JP2009013478A - High-rigidity and high-strength cold-rolled steel sheet and manufacturing method therefor - Google Patents

High-rigidity and high-strength cold-rolled steel sheet and manufacturing method therefor Download PDF

Info

Publication number
JP2009013478A
JP2009013478A JP2007177727A JP2007177727A JP2009013478A JP 2009013478 A JP2009013478 A JP 2009013478A JP 2007177727 A JP2007177727 A JP 2007177727A JP 2007177727 A JP2007177727 A JP 2007177727A JP 2009013478 A JP2009013478 A JP 2009013478A
Authority
JP
Japan
Prior art keywords
rolling
rolled steel
cold
rigidity
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007177727A
Other languages
Japanese (ja)
Other versions
JP5088021B2 (en
Inventor
Natsuko Sugiura
夏子 杉浦
Yoji Nakamura
洋二 中村
Manabu Takahashi
学 高橋
Naoki Maruyama
直紀 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007177727A priority Critical patent/JP5088021B2/en
Publication of JP2009013478A publication Critical patent/JP2009013478A/en
Application granted granted Critical
Publication of JP5088021B2 publication Critical patent/JP5088021B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength cold-rolled steel sheet having high Young's modulus in a rolling direction, and to provide a manufacturing method therefor. <P>SOLUTION: The high-rigidity and high-strength cold-rolled steel sheet includes C, Si, Mn, P, S, Al, N, and further one or both elements of 0.005 to 0.100% Nb and 0.002 to 0.150% Ti in total of 0.01 to 0.25%, while satisfying the expressions: 3.0≤3.6Mn+9.6Mo+4.7W+6.2Ni+18.6Cu+0.7Cr≤7.5 (expression 2) and 450≤Bs[°C]≤700, wherein Bs=830-270C-90Mn-37Ni-70Cr-83Mo (expression 1); wherein at a position of 3/8 of the plate thickness, a mean value (A) of random X-ray intensity ratios of crystals having orientations of ä100}<011>, ä211}<011> and ä111}<011> is 3.0 or more and a mean value (B) of random X-ray intensity ratios of crystals having orientations of ä554}<225> and ä110}<001> is of 5.0 or less, while (A)/(B) satisfies the expression of (A)/(B)≥1.5. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高剛性高強度冷延鋼鈑及びその製造方法に関するものである。   The present invention relates to a high-rigidity and high-strength cold-rolled steel plate and a method for producing the same.

これまでに、鋼板の集合組織を制御し、圧延方向に対して直角な方向(幅方向という。)のみのヤング率を高めた鋼板に関して多数の提案がなされている(例えば、特許文献1〜4)。これらは圧延方向と直角方向のヤング率を高めた冷延鋼鈑であり、圧延方向のヤング率を高める技術を提案するものではない。   So far, many proposals have been made on steel sheets that control the texture of the steel sheets and increase the Young's modulus only in the direction perpendicular to the rolling direction (referred to as the width direction) (for example, Patent Documents 1 to 4). ). These are cold-rolled steel plates having a higher Young's modulus in the direction perpendicular to the rolling direction, and do not propose a technique for increasing the Young's modulus in the rolling direction.

また、圧延方向と幅方向のヤング率を同時に高めた鋼板に関して、一定方向への圧延に加えてそれと直角方向の圧延を施す厚鋼板の製造方法が提案されている(例えば、特許文献5)。しかし、薄鋼板の連続熱延プロセスにおいては、圧延の方向を途中で変化させると、生産性を著しく阻害することになり、現実的ではない。   In addition, a steel plate manufacturing method in which the Young's modulus in the rolling direction and the width direction is increased at the same time, in addition to rolling in a certain direction, rolling in a direction perpendicular thereto is proposed (for example, Patent Document 5). However, in the continuous hot rolling process for thin steel sheets, if the rolling direction is changed in the middle, the productivity is remarkably hindered, which is not realistic.

薄鋼板の幅は最大でも2m程度であり、これを超えるような長尺の部材に高ヤング率鋼板を適用するには、圧延方向のヤング率を高める必要があった。また、圧延方向と幅方向の双方に高いヤング率が得られることは部材の設計自由度を飛躍的に高める。   The width of the thin steel plate is about 2 m at the maximum, and in order to apply the high Young's modulus steel plate to a long member exceeding this, it was necessary to increase the Young's modulus in the rolling direction. Moreover, the fact that a high Young's modulus can be obtained in both the rolling direction and the width direction dramatically increases the degree of freedom in designing the member.

本発明者らの一部は、これまで鋼板の表層部に剪断歪みを与え、表層部の圧延方向のヤング率を高める方法を提案している(例えば、特許文献6、7)。これらは、鋼板の表層部に圧延方向のヤング率を高める集合組織を発達させたものであり、振動法によって測定したヤング率は230GPa超という高い数値を示している。これは、表層部のヤング率が高い場合、曲げ変形で測定される振動法では曲げモーメントの大きい表層部の寄与が大きくなるためである。   Some of the present inventors have proposed a method of applying shear strain to the surface layer portion of the steel sheet and increasing the Young's modulus in the rolling direction of the surface layer portion (for example, Patent Documents 6 and 7). These are developed from a texture that increases the Young's modulus in the rolling direction in the surface layer portion of the steel sheet, and the Young's modulus measured by the vibration method is a high value exceeding 230 GPa. This is because when the Young's modulus of the surface layer portion is high, the contribution of the surface layer portion having a large bending moment increases in the vibration method measured by bending deformation.

ヤング率の測定法の一つである振動法は、周波数を変化させながら鋼鈑に曲げ変形を与えて、共振が起こる周波数を求め、それをヤング率に換算する測定方法である。このような方法で測定されたヤング率は動的ヤング率とも呼ばれ、曲げ変形時に得られるヤング率である。   The vibration method, which is one of the Young's modulus measurement methods, is a measurement method in which bending deformation is applied to the steel sheet while changing the frequency to determine the frequency at which resonance occurs, and this is converted into Young's modulus. The Young's modulus measured by such a method is also called dynamic Young's modulus, and is the Young's modulus obtained at the time of bending deformation.

しかし、例えば、長尺の梁や柱などの建材、また自動車用構造部材に作用する応力は曲げではなく、主に引張応力及び圧縮応力である。したがって、このような部材に適用する場合には振動法で得られる動的ヤング率ではなく、引張試験を行った際に得られる応力―歪曲線の弾性変形領域での傾きからヤング率を求める、静的引張法でのヤング率、すなわち静的ヤング率を高めることが極めて重要となる。静的引張法で測定されたヤング率は、板厚方向の部位とは関係なく、ヤング率の高い層と低い層の厚みの比のみで決まる材料全体としてのヤング率である。   However, for example, stress acting on a building material such as a long beam or a column or a structural member for an automobile is not bending but mainly tensile stress and compressive stress. Therefore, when applying to such a member, not the dynamic Young's modulus obtained by the vibration method, but the Young's modulus is obtained from the slope in the elastic deformation region of the stress-strain curve obtained when the tensile test is performed. It is extremely important to increase the Young's modulus in the static tension method, that is, the static Young's modulus. The Young's modulus measured by the static tension method is the Young's modulus of the entire material determined only by the ratio of the thickness of the layer having a high Young's modulus and the layer having a low Young's thickness, regardless of the site in the thickness direction.

しかし、特許文献6及び7に提案されている方法では、板厚中心部の集合組織は必ずしも圧延方向のヤング率向上には寄与しないものであった。そのため、振動法で測定したヤング率は高いものの、静的引張法で測定したヤング率は必ずしも高いものは得られない。更に、冷延鋼板は、熱間圧延後、冷間圧延及び焼鈍を行うため、熱間鋼板の表層に形成された集合組織をそのまま維持することが困難であり、静的引張法で高いヤング率を得ることは非常に難しい。   However, in the methods proposed in Patent Documents 6 and 7, the texture at the center of the plate thickness does not necessarily contribute to the improvement of the Young's modulus in the rolling direction. Therefore, although the Young's modulus measured by the vibration method is high, the Young's modulus measured by the static tension method is not necessarily high. Furthermore, since cold-rolled steel sheets are cold-rolled and annealed after hot rolling, it is difficult to maintain the texture formed on the surface layer of the hot-rolled steel sheet as it is, and a high Young's modulus is obtained by the static tension method. It is very difficult to get.

特開2006−152362公報JP 2006-152362 A 特開2006−183130公報JP 2006-183130 A 特開2006−183131公報JP 2006-183131 A 特開2005−314792公報JP 2005-314792 A 特開平4−147917公報JP-A-4-147717 特開2005−273001公報JP-A-2005-273001 特願2005−330429公報Japanese Patent Application No. 2005-330429

本発明は、圧延方向の静的ヤング率が高い冷延鋼鈑及びその製造方法を提供するものである。   The present invention provides a cold-rolled steel sheet having a high static Young's modulus in the rolling direction and a method for producing the same.

本発明は、Nb及び/又はTiの添加により再結晶を抑制し、更に、C、Mn、Mo、W、Ni、Cu、Crの添加量を適正な条件に調整して、板厚方向のより深い部位まで剪断歪みを導入して、熱間圧延後の組織にベイナイトを生成させ、冷間圧延及び焼鈍後に圧延方向の静的ヤング率を高める集合組織を形成させた冷延鋼板及び製造方法であり、その要旨は以下のとおりである。   The present invention suppresses recrystallization by adding Nb and / or Ti, and further adjusts the addition amount of C, Mn, Mo, W, Ni, Cu, and Cr to appropriate conditions, A cold-rolled steel sheet and a manufacturing method in which shear strain is introduced to a deep part, bainite is generated in the structure after hot rolling, and a texture is formed that increases the static Young's modulus in the rolling direction after cold rolling and annealing. Yes, the summary is as follows.

(1) 質量%で、C:0.010〜0.200%、Mn:0.10〜2.50%を含有し、Si:2.50%以下、P:0.150%以下、S:0.0150%以下、Al:0.150%以下、N:0.0100%以下に制限し、更に、Nb:0.005〜0.100% 、Ti:0.002〜0.150%の一方又は双方を合計で0.01〜0.25%含有し、残部がFe及び不可避的不純物からなり、下記(式1)のBs[℃]が450〜700℃の範囲内であり、板厚3/8位置での{100}<011>、{211}<011>、{111}<011>方位のX線ランダム強度比の平均値(A)が3.0以上、{554}<225>、{110}<001>方位のX線ランダム強度比の平均値(B)が5.0以下で、かつ、(A)/(B)≧1.5であることを特徴とする高剛性高強度冷延鋼鈑。
Bs=830−270C−90Mn−37Ni−70Cr−83Mo ・・・(式1)
ここで、C、Mn、Ni、Cr、Moは各元素の含有量[質量%]である。
(1) By mass%, C: 0.010 to 0.200%, Mn: 0.10 to 2.50%, Si: 2.50% or less, P: 0.150% or less, S: It is limited to 0.0150% or less, Al: 0.150% or less, N: 0.0100% or less, and Nb: 0.005 to 0.100%, Ti: 0.002 to 0.150% Alternatively, both are contained in a total of 0.01 to 0.25%, the balance is made of Fe and inevitable impurities, Bs [° C.] in the following (Formula 1) is in the range of 450 to 700 ° C., and the plate thickness is 3 The average value (A) of the X-ray random intensity ratio of {100} <011>, {211} <011>, {111} <011> orientation at the / 8 position is 3.0 or more, {554} <225> , {110} <001> orientation X-ray random intensity ratio average value (B) is 5.0 or less, and (A) / ( ) High rigidity and high strength cold rolled steel sheet, which is a ≧ 1.5.
Bs = 830-270C-90Mn-37Ni-70Cr-83Mo (Formula 1)
Here, C, Mn, Ni, Cr, and Mo are content [mass%] of each element.

(2) 質量%で、Mo:0.005〜0.500%、Cr:0.005〜1.000%、W:0.005〜1.500%、Cu:0.005〜0.350%、Ni:0.005〜0.350%の1種又は2種以上を下記(式2)を満足する範囲で含有することを特徴とする上記(1)に記載の高剛性高強度冷延鋼鈑。
3.0≦3.2Mn+9.6Mo+4.7W+6.2Ni+18.6Cu+0.7Cr≦7.5 ・・・(式2)
ここで、Mn、Mo、W、Ni、Cu、Crは各元素の含有量[質量%]である。
(3) 質量%で、B:0.0003〜0.0100%を含有することを特徴とする上記(1)又は(2)に記載の高剛性高強度冷延鋼鈑
(4) 質量%で、Ca:0.0005〜0.1000%、Rem:0.0005〜0.1000%、V:0.001〜0.100%の1種又は2種以上を含有することを特徴とする上記(1)〜(3)の何れかに記載の高剛性高強度冷延鋼鈑。
(5) 板厚1/16位置での{110}<112>方位、{110}<111>方位の一方又は双方のX線ランダム強度比が3以上であることを特徴とする上記(1)〜(4)の何れかに記載の高剛性高強度冷延鋼鈑。
(6) 圧延方向の静的ヤング率が215GPa以上であることを特徴とする上記(1)〜(5)の何れかに記載の高剛性高強度冷延鋼鈑。
(2) By mass%, Mo: 0.005 to 0.500%, Cr: 0.005 to 1.000%, W: 0.005 to 1.500%, Cu: 0.005 to 0.350% Ni: 0.005 to 0.350% of one kind or two or more kinds are contained in a range satisfying the following (formula 2), and the high rigidity and high strength cold-rolled steel according to the above (1)鈑.
3.0 ≦ 3.2Mn + 9.6Mo + 4.7W + 6.2Ni + 18.6Cu + 0.7Cr ≦ 7.5 (Formula 2)
Here, Mn, Mo, W, Ni, Cu, and Cr are the content [% by mass] of each element.
(3) The high-rigidity and high-strength cold-rolled steel sheet according to (1) or (2) above, which contains B: 0.0003 to 0.0100% by mass% (4) , Ca: 0.0005 to 0.1000%, Rem: 0.0005 to 0.1000%, V: 0.001 to 0.100%, or one or more of the above (characterized above) The high-rigidity and high-strength cold-rolled steel plate according to any one of 1) to (3).
(5) The X-ray random intensity ratio of one or both of the {110} <112> orientation and the {110} <111> orientation at a plate thickness of 1/16 is 3 or more. The high-rigidity high-strength cold-rolled steel plate according to any one of to (4).
(6) The high-rigidity and high-strength cold-rolled steel plate according to any one of (1) to (5) above, wherein the static Young's modulus in the rolling direction is 215 GPa or more.

(7) 上記(1)〜(6)の何れかに記載の高剛性高強度冷延鋼鈑に、溶融亜鉛めっきが施されていることを特徴とする高剛性高強度溶融亜鉛めっき冷延鋼板。
(8) 上記(1)〜(6)の何れかに記載の高剛性高強度冷延鋼鈑に、合金化溶融亜鉛めっきが施されていることを特徴とする高剛性高強度合金化溶融亜鉛めっき冷延鋼板。
(7) A high-rigidity, high-strength hot-dip galvanized cold-rolled steel sheet, wherein the high-rigidity, high-strength cold-rolled steel sheet according to any one of (1) to (6) is hot-dip galvanized. .
(8) High-rigidity and high-strength alloyed hot-dip galvanized steel, characterized in that alloyed hot-dip galvanizing is applied to the high-rigidity and high-strength cold-rolled steel sheet according to any one of (1) to (6) above Plated cold-rolled steel sheet.

(9) 上記(1)〜(6)の何れかに記載の冷延鋼鈑の製造方法であって、上記(1)〜(4)の何れかに記載の化学成分を有する鋼片を1100℃以上に加熱し、1000℃以下での圧下率の合計を40%以上、かつ、下記(式3)によって求められる形状比Xの平均値を2.5以上とし、最終パスの温度をAr変態点以上900℃以下とする熱間圧延を施し、下記(式1)のBs[℃]以下、かつ450〜650℃の温度範囲内で巻き取った後、30〜80%の冷間圧延を施し、更に室温から650℃までの平均加熱速度3〜300℃/sで、650℃以上Ac変態温度以下に加熱し、1秒以上保持する焼鈍を行うことを特徴とする高剛性高強度冷延鋼鈑の製造方法。
Bs=830−270C−90Mn−37Ni−70Cr−83Mo ・・・(式1)
形状比X=l/h ・・・(式3)
(熱延ロールと鋼鈑の接触弧長):√(L×(hin−hout)/2)、
:(hin+hout)/2、
L:ロール直径、
in:圧延ロール入側の板厚、
out:圧延ロール出側の板厚、
ここで、C、Mn、Ni、Cr、Moは各元素の含有量[質量%]である。
(10) 前記熱間圧延を施す際に、異周速率が1%以上の異周速圧延を少なくとも1パス以上施すことを特徴とする上記(9)に記載の高剛性高強度冷延鋼鈑の製造方法。
(9) A method for producing a cold-rolled steel plate according to any one of (1) to (6) above, wherein a steel piece having the chemical component according to any one of (1) to (4) is 1100. The total reduction ratio at 1000 ° C. or less is 40% or more, the average value of the shape ratio X obtained by the following (Formula 3) is 2.5 or more, and the temperature of the final pass is Ar 3 Hot rolling is performed at a transformation point or higher and 900 ° C. or lower, and after winding within a temperature range of 450 to 650 ° C. below Bs [° C.] of (Formula 1), cold rolling of 30 to 80% is performed. High-rigidity and high-strength cooling, which is further performed by annealing at an average heating rate of 3 to 300 ° C./s from room temperature to 650 ° C. and heating to 650 ° C. to Ac 3 transformation temperature and holding for 1 second or more. A method for producing rolled steel sheets.
Bs = 830-270C-90Mn-37Ni-70Cr-83Mo (Formula 1)
Shape ratio X = l d / h m (Formula 3)
l d (contact arc length of hot-rolled roll and steel plate): √ (L × (h in −h out ) / 2),
h m : (h in + h out ) / 2
L: roll diameter,
h in : plate thickness on the rolling roll entry side,
h out : thickness of the roll exit side,
Here, C, Mn, Ni, Cr, and Mo are content [mass%] of each element.
(10) The high-rigidity and high-strength cold-rolled steel sheet according to (9), wherein when performing the hot rolling, at least one pass of different peripheral speed rolling with a different peripheral speed ratio of 1% or more is performed. Manufacturing method.

(11) 上記(7)に記載の溶融亜鉛めっき冷延鋼板の製造方法であって、上記(9)又は(10)に記載の方法で製造した鋼板の表面に溶融亜鉛めっきを施すことを特徴とする高剛性高強度溶融亜鉛めっき冷延鋼板の製造方法。
(12) 上記(8)に記載の合金化溶融亜鉛めっき冷延鋼板の製造方法であって、上記(9)又は(10)に記載の方法で製造した鋼板の表面に溶融亜鉛めっきを施した後、450〜600℃までの温度範囲で10s以上の熱処理を行うことを特徴とする高剛性高強度合金化溶融亜鉛めっき冷延鋼板の製造方法。
(11) The method for producing a hot-dip galvanized cold-rolled steel sheet according to (7) above, wherein hot-dip galvanizing is performed on the surface of the steel sheet produced by the method according to (9) or (10). A method for producing a high-rigidity, high-strength hot-dip galvanized cold-rolled steel sheet.
(12) A method for producing a galvannealed cold-rolled steel sheet according to (8) above, wherein the surface of the steel sheet produced by the method according to (9) or (10) is hot dip galvanized. Then, the manufacturing method of the high-rigidity high-strength galvannealed cold-rolled steel sheet characterized by performing heat processing for 10 s or more in the temperature range to 450-600 degreeC.

本発明により、圧延方向の静的ヤング率が向上した、高ヤング率冷延鋼板を得ることができる。   According to the present invention, a cold rolled steel sheet having a high Young's modulus with an improved static Young's modulus in the rolling direction can be obtained.

ヤング率は結晶方位に依存し、<111>方向は最もヤング率を高め、これに次いでヤング率を高める効果を有するのは<110>方向である。一方、<100>方向が集積すると、ヤング率が著しく低下する。
したがって、圧延方向に<111>方向が揃った方位(<111>方位群という。)を鋼板中に増やすことがヤング率を上げるために最も効果的である。
The Young's modulus depends on the crystal orientation, and the <111> direction has the effect of increasing the Young's modulus the most, and then the effect of increasing the Young's modulus is the <110> direction. On the other hand, when the <100> direction is accumulated, the Young's modulus is significantly reduced.
Therefore, increasing the orientation in which the <111> directions are aligned in the rolling direction (referred to as the <111> orientation group) in the steel sheet is most effective for increasing the Young's modulus.

本発明者らは熱延板の表層部に発達する剪断層に発達する<111>方位群を活用することで、圧延方向の動的ヤング率を上げる方法を提案している。しかしながら、
1)これらの表層方位は、その後の冷延・焼鈍中にある程度壊れてしまう、
2)冷延・焼鈍中に板厚中心部に圧延方向のヤング率を下げる方位が発達する、
ことから、冷延鋼板において圧延方向の静的ヤング率を高めることは困難であった。
The present inventors have proposed a method of increasing the dynamic Young's modulus in the rolling direction by utilizing the <111> orientation group that develops in the shear layer that develops in the surface layer portion of the hot-rolled sheet. However,
1) These surface orientations break to some extent during the subsequent cold rolling and annealing.
2) During cold rolling and annealing, an orientation that lowers the Young's modulus in the rolling direction develops at the center of the plate thickness.
For this reason, it has been difficult to increase the static Young's modulus in the rolling direction in cold-rolled steel sheets.

そこで本発明者らは、冷延焼鈍後の板厚中心部の集合組織に着目し、<111>方位群に次いでヤング率を高める効果を有する<110>方位群を板厚中心部にできるだけ増やし、かつ<100>方位を低減する方法について鋭意研究を行った。その結果、次のような知見を新たに得たものである。   Therefore, the present inventors pay attention to the texture at the center of the thickness after cold rolling annealing, and increase the <110> orientation group having the effect of increasing the Young's modulus next to the <111> orientation group as much as possible at the center of the thickness. In addition, intensive research was conducted on methods for reducing the <100> orientation. As a result, the following knowledge was newly obtained.

(i)Nb及び/又はTiの添加によりオーステナイト相(以下、γ相という。)での再結晶を抑制して熱間圧延すると、圧延方向が<110>方向を向いている{100}<011>〜{111}<011>方位群が発達する。熱間圧延中の再結晶を抑制するために、更に、Bを添加することが好ましい。 (I) When hot rolling is performed while suppressing recrystallization in the austenite phase (hereinafter referred to as γ phase) by adding Nb and / or Ti, the rolling direction is oriented in the <110> direction {100} <011 > To {111} <011> orientation groups develop. In order to suppress recrystallization during hot rolling, it is preferable to further add B.

(ii)発達した{100}<011>〜{111}<011>方位群を冷延中に更に発達させるためには、熱延板組織をベイナイト化することが重要である。 (Ii) In order to further develop the developed {100} <011> to {111} <011> orientation groups during cold rolling, it is important to bainite the hot rolled sheet structure.

(iii)ただし、熱間圧延中に{100}<011>〜{111}<011>方位群が発達すると、冷延焼鈍後、圧延方向のヤング率を低下させる{554}<225>〜{110}<001>方位群の元となる、{332}<113>方位も熱延鋼板の板厚中心部に発達する。これを抑制するためには、γ相の積層欠陥エネルギーを考慮し、Mn、Cr、Mo等の成分を最適化することが必要である。 (Iii) However, if the {100} <011> to {111} <011> orientation group develops during hot rolling, the Young's modulus in the rolling direction is lowered after cold rolling annealing {554} <225> to { The {332} <113> orientation, which is the origin of the 110} <001> orientation group, also develops in the center of the thickness of the hot-rolled steel sheet. In order to suppress this, it is necessary to optimize the components such as Mn, Cr, and Mo in consideration of the stacking fault energy of the γ phase.

(iv)また、冷延・焼鈍中の{554}<225>〜{110}<001>方位群の発達を抑制するためには、熱延時に剪断力を出来るだけ内層まで作用させることが必要である。剪断力が働くことによって、熱延板の表層に剪断集合組織(<111>方位群)が発達し、圧延方向のヤング率が著しく発達することは前述した。しかし、この剪断力を出来るだけ内層まで作用させると、冷延焼鈍後の板厚中心部の集合組織にも変化が生じることが明らかになった。この原因は明らかではないが、剪断力が内層まで作用することによって、板厚中心近傍の熱延板組織の集合組織やひずみ状態が変化し、冷延・焼鈍中に{554}<225>〜{110}<001>方位が発達するのを抑制する効果があると考えられる。剪断力を内層まで作用させるためには圧延のロール径と板厚の関係で規定される形状比を制御することが非常に効果的である。 (Iv) Moreover, in order to suppress the development of {554} <225> to {110} <001> orientation groups during cold rolling / annealing, it is necessary to apply a shearing force to the inner layer as much as possible during hot rolling. It is. As described above, the shearing force acts to develop a shear texture (<111> orientation group) on the surface layer of the hot-rolled sheet and to significantly develop the Young's modulus in the rolling direction. However, it was revealed that when this shearing force was applied to the inner layer as much as possible, the texture also changed in the center of the plate thickness after cold rolling annealing. Although the cause of this is not clear, the texture and strain state of the hot-rolled sheet structure near the center of the sheet thickness change due to the shearing force acting to the inner layer, and during cold rolling / annealing, {554} <225>- It is considered that there is an effect of suppressing the development of the {110} <001> orientation. In order to apply the shearing force to the inner layer, it is very effective to control the shape ratio defined by the relationship between the rolling roll diameter and the plate thickness.

上記(i)については、Nb:0.005〜0.100%、Ti:0.002〜0.150%の一方又は双方を合計で0.01〜0.25%含有することが必要である。更に、B:0.0003〜0.001%を含有することが好ましい。   About said (i), it is necessary to contain one or both of Nb: 0.005-0.100%, Ti: 0.002-0.150% in total 0.01-0.25% . Furthermore, it is preferable to contain B: 0.0003 to 0.001%.

上記(ii)については、C、Mn、Ni、Cr、Moの含有量[質量%]を、下記(式1)で表されるBs[℃]が450〜700℃の範囲内になるように調整することが必要である。
Bs=830−270C−90Mn−37Ni−70Cr−83Mo ・・・(式1)
なお、上記(式1)において、選択元素であるNi、Cr、Moが不純物である場合、即ち、各元素の添加量が好ましい下限未満である場合は0として計算する。
About said (ii), content [mass%] of C, Mn, Ni, Cr, and Mo is set so that Bs [° C.] represented by the following (formula 1) falls within the range of 450 to 700 ° C. It is necessary to adjust.
Bs = 830-270C-90Mn-37Ni-70Cr-83Mo (Formula 1)
In the above (Formula 1), when the selective elements Ni, Cr, and Mo are impurities, that is, when the addition amount of each element is less than the preferred lower limit, it is calculated as 0.

(式1)のBs[℃]は、成分元素が、熱延板組織のベイナイト化に関する温度に及ぼす影響を数値化した経験式である。冷延中に集合組織を発達させるためには熱延板組織がベイナイト相を主相としていることが重要である。フェライト相+マルテンサイト相やフェライト相+パーライト相のように硬度差のある二相が混在している熱延板では、冷延中に硬質相周辺に不均一変形が生じ、集合組織がランダム化してしまう。   Bs [° C.] in (Expression 1) is an empirical expression that quantifies the influence of the component elements on the temperature related to the bainite of the hot-rolled sheet structure. In order to develop a texture during cold rolling, it is important that the hot rolled sheet structure has a bainite phase as the main phase. In a hot-rolled sheet in which two phases with different hardness such as ferrite phase + martensite phase and ferrite phase + pearlite phase are mixed, non-uniform deformation occurs around the hard phase during cold rolling, and the texture becomes random. End up.

(式1)のBs[℃]が700℃を超えると、巻取温度範囲でベイナイト相を生成することが困難となることからこの値を上限とした。また、通常の熱延条件範囲で熱延板組織をベイナイト主相にするためには合金成分がBs[℃]の値が450℃未満になると、熱延板が硬質化し、冷延時に冷延装置への負担が大きくなると共に、集合組織の発達も阻害されることから、この値を下限とする。   If Bs [° C.] of (Formula 1) exceeds 700 ° C., it becomes difficult to generate a bainite phase in the coiling temperature range, so this value was made the upper limit. Further, in order to make the hot-rolled sheet structure into a bainite main phase in the normal hot-rolling condition range, when the value of Bs [° C.] is less than 450 ° C., the hot-rolled sheet becomes hard and cold-rolled during cold rolling. Since this imposes a heavy burden on the apparatus and inhibits the development of texture, this value is set as the lower limit.

更に、熱間圧延後の巻取温度の上限を(式1)で求めたBs[℃]以下、かつ650℃以下とすることが必要である。これは、巻取温度がBs[℃]超又は650℃超になると熱延板組織がベイナイト主相にならず、冷延・焼鈍中に集合組織がランダム化するためである。また、巻取温度の下限については、450℃未満にすると熱延板が硬質化し、冷延時に冷延装置への負担が大きくなる。   Furthermore, it is necessary to set the upper limit of the coiling temperature after hot rolling to Bs [° C.] or less obtained in (Equation 1) and 650 ° C. or less. This is because when the coiling temperature exceeds Bs [° C.] or above 650 ° C., the hot-rolled sheet structure does not become the bainite main phase, and the texture is randomized during cold rolling and annealing. Moreover, about the minimum of coiling temperature, when it makes less than 450 degreeC, a hot-rolled board will become hard and the burden to a cold-rolling apparatus will become large at the time of cold rolling.

上記(iii)については、具体的には、下記(式2)を満足するようにMn、Mo、W、Ni、Cu、Cr添加することが望ましい。
3.0≦3.2Mn+9.6Mo+4.7W+6.2Ni+18.6Cu+0.7Cr
≦7.5 ・・・(式2)
ここで、Mn、Mo、W、Ni、Cu、Crは各元素の含有量[質量%]であり、選択元素であるMo、W、Ni、Cu、Crが不純物である場合、即ち、各元素の添加量が好ましい下限未満である場合は0として計算する。
As for (iii), specifically, it is desirable to add Mn, Mo, W, Ni, Cu, and Cr so as to satisfy the following (Formula 2).
3.0 ≦ 3.2Mn + 9.6Mo + 4.7W + 6.2Ni + 18.6Cu + 0.7Cr
≦ 7.5 (Formula 2)
Here, Mn, Mo, W, Ni, Cu, and Cr are the contents [mass%] of each element, and when the selective elements Mo, W, Ni, Cu, and Cr are impurities, that is, each element. When the amount of addition is less than the preferred lower limit, it is calculated as 0.

この、上記(式2)の関係式は、γ相を有するオーステナイト系ステンレスの積層欠陥エネルギーに及ぼす各元素の影響を数値化した式を基に、本発明者らが試験を行って更に検討を加え、修正したものである。(式2)の関係式の値が7.5を超えると板厚中心部に冷延焼鈍後に圧延方向のヤング率を低下させる方位の発達の元となる{332}<113>が発達することから、この値を上限とする。この観点からは6.5以下にすることがより望ましい。一方、この関係式の値が3.0未満では材料の強度を確保することが困難になる。また、表層で圧延方向ヤング率を高める{110}<111>方位への集積度が下がり、結果として圧延方向ヤング率が低下することがある。   The above relational expression (Formula 2) is further examined by the present inventors based on a numerical expression of the effect of each element on the stacking fault energy of austenitic stainless steel having a γ phase. In addition, it has been modified. If the value of the relational expression of (Expression 2) exceeds 7.5, {332} <113> that develops an orientation that lowers the Young's modulus in the rolling direction after cold rolling annealing is developed at the center of the sheet thickness. Therefore, this value is the upper limit. From this point of view, it is more desirable to make it 6.5 or less. On the other hand, if the value of this relational expression is less than 3.0, it is difficult to ensure the strength of the material. Further, the degree of accumulation in the {110} <111> orientation, which increases the rolling direction Young's modulus in the surface layer, may decrease, and as a result, the rolling direction Young's modulus may decrease.

上記(iv)については、熱間圧延の剪断力を内層まで作用させるために、1100℃以下で行われる熱間圧延のパス毎の形状比の平均値が2.5以上を満足する必要がある。形状比Xは、下記(式3)に示すように、ロールと鋼鈑の接触弧張と平均板厚の比である。この形状比Xの値が大きいほど、熱延板の板厚方向のより深い部分にまで、剪断力が作用し、集合組織やひずみ状態が変化することは、本発明者らが得た知見である。
形状比X=l/h ・・・(式3)
ここで、l(圧延ロールと鋼鈑の接触弧長):√(L×(hin−hout)/2)
:(hin+hout)/2
L :圧延ロールの直径
in:圧延ロール入側の板厚
out:圧延ロール出側の板厚
For (iv) above, the average value of the shape ratio for each pass of hot rolling performed at 1100 ° C. or lower needs to satisfy 2.5 or more in order to cause the hot rolling shear force to act on the inner layer. . As shown in the following (formula 3), the shape ratio X is a ratio between the contact arc tension of the roll and the steel plate and the average plate thickness. According to the knowledge obtained by the present inventors, the larger the value of the shape ratio X, the greater the shear force acts on the deeper portion in the thickness direction of the hot-rolled sheet, and the texture and strain state change. is there.
Shape ratio X = l d / h m (Formula 3)
Here, l d (contact arc length of rolling roll and steel plate): √ (L × (h in −h out ) / 2)
h m : (h in + h out ) / 2
L: Diameter of the rolling roll
h in : Thickness on the entry side of the rolling roll
h out : Plate thickness on the exit side of the rolling roll

上記(式3)によって求められる形状比Xの平均値が2.5未満では冷延焼鈍後に高い圧延方向ヤング率が得られない。高い圧延方向ヤング率を得る為には形状比Xの平均値は大きいほどよく、より好ましい下限値は3.5、更に望ましくは5.0以上とする。上限は特には設けないが、通常の熱延設備で平均形状比を10.0以上にすることは設備負荷が極めて大きい。   If the average value of the shape ratio X obtained by the above (Formula 3) is less than 2.5, a high Young's modulus in the rolling direction cannot be obtained after cold rolling annealing. In order to obtain a high Young's modulus in the rolling direction, the average value of the shape ratio X is preferably as large as possible, and a more preferable lower limit value is 3.5, more desirably 5.0 or more. An upper limit is not particularly provided, but setting the average shape ratio to 10.0 or more in a normal hot rolling facility has a very large facility load.

以下、本発明の冷延鋼板のX線ランダム強度比とヤング率について説明する。   Hereinafter, the X-ray random strength ratio and Young's modulus of the cold-rolled steel sheet of the present invention will be described.

板厚3/8位置での{100}<011>、{211}<011>、{111}<011>方位のX線ランダム強度比の平均値(A):
これらの方位は何れも圧延方向のヤング率を高めるのに有効な方位である。これらの方位のX線ランダム強度比の平均値(A)が3.0未満であれば、圧延方向のヤング率は向上しない。したがって、(A)の値の下限値は3.0とする。この観点から(A)の値は5.0以上であることが望ましく、10.0以上であることが更に望ましい。この値が大きいほどヤング率は高くなることから上限は特に規定しないが、30.0以上にすることは実質困難である。
Average value (A) of X-ray random intensity ratio of {100} <011>, {211} <011>, {111} <011> orientation at the plate thickness 3/8 position:
These orientations are all effective for increasing the Young's modulus in the rolling direction. If the average value (A) of the X-ray random intensity ratios in these directions is less than 3.0, the Young's modulus in the rolling direction is not improved. Therefore, the lower limit of the value of (A) is set to 3.0. From this viewpoint, the value of (A) is preferably 5.0 or more, and more preferably 10.0 or more. Since the Young's modulus increases as this value increases, the upper limit is not particularly specified, but it is substantially difficult to set it to 30.0 or more.

(A)の値を3.0以上とするには、上記(i)において述べたように、Nb、Tiの添加が必要であり、Bの添加が更に好ましい。また、上記(ii)において述べたように、熱延板の組織をベイナイト化するため、成分組成及び巻取り温度を適正な条件とすることが必要である。   In order to set the value of (A) to 3.0 or more, as described in (i) above, addition of Nb and Ti is necessary, and addition of B is more preferable. Moreover, as described in (ii) above, in order to bainite the structure of the hot-rolled sheet, it is necessary to set the component composition and the winding temperature to appropriate conditions.

板厚3/8位置での{554}<225>、{110}<001>方位のX線ランダム強度比の平均値(B):
これらの方位は何れも圧延方向のヤング率を低くする方位である。したがって、これらの値の平均値(B)が5.0以下でなければならない。望ましくは3以下とする。下限は特に設定しないが、原理上この値は0より小さくなることはありえない。
Average value (B) of X-ray random intensity ratios in {554} <225>, {110} <001> orientation at the plate thickness 3/8 position:
These orientations are all orientations that lower the Young's modulus in the rolling direction. Therefore, the average value (B) of these values must be 5.0 or less. Desirably 3 or less. Although the lower limit is not particularly set, in principle, this value cannot be smaller than 0.

{554}<225>、{110}<001>方位は、{554}<225>〜{110}<001>方位群の代表的な結晶方位であり、(B)の値を5.0以下とするには、上記(iii )及び(iv)において述べたように、成分組成及び形状比の制御が必要である。更に、後述するように冷延率を80%以下とすることが必要であり、65%以下とすることが好ましい。   The {554} <225> and {110} <001> orientations are representative crystal orientations of the {554} <225> to {110} <001> orientation groups, and the value of (B) is 5.0 or less. In order to achieve this, as described in (iii) and (iv) above, it is necessary to control the component composition and the shape ratio. Furthermore, as described later, the cold rolling rate needs to be 80% or less, and is preferably 65% or less.

(A)/(B):
板厚3/8位置での{100}<011>、{211}<011>、{111}<011>方位のX線ランダム強度比の平均値(A){554}<225>、{110}<001>方位のX線ランダム強度比の平均値(B)の比(A)/(B)は1.5以上とする。この範囲が満足できないと圧延方向のヤング率の値が上がらない。この観点から望ましくは、2.0以上、更に望ましくは3.0以上とする。
(A) / (B):
Average value (A) of {100} <011>, {211} <011>, {111} <011> orientation X-ray random intensity ratio (A) {554} <225>, {110 } The ratio (A) / (B) of the average value (B) of the X-ray random intensity ratio in the <001> orientation is 1.5 or more. If this range cannot be satisfied, the value of Young's modulus in the rolling direction will not increase. From this viewpoint, it is preferably 2.0 or more, and more preferably 3.0 or more.

板厚1/16位置での{110}<112>方位、{110}<111>方位の一方又は双方のX線ランダム強度比:
これらの方位は何れも圧延方向のヤング率、特に動的ヤング率を上げるのに有効な方位である。したがって、X線ランダム強度比で3.0以上であることが望ましい。この観点からは5以上であることが望ましい。更に望ましくは10.0以上である。このようにするには、後述するように冷間圧延の圧下率を55%以下とすることが好ましい。
X-ray random intensity ratio of one or both of {110} <112> orientation and {110} <111> orientation at a plate thickness of 1/16 position:
These orientations are all effective for increasing the Young's modulus in the rolling direction, particularly the dynamic Young's modulus. Therefore, the X-ray random intensity ratio is desirably 3.0 or more. From this point of view, it is preferably 5 or more. More desirably, it is 10.0 or more. In order to do this, it is preferable that the rolling reduction of the cold rolling is 55% or less as will be described later.

以上の{100}<011>方位、{211}<011>方位、{111}<011>方位、{554}<225>方位、{110}<001>方位、{110}<112>方位、及び{110}<111>方位のX線ランダム強度比は、X線回折によって測定される{110}、{100}、{211}、{310}極点図のうち複数の極点図を基に級数展開法で計算した、3次元集合組織を表す結晶方位分布関数(Orientation Distribution Function、ODFという。)から求めればよい。 なお、X線ランダム強度比とは、特定の方位への集積を持たない標準試料と供試材のX線強度を同条件でX線回折法等により測定し、得られた供試材のX線強度を標準試料のX線強度で除した数値である。   {100} <011> orientation, {211} <011> orientation, {111} <011> orientation, {554} <225> orientation, {110} <001> orientation, {110} <112> orientation, And the {110} <111> orientation X-ray random intensity ratio is a series based on a plurality of pole figures among {110}, {100}, {211}, {310} pole figures measured by X-ray diffraction. What is necessary is just to obtain | require from the crystal orientation distribution function (Orientation Distribution Function, ODF) showing the three-dimensional texture calculated by the expansion | deployment method. Note that the X-ray random intensity ratio means that the X-ray intensity of a standard sample that does not accumulate in a specific orientation and the test material is measured under the same conditions by the X-ray diffraction method or the like. It is a numerical value obtained by dividing the line intensity by the X-ray intensity of the standard sample.

図1に、本発明の結晶方位が表示されるφ2=45°断面のODFを示す。ここで、結晶の方位は通常、板面に垂直な方位を[hkl]又は{hkl}、圧延方向に平行な方位を(uvw)又は<uvw>で表示する。{hkl}、<uvw>は等価な面の総称であり、[hkl]、(uvw)は個々の結晶面を指す。即ち、本発明においてはb.c.c.構造を対象としているため、例えば(111)、(−111)、(1−11)、(11−1)、(−1−11)、(−11−1)、(1−1−1)、(−1−1−1)面は等価であり区別がつかない。このような場合、これらの方位を総称して{111}と称する。 FIG. 1 shows an ODF of a φ 2 = 45 ° cross section where the crystal orientation of the present invention is displayed. Here, the orientation of the crystal is usually expressed as [hkl] or {hkl} in the direction perpendicular to the plate surface, and (uvw) or <uvw> in the direction parallel to the rolling direction. {Hkl} and <uvw> are generic terms for equivalent planes, and [hkl] and (uvw) indicate individual crystal planes. That is, in the present invention, b. c. c. Since the structure is targeted, for example, (111), (−111), (1-11), (11-1), (−1-11), (-11-1), (1-1-1) , (-1-1-1) planes are equivalent and indistinguishable. In such a case, these orientations are collectively referred to as {111}.

なお、ODFは、対称性の低い結晶構造の方位表示にも用いられるため、一般的にはφ=0〜360°、Φ=0〜180°、φ=0〜360°で表現され、個々の方位が[hkl](uvw)で表示される。しかし、本発明では、対称性の高い体心立方晶を対象としているため、Φとφについては0〜90°の範囲で表現される。
また、φは計算を行う際に変形による対称性を考慮するか否かによって、その範囲が変わるが、本発明においては、対称性を考慮しφ=0〜90°で表記する、すなわちφ=0〜360°での同一方位の平均値を0〜90°のODF上に表記する方式を選択する。この場合は、[hkl](uvw)と{hkl}<uvw>は同義である。したがって、例えば、図1に示した、φ2=45°断面におけるODFの(110)[1−11]のX線ランダム強度比は{110}<111>方位のX線ランダム強度比である。
In addition, since ODF is also used for the orientation display of a crystal structure with low symmetry, it is generally expressed by φ 1 = 0 to 360 °, Φ = 0 to 180 °, φ 2 = 0 to 360 °, Individual orientations are displayed in [hkl] (uvw). However, according to the invention, since the high body-centered cubic symmetry of interest, for Φ and phi 2 is expressed in a range of 0 to 90 °.
In addition, the range of φ 1 varies depending on whether or not symmetry due to deformation is taken into account when performing the calculation. In the present invention, φ 1 is expressed as 0 to 90 ° in consideration of symmetry, that is, A method of selecting an average value in the same direction at φ 1 = 0 to 360 ° on an ODF of 0 to 90 ° is selected. In this case, [hkl] (uvw) and {hkl} <uvw> are synonymous. Therefore, for example, the X-ray random intensity ratio of (110) [1-11] of the ODF in the φ2 = 45 ° cross section shown in FIG. 1 is the X-ray random intensity ratio in the {110} <111> orientation.

X線回折用試料の作製は次のようにして行う。
鋼板を機械研磨や化学研磨などによって板厚方向に所定の位置まで研磨し、バフ研磨によって鏡面に仕上げた後、電解研磨や化学研磨によって歪みを除去すると同時に、3/8又は1/16板厚部が測定面となるように調整する。なお、測定面を正確に所定の板厚位置にすることは困難であるので、目標とする位置を中心として板厚に対して3%の範囲内が測定面となるように試料を作製すればよい。また、X線回折による測定が困難な場合には、EBSP(lectron ack cattering attern)法やECP(lectron hanneling attern)法により統計的に十分な数の測定を行っても良い。
The sample for X-ray diffraction is manufactured as follows.
A steel plate is polished to a predetermined position in the plate thickness direction by mechanical polishing or chemical polishing, and finished to a mirror surface by buff polishing, and then strain is removed by electrolytic polishing or chemical polishing, and at the same time, 3/8 or 1/16 plate thickness Adjust so that the part becomes the measurement surface. Since it is difficult to accurately set the measurement surface to the predetermined plate thickness position, if the sample is prepared so that the measurement surface is within a range of 3% of the plate thickness with the target position as the center. Good. Further, when it is difficult to measure due to X-ray diffraction, even if the statistical measure sufficient number of the EBSP (E lectron B ack S cattering P attern) method or ECP (E lectron C hanneling P attern ) Method good.

静的ヤング率の測定は、JIS Z 2201に準拠した引張試験片を用いて、鋼板の降伏強度の1/2に相当する引張応力を付与して行う。即ち、降伏強度の1/2に相当する引張応力を加えて、得られた応力−歪み線図の傾きに基づいて、ヤング率を算出する。測定のバラツキを排除するため、同じ試験片を用いて、5回の計測し、得られた結果のうち最大値及び最小値を除いた3つの計測値の平均値として算出した値をヤング率とする。   The measurement of the static Young's modulus is performed by applying a tensile stress corresponding to 1/2 of the yield strength of the steel sheet using a tensile specimen according to JIS Z 2201. That is, the Young's modulus is calculated based on the slope of the obtained stress-strain diagram by applying a tensile stress corresponding to ½ of the yield strength. In order to eliminate variation in measurement, the same test piece was used, and the value calculated as the average value of the three measured values excluding the maximum and minimum values was obtained as the Young's modulus. To do.

以下、本発明において鋼組成を限定する理由についてさらに説明する。なお、元素の含有量の%は、質量%を意味する。   Hereinafter, the reason for limiting the steel composition in the present invention will be further described. In addition,% of element content means the mass%.

Cは、強度を増加させる元素であり、ヤング率の観点からも0.010%以上の添加が必要である。C量が0.010%未満に低下するとAr変態温度が上昇し、低温での熱延が困難となり、冷延焼鈍後のヤング率が低下することがあるためである。更に、溶接部の疲労特性の劣化を抑制するためには、0.020%以上とすることが好ましい。
一方、C量が0.200%を超えると成形性が劣化するため、上限を0.200%以下とする。また、C量が0.100%を超えると溶接性を損うことがあるため、C量の上限を0.100%以下とすることが好ましい。また、C量が0.060%を超えると圧延方向のヤング率が低下することがあるため、上限を0.060%以下とすることが更に好ましい。
C is an element that increases the strength, and from the viewpoint of Young's modulus, addition of 0.010% or more is necessary. This is because when the C content is reduced to less than 0.010%, the Ar 3 transformation temperature rises, it becomes difficult to perform hot rolling at a low temperature, and the Young's modulus after cold rolling annealing may be reduced. Furthermore, in order to suppress the deterioration of the fatigue characteristics of the welded portion, it is preferably 0.020% or more.
On the other hand, if the C content exceeds 0.200%, the formability deteriorates, so the upper limit is made 0.200% or less. Moreover, since weldability may be impaired when the C content exceeds 0.100%, the upper limit of the C content is preferably 0.100% or less. Moreover, since the Young's modulus of a rolling direction may fall when C amount exceeds 0.060%, it is still more preferable to make an upper limit into 0.060% or less.

Siは脱酸元素であり、下限は規定しないが、0.001%未満とするには製造コストが高くなる。また、Siは、固溶強化により強度を増加させる元素であり、冷延・焼鈍後にマルテンサイトやベイナイトさらには残留オーステナイト等を含む組織を得るためにも有効である。そのため、狙いとする強度レベルに応じて積極的に添加しても良いが、添加量が2.50%超となるとプレス成形性が劣化するため、2.50%以下を上限とする。
また、Si量が多いと化成処理性が低下するので、1.20%以下とすることが好ましい。更に、溶融亜鉛めっきを施す場合には、めっき密着性の低下、合金化反応の遅延による生産性の低下などの問題が生ずることがあるため、Si量の上限を1.00%以下とすることが好ましい。ヤング率の観点からはSi量の上限を0.60%以下とすることがより好ましく、更に好ましくは0.30%以下である。
Si is a deoxidizing element, and the lower limit is not specified, but if it is less than 0.001%, the production cost becomes high. Si is an element that increases the strength by solid solution strengthening, and is also effective for obtaining a structure containing martensite, bainite, and retained austenite after cold rolling and annealing. Therefore, it may be positively added according to the target strength level, but if the added amount exceeds 2.50%, the press formability deteriorates, so 2.50% or less is made the upper limit.
Moreover, since chemical conversion processability will fall when there is much Si amount, it is preferable to set it as 1.20% or less. Furthermore, when hot dip galvanizing is performed, problems such as reduced plating adhesion and reduced productivity due to a delay in the alloying reaction may occur, so the upper limit of Si content should be 1.00% or less. Is preferred. From the viewpoint of Young's modulus, the upper limit of Si content is more preferably 0.60% or less, and still more preferably 0.30% or less.

Mnは、本発明において重要な元素である。Mnは、熱間圧延時に高温に加熱された際、γ相からフェライト相に変態する温度であるAr変態点を低下させる元素であり、Mnの添加によって、γ相が低温まで安定になり、仕上圧延の温度を低下させることができる。この効果を得るには、Mnを0.10%以上添加することが必要である。また、Mnは、後述するように、γ相での積層欠陥エネルギーとの相関があり、γ相での加工集合組織形成及び変態時のバリアント選択に影響を与え、変態後に圧延方向のヤング率を高める結晶方位を発達させる効果がある。この観点からMnを1.00%以上添加することが好ましい。更に好ましくは1.5%以上添加する。一方、Mnの添加量が2.50%を超えると逆に圧延方向のヤング率を下げる方位が発達することから、上限を2.50%以下とする。また、同様の観点と亜鉛めっきの密着性の観点からはで上限を2.00%以下とすることが好ましい。 Mn is an important element in the present invention. Mn is an element that lowers the Ar 3 transformation point, which is a temperature at which the γ phase is transformed into the ferrite phase when heated to a high temperature during hot rolling, and by adding Mn, the γ phase becomes stable to a low temperature, The temperature of finish rolling can be lowered. In order to obtain this effect, it is necessary to add 0.10% or more of Mn. As will be described later, Mn has a correlation with the stacking fault energy in the γ phase, affects the formation of the work texture in the γ phase and the variant selection at the time of transformation, and the Young's modulus in the rolling direction after the transformation. It has the effect of developing a higher crystal orientation. From this viewpoint, it is preferable to add 1.00% or more of Mn. More preferably, 1.5% or more is added. On the other hand, when the amount of Mn added exceeds 2.50%, an orientation that lowers the Young's modulus in the rolling direction develops, so the upper limit is made 2.50% or less. Moreover, it is preferable to make an upper limit into 2.00% or less from the viewpoint of the same viewpoint and the adhesiveness of galvanization.

Pは不純物であるが、強度を増加する必要がある場合には積極的に添加しても良い。また、Pは熱延組織を微細にし、加工性を向上する効果も有する。ただし、添加量が0.150%を超えると、スポット溶接後の疲労強度が劣化し、降伏強度が増加してプレス時に面形状不良を引き起こす。さらに、連続溶融亜鉛めっき時に合金化反応が極めて遅くなり、生産性が低下する。また、2次加工性も劣化する。したがって、その上限値を0.15%とする。この観点からは0.1%以下とすることが望ましい。   P is an impurity, but may be positively added when the strength needs to be increased. P also has the effect of making the hot-rolled structure fine and improving workability. However, if the addition amount exceeds 0.150%, the fatigue strength after spot welding deteriorates, the yield strength increases, and a surface shape defect is caused during pressing. Furthermore, the alloying reaction becomes extremely slow during continuous hot dip galvanizing, and productivity is lowered. Also, the secondary workability is deteriorated. Therefore, the upper limit is set to 0.15%. From this point of view, the content is preferably 0.1% or less.

Sは、不純物であり、0.0150%超では熱間割れの原因となったり、加工性を劣化させるので、これを上限とする。
Alは脱酸調製剤であり、下限は特に限定しないが、脱酸の観点からは0.010%以上とすることが好ましい。一方、Alは変態点を著しく高めるので、0.150%超を添加すると、低温でのγ域圧延が困難となるので、上限を0.150%とする。
S is an impurity, and if it exceeds 0.0150%, it causes hot cracking or deteriorates workability, so this is the upper limit.
Al is a deoxidation preparation agent, and the lower limit is not particularly limited, but is preferably 0.010% or more from the viewpoint of deoxidation. On the other hand, Al significantly increases the transformation point, so if adding over 0.150%, it becomes difficult to perform γ region rolling at a low temperature, so the upper limit is made 0.150%.

NbとTiは本発明において重要な元素であり、前述のように、これらの一方又は双方を合計で0.01〜0.25%含有させる。その際、それぞれを次の範囲で含有させるようにする。   Nb and Ti are important elements in the present invention, and as described above, one or both of them are contained in a total of 0.01 to 0.25%. At that time, each is included in the following range.

Nbは、熱間圧延においてγ相を加工した際の再結晶を著しく抑制し、γ相での加工集合組織の形成を著しく促す。これにより、{100}<011>〜{111}<011>方位群が発達する。この観点からNbは0.005%以上添加することが必要である。また、0.015%以上添加することが好ましい。しかしながらNbの添加量が0.100%を超えると圧延方向のヤング率が低下するため、上限は0.100%とする。Nbの添加によって圧延方向のヤング率が低下する理由は定かではないが、Nbがγ相の積層欠陥エネルギーに影響を及ぼしているものと推測される。この観点からは0.060%以下とすることが好ましい。   Nb remarkably suppresses recrystallization when the γ phase is processed in hot rolling, and remarkably promotes the formation of a processed texture in the γ phase. Thereby, {100} <011> to {111} <011> orientation groups develop. From this viewpoint, Nb needs to be added in an amount of 0.005% or more. Moreover, it is preferable to add 0.015% or more. However, if the amount of Nb added exceeds 0.100%, the Young's modulus in the rolling direction decreases, so the upper limit is made 0.100%. Although the reason why the Young's modulus in the rolling direction decreases due to the addition of Nb is not clear, it is presumed that Nb affects the stacking fault energy of the γ phase. From this viewpoint, the content is preferably 0.060% or less.

Tiも{100}<011>〜{111}<011>方位群を発達させるために重要である。Tiはγ相高温域で窒化物を形成し、Nbと同様に熱間圧延において、γ相を加工した際の再結晶を抑制する。更に、Bを添加した場合にはTiの窒化物の形成によって、BNの析出が抑制されるため、固溶Bを確保することができる。これにより、ヤング率の向上に好ましい集合組織の発達が促進される。この効果を得るためには、Tiを0.002%以上添加することが必要である。一方、Tiを0.150%を超えて添加すると加工性が著しく劣化することからこの値を上限とする。この観点からは0.100%以下にすることが好ましい。更に好ましくは0.060%以下である。   Ti is also important for developing {100} <011> to {111} <011> orientation groups. Ti forms nitrides in the high temperature region of the γ phase, and suppresses recrystallization when the γ phase is processed in hot rolling in the same manner as Nb. Further, when B is added, the formation of Ti nitride suppresses the precipitation of BN, so that solid solution B can be secured. This promotes the development of a texture preferable for improving the Young's modulus. In order to obtain this effect, 0.002% or more of Ti needs to be added. On the other hand, if Ti is added in an amount exceeding 0.150%, the workability deteriorates remarkably, so this value is made the upper limit. From this viewpoint, the content is preferably 0.100% or less. More preferably, it is 0.060% or less.

Nは不純物であり、下限は特に設定しないが0.0005%未満とするにはコストが高くなり、それほどの効果が得られないため、0.0005%以上とすることが好ましい。また、Nは、Tiと窒化物を形成し、γ相の再結晶を抑制するため、積極的に添加しても良いが、Bの再結晶抑制効果を低減させることから0.0100%以下に抑える。この観点から好ましくは0.0050%、更に好ましくは0.0020%以下とする。   N is an impurity, and the lower limit is not particularly set. However, if it is less than 0.0005%, the cost becomes high, and so much effect cannot be obtained, so 0.0005% or more is preferable. Further, N may form Ti and nitride to suppress recrystallization of the γ phase, so it may be positively added. However, N reduces the recrystallization suppressing effect of B to 0.0100% or less. suppress. From this viewpoint, the content is preferably 0.0050%, more preferably 0.0020% or less.

BはNbと複合添加することによって再結晶を著しく抑制すると共に、固溶状態で焼き入れ性を高める元素であり、オーステナイトからフェライトへの変態時の結晶方位のバリアント選択性に影響を及ぼすと考えられる。したがって、ヤング率を上げる方位である{100}<011>〜{111}<011>方位群の発達を促すと考えられる。この観点から0.0005%以上添加することが好ましい。一方、Bを0.0100%超添加しても更なる効果は得られないため、上限を0.0100%以下とする。また、Bを0.005%超添加すると、加工性が劣化することがあるため、0.0050%以下が好ましい上限である。更に好ましくは0.0030%以下である。   B is an element that significantly suppresses recrystallization by adding Nb together and enhances hardenability in the solid solution state, and is thought to affect the variant selectivity of crystal orientation during the transformation from austenite to ferrite. It is done. Therefore, it is considered that the development of {100} <011> to {111} <011> orientation groups, which are orientations that increase the Young's modulus, is promoted. From this viewpoint, it is preferable to add 0.0005% or more. On the other hand, even if B is added in excess of 0.0100%, no further effect is obtained, so the upper limit is made 0.0100% or less. Further, when B is added in excess of 0.005%, workability may be deteriorated, so 0.0050% or less is a preferable upper limit. More preferably, it is 0.0030% or less.

Moは0.005〜0.500%、Crは0.005〜1.000%、Wは0.005〜1.500%、CuおよびNiは0.005〜0.350%の範囲で、かつ、前述のように(式2)を満足する範囲で、1種又は2種以上添加することが望ましい。これらの元素は、Mnと同様にγ相での積層欠陥エネルギーを変えることで熱延の加工集合組織形成及び変態時のバリアント選択に影響を与え、変態後に熱延板の板厚表層部の{110}<111>や{110}<112>、板厚中心部の{100}<011>〜{111}<011>方位群を発達させ、ヤング率を向上させるのに寄与する。この効果を得るには、これらの元素の少なくとも1種を0.005%以上含有させることが好ましい。
一方これらの元素の含有量の上限は、前述のように、ヤング率を低下させる方位の元となる{332}<113>を増加させない範囲として、Moでは0.500%、Crでは1.000%、Wでは1.500%、CuおよびNiでは0.350%とするのが好ましい。
Mo ranges from 0.005 to 0.500%, Cr ranges from 0.005 to 1.000%, W ranges from 0.005 to 1.500%, Cu and Ni range from 0.005 to 0.350%, and As described above, it is desirable to add one or more in a range satisfying (Formula 2). These elements, like Mn, change the stacking fault energy in the γ phase to affect the hot-rolling texture formation and variant selection during transformation, and after transformation, the thickness of the surface layer of the hot-rolled sheet { 110} <111> and {110} <112>, and {100} <011> to {111} <011> orientation groups in the central portion of the plate thickness are developed and contribute to improving the Young's modulus. In order to obtain this effect, it is preferable to contain 0.005% or more of at least one of these elements.
On the other hand, as described above, the upper limit of the content of these elements is 0.500% for Mo and 1.000 for Cr as a range that does not increase {332} <113>, which is the origin of the orientation that decreases the Young's modulus. %, W is preferably 1.500%, and Cu and Ni are preferably 0.350%.

Ca、Rem及びVは機械的強度を高めたり材質を改善したりする効果があるので、必要に応じて、1種又は2種以上を含有することが好ましい。
Ca及びRemの添加量が0.0005%未満、Vの添加量が0.001%未満では十分な効果が得られないことがある。一方、Ca及びRemの添加量が0.1000%超、Vの添加量が0.100%超になるように添加すると、延性を損なうことがある。したがって、Ca、Rem及びVはそれぞれ、0.0005〜0.1000%、0.0005〜0.1000%及び0.001〜0.100%の範囲で添加することが好ましい。
Since Ca, Rem, and V have the effect of increasing mechanical strength or improving the material, it is preferable to contain one or more as required.
If the addition amount of Ca and Rem is less than 0.0005% and the addition amount of V is less than 0.001%, sufficient effects may not be obtained. On the other hand, when Ca and Rem are added so that the addition amount exceeds 0.1000% and the addition amount of V exceeds 0.100%, ductility may be impaired. Therefore, Ca, Rem and V are preferably added in the range of 0.0005 to 0.1000%, 0.0005 to 0.1000% and 0.001 to 0.100%, respectively.

次に、熱延の形状比、巻き取り温度以外の製造条件の限定理由について述べる。
鋼を常法により溶製、鋳造し、熱間圧延に供する鋼片を得る。この鋼片は、鋼塊を鍛造又は圧延したものでも良いが、生産性の観点から、連続鋳造により鋼片を製造することが好ましい。また、薄スラブキャスターなどで製造してもよい。
Next, the reasons for limiting the manufacturing conditions other than the hot rolling shape ratio and the coiling temperature will be described.
Steel is melted and cast by a conventional method to obtain a steel piece to be subjected to hot rolling. Although this steel slab may be a forged or rolled steel ingot, it is preferable to manufacture the steel slab by continuous casting from the viewpoint of productivity. Moreover, you may manufacture with a thin slab caster.

また、通常、鋼片は鋳造後、冷却し、熱間圧延を行うために、再度、加熱する。この場合、熱間圧延を行う際の鋼片の加熱温度は1100℃以上とすることが好ましい。これは、鋼片の加熱温度が1100℃未満であると、NbやTiが十分に固溶せず、再結晶抑制効果が著しく低減して高ヤング率化に適した集合組織の形成が阻害されたり、熱間圧延の仕上温度をAr変態点以上とすることが難しくなるためである。鋼片を効率良く均一に加熱するためには、加熱温度を1150℃以上とすることが好ましい。加熱温度の上限は規定しないが、1300℃超に加熱すると、鋼板の結晶粒径が粗大になり、加工性を損なうことがある。また、溶製した鋼を鋳造後、直ちに熱間圧延を行う連続鋳造−直接圧延(CC−DR)のようなプロセスを採用しても良い。 Usually, the steel slab is cooled again after casting, and then heated again for hot rolling. In this case, it is preferable that the heating temperature of the steel slab when hot rolling is 1100 ° C. or higher. This is because when the heating temperature of the steel slab is less than 1100 ° C., Nb and Ti are not sufficiently dissolved, and the recrystallization suppressing effect is remarkably reduced, thereby preventing the formation of a texture suitable for increasing the Young's modulus. or is because the finishing temperature of hot rolling be set to Ar 3 transformation point or more becomes difficult. In order to heat the steel slab efficiently and uniformly, the heating temperature is preferably 1150 ° C. or higher. The upper limit of the heating temperature is not specified, but when heated to over 1300 ° C., the crystal grain size of the steel sheet becomes coarse and the workability may be impaired. Also, a process such as continuous casting-direct rolling (CC-DR) in which hot rolling is performed immediately after casting the molten steel may be employed.

本発明の鋼板の製造においては、1100℃以下での熱間圧延の条件は重要であり、形状比の規定については、上述したとおりである。なお、圧延ロールの直径は、室温で測定したものであり、熱延中の扁平を考慮する必要はない。各圧延ロールの入側及び出側板厚は放射線等を用いてその場で測定してもよいし、圧延荷重より、変形抵抗等を考慮して計算で求めても良い。また、1100℃を超える温度における熱間圧延は、特に規定せず、適宜行っても構わない。即ち、鋼片の粗圧延については特に限定せず、常法によって行えば良い。   In the production of the steel sheet of the present invention, the conditions for hot rolling at 1100 ° C. or lower are important, and the definition of the shape ratio is as described above. In addition, the diameter of a rolling roll is measured at room temperature, and it is not necessary to consider the flatness during hot rolling. The entry side and exit side plate thicknesses of each rolling roll may be measured on the spot using radiation or the like, or may be calculated from the rolling load in consideration of deformation resistance and the like. Further, the hot rolling at a temperature exceeding 1100 ° C. is not particularly defined and may be appropriately performed. That is, the rough rolling of the steel slab is not particularly limited and may be performed by a conventional method.

熱間圧延において、1100℃以下、最終パスまでの圧下率は40%以上とする。これは、1100℃超で熱間圧延しても加工後の組織が再結晶し、熱延板の集合組織を発達させる効果が得られないためである。   In hot rolling, the rolling reduction to 1100 ° C. or lower and the final pass is 40% or higher. This is because even after hot rolling above 1100 ° C., the processed structure is recrystallized, and the effect of developing the texture of the hot-rolled sheet cannot be obtained.

1100℃以下、最終パスまでの圧下率は、1100℃における鋼板の板厚と最終パス後の鋼板の板厚との差を、1100℃における鋼板の板厚で除した値を百分率で表した数値である。この圧下率は40%以上とするのは、40%未満では圧延方向のヤング率を高める集合組織が十分発達しないためである。この観点からは50%以上が好ましい。上限は特に設けないが、1100℃以下、最終パスまでの圧下率を95%超にすることは圧延機の負荷を高めるばかりか、集合組織にも変化を及ぼしヤング率が低下し始めることから95%以下にすることが好ましい。この観点からは90%以下が更に好ましい。   1100 ° C. or less, the reduction ratio until the final pass is a numerical value expressed as a percentage obtained by dividing the difference between the plate thickness of the steel plate at 1100 ° C. and the plate thickness of the steel plate after the final pass by the plate thickness of the steel plate at 1100 ° C. It is. The reason why the rolling reduction is 40% or more is that if it is less than 40%, the texture that increases the Young's modulus in the rolling direction is not sufficiently developed. From this viewpoint, 50% or more is preferable. Although there is no particular upper limit, increasing the rolling reduction to 1100 ° C. or less and the final pass to more than 95% not only increases the load on the rolling mill, but also changes the texture and starts to lower the Young's modulus. % Or less is preferable. From this viewpoint, 90% or less is more preferable.

熱間圧延の最終パスの温度は、Ar変態点以上とする。これは、Ar変態点未満で圧延すると、ヤング率にとって好ましくない集合組織が発達するためである。また熱間圧延の最終パスの温度が900℃超では、圧延方向のヤング率の向上に好ましい集合組織を発達させることが困難である。圧延方向のヤング率を向上させるには、最終パスの圧延温度を、Ar変態点以上であることを条件として、850℃以下に低下させることが好ましい。 The temperature of the final pass of hot rolling is not less than the Ar 3 transformation point. This is because rolling that is less than the Ar 3 transformation point develops a texture unfavorable for Young's modulus. Further, if the temperature of the final pass of hot rolling exceeds 900 ° C., it is difficult to develop a texture preferable for improving the Young's modulus in the rolling direction. In order to improve the Young's modulus in the rolling direction, it is preferable to lower the rolling temperature of the final pass to 850 ° C. or lower on the condition that it is not lower than the Ar 3 transformation point.

熱間圧延を実施する際には圧延ロールの異周速率が1%以上の異周速圧延を1パス以上施すことが好ましい。上下圧延ロールの周速差のある異周速圧延を実施すると、表層近傍に剪断歪みが導入されて集合組織の形成が促進されるため、異周速圧延を実施しない場合よりもヤング率が向上する。ここで本発明における異周速率とは、上下圧延ロールの周速差を低周速側ロールの周速で除した値を百分率で表示したものである。また、本発明の異周速圧延は、上下ロール周速の何れが大きくてもヤング率を向上させる効果に特段の差はない。   When carrying out hot rolling, it is preferable to perform one or more passes of different peripheral speed rolling with a different peripheral speed ratio of the rolling roll of 1% or more. When different peripheral speed rolling with a difference in peripheral speed between the upper and lower rolling rolls is performed, shear strain is introduced near the surface layer and the formation of a texture is promoted, so the Young's modulus is improved compared to the case where different peripheral speed rolling is not performed. To do. Here, the different peripheral speed ratio in the present invention is a value obtained by dividing the peripheral speed difference between the upper and lower rolling rolls by the peripheral speed of the low peripheral speed roll in percentage. Further, the different peripheral speed rolling of the present invention has no particular difference in the effect of improving the Young's modulus regardless of the upper and lower roll peripheral speeds.

異周速圧延の異周速率は、ヤング率を向上させるには、大きいほど好ましい。したがって、異周速率は、1%以上よりも5%以上とすることが好ましく、更には異周速率10%以上の異周速圧延を施すことが好ましいが、異周速率を50%以上とすることは現状困難である。
また、異周速圧延パス数の上限は特に規定しないが、導入される剪断歪みの累積という観点から、多くした方が大きなヤング率向上効果が得られるため、1100℃以下の圧延の全パスを異周速圧延としても構わない。通常、仕上熱延のパス数は8パス程度までである。
In order to improve the Young's modulus, the higher the different peripheral speed rate of the different peripheral speed rolling, the better. Therefore, the different peripheral speed rate is preferably 5% or more than 1% or more, and more preferably, different peripheral speed rolling is performed with a different peripheral speed ratio of 10% or more, but the different peripheral speed ratio is 50% or more. This is difficult at present.
Moreover, although the upper limit of the number of different peripheral speed rolling passes is not particularly specified, from the viewpoint of accumulation of introduced shear strain, a larger Young's modulus improvement effect can be obtained from the viewpoint of accumulation, so all passes of rolling at 1100 ° C. or lower are obtained. Different circumferential speed rolling may be used. Usually, the number of finishing hot rolling passes is up to about 8 passes.

上記のような方法で製造された熱延鋼鈑に酸洗後、30〜80%の圧下率の範囲で冷間圧延を施す。圧下率を30%未満にすることは、板厚精度・形状不良を招くことからこの値を下限とする。一方圧下率が80%超になると冷延機への負荷が高くなると共に、ヤング率を下げる方位である{110}<001>方位の集積度が大きくなるため、この値を上限とする。この観点からは65%以下とすることがより望ましい。鋼板表層に{110}<111>方位又は{110}<112>方位をより強く残存させるという観点では冷間圧延率は55%以下とすることが望ましい。   The hot-rolled steel sheet produced by the above method is pickled and then cold-rolled in a range of 30 to 80% reduction. Setting the rolling reduction to less than 30% causes plate thickness accuracy and shape defects, so this value is set as the lower limit. On the other hand, when the rolling reduction exceeds 80%, the load on the cold rolling machine increases and the degree of integration of the {110} <001> orientation, which is an orientation that lowers the Young's modulus, increases. From this viewpoint, it is more desirable to set it to 65% or less. From the viewpoint of leaving the {110} <111> orientation or {110} <112> orientation more strongly on the steel sheet surface layer, the cold rolling reduction is desirably 55% or less.

焼鈍時、室温から650℃までの平均加熱速度は3〜300℃/sとする。加熱速度が3℃/s未満では加熱途中で再結晶が起こり、集合組織が崩れることからこれを下限とする。この観点からは8℃/s以上とすることが望ましく、更に望ましくは15℃/s以上である。加熱速度が高くなるほど集合組織が維持されるが、300℃/s超とすることは特段の効果を生じないことからこれを上限とする。   At the time of annealing, the average heating rate from room temperature to 650 ° C. is 3 to 300 ° C./s. If the heating rate is less than 3 ° C./s, recrystallization occurs during heating and the texture breaks down. From this viewpoint, it is preferably 8 ° C./s or more, and more preferably 15 ° C./s or more. The texture is maintained as the heating rate increases. However, if it exceeds 300 ° C./s, no particular effect is produced, so this is the upper limit.

焼鈍は650℃以上Ac変態温度以下で1秒以上行うこととする。650℃以下では冷延時の加工組織がそのまま残存するために成形性が著しく低下する。したがって、この温度を焼鈍の下限値とする。一方、焼鈍温度がAc3変態温度超となると、集合組織が破壊され、形状凍結性が劣化することからこれを上限とする。 Annealing is performed at 650 ° C. or higher and Ac 3 transformation temperature or lower for 1 second or longer. If it is 650 ° C. or lower, the work structure at the time of cold rolling remains as it is, so that the moldability is remarkably lowered. Therefore, this temperature is set as the lower limit of annealing. On the other hand, if the annealing temperature exceeds the Ac3 transformation temperature, the texture is destroyed and the shape freezing property deteriorates, so this is the upper limit.

焼鈍後、インライン又はオフラインで圧下率10%以下の調質圧延を施しても良い。また、用途に応じて溶融亜鉛めっき又は合金化溶融亜鉛めっきを施してもよい。亜鉛めっきの組成は特に限定するものではなく、亜鉛のほか、Fe、Al、Mn、Cr、Mg、Pb、Sn、Niなどを必要に応じて添加しても構わない。なお、調質圧延は、亜鉛めっき、合金化処理の後に行っても良い。   After annealing, temper rolling with a rolling reduction of 10% or less may be performed inline or offline. Moreover, you may give hot dip galvanization or alloying hot dip galvanization according to a use. The composition of the galvanizing is not particularly limited, and besides zinc, Fe, Al, Mn, Cr, Mg, Pb, Sn, Ni, etc. may be added as necessary. In addition, you may perform temper rolling after galvanization and an alloying process.

合金化処理は450〜600℃の範囲内で行う。450℃未満では合金化が十分に進行せず、また、600℃以上では過度に合金化が進行し、めっき層が脆化するため、プレス等の加工によってめっきが剥離するなどの問題を誘発する。合金化処理の時間は、10s以上とする。10s未満では合金化が十分に進行しない。合金化処理の時間の上限は特に規定しないが、通常、連続ラインに設置された熱処理設備によって行うため、3000sを超えて行うと生産性を損ない、又は設備投資が必要となるため、製造コストが高くなる。   The alloying treatment is performed within a range of 450 to 600 ° C. When the temperature is lower than 450 ° C., alloying does not proceed sufficiently, and when the temperature is higher than 600 ° C., alloying proceeds excessively, and the plating layer becomes brittle, which causes problems such as peeling of the plating due to processing such as pressing. . The alloying treatment time is 10 s or longer. If it is less than 10 s, alloying does not proceed sufficiently. The upper limit of the alloying treatment time is not specified in particular, but since it is usually performed by heat treatment equipment installed in a continuous line, if it exceeds 3000 s, productivity is lost, or equipment investment is required, so the production cost is low. Get higher.

また、合金化処理に先立ち、製造設備の構成に応じて、Ac変態温度以下の焼鈍を施してもよい。この温度域以下の温度であれば集合組織にはほとんど変化を生じないことからヤング率の低下を抑えることが可能である。 Prior to the alloying treatment, annealing at an Ac 3 transformation temperature or lower may be performed according to the configuration of the manufacturing equipment. If the temperature is lower than this temperature range, the texture is hardly changed, so that the decrease in Young's modulus can be suppressed.

次に本発明を実施例にて説明する。   Next, the present invention will be described with reference to examples.

表1に示す組成を有する鋼を溶製して鋼片を製造し、鋼片を加熱して、熱間で粗圧延に続いて、表2に示す条件で仕上圧延を行った。仕上圧延のスタンドは全7段からなり、ロール径は650〜830mmである。また最終パス後の仕上板厚は2.3mm〜7.2mmとした。更に、表2及び表3において、SRT[℃]は鋼片の加熱温度、FT[℃]は圧延の最終パス後、即ち仕上出側の温度、CT[℃]は巻取温度である。圧下率は、1100℃における板厚と仕上板厚との差を1100℃における板厚で除した値であり、百分率として示した。形状比は、1100℃以下の温度で圧延されたパスでの形状比の平均値を示す。冷延率は、熱延板の板厚と冷延終了後の板厚との差を熱延板の板厚で除した値であり、百分率として示した。加熱速度は室温から650℃までの平均加熱速度を表す。   Steel having the composition shown in Table 1 was melted to produce a steel slab, and the steel slab was heated, followed by hot rolling and finish rolling under the conditions shown in Table 2. The finish rolling stand consists of seven stages, and the roll diameter is 650 to 830 mm. The finished plate thickness after the final pass was set to 2.3 mm to 7.2 mm. Further, in Tables 2 and 3, SRT [° C.] is the heating temperature of the steel slab, FT [° C.] is the temperature after the final pass of the rolling, that is, the finishing side temperature, and CT [° C.] is the coiling temperature. The rolling reduction is a value obtained by dividing the difference between the plate thickness at 1100 ° C. and the finished plate thickness by the plate thickness at 1100 ° C., and is expressed as a percentage. The shape ratio indicates an average value of the shape ratio in a pass rolled at a temperature of 1100 ° C. or lower. The cold rolling rate is a value obtained by dividing the difference between the thickness of the hot-rolled plate and the thickness after completion of cold rolling by the thickness of the hot-rolled plate, and is expressed as a percentage. The heating rate represents an average heating rate from room temperature to 650 ° C.

なお、表1の空欄は、分析値が検出限界未満であったことを意味する。また、表1の式2は、Mn、Mo、W、Ni、Cu、Crは各元素の含有量[質量%]によって計算した、下記(式2)の中辺の値、式1は、C、Mn、Mo、Ni、Cu、Crは各元素の含有量[質量%]によって計算した、下記(式1)のBs[℃]の値である。
Bs=830−270C−90Mn−37Ni−70Cr−83Mo ・・・(式1)
3.0≦3.2Mn+9.6Mo+4.7W+6.2Ni+18.6Cu+0.7Cr
≦7.5 ・・・ (式2)
The blank in Table 1 means that the analysis value was less than the detection limit. Moreover, Formula 2 of Table 1 is Mn, Mo, W, Ni, Cu, Cr is the value of the middle side of the following (Formula 2) calculated by content [mass%] of each element, Formula 1 is C , Mn, Mo, Ni, Cu, Cr are values of Bs [° C.] of the following (formula 1) calculated by the content [% by mass] of each element.
Bs = 830-270C-90Mn-37Ni-70Cr-83Mo (Formula 1)
3.0 ≦ 3.2Mn + 9.6Mo + 4.7W + 6.2Ni + 18.6Cu + 0.7Cr
≦ 7.5 (Formula 2)

表1の鋼No.Rは式2の値の下限を満足していない比較例であり、No.SとUは上限を満足していない比較例である。   Steel No. 1 in Table 1 R is a comparative example that does not satisfy the lower limit of the value of Formula 2, and S and U are comparative examples that do not satisfy the upper limit.

Mo、W、Ni、Cu、Crの含有量が不純物程度である場合、例えば、表1のMo、W、Ni、Cu、Crが空欄である場合は0として上記(式1)、(式2)を計算する。
また、表1,2に示したArとAcはそれぞれ下記(式4)、(式5)より計算されたAr変態温度及びAc変態温度である。
Ar=901−325×C+33×Si+287×P+40×Al
−92×(Mn+Mo+Cu)−46×(Cr+Ni) ・・・(式4)
Ac=910−203×√C−15.2×Ni+44.7×Si+104×V+
31.5×Mo+13.1×W−30×Mn−11×Cr−20×Cu+
700×P+400×Al+400×Ti ・・・(式5)
ここで、C、Si、P、Al、Mn、Mo、Cu、Cr、Ni、W,Tiは、各元素の含有量[質量%]であり、含有量が不純物程度である場合は0とする。
When the contents of Mo, W, Ni, Cu, and Cr are about impurities, for example, when Mo, W, Ni, Cu, and Cr in Table 1 are blank, the above (Formula 1) and (Formula 2) are set to 0. ).
Further, Ar 3 and Ac 3 shown in Tables 1 and 2 are Ar 3 transformation temperature and Ac 3 transformation temperature calculated from the following (formula 4) and (formula 5), respectively.
Ar 3 = 901-325 × C + 33 × Si + 287 × P + 40 × Al
−92 × (Mn + Mo + Cu) −46 × (Cr + Ni) (Formula 4)
Ac 3 = 910−203 × √C−15.2 × Ni + 44.7 × Si + 104 × V +
31.5 × Mo + 13.1 × W-30 × Mn-11 × Cr-20 × Cu +
700 × P + 400 × Al + 400 × Ti (Formula 5)
Here, C, Si, P, Al, Mn, Mo, Cu, Cr, Ni, W, and Ti are the content [% by mass] of each element, and 0 when the content is about the impurity. .

得られた鋼板からJIS Z 2201に準拠した引張試験片を採取し、引張試験をJIS Z 2241に準拠して行い、引張強度を測定した。ヤング率の測定は静的引張法と振動法の両法により測定した。
静的引張法によるヤング率の測定は、JIS Z 2201に準拠した引張試験片を用いて、鋼板の降伏強度の1/2に相当する引張応力を付与して行った。測定は5回行い、応力−歪み線図の傾きに基づいて算出したヤング率のうち、最大値及び最小値を除いた3つの計測値の平均値を静的引張法によるヤング率とし、引張ヤング率として表3に示した。
A tensile test piece based on JIS Z 2201 was collected from the obtained steel plate, a tensile test was performed based on JIS Z 2241, and the tensile strength was measured. Young's modulus was measured by both static tension method and vibration method.
Measurement of Young's modulus by the static tension method was performed by applying a tensile stress corresponding to ½ of the yield strength of the steel sheet using a tensile test piece according to JIS Z 2201. The measurement was performed 5 times, and among the Young's modulus calculated based on the slope of the stress-strain diagram, the average value of the three measured values excluding the maximum and minimum values was taken as the Young's modulus by the static tension method. The rate is shown in Table 3.

また、鋼板の板厚3/8位置での{100}<011>、{211}<011>、{111}<011>、{554}<225>、{110}<001>方位のX線ランダム強度比及び板厚1/16位置での{110}<112>方位、{110}<111>方位のX線ランダム強度は、以下のようにして測定した。
まず、鋼板を機械研磨及びバフ研磨後、更に電解研磨して歪みを除去し、3/8板厚部及び1/16板厚部が測定面となるように調整した試料を用いて、X線回折を行った。なお、特定の方位への集積を持たない標準試料のX線回折も同条件で行った。次に、X線回折によって得られた{110}、{100}、{211}、{310}極点図を基に級数展開法でODFを得た。このODFから、上記の方位のX線ランダム強度比を決定した。
Also, X-rays with {100} <011>, {211} <011>, {111} <011>, {554} <225>, and {110} <001> orientations at the plate thickness 3/8 position The random intensity ratio and the X-ray random intensity in the {110} <112> orientation and {110} <111> orientation at the position of 1/16 thickness were measured as follows.
First, after mechanically polishing and buffing the steel plate, further electrolytically polishing to remove strain, and using a sample adjusted so that the 3/8 plate thickness portion and the 1/16 plate thickness portion become the measurement surface, X-ray Diffraction was performed. Note that X-ray diffraction of a standard sample having no accumulation in a specific orientation was performed under the same conditions. Next, ODF was obtained by the series expansion method based on {110}, {100}, {211}, {310} pole figures obtained by X-ray diffraction. From this ODF, the X-ray random intensity ratio in the above orientation was determined.

また、これらの鋼板のうち、冷延焼鈍後に溶融亜鉛めっきを施した場合は、「溶融」、更に、溶融亜鉛めっき後、520℃で15秒保持する合金化処理を行い、合金化溶融亜鉛めっきを施した場合は、「合金」と表記した。   Of these steel sheets, when hot dip galvanizing is performed after cold rolling annealing, the alloying hot dip galvanization is carried out by “melting” and further alloying treatment that is held at 520 ° C. for 15 seconds after hot dip galvanizing. When it was given, it was written as “alloy”.

結果を表3に示す。なお、ヤング率の欄のRDは圧延方向(ollinng irection)、TDは圧延方向と直角の方向である幅方向(ransverse irection)をそれぞれ意味する。
表3から明らかなとおり、本発明の化学成分を有する鋼を適正な条件で製造した場合には、圧延方向、圧延直角方向の何れも静的引張法、動的振動法によるヤング率が215GPa超とすることができた。
The results are shown in Table 3. Incidentally, the Young's modulus of the column of RD is the rolling direction (R ollinng D irection), TD means transverse direction is the direction of the rolling direction and at right angles to (T ransverse D irection) respectively.
As is apparent from Table 3, when the steel having the chemical composition of the present invention was produced under appropriate conditions, the Young's modulus by the static tension method and the dynamic vibration method exceeded 215 GPa in both the rolling direction and the direction perpendicular to the rolling direction. And was able to.

一方、製造No.44〜47は、化学成分が本発明の範囲外である鋼No.T〜Wを用いた比較例である。製造No.44はMnの添加量が低く、Ar3変態温度が高くなった場合の例である。この場合、γ域で熱延を行うためには900℃超の高温で熱延を行わなければならず、熱延板の段階で集合組織形成が十分行われないことから、ヤング率が低下する。製造No.45は逆にMnの添加量が高すぎる場合の例で、この場合、結晶方位群(B)が強く発達するために圧延方向のヤング率が低下してしまう。製造No.46と47は何れもNb,Tiがまったく添加されていないか、又は量が少なすぎて、Nb,Ti量の総和が不足している例である。この場合、熱延・焼鈍の何れの段階でも再結晶により集合組織が崩れてしまうことから、高いヤング率を得ることができない。   On the other hand, production No. Nos. 44 to 47 are steel Nos. Whose chemical components are outside the scope of the present invention. It is a comparative example using TW. Production No. No. 44 is an example when the amount of Mn added is low and the Ar3 transformation temperature is high. In this case, in order to perform hot rolling in the γ region, hot rolling must be performed at a high temperature exceeding 900 ° C., and texture formation is not sufficiently performed at the stage of hot rolling, so the Young's modulus decreases. . Production No. 45 is an example when the amount of Mn added is too high. In this case, the crystal orientation group (B) develops strongly, so the Young's modulus in the rolling direction decreases. Production No. Neither 46 nor 47 is an example in which Nb and Ti are not added at all, or the amount is too small and the total amount of Nb and Ti is insufficient. In this case, a high Young's modulus cannot be obtained because the texture is destroyed by recrystallization at any stage of hot rolling and annealing.

鋼No.Eの比較例である製造No.12のように、熱延において1100℃以下での圧下率が低い場合や、鋼No.Iの比較例である製造No.22のように1100℃以下での形状比が低い場合には、熱延中に圧延方向のヤング率に有意な方位の発達が十分でなく、No.12ではA/Bの比が満足できない。その結果、冷延焼鈍後のヤング率も向上しない。鋼No.Gの比較例である製造No.17は熱延の加熱温度が低い例を示す。この場合もNbやTiが十分に固溶できずに熱延時の再結晶が抑制できないことから冷延焼鈍後の集合組織の発達が不十分である。   Steel No. E, which is a comparative example of E. 12, when the rolling reduction at 1100 ° C. or lower is low in hot rolling, Production No. 1 which is a comparative example of I. In the case where the shape ratio at 1100 ° C. or lower is low as in No. 22, no significant development of the orientation is significant in the Young's modulus in the rolling direction during hot rolling. 12 does not satisfy the A / B ratio. As a result, the Young's modulus after cold rolling annealing is not improved. Steel No. Production No. 4 which is a comparative example of G. 17 shows an example in which the heating temperature of hot rolling is low. Also in this case, Nb and Ti cannot be sufficiently dissolved, and recrystallization during hot rolling cannot be suppressed, so that the texture development after cold rolling annealing is insufficient.

鋼Jの比較例である製造No.24は冷延率が高すぎるために圧延方向のヤング率を低下させる方位が発達してしまい、A/Bの比も満足できない。鋼No.Lの比較例である製造No.28は焼鈍時の加熱速度が低い場合を示す。この場合、焼鈍途中に再結晶が始まってしまい、集合組織がくずれてしまう。鋼No.Pの比較例である製造No.39は焼鈍温度がAc3変態温度よりも高い場合を示す。この場合も焼鈍途中に集合組織がくずれてしまい、高いヤング率を得ることは出来ない。   Production No. which is a comparative example of Steel J. Since the cold rolling rate of No. 24 is too high, an orientation that lowers the Young's modulus in the rolling direction is developed, and the A / B ratio cannot be satisfied. Steel No. Production No. which is a comparative example of L. 28 shows the case where the heating rate at the time of annealing is low. In this case, recrystallization starts during annealing and the texture is broken. Steel No. Production No. which is a comparative example of P. 39 shows the case where annealing temperature is higher than Ac3 transformation temperature. Also in this case, the texture breaks down during annealing, and a high Young's modulus cannot be obtained.

Figure 2009013478
Figure 2009013478

Figure 2009013478
Figure 2009013478

Figure 2009013478
Figure 2009013478

表1に示した鋼DとNを用いて、表4に示す条件で鋼板を製造した。表に示した製造No.49、51及び52は、全7段からなる仕上げ圧延スタンドの最終の3段、即ち、5パス、6パス及び7パスでの異周速率を変化させた異周速圧延を行った例である。なお、表4で表示されていない熱延条件は全て実施例1と同様である。また、実施例1と同様に、引張特性、3/8板厚部及び1/16板厚部の集合組織の測定、ヤング率の測定を行った。溶融めっき、合金化溶融めっき等は行っていない。結果を表5に示す。   Steel plates were manufactured under the conditions shown in Table 4 using the steels D and N shown in Table 1. Production No. shown in the table. Reference numerals 49, 51, and 52 are examples in which different peripheral speed rolling was performed by changing the different peripheral speed ratios in the final three stages of the finish rolling stand including all seven stages, that is, five passes, six passes, and seven passes. . All the hot rolling conditions not shown in Table 4 are the same as in Example 1. Further, in the same manner as in Example 1, the tensile properties, the texture of the 3/8 plate thickness part and the 1/16 plate thickness part, and the Young's modulus were measured. Neither hot dipping nor alloying hot dipping is performed. The results are shown in Table 5.

これから明らかなとおり、本発明の化学成分を有する鋼を適正な条件で熱延する際に1%以上の異周速圧延を1パス以上加えると、集合組織形成が促進され、更にヤング率が向上する。   As is clear from this, when hot rolling the steel having the chemical composition of the present invention under appropriate conditions, adding 1% or more of different peripheral speed rolling promotes the formation of texture and further improves the Young's modulus. To do.

Figure 2009013478
Figure 2009013478

Figure 2009013478
Figure 2009013478

本発明の高ヤング率鋼板は、自動車、家庭電気製品、建物などに使用される。また、本発明の高ヤング率鋼板は、表面処理をしない狭義の熱延鋼板と、防錆のために溶融Znめっき、合金化溶融Znめっき、電気めっきなどの表面処理を施した広義の熱延鋼板を含む。表面処理にはアルミ系のめっき、熱延鋼板、各種めっき鋼板の表面への有機皮膜、無機皮膜の形成、塗装、それらを組み合わせた処理も含まれる。
本発明の鋼板は高いヤング率を有するため、従来の鋼板よりも板厚を減少させること、即ち軽量化が可能になり、地球環境保全に寄与できる。また、本発明の鋼板は、形状凍結性も改善されるため、自動車用部材などのプレス部品への高強度鋼板の適用が容易になる。更に、本発明の鋼板を成形、加工して得られた部材は、衝突エネルギー吸収特性にも優れるので、自動車の安全性の向上にも寄与する。
The high Young's modulus steel sheet of the present invention is used for automobiles, home appliances, buildings and the like. In addition, the high Young's modulus steel sheet of the present invention includes a hot-rolled steel sheet in a narrow sense without surface treatment, and a broad-sense hot-rolled steel that has been subjected to surface treatment such as hot dip Zn plating, alloyed hot dip Zn plating, electroplating for rust prevention. Includes steel sheets. Surface treatment includes aluminum-based plating, hot-rolled steel sheets, formation of organic films and inorganic films on the surfaces of various plated steel sheets, coating, and combinations of these.
Since the steel sheet of the present invention has a high Young's modulus, it is possible to reduce the thickness of the steel sheet, that is, to reduce the weight as compared with the conventional steel sheet, and to contribute to global environmental conservation. Moreover, since the shape freezing property of the steel plate of the present invention is also improved, it becomes easy to apply the high-strength steel plate to press parts such as automobile members. Furthermore, since the member obtained by shaping | molding and processing the steel plate of this invention is excellent also in a collision energy absorption characteristic, it contributes also to the improvement of the safety | security of a motor vehicle.

φ=45°断面でのODFと主な方位を示す図である。It is a figure which shows ODF in a (phi) 2 = 45 degree cross section, and main directions.

Claims (12)

質量%で、
C :0.010〜0.200%、
Mn:0.10〜2.50%
を含有し、
Si:2.50%以下、
P :0.150%以下、
S :0.0150%以下、
Al:0.150%以下、
N :0.0100%以下
に制限し、更に、
Nb:0.005〜0.100% 、
Ti:0.002〜0.150%
の一方又は双方を合計で0.01〜0.25%含有し、残部がFe及び不可避的不純物からなり、下記(式1)のBs[℃]が450〜700℃の範囲内であり、板厚3/8位置での{100}<011>、{211}<011>、{111}<011>方位のX線ランダム強度比の平均値(A)が3.0以上、{554}<225>、{110}<001>方位のX線ランダム強度比の平均値(B)が5.0以下で、かつ、(A)/(B)≧1.5であることを特徴とする高剛性高強度冷延鋼鈑。
Bs=830−270C−90Mn−37Ni−70Cr−83Mo ・・・(式1)
ここで、C、Mn、Ni、Cr、Moは各元素の含有量[質量%]である。
% By mass
C: 0.010-0.200%
Mn: 0.10 to 2.50%
Containing
Si: 2.50% or less,
P: 0.150% or less,
S: 0.0150% or less,
Al: 0.150% or less,
N: limited to 0.0100% or less, and
Nb: 0.005 to 0.100%,
Ti: 0.002 to 0.150%
One or both of them are contained in a total of 0.01 to 0.25%, the balance is made of Fe and inevitable impurities, Bs [° C.] in the following (formula 1) is in the range of 450 to 700 ° C., The average value (A) of the X-ray random intensity ratio in the {100} <011>, {211} <011>, {111} <011> orientation at the thickness 3/8 position is 3.0 or more, {554} <225>, {110} <001> orientation X-ray random intensity ratio average value (B) is 5.0 or less and (A) / (B) ≧ 1.5 Rigid high strength cold rolled steel sheet.
Bs = 830-270C-90Mn-37Ni-70Cr-83Mo (Formula 1)
Here, C, Mn, Ni, Cr, and Mo are content [mass%] of each element.
質量%で、
Mo:0.005〜0.500%、
Cr:0.005〜1.000%、
W :0.005〜1.500%、
Cu:0.005〜0.350%、
Ni:0.005〜0.350%
の1種又は2種以上を下記(式2)を満足する範囲で含有することを特徴とする請求項1に記載の高剛性高強度冷延鋼鈑。
3.0≦3.2Mn+9.6Mo+4.7W+6.2Ni+18.6Cu+0.7Cr
≦7.5 ・・・(式2)
ここで、Mn、Mo、W、Ni、Cu、Crは各元素の含有量[質量%]である。
% By mass
Mo: 0.005 to 0.500%,
Cr: 0.005 to 1.000%
W: 0.005 to 1.500%,
Cu: 0.005-0.350%,
Ni: 0.005-0.350%
The high-rigidity and high-strength cold-rolled steel plate according to claim 1, wherein one or more of the above are contained in a range satisfying the following (formula 2).
3.0 ≦ 3.2Mn + 9.6Mo + 4.7W + 6.2Ni + 18.6Cu + 0.7Cr
≦ 7.5 (Formula 2)
Here, Mn, Mo, W, Ni, Cu, and Cr are the content [% by mass] of each element.
質量%で、
B :0.0003〜0.0100%
を含有することを特徴とする請求項1又は2に記載の高剛性高強度冷延鋼鈑。
% By mass
B: 0.0003 to 0.0100%
The high-rigidity and high-strength cold-rolled steel plate according to claim 1 or 2, characterized by comprising:
質量%で、
Ca:0.0005〜0.1000%、
Rem:0.0005〜0.1000%、
V:0.001〜0.100%
の1種又は2種以上を含有することを特徴とする請求項1〜3の何れか1項に記載の高剛性高強度冷延鋼鈑。
% By mass
Ca: 0.0005 to 0.1000%,
Rem: 0.0005 to 0.1000%,
V: 0.001 to 0.100%
The high-rigidity and high-strength cold-rolled steel plate according to any one of claims 1 to 3, characterized by containing one or more of the following.
板厚1/16位置での{110}<112>方位、{110}<111>方位の一方又は双方のX線ランダム強度比が3以上であることを特徴とする請求項1〜4の何れか1項に記載の高剛性高強度冷延鋼鈑。   5. The X-ray random intensity ratio of one or both of the {110} <112> orientation and the {110} <111> orientation at a thickness of 1/16 is 3 or more. 2. A high-rigidity, high-strength cold-rolled steel plate according to item 1. 圧延方向の静的ヤング率が215GPa以上であることを特徴とする請求項1〜5の何れか1項に記載の高剛性高強度冷延鋼鈑。   The high-rigidity and high-strength cold-rolled steel plate according to any one of claims 1 to 5, wherein a static Young's modulus in a rolling direction is 215 GPa or more. 請求項1〜6の何れか1項に記載の高剛性高強度冷延鋼鈑に、溶融亜鉛めっきが施されていることを特徴とする高剛性高強度溶融亜鉛めっき冷延鋼板。   A high-rigidity, high-strength hot-dip galvanized cold-rolled steel sheet, wherein the high-rigidity, high-strength cold-rolled steel sheet according to any one of claims 1 to 6 is hot-dip galvanized. 請求項1〜6の何れか1項に記載の高剛性高強度冷延鋼鈑に、合金化溶融亜鉛めっきが施されていることを特徴とする高剛性高強度合金化溶融亜鉛めっき冷延鋼板。   A high-rigidity and high-strength galvannealed cold-rolled steel sheet, wherein the high-rigidity and high-strength cold-rolled steel sheet according to any one of claims 1 to 6 is galvanized. . 請求項1〜6の何れか1項に記載の高剛性高強度冷延鋼鈑の製造方法であって、請求項1〜4の何れか1項に記載の化学成分を有する鋼片を1100℃以上に加熱し、1000℃以下での圧下率の合計を40%以上、かつ、下記(式3)によって求められる形状比Xの平均値を2.5以上とし、最終パスの温度をAr変態点以上900℃以下とする熱間圧延を施し、下記(式1)のBs[℃]以下、かつ450〜650℃の温度範囲内で巻き取った後、30〜80%の冷間圧延を施し、更に室温から650℃までの平均加熱速度3〜300℃/sで、650℃以上Ac変態温度以下に加熱し、1秒以上保持する焼鈍を行うことを特徴とする高剛性高強度冷延鋼鈑の製造方法。
Bs=830−270C−90Mn−37Ni−70Cr−83Mo ・・・(式1)
形状比X=l/h ・・・(式3)
(熱延ロールと鋼鈑の接触弧長):√(L×(hin−hout)/2)、
:(hin+hout)/2、
L :ロール直径、
in:圧延ロール入側の板厚、
out:圧延ロール出側の板厚、
ここで、C、Mn、Ni、Cr、Moは各元素の含有量[質量%]である。
It is a manufacturing method of the high-rigidity high-strength cold-rolled steel plate of any one of Claims 1-6, Comprising: The steel piece which has a chemical component of any one of Claims 1-4 is 1100 degreeC. The total reduction ratio at 1000 ° C. or lower is 40% or more, the average value of the shape ratio X obtained by the following (formula 3) is 2.5 or more, and the temperature of the final pass is Ar 3 transformation After hot rolling to a temperature of not less than 900 ° C and not more than Bs [° C] below (Formula 1) and in the temperature range of 450 to 650 ° C, cold rolling of 30 to 80% is performed. Further, high-rigidity and high-strength cold rolling characterized by performing annealing at an average heating rate of 3 to 300 ° C./s from room temperature to 650 ° C. and heating to 650 ° C. or higher and Ac 3 transformation temperature or lower and holding for 1 second or longer. Steel plate manufacturing method.
Bs = 830-270C-90Mn-37Ni-70Cr-83Mo (Formula 1)
Shape ratio X = l d / h m (Formula 3)
l d (contact arc length of hot-rolled roll and steel plate): √ (L × (h in −h out ) / 2),
h m : (h in + h out ) / 2
L: Roll diameter,
h in : plate thickness on the rolling roll entry side,
h out : thickness of the roll exit side,
Here, C, Mn, Ni, Cr, and Mo are content [mass%] of each element.
前記熱間圧延を施す際に、異周速率が1%以上の異周速圧延を少なくとも1パス以上施すことを特徴とする請求項9に記載の高剛性高強度冷延鋼鈑の製造方法。   The method for producing a high-rigidity and high-strength cold-rolled steel plate according to claim 9, wherein when performing the hot rolling, at least one pass of different peripheral speed rolling with a different peripheral speed ratio of 1% or more is performed. 請求項7に記載の溶融亜鉛めっき冷延鋼板の製造方法であって、請求項9又は10に記載の方法で製造した鋼板の表面に溶融亜鉛めっきを施すことを特徴とする高剛性高強度溶融亜鉛めっき冷延鋼板の製造方法。   A hot-dip galvanized cold-rolled steel sheet manufacturing method according to claim 7, characterized in that hot-dip galvanizing is applied to the surface of the steel sheet manufactured by the method according to claim 9 or 10. Manufacturing method of galvanized cold-rolled steel sheet. 請求項8に記載の合金化溶融亜鉛めっき冷延鋼板の製造方法であって、請求項9又は10に記載の方法で製造した鋼板の表面に溶融亜鉛めっきを施した後、450〜600℃までの温度範囲で10s以上の熱処理を行うことを特徴とする高剛性高強度合金化溶融亜鉛めっき冷延鋼板の製造方法。   It is a manufacturing method of the galvannealed cold-rolled steel sheet of Claim 8, Comprising: After giving the hot-dip galvanizing to the surface of the steel plate manufactured by the method of Claim 9 or 10, it is 450-600 degreeC. A method for producing a high-rigidity and high-strength galvannealed cold-rolled steel sheet characterized by performing a heat treatment for 10 seconds or more in a temperature range of
JP2007177727A 2007-07-05 2007-07-05 High-rigidity, high-strength cold-rolled steel sheet and manufacturing method thereof Active JP5088021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007177727A JP5088021B2 (en) 2007-07-05 2007-07-05 High-rigidity, high-strength cold-rolled steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007177727A JP5088021B2 (en) 2007-07-05 2007-07-05 High-rigidity, high-strength cold-rolled steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009013478A true JP2009013478A (en) 2009-01-22
JP5088021B2 JP5088021B2 (en) 2012-12-05

Family

ID=40354741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007177727A Active JP5088021B2 (en) 2007-07-05 2007-07-05 High-rigidity, high-strength cold-rolled steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5088021B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161241A1 (en) * 2011-05-25 2012-11-29 新日鐵住金株式会社 Cold-rolled steel sheet and method for producing same
WO2014021382A1 (en) 2012-07-31 2014-02-06 新日鐵住金株式会社 Cold-rolled steel sheet, electrolytic zinc-coated cold-rolled steel sheet, hot-dip zinc-coated cold-rolled steel sheet, alloyed hot-dip zinc-coated cold-rolled steel sheet, and methods for producing said steel sheets
CN103882320A (en) * 2012-12-21 2014-06-25 鞍钢股份有限公司 High-strength cold-rolled steel sheet having excellent stretch flangeability and spot weldability, and method for producing same
CN104264052A (en) * 2014-10-30 2015-01-07 湖南华菱涟源钢铁有限公司 Steel plate for engineering machinery and production method thereof
US9546413B2 (en) 2011-03-28 2017-01-17 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and production method thereof
WO2020130060A1 (en) * 2018-12-21 2020-06-25 日鉄ステンレス株式会社 Cr-based stainless steel having excellent hydrogen embrittlement resistance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314793A (en) * 2004-03-31 2005-11-10 Jfe Steel Kk High-rigidity high-strength thin steel sheet and method for producing same
JP2007092130A (en) * 2005-09-29 2007-04-12 Jfe Steel Kk High-strength steel sheet having excellent rigidity and its production method
JP2007146275A (en) * 2005-11-01 2007-06-14 Nippon Steel Corp Low yield ratio type steel sheet with high young's modulus, hot-dip galvanized steel sheet, galvannealed steel sheet and steel tube, and their manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314793A (en) * 2004-03-31 2005-11-10 Jfe Steel Kk High-rigidity high-strength thin steel sheet and method for producing same
JP2007092130A (en) * 2005-09-29 2007-04-12 Jfe Steel Kk High-strength steel sheet having excellent rigidity and its production method
JP2007146275A (en) * 2005-11-01 2007-06-14 Nippon Steel Corp Low yield ratio type steel sheet with high young's modulus, hot-dip galvanized steel sheet, galvannealed steel sheet and steel tube, and their manufacturing method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9670569B2 (en) 2011-03-28 2017-06-06 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet and production method thereof
US9546413B2 (en) 2011-03-28 2017-01-17 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and production method thereof
US9631265B2 (en) 2011-05-25 2017-04-25 Nippon Steel Hot-rolled steel sheet and method for producing same
KR20130140207A (en) * 2011-05-25 2013-12-23 신닛테츠스미킨 카부시키카이샤 Cold-rolled steel sheet and method for producing same
US10266928B2 (en) 2011-05-25 2019-04-23 Nippon Steel & Sumitomo Metal Corporation Method for producing a cold-rolled steel sheet
JP5488763B2 (en) * 2011-05-25 2014-05-14 新日鐵住金株式会社 Cold-rolled steel sheet and manufacturing method thereof
US10167539B2 (en) 2011-05-25 2019-01-01 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and method for producing same
WO2012161241A1 (en) * 2011-05-25 2012-11-29 新日鐵住金株式会社 Cold-rolled steel sheet and method for producing same
KR101632778B1 (en) * 2011-05-25 2016-06-22 신닛테츠스미킨 카부시키카이샤 Cold-rolled steel sheet and method for producing same
US9567658B2 (en) 2011-05-25 2017-02-14 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet
US9879336B2 (en) 2012-07-31 2018-01-30 Nippon Steel & Sumitomo Metal Corporation Cold rolled steel sheet, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold rolled steel sheet, and manufacturing methods of the same
KR20150029741A (en) 2012-07-31 2015-03-18 신닛테츠스미킨 카부시키카이샤 Cold-rolled steel sheet, electrolytic zinc-coated cold-rolled steel sheet, hot-dip zinc-coated cold-rolled steel sheet, alloyed hot-dip zinc-coated cold-rolled steel sheet, and methods for producing said steel sheets
WO2014021382A1 (en) 2012-07-31 2014-02-06 新日鐵住金株式会社 Cold-rolled steel sheet, electrolytic zinc-coated cold-rolled steel sheet, hot-dip zinc-coated cold-rolled steel sheet, alloyed hot-dip zinc-coated cold-rolled steel sheet, and methods for producing said steel sheets
CN103882320A (en) * 2012-12-21 2014-06-25 鞍钢股份有限公司 High-strength cold-rolled steel sheet having excellent stretch flangeability and spot weldability, and method for producing same
CN104264052A (en) * 2014-10-30 2015-01-07 湖南华菱涟源钢铁有限公司 Steel plate for engineering machinery and production method thereof
WO2020130060A1 (en) * 2018-12-21 2020-06-25 日鉄ステンレス株式会社 Cr-based stainless steel having excellent hydrogen embrittlement resistance
JPWO2020130060A1 (en) * 2018-12-21 2021-10-14 日鉄ステンレス株式会社 Cr-based stainless steel sheet with excellent hydrogen embrittlement resistance
JP7121142B2 (en) 2018-12-21 2022-08-17 日鉄ステンレス株式会社 Cr-based stainless steel sheet with excellent resistance to hydrogen embrittlement

Also Published As

Publication number Publication date
JP5088021B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP5228447B2 (en) High Young&#39;s modulus steel plate and method for producing the same
JP5037415B2 (en) High Young&#39;s modulus steel plate excellent in hole expansibility and method for producing the same
JP5053157B2 (en) High strength high Young&#39;s modulus steel plate with good press formability, hot dip galvanized steel plate, alloyed hot dip galvanized steel plate and steel pipe, and production method thereof
EP3214193B1 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-coated steel sheet, and high-strength electrogalvanized steel sheet, and methods for manufacturing same
EP3214199B1 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-coated steel sheet, and high-strength electrogalvanized steel sheet, and methods for manufacturing same
JP4555693B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
EP2757169B1 (en) High-strength steel sheet having excellent workability and method for producing same
JP5273324B1 (en) High-strength galvanized steel sheet with excellent bendability and manufacturing method thereof
JP5058508B2 (en) Low yield ratio type high Young&#39;s modulus steel plate, hot dip galvanized steel plate, alloyed hot dip galvanized steel plate and steel pipe, and production method thereof
JP5582274B2 (en) Cold-rolled steel sheet, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof
EP3447160A1 (en) Steel plate, plated steel plate, and production method therefor
JP5217395B2 (en) High strength cold-rolled steel sheet with small in-plane anisotropy of elongation and method for producing the same
JP5037413B2 (en) Low yield ratio high Young&#39;s modulus steel sheet, hot dip galvanized steel sheet, alloyed hot dip galvanized steel sheet, steel pipe, and production method thereof
US20140242414A1 (en) High-strength steel sheet and high-strength galvanized steel sheet excellent in shape fixability, and manufacturing method thereof
EP3447159B1 (en) Steel plate, plated steel plate, and production method therefor
JP5391997B2 (en) Composite panel with excellent tension rigidity
JP5088021B2 (en) High-rigidity, high-strength cold-rolled steel sheet and manufacturing method thereof
JP5978838B2 (en) Cold-rolled steel sheet excellent in deep drawability, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof
JP6264861B2 (en) High Young&#39;s modulus cold-rolled steel sheet excellent in workability, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof
JP5533143B2 (en) Cold rolled steel sheet and method for producing the same
JP5533145B2 (en) Cold rolled steel sheet and method for producing the same
JP5776762B2 (en) Cold rolled steel sheet and method for producing the same
JP5776764B2 (en) Cold rolled steel sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5088021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350