで、SUS316Lを凌ぐ耐水素脆性となることが分かった。 From the above evaluation results, the hydrogen embrittlement resistance of the Cr-based stainless steel sheet was higher than that of SUS316 in the market by having the components and the texture within the scope of the present invention. Further, it has been found that the hydrogen embrittlement resistance surpassing that of SUS316L can be obtained by controlling the texture to have a preferable texture by using a large diameter roll having a preferable component.

Claims (4)

  1.  質量%で、
    C:0.020%以下、
    Si:1.00%以下、
    Mn:1.00%以下、
    P:0.040%以下、
    S:0.0030%以下、
    Cr:10.0~18.0%、
    N:0.020%以下、
    Al:0.10%以下、
    さらに、Nb:0.5%以下、Ti:0.5%以下の1種または2種を含み、
    Sn:0~0.3%、
    B:0~0.005%、
    Ni:0~1%、
    Cu:0~1%、
    Mo:0~1%、
    Sb:0.2%以下、
    V:0~0.5%、
    W:0~0.5%、
    Zr:0~0.5%、
    Co:0~0.5%、
    Mg:0~0.005%、
    Ca:0~0.005%、
    Ga:0~0.020%、
    La:0~0.1%、
    Y:0~0.1%、
    Hf:0~0.1%、
    REM:0~0.1%、
    残部がFeおよび不純物からなり、板表面における集合組織が下記の(i)および(ii)を満たすことを特徴とするCr系ステンレス鋼板。
    (i)板表面における鋼板表面の法線方向と{211}面方位との角度差が10°以内である結晶粒(以下「{211}±10°方位粒」という。)の面積率が30%未満
    (ii)(i)で定義した{211}±10°方位粒において、圧延方向の長さおよび板幅方向の長さがいずれも平均で0.15mm未満
    In mass %,
    C: 0.020% or less,
    Si: 1.00% or less,
    Mn: 1.00% or less,
    P: 0.040% or less,
    S: 0.0030% or less,
    Cr: 10.0 to 18.0%,
    N: 0.020% or less,
    Al: 0.10% or less,
    Further, it contains one or two of Nb: 0.5% or less and Ti: 0.5% or less,
    Sn: 0-0.3%,
    B: 0 to 0.005%,
    Ni: 0 to 1%,
    Cu: 0 to 1%,
    Mo: 0 to 1%,
    Sb: 0.2% or less,
    V: 0-0.5%,
    W: 0-0.5%,
    Zr: 0-0.5%,
    Co: 0-0.5%,
    Mg: 0 to 0.005%,
    Ca: 0 to 0.005%,
    Ga: 0 to 0.020%,
    La: 0 to 0.1%,
    Y: 0 to 0.1%,
    Hf: 0-0.1%,
    REM: 0-0.1%,
    A Cr-based stainless steel sheet characterized in that the balance consists of Fe and impurities, and the texture on the plate surface satisfies the following (i) and (ii).
    (I) The area ratio of crystal grains (hereinafter referred to as “{211}±10° oriented grains”) having an angle difference of 10° or less between the normal direction of the steel plate surface and the {211} plane orientation on the plate surface is 30. % (Ii) In the {211}±10° oriented grains defined by (i), the length in the rolling direction and the length in the strip width direction are both less than 0.15 mm on average.
  2.  さらに質量%で、Sn:0.001~0.3%、B:0.005%以下を含有し、
    下記(1)式を満たすことを特徴とする請求項1に記載のCr系ステンレス鋼板。
     Si+0.5Mn+10P+5Nb+2Ti<2.00・・・(1)式
     上記式で元素記号は当該元素の含有量(質量%)を意味する。
    Further, by mass%, Sn: 0.001 to 0.3% and B: 0.005% or less are contained,
    The Cr-based stainless steel sheet according to claim 1, wherein the following formula (1) is satisfied.
    Si+0.5Mn+10P+5Nb+2Ti<2.00 (1) Formula In the above formula, the element symbol means the content (mass %) of the element.
  3.  さらに質量%で、
    Ni:1%以下、
    Cu:1%以下、
    Mo:1%以下、
    Sb:0.2%以下、
    V:0.5%以下、
    W:0.5%以下、
    Zr:0.5%以下、
    Co:0.5%以下、
    Mg:0.005%以下、
    Ca:0.005%以下、
    Ga:0.020%以下、
    La:0.1%以下、
    Y:0.1%以下、
    Hf:0.1%以下、
    REM:0.1%以下
    の1種または2種以上を含有することを特徴とする請求項1または請求項2に記載のCr系ステンレス鋼板。
    Furthermore, in mass%,
    Ni: 1% or less,
    Cu: 1% or less,
    Mo: 1% or less,
    Sb: 0.2% or less,
    V: 0.5% or less,
    W: 0.5% or less,
    Zr: 0.5% or less,
    Co: 0.5% or less,
    Mg: 0.005% or less,
    Ca: 0.005% or less,
    Ga: 0.020% or less,
    La: 0.1% or less,
    Y: 0.1% or less,
    Hf: 0.1% or less,
    REM: 0.1% or less of 1 type or 2 types or more of containing, The Cr type|system|group stainless steel plate of Claim 1 or Claim 2 characterized by the above-mentioned.
  4.  高圧水素ガス用機器の金属材料として用いられることを特徴とする請求項1から請求項3の何れか一項に記載のCr系ステンレス鋼板。 The Cr-based stainless steel sheet according to any one of claims 1 to 3, which is used as a metal material of a device for high-pressure hydrogen gas.
PCT/JP2019/049717 2018-12-21 2019-12-18 Cr-based stainless steel having excellent hydrogen embrittlement resistance WO2020130060A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020561497A JP7121142B2 (en) 2018-12-21 2019-12-18 Cr-based stainless steel sheet with excellent resistance to hydrogen embrittlement
EP19899311.5A EP3901292A4 (en) 2018-12-21 2019-12-18 Cr-based stainless steel having excellent hydrogen embrittlement resistance
US17/312,693 US20220033944A1 (en) 2018-12-21 2019-12-18 Cr-based stainless steel having excellent hydrogen embrittlement resistance
CN201980083521.9A CN113227414B (en) 2018-12-21 2019-12-18 Cr-based stainless steel sheet excellent in hydrogen embrittlement resistance
KR1020217018922A KR102539588B1 (en) 2018-12-21 2019-12-18 Cr-based stainless steel sheet with excellent hydrogen embrittlement resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018239243 2018-12-21
JP2018-239243 2018-12-21

Publications (1)

Publication Number Publication Date
WO2020130060A1 true WO2020130060A1 (en) 2020-06-25

Family

ID=71102066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049717 WO2020130060A1 (en) 2018-12-21 2019-12-18 Cr-based stainless steel having excellent hydrogen embrittlement resistance

Country Status (6)

Country Link
US (1) US20220033944A1 (en)
EP (1) EP3901292A4 (en)
JP (1) JP7121142B2 (en)
KR (1) KR102539588B1 (en)
CN (1) CN113227414B (en)
WO (1) WO2020130060A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020100866A (en) * 2018-12-21 2020-07-02 日鉄ステンレス株式会社 Cr-BASED STAINLESS STEEL HAVING EXCELLENT HYDROGEN EMBRITTLEMENT RESISTANCE AND LOW-TEMPERATURE EMBRITTLEMENT RESISTANCE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107630B (en) * 2021-11-19 2022-08-19 北京科技大学 Heat treatment method for improving hydrogen brittleness resistance of martensitic stainless steel, stainless steel and application

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04371550A (en) * 1991-06-18 1992-12-24 Nisshin Steel Co Ltd Alloy member for sealing
JP2004324800A (en) 2003-04-25 2004-11-18 Nippon Steel Corp Tank for high pressure hydrogen gas, and piping
JP2009013478A (en) * 2007-07-05 2009-01-22 Nippon Steel Corp High-rigidity and high-strength cold-rolled steel sheet and manufacturing method therefor
WO2012043877A1 (en) * 2010-09-29 2012-04-05 新日鐵住金ステンレス株式会社 Austenite high-manganese stainless steel, manufacturing method therefor, and member using said steel
JP2012107333A (en) * 2010-10-28 2012-06-07 Jfe Steel Corp High-strength steel for high-pressure hydrogen storage container
WO2013133259A1 (en) * 2012-03-09 2013-09-12 新日鐵住金ステンレス株式会社 Ferrite-austenite 2-phase stainless steel plate having low in-plane anisotropy and method for producing same
JP2014114471A (en) 2012-12-07 2014-06-26 Aichi Steel Works Ltd Austenitic stainless steel for high-pressure hydrogen
WO2015098981A1 (en) 2013-12-27 2015-07-02 国立大学法人九州大学 Substrate for hydrogen equipment and method for manufacturing same
WO2015159554A1 (en) * 2014-04-17 2015-10-22 新日鐵住金株式会社 Austenitic stainless steel and method for producing same
JP2016183412A (en) 2015-03-26 2016-10-20 新日鐵住金ステンレス株式会社 High strength austenitic stainless steel excellent in hydrogen embrittlement resistance, manufacturing method therefor, and device for hydrogen used in high pressure hydrogen gas and liquid hydrogen environment
WO2018008658A1 (en) * 2016-07-04 2018-01-11 新日鐵住金ステンレス株式会社 Ferritic stainless steel, steel sheet thereof, and methods for producing these

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1225242B1 (en) * 2001-01-18 2004-04-07 JFE Steel Corporation Ferritic stainless steel sheet with excellent workability and method for making the same
JP3788311B2 (en) * 2001-10-31 2006-06-21 Jfeスチール株式会社 Ferritic stainless steel sheet and manufacturing method thereof
JP3886864B2 (en) * 2002-08-26 2007-02-28 日新製鋼株式会社 Ferritic stainless steel cold-rolled annealed material excellent in secondary workability and manufacturing method thereof
JP4167587B2 (en) * 2003-02-28 2008-10-15 新日本製鐵株式会社 High-strength steel sheet excellent in hydrogen embrittlement resistance and method for producing the same
JP3886933B2 (en) * 2003-06-04 2007-02-28 日新製鋼株式会社 Ferritic stainless steel sheet excellent in press formability and secondary workability and manufacturing method thereof
JP5196807B2 (en) * 2007-02-26 2013-05-15 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet excellent in formability with low roughness of processing surface and method for producing the same
JP5610796B2 (en) * 2010-03-08 2014-10-22 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent corrosion resistance in condensed water environment generated from hydrocarbon combustion exhaust gas
JP5793459B2 (en) * 2012-03-30 2015-10-14 新日鐵住金ステンレス株式会社 Heat-resistant ferritic stainless steel cold-rolled steel sheet excellent in workability, ferritic stainless hot-rolled steel sheet for cold-rolled material, and production method thereof
CN104968823B (en) * 2013-02-04 2018-06-12 新日铁住金不锈钢株式会社 The ferrite series stainless steel plate and its manufacturing method of excellent processability
JP5908936B2 (en) * 2014-03-26 2016-04-26 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for flange, manufacturing method thereof and flange part
JP6542249B2 (en) * 2014-10-31 2019-07-10 日鉄ステンレス株式会社 Ferritic stainless steel sheet, steel pipe and method for manufacturing the same
JP6820757B2 (en) * 2017-01-27 2021-01-27 日鉄ステンレス株式会社 Ferritic stainless steel sheets for fastening parts with excellent heat resistance, fastening parts, and circular clamps for heat-resistant tubular members

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04371550A (en) * 1991-06-18 1992-12-24 Nisshin Steel Co Ltd Alloy member for sealing
JP2004324800A (en) 2003-04-25 2004-11-18 Nippon Steel Corp Tank for high pressure hydrogen gas, and piping
JP2009013478A (en) * 2007-07-05 2009-01-22 Nippon Steel Corp High-rigidity and high-strength cold-rolled steel sheet and manufacturing method therefor
WO2012043877A1 (en) * 2010-09-29 2012-04-05 新日鐵住金ステンレス株式会社 Austenite high-manganese stainless steel, manufacturing method therefor, and member using said steel
JP2012107333A (en) * 2010-10-28 2012-06-07 Jfe Steel Corp High-strength steel for high-pressure hydrogen storage container
WO2013133259A1 (en) * 2012-03-09 2013-09-12 新日鐵住金ステンレス株式会社 Ferrite-austenite 2-phase stainless steel plate having low in-plane anisotropy and method for producing same
JP2014114471A (en) 2012-12-07 2014-06-26 Aichi Steel Works Ltd Austenitic stainless steel for high-pressure hydrogen
WO2015098981A1 (en) 2013-12-27 2015-07-02 国立大学法人九州大学 Substrate for hydrogen equipment and method for manufacturing same
WO2015159554A1 (en) * 2014-04-17 2015-10-22 新日鐵住金株式会社 Austenitic stainless steel and method for producing same
JP2016183412A (en) 2015-03-26 2016-10-20 新日鐵住金ステンレス株式会社 High strength austenitic stainless steel excellent in hydrogen embrittlement resistance, manufacturing method therefor, and device for hydrogen used in high pressure hydrogen gas and liquid hydrogen environment
WO2018008658A1 (en) * 2016-07-04 2018-01-11 新日鐵住金ステンレス株式会社 Ferritic stainless steel, steel sheet thereof, and methods for producing these

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MICHIHIKO NAGUMO: "Fundamentals of Hydrogen Embrittlement", December 2008, UCHIDA ROKAKUHO
See also references of EP3901292A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020100866A (en) * 2018-12-21 2020-07-02 日鉄ステンレス株式会社 Cr-BASED STAINLESS STEEL HAVING EXCELLENT HYDROGEN EMBRITTLEMENT RESISTANCE AND LOW-TEMPERATURE EMBRITTLEMENT RESISTANCE
JP7186601B2 (en) 2018-12-21 2022-12-09 日鉄ステンレス株式会社 Cr-based stainless steel used as a metal material for high-pressure hydrogen gas equipment

Also Published As

Publication number Publication date
JP7121142B2 (en) 2022-08-17
KR20210092292A (en) 2021-07-23
EP3901292A1 (en) 2021-10-27
JPWO2020130060A1 (en) 2021-10-14
CN113227414B (en) 2023-08-11
US20220033944A1 (en) 2022-02-03
EP3901292A4 (en) 2022-11-23
CN113227414A (en) 2021-08-06
KR102539588B1 (en) 2023-06-01

Similar Documents

Publication Publication Date Title
EP3309273B1 (en) Galvannealed steel sheet and method for manufacturing same
EP2762589B1 (en) High-strength hot-dip galvanized steel sheet excellent in impact resistance property and manufacturing method thereof, and high-strength alloyed hot-dip galvanized steel sheet and manzfacturing method thereof
TWI493055B (en) High strength galvanized steel sheet excellent in bending property and a method for manufacturing the same
EP2392681B1 (en) Heavy gauge, high tensile strength, hot rolled steel sheet with excellent hic resistance and manufacturing method therefor
EP2530180A1 (en) Steel sheet and process for producing steel sheet
KR101632159B1 (en) Thick steel plate having good ultralow-temperature toughness
EP3050989A1 (en) High-strength steel sheet and method for producing same
EP2980245B1 (en) High-strength alloyed molten-zinc-plated steel sheet and method for manufacturing same
EP2617852A1 (en) High-strength hot-rolled steel sheet having excellent bending workability and method for producing same
CN111788323B (en) High-strength steel sheet and method for producing same
KR20140103339A (en) High-strength hot-rolled steel sheet and manufacturing method therefor
JP5907320B1 (en) Material for stainless cold-rolled steel sheet and manufacturing method thereof
EP3702487B1 (en) Nickel-containing steel for low temperature
EP3015562A1 (en) Hot-rolled high-strength steel sheet and process for production thereof
US11384416B2 (en) Nickel-containing steel for low temperature
JP6852807B2 (en) Nickel-containing steel for low temperature
JP7121142B2 (en) Cr-based stainless steel sheet with excellent resistance to hydrogen embrittlement
EP3378962B1 (en) High heat input welded steel material
JP7186601B2 (en) Cr-based stainless steel used as a metal material for high-pressure hydrogen gas equipment
JP4284258B2 (en) Steel sheet with low yield ratio and excellent toughness and welded joint toughness and its manufacturing method
JP2004137554A (en) Steel sheet having excellent workability, and production method therefor
WO2011039885A1 (en) Cold-rolled steel sheet
JP2024020934A (en) Austenitic stainless steel plate
JP2024020935A (en) Austenitic stainless steel plate
CN114846168A (en) High-strength steel sheet having excellent workability and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899311

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561497

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217018922

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019899311

Country of ref document: EP

Effective date: 20210721