JP2007092130A - High-strength steel sheet having excellent rigidity and its production method - Google Patents

High-strength steel sheet having excellent rigidity and its production method Download PDF

Info

Publication number
JP2007092130A
JP2007092130A JP2005283415A JP2005283415A JP2007092130A JP 2007092130 A JP2007092130 A JP 2007092130A JP 2005283415 A JP2005283415 A JP 2005283415A JP 2005283415 A JP2005283415 A JP 2005283415A JP 2007092130 A JP2007092130 A JP 2007092130A
Authority
JP
Japan
Prior art keywords
steel sheet
strength
less
rolling
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005283415A
Other languages
Japanese (ja)
Other versions
JP4867256B2 (en
Inventor
Taro Kizu
太郎 木津
Isato Saito
勇人 齋藤
Toshiaki Urabe
俊明 占部
Yoshihiro Hosoya
佳弘 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005283415A priority Critical patent/JP4867256B2/en
Publication of JP2007092130A publication Critical patent/JP2007092130A/en
Application granted granted Critical
Publication of JP4867256B2 publication Critical patent/JP4867256B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength steel sheet having excellent rigidity in which tensile strength is ≥590 MPa, a Young's modulus in the 90° direction to the rolling direction is ≥230 GPa, and the average Young's modulus in the 0°, 45° and 90° directions to the rolling direction is ≥215 GPa, and to provide its production method. <P>SOLUTION: The high-strength steel sheet having excellent rigidity has a composition comprising, by mass, 0.02 to 0.15% C, ≤0.3% Si, 1.0 to 3.5% Mn, ≤0.05% P, ≤0.01% S, ≤1.0% Al, ≤0.01% N and 0.1 to 1.0% Ti, and in which the contents of C, N, S and Ti satisfy equation (1), and the balance Fe with inevitable impurities, and has the microstructure of a ferrite single phase, and, in which the average ODF (Orientation Distribution Function) analysis strength in the (111)[1-10] to (111)[-1-12] orientation of the sheet face in the 1/4 sheet thickness is ≥5, and the average ODF analysis strength in the (113)[1-10] to (223)[1-10] orientation is ≥3. The equation (1) is: C-(12/47.9)×Ti<SB>-1</SB>≤0 ... (1), wherein, Ti<SB>-1</SB>=Ti-(47.9/14)×N-(47.9/32.1)×S, and each atomic symbol in the equation denotes the content of each element. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、主として自動車のサイドシル、センターピラー、サイドフレーム、クロスメンバーなど、剛性の板厚感受性指数が1に近いコラム状の構造部材に好適な剛性に優れた高強度薄鋼板およびその製造方法に関する。   The present invention mainly relates to a high-strength thin steel sheet excellent in rigidity suitable for a columnar structural member having a rigidity thickness sensitivity index close to 1, such as a side sill, a center pillar, a side frame, and a cross member of an automobile, and a manufacturing method thereof. .

近年、地球環境問題への関心の高まりを受けて、自動車の排ガス規制が行われるなど、自動車における車体の軽量化は極めて重要な課題となっている。車体の軽量化には、鋼板の高強度化により板厚を減少させること(薄肉化)が有効な方法であるが、最近では、鋼板の高強度化が顕著に進んだ結果、板厚2.0mmを下回るような薄鋼板の使用が増加してきている。   In recent years, the weight reduction of automobile bodies in automobiles has become an extremely important issue, such as the exhaust gas regulations of automobiles being implemented in response to increasing interest in global environmental problems. In order to reduce the weight of the car body, it is an effective method to reduce the plate thickness by increasing the strength of the steel plate (thinning), but recently, as a result of remarkable progress in increasing the strength of the steel plate, the plate thickness is 2.0 mm. The use of thin steel sheets that are below the limit is increasing.

しかし、さらなる高強度化によって軽量化を図るためには、薄肉化による車体剛性の低下を同時に抑制することが不可欠になってきている。剛性には車体構造が最も大きな影響を与えるので、構造上剛性の低下を抑制することが効果的であるが、基本的な構造を変更することは容易ではない。また、スポット溶接がなされる部材に対しては、溶接点の増加や、ウエルドボンドによる接合あるいはレーザ溶接への切り替えなど溶接条件を変更することも有効であるが、コストが増加するという問題を伴う。さらに、剛性が必要な部分に樹脂などを貼り付けるなどの方法もあるがコスト増を招く。さらにまた、部材の断面などの形状を変えることも有効ではあるが、設計上の問題やプレス上の問題などがある。   However, in order to reduce the weight by further increasing the strength, it has become indispensable to simultaneously suppress the decrease in the vehicle body rigidity due to the thinning. Since the vehicle body structure has the greatest influence on the rigidity, it is effective to suppress the decrease in rigidity structurally, but it is not easy to change the basic structure. In addition, it is effective to change the welding conditions, such as increasing the number of welding points, switching to weld bonding, or switching to laser welding, for members that are spot-welded, but this involves the problem of increased costs. . Furthermore, there is a method of attaching a resin or the like to a portion where rigidity is required, but this increases the cost. Furthermore, although it is effective to change the shape of the cross section of the member, there are design problems and pressing problems.

そこで、部材に使用される鋼板の剛性を高めれば、部材形状や溶接条件を変更することなく、部材の剛性を高めることができることになる。特に、自動車のコラム状の構造部材に対しては、自動車の走行中に曲げ荷重がかかることから、曲げ剛性を高めることが必要であり、それには鋼板のヤング率を高めることが有効である。   Therefore, if the rigidity of the steel plate used for the member is increased, the rigidity of the member can be increased without changing the member shape or welding conditions. In particular, for columnar structural members of automobiles, a bending load is applied while the automobile is running, so it is necessary to increase the bending rigidity. For this purpose, it is effective to increase the Young's modulus of the steel sheet.

ヤング率は、集合組織に大きく支配され、体心立方格子である鋼の場合は、原子の稠密方向である<111>方向に高く、逆に原子密度の小さい<100>方向に小さいことが知られている。結晶方位に異方性のない通常の鉄のヤング率はおよそ210GPa程度であることが知られているが、結晶方位に異方性を持たせ、特定方向の原子密度を高めることで、その方向のヤング率を高めることができる。しかし、自動車車体の曲げ剛性を考える場合には、様々な方向から荷重が加わるため、特定方向のみでなく、各方向に高いヤング率を有する鋼板が求められる。   The Young's modulus is largely governed by the texture, and in the case of steel with a body-centered cubic lattice, it is known that the Young's modulus is high in the <111> direction, which is the atomic dense direction, and conversely small in the <100> direction where the atomic density is low. It has been. It is known that the Young's modulus of normal iron with no crystal orientation anisotropy is about 210 GPa, but by adding anisotropy to the crystal orientation and increasing the atomic density in a specific direction, that direction Can increase the Young's modulus. However, when considering the bending rigidity of an automobile body, since a load is applied from various directions, a steel sheet having a high Young's modulus in each direction is required in addition to a specific direction.

鋼板のヤング率に関しては、これまで、集合組織を制御することで特定方向のヤング率を高めた鋼板の検討が種々なされてきている。例えば、特許文献1には、NbあるいはTiを添加した極低炭素鋼を用い、熱間圧延時にAr3変態点〜(Ar3変態点+150℃)での圧下率を85%以上とし、未再結晶オーステナイトからのフェライト変態を促進することで、熱間圧延後に{311}<011>および{332}<113>を発達させ、その後の冷間圧延、再結晶焼鈍により{211}<011>を発達させて、圧延方向に対して直角方向のヤング率を高める技術が開示されている。特許文献2には、Nbが添加されたC量が0.05質量%以下の低炭素鋼を、950℃以下の仕上圧延開始温度、(Ar3変態点-50℃)〜(Ar3変態点+100℃)の仕上圧延終了温度で熱間圧延し、オーステナイトの再結晶を抑制することで、ヤング率を低下させる{100}の発達を抑制し、圧延方向に対して直角方向のヤング率を高めた熱延鋼板の製造方法が開示されている。特許文献3には、SiとAlを添加してAr3変態点を高めたC量が0.05質量%以下の低炭素鋼を、Ar3変態点以下での圧下率を60%以上として熱間圧延し、{211}<110>を発達させることで、圧延方向に対して直角方向のヤング率を高めた熱延鋼板の製造方法が開示されている。特許文献4には、固溶(C+N)が10ppm以上の鋼を、200〜500℃の温度域で20%以上の圧下率で圧延し、再結晶焼鈍を行うことで、(110)[001]方位を発達させ、圧延方向に対して45〜67.5°の方向でのヤング率を高める方法が開示されている。特許文献5には、C量が0.01〜0.1質量%の鋼にTi、Mo、Wを添加し、10〜30nmの微細な炭化物を析出させた深絞り性に優れた高張力冷延鋼板が開示されている。 Regarding the Young's modulus of a steel sheet, various studies have been made on steel sheets that have a higher Young's modulus in a specific direction by controlling the texture. For example, Patent Document 1 uses ultra-low carbon steel to which Nb or Ti is added, and the rolling rate from Ar 3 transformation point to (Ar 3 transformation point + 150 ° C.) during hot rolling is 85% or more. By promoting ferrite transformation from recrystallized austenite, {311} <011> and {332} <113> were developed after hot rolling, and then {211} <011> by cold rolling and recrystallization annealing Has been developed to increase the Young's modulus in a direction perpendicular to the rolling direction. In Patent Document 2, low carbon steel with Nb added and having a C content of 0.05% by mass or less, finish rolling start temperature of 950 ° C. or less, (Ar 3 transformation point −50 ° C.) to (Ar 3 transformation point +100) (° C) finish rolling at the finishing finish temperature, suppressing the recrystallization of austenite, suppressing the development of {100}, which reduces the Young's modulus, and increasing the Young's modulus in the direction perpendicular to the rolling direction. A method for producing a hot-rolled steel sheet is disclosed. In Patent Document 3, a low carbon steel with an amount of C of 0.05 mass% or less in which the Ar 3 transformation point is increased by adding Si and Al is hot-rolled with a reduction rate of 60% or more at the Ar 3 transformation point or less. And the manufacturing method of the hot-rolled steel plate which raised the Young's modulus of the direction orthogonal to a rolling direction by developing {211} <110> is disclosed. In Patent Document 4, steel having a solid solution (C + N) of 10 ppm or more is rolled at a reduction rate of 20% or more in a temperature range of 200 to 500 ° C., and subjected to recrystallization annealing, (110) [ 001] orientation is developed to increase the Young's modulus in the direction of 45-67.5 ° with respect to the rolling direction. Patent Document 5 discloses a high-tensile cold-rolled steel sheet with excellent deep drawability in which Ti, Mo, and W are added to steel having a C content of 0.01 to 0.1% by mass to precipitate fine carbides of 10 to 30 nm. Has been.

なお、下記の非特許文献1は、後述の[発明を実施するための最良の形態]で述べるODF解析のためのADC法に関する。
特開平5-255804号公報 特開平5-247530号公報 特開平9-53118号公報 特開昭58-9932号公報 特開2003-321733号公報 Phys. Status Solid (b), 134 (1986) 447
Non-Patent Document 1 below relates to an ADC method for ODF analysis described in [Best Mode for Carrying Out the Invention] described later.
Japanese Patent Laid-Open No. 5-255804 Japanese Patent Laid-Open No. 5-27530 JP-A-9-53118 JP 58-9932 A JP 2003-321733 A Phys. Status Solid (b), 134 (1986) 447

しかしながら、上記の従来技術には、次のような問題がある。すなわち、特許文献1〜4の技術では、鋼板の一方向のみのヤング率を高めることには有効であるが、各方向に高いヤング率を有する鋼板が必要な自動車の構造部材の剛性向上には適用できない。特許文献5の技術では、析出が微細なため冷間圧延時の圧延負荷が高く、操業上の困難を伴う他、高ヤング率化の達成も困難である。   However, the above prior art has the following problems. That is, in the techniques of Patent Documents 1 to 4, it is effective to increase the Young's modulus in only one direction of the steel sheet, but to improve the rigidity of the structural member of an automobile that requires a steel sheet having a high Young's modulus in each direction. Not applicable. In the technique of Patent Document 5, since the precipitation is fine, the rolling load during cold rolling is high, and it is difficult to achieve high Young's modulus in addition to operational difficulties.

その他、特許文献1の技術では、C量が0.01質量%以下の極低炭素鋼を用いるため引張強度がせいぜい450MPa程度と低く、さらなる高強度化を図るのが困難である、特許文献3では、フェライト域での圧延を行うため結晶粒が粗大化してしまい、加工性が著しく低下する、特許文献4では、200〜500℃で温間圧延を行う必要があり、また、通常の熱間圧延に比べて圧延荷重が非常に高くなることから、製造コストが増大する、などの問題もある。   In addition, in the technique of Patent Document 1, the tensile strength is as low as about 450 MPa at most because it uses an ultra-low carbon steel having a C content of 0.01% by mass or less, and it is difficult to further increase the strength. In order to perform rolling in the ferrite region, the crystal grains become coarse and the workability is remarkably reduced. In Patent Document 4, it is necessary to perform warm rolling at 200 to 500 ° C. In comparison, the rolling load becomes very high, and there is a problem that the manufacturing cost increases.

本発明は、引張強度が590MPa以上、圧延方向に対して90°方向のヤング率が230GPa以上、かつ圧延方向、圧延方向に対して45°方向、および圧延方向に対して90°方向の平均ヤング率が215GPa以上である剛性に優れた高強度薄鋼板およびその製造方法を提供することを目的とする。   In the present invention, the tensile strength is 590 MPa or more, the Young's modulus in the 90 ° direction with respect to the rolling direction is 230 GPa or more, and the average Young in the rolling direction, 45 ° direction with respect to the rolling direction, and 90 ° direction with respect to the rolling direction. An object of the present invention is to provide a high-strength thin steel sheet excellent in rigidity with a rate of 215 GPa or more and a method for producing the same.

本発明者らが、引張強度が590MPa以上の高強度薄鋼板の高ヤング率化について検討したところ、C、Ti量を適正に制御した鋼を用い、熱間圧延後高温で巻取ることでTiを炭化物として析出させ、固溶Cをフリーにさせることにより、その後の冷間圧延で、(113)[1-10]〜(223)[1-10]方位および(111)[1-10]〜(111)[-1-12]方位の集合組織を発達させ、さらに焼鈍時に、固溶Cがフリーであることを利用して(111)[1-10]〜(111)[-1-12]方位の集合組織を発達させるとともに、析出物と焼鈍温度を制御して(113)[1-10]〜(223)[1-10]方位の集合組織を発達させることにより、圧延方向に対して90°方向のヤング率を向上させつつ、全方向のヤング率も向上させることができることを見出した。ここで、[1-10]、[-1-12]は、それぞれ(1,-1,0)、(-1,-1,2)の方向を表す。   When the present inventors examined high Young's modulus of a high-strength thin steel sheet having a tensile strength of 590 MPa or more, using a steel in which the amount of C and Ti is appropriately controlled, the steel is rolled up at a high temperature after hot rolling. Is precipitated as carbides and free of solid solution C, and in the subsequent cold rolling, (113) [1-10] to (223) [1-10] orientation and (111) [1-10] (111) [1-10] to (111) [-1-] by developing the texture of the (111) [-1-12] orientation and using the fact that solid solution C is free during annealing 12] The texture in the rolling direction is developed by developing the texture in the (113) [1-10] to (223) [1-10] orientation by controlling the precipitate and annealing temperature. On the other hand, it was found that the Young's modulus in all directions can be improved while improving the Young's modulus in the 90 ° direction. Here, [1-10] and [-1-12] represent directions of (1, -1,0) and (-1, -1,2), respectively.

本発明は、こうした知見に基づいてなされたものであり、質量%で、C:0.02〜0.15%、Si:0.3%以下、Mn:1.0〜3.5%、P:0.05%以下、S:0.01%以下、Al:1.0%以下、N:0.01%以下、Ti:0.1〜1.0%を含有し、C、N、S、Tiの含有量が下記の(1)式を満たし、残部がFeおよび不可避的不純物からなる組成を有し、フェライト単相のミクロ組織を有し、かつ鋼板の1/4板厚における板面の(111)[1-10]〜(111)[-1-12]方位における平均のODF解析強度fが5以上であり、(113)[1-10]〜(223)[1-10]方位における平均のODF解析強度fが3以上であることを特徴とする剛性に優れた高強度薄鋼板を提供する。
C-(12/47.9)×Ti-1≦0・・・・・(1)
ここで、Ti-1=Ti-(47.9/14)×N-(47.9/32.1)×Sであり、式中の各元素記号は各元素の含有量(質量%)を表す。
The present invention has been made based on these findings, and in mass%, C: 0.02 to 0.15%, Si: 0.3% or less, Mn: 1.0 to 3.5%, P: 0.05% or less, S: 0.01% or less , Al: 1.0% or less, N: 0.01% or less, Ti: 0.1 to 1.0%, C, N, S, Ti content satisfies the following formula (1), the balance is Fe and inevitable impurities The average of the (111) [1-10] to (111) [-1-12] orientations of the plate surface at a 1/4 thickness of the steel plate The ODF analysis strength f is 5 or more, and the average ODF analysis strength f in the (113) [1-10] to (223) [1-10] orientation is 3 or more. Provide high strength thin steel sheet.
C- (12 / 47.9) × Ti -1 ≦ 0 ... (1)
Here, Ti −1 = Ti− (47.9 / 14) × N− (47.9 / 32.1) × S, and each element symbol in the formula represents the content (% by mass) of each element.

本発明の高強度薄鋼板では、さらに、質量%で、Nb:0.005〜0.2%、V:0.01〜1.0%から選ばれた少なくとも1種の元素を含有できる。その場合は、上記の(1)式に代わり、C、N、S、Ti、Nb、Vの含有量が下記の(2)式を満たす必要がある。
C-(12/47.9)×Ti-1-(12/92.9)×Nb-(12/50.9)×V≦0・・・・・(2)
ただし、式中の各元素記号は各元素の含有量(質量%)を表す。
The high-strength thin steel sheet of the present invention can further contain at least one element selected from Nb: 0.005 to 0.2% and V: 0.01 to 1.0% by mass. In that case, instead of the above formula (1), the contents of C, N, S, Ti, Nb, and V must satisfy the following formula (2).
C- (12 / 47.9) × Ti -1- (12 / 92.9) × Nb- (12 / 50.9) × V ≦ 0 ... (2)
However, each element symbol in the formula represents the content (% by mass) of each element.

本発明の高強度薄鋼板では、さらに、質量%で、Cr:0.05〜1.0%、Mo:0.05〜1.0%、Ni:0.05〜1.0%、B:0.0005〜0.0030%、Cu:0.1〜2.0%、W:0.1〜2.0%の中から選ばれた少なくとも1種の元素を含有できる。   In the high-strength thin steel sheet of the present invention, further, in mass%, Cr: 0.05-1.0%, Mo: 0.05-1.0%, Ni: 0.05-1.0%, B: 0.0005-0.0030%, Cu: 0.1-2.0%, W: At least one element selected from 0.1 to 2.0% can be contained.

本発明の高強度薄鋼板は、例えば、上記の組成からなる鋼を、鋳造し、Ar3変態点以上の仕上圧延終了温度で熱間圧延し、500℃以上の巻取温度で巻取った後、酸洗を行い、20〜85%の範囲の圧下率で冷間圧延を行った後、焼鈍を行うに際し、室温から820℃までを平均1℃/s以上の昇温速度で加熱し、820〜900℃の温度範囲に下記の(3)式を満たすような時間v(s)滞留させることを特徴とする剛性に優れた高強度薄鋼板の製造方法により製造できる。 The high-strength thin steel sheet of the present invention is obtained by, for example, casting a steel having the above composition, hot rolling at a finish rolling end temperature not lower than the Ar 3 transformation point, and winding at a winding temperature of 500 ° C. or higher. , Pickling, after performing cold rolling at a reduction rate in the range of 20 to 85%, when performing annealing, heating from room temperature to 820 ° C at an average rate of 1 ° C / s or more, 820 It can be produced by a method for producing a high-strength thin steel sheet having excellent rigidity, characterized in that the residence time v (s) satisfying the following expression (3) is maintained in a temperature range of ˜900 ° C.

Figure 2007092130
Figure 2007092130

ここで、F(w)は、鋼板が820℃になってから820〜900℃の温度範囲内に滞留する時間v(s)内の任意の時間w(s)のときの温度(℃)を表す。 Here, F (w) is the temperature (° C) at an arbitrary time w (s) within the time v (s) that the steel sheet stays in the temperature range of 820 to 900 ° C after it reaches 820 ° C. To express.

本発明により、自動車のサイドシル、センターピラー、サイドフレーム、クロスメンバーなど、剛性の板厚感受性指数が1に近いコラム状の構造部材に好適な、引張強度が590MPa以上、圧延方向に対して90°方向のヤング率が230GPa以上、かつ圧延方向、圧延方向に対して45°方向、および圧延方向に対して90°方向の平均のヤング率が215GPa以上である剛性に優れた高強度薄鋼板を製造できるようになった。   According to the present invention, the tensile strength is 590 MPa or more and 90 ° with respect to the rolling direction, which is suitable for a columnar structural member having a rigidity thickness sensitivity index close to 1, such as an automobile side sill, center pillar, side frame, and cross member. Manufactures high-strength steel sheets with excellent rigidity with a Young's modulus in the direction of 230 GPa or more and an average Young's modulus of 215 GPa or more in the rolling direction, 45 ° direction with respect to the rolling direction, and 90 ° direction with respect to the rolling direction. I can do it now.

以下に、本発明である高強度薄鋼板およびその製造方法について詳細に説明する。   Below, the high-strength thin steel sheet and its manufacturing method which are this invention are demonstrated in detail.

1)成分(以下の「%」は、「質量%」を表す。)
C:Cは、Tiと析出物を形成することで、焼鈍時の粒成長を制御して高剛性化に寄与するとともに、析出強化によって高強度化にも寄与できる。このような効果を得るため、C量は0.02%以上とする必要がある。また、固溶C量を減少させることで、冷間圧延、焼鈍時に高剛性化に有利な方位を発達させることができるので、固溶C量を表す上記(1)式の左辺を0以下とする必要がある。一方、C量が多くなると、それに応じてTiの添加量を多くする必要があるが、炭化物の効果が飽和するとともに合金コストが増加するので、C量は0.15%以下、好ましくは0.10%以下とする必要がある。
1) Component (“%” below represents “% by mass”)
C: C forms precipitates with Ti, thereby controlling grain growth during annealing and contributing to higher rigidity, and can also contribute to higher strength by precipitation strengthening. In order to obtain such an effect, the C amount needs to be 0.02% or more. Also, by reducing the amount of solute C, it is possible to develop an orientation that is advantageous for high rigidity during cold rolling and annealing, so the left side of the above equation (1) representing the amount of solute C is 0 or less. There is a need to. On the other hand, if the amount of C increases, it is necessary to increase the amount of Ti accordingly, but since the carbide effect is saturated and the alloy cost increases, the amount of C is 0.15% or less, preferably 0.10% or less. There is a need to.

Si:Siは、その量が0.3%を超えるとAr3変態点を上昇させ、Ar3変態点以上での圧延を困難にする。また、鋼板の溶接性を劣化させたり、熱延加熱時にスラブ表面でファイヤライトの生成を促進し、いわゆる赤スケールと呼ばれる熱延鋼板の表面欠陥の発生を助長させる。さらに、冷延鋼板として使用される場合には、表面に生成するSi酸化物が化成処理性を劣化させ、溶融亜鉛めっき鋼板として使用される場合には、表面に生成するSi酸化物が不めっきを誘発する。したがって、Si量は0.3%以下とする必要がある。なお、Siは固溶強化により高強度化に寄与することから、Si量は0.1%以上とすることが望ましい。 If the amount of Si: Si exceeds 0.3%, the Ar 3 transformation point is raised, and rolling above the Ar 3 transformation point becomes difficult. Further, it deteriorates the weldability of the steel sheet, promotes the formation of firelite on the surface of the slab during hot rolling, and promotes the generation of surface defects on the hot rolled steel sheet called so-called red scale. Furthermore, when used as a cold-rolled steel sheet, the Si oxide produced on the surface deteriorates the chemical conversion property, and when used as a hot-dip galvanized steel sheet, the Si oxide produced on the surface is not plated. To trigger. Therefore, the Si amount needs to be 0.3% or less. In addition, since Si contributes to high strength by solid solution strengthening, the Si content is preferably 0.1% or more.

Mn:Mnは、固溶強化元素として作用して、鋼の高強度化に寄与する。このような効果を得るためには、Mn量を1.0%以上とする必要がある。一方、Mn量が3.5%を超えると鋼板の溶接性を劣化させるともに、熱間圧延や冷間圧延時の圧延荷重を増加させて製造コストの上昇を招く。したがって、Mn量は3.5%以下とする必要がある。   Mn: Mn acts as a solid solution strengthening element and contributes to increasing the strength of steel. In order to obtain such an effect, the Mn content needs to be 1.0% or more. On the other hand, if the amount of Mn exceeds 3.5%, the weldability of the steel sheet is deteriorated, and the rolling load during hot rolling or cold rolling is increased, leading to an increase in manufacturing cost. Therefore, the amount of Mn needs to be 3.5% or less.

P:Pは、0.05%を超えて含有されると粒界に偏析して鋼板の延性や靭性を低下させるとともに、溶接性を劣化させる。また、本発明の鋼板に合金化溶融亜鉛めっきを施す場合には、Pは合金化速度を遅滞させる。したがって、P量は0.05%以下とする。なお、Pは固溶強化元素として高強度化に有効な元素であるとともに、Siを添加した鋼において赤スケールの発生を抑制する作用も有するので、P量は0.01%以上とすることが好ましい。   When P: P is contained in an amount exceeding 0.05%, it segregates at the grain boundaries to lower the ductility and toughness of the steel sheet and deteriorate the weldability. Moreover, when alloying hot dip galvanizing to the steel plate of this invention, P delays alloying speed | rate. Therefore, the P content is 0.05% or less. Note that P is an element effective for increasing the strength as a solid solution strengthening element, and also has an action of suppressing the occurrence of red scale in steel to which Si is added, so the P content is preferably 0.01% or more.

S:Sは、0.01%を超えて多量に含有されると熱間での延性を著しく低下させ、熱間割れを誘発し、鋼板の表面性状を著しく劣化させる。また、強度にほとんど寄与しないばかりか、粗大なMnSとして析出し、穴広げ性などの延性を低下させる。したがって、S量は0.01%以下とする必要がある。なお、S量は少ないほど好ましいが、穴広げ性をより向上させる観点からは0.005%以下とすることがより好ましい。   When S: S is contained in a large amount exceeding 0.01%, hot ductility is remarkably lowered, hot cracking is induced, and the surface properties of the steel sheet are remarkably deteriorated. Moreover, it not only contributes to the strength, but also precipitates as coarse MnS, reducing the ductility such as hole expandability. Therefore, the S amount needs to be 0.01% or less. Note that the smaller the amount of S, the better, but 0.005% or less is more preferable from the viewpoint of further improving the hole expandability.

Al:Alは、フェライト安定化元素であり、1.0%を超えて含有されると鋼のAr3変態点を大きく上昇させることから、Ar3変態点以上での圧延を困難にする。したがって、Al量は1.0%以下とする必要がある。なお、Alは固溶強化により高強度化に寄与することから、このためにはAl量は0.2%以上とすることが望ましい。 Al: Al is a ferrite stabilizing element, and if it exceeds 1.0%, the Ar 3 transformation point of the steel is greatly increased, so that rolling above the Ar 3 transformation point becomes difficult. Therefore, the Al amount needs to be 1.0% or less. In addition, since Al contributes to high strength by solid solution strengthening, the Al content is desirably 0.2% or more for this purpose.

N:Nは、0.01%を超えて多量に含有されると熱間圧延中にスラブ割れを誘発し、鋼板に表面疵が発生する恐れがある。さらに、高温でTiと粗大な窒化物を形成することからTiの添加効果を減少させて製造コストの増大を招く。したがって、N量は0.01%以下、好ましくは0.005%以下とする必要がある。   If N: N is contained in a large amount exceeding 0.01%, slab cracking may be induced during hot rolling, and surface flaws may occur in the steel sheet. Furthermore, since Ti and coarse nitrides are formed at a high temperature, the effect of adding Ti is reduced and the manufacturing cost is increased. Therefore, the N content needs to be 0.01% or less, preferably 0.005% or less.

Ti:Tiは、炭化物を形成するとともに、固溶C量を減少させることで高剛性化、高強度化に寄与することから、Ti量は0.1%以上とする必要がある。一方、Ti量が1.0%を超えると、その効果が飽和することから、Ti量は1.0%以下とする必要がある。   Ti: Ti forms carbides and contributes to higher rigidity and higher strength by reducing the amount of solid solution C, so the Ti amount needs to be 0.1% or more. On the other hand, if the Ti amount exceeds 1.0%, the effect is saturated, so the Ti amount needs to be 1.0% or less.

残部は、Feおよび不可避的不純物とすることが好ましいが、他の微量元素を含有しても、本願発明の効果を損なうものではない。他の微量元素としては、例えばCa、REM等が挙げられ、これらの元素は、硫化物系介在物の形態を制御することで鋼板の伸びフランジ性向上に寄与する。したがって、特に限定はしないが、この効果を得るためには、Ca、REMのうち1種以上を含み、これらの含有量の合計を0.001%以上とすることが好ましい。また、Ca、REMの含有量の合計が0.01%を超えると効果が飽和することから、これらの含有量の合計は0.01%以下とするのが好ましく、より好ましくは、0.005%以下である。また、不純物元素としては、例えばSb、Sn、Zn、Co等が挙げられ、これらの含有量の許容範囲としては、Sb:0.01%以下、Sn:0.1%以下、Zn:0.01%以下、Co:0.1%以下である。   The balance is preferably Fe and inevitable impurities, but even if it contains other trace elements, the effect of the present invention is not impaired. Examples of other trace elements include Ca and REM, and these elements contribute to improving the stretch flangeability of the steel sheet by controlling the form of sulfide inclusions. Therefore, although not particularly limited, in order to obtain this effect, it is preferable to include one or more of Ca and REM and to make the total of these contents 0.001% or more. Further, since the effect is saturated when the total content of Ca and REM exceeds 0.01%, the total of these contents is preferably 0.01% or less, and more preferably 0.005% or less. Examples of the impurity element include Sb, Sn, Zn, Co, etc., and the allowable ranges of these contents are Sb: 0.01% or less, Sn: 0.1% or less, Zn: 0.01% or less, Co: 0.1% or less.

上記成分元素に加え、下記の元素のうちから選ばれた少なくとも1つの元素を含有させることができる。   In addition to the above component elements, at least one element selected from the following elements can be contained.

Nb、V:Nb、Vは、炭化物を形成するとともに、固溶C量を減少させることで高剛性化、高強度化に寄与する。そのためには、Nb量を0.005%以上、V量を0.01%以上とする必要がある。一方、Nb量が0.2%を超えたり、V量が1.0%を超えるとその効果が飽和するとともに、熱間圧延や冷間圧延時の圧延荷重を増加させる。したがって、Nb量は0.2%以下、V量は1.0%以下とする必要がある。なお、Nb、Vを添加した場合は、上記(1)式の代わりに上記(2)式の左辺を用いて計算される固溶Cを0以下とする必要がある。   Nb, V: Nb and V contribute to high rigidity and high strength by forming carbides and reducing the amount of dissolved C. For this purpose, the Nb content must be 0.005% or more and the V content must be 0.01% or more. On the other hand, when the Nb amount exceeds 0.2% or the V amount exceeds 1.0%, the effect is saturated, and the rolling load during hot rolling or cold rolling is increased. Therefore, the Nb content must be 0.2% or less and the V content must be 1.0% or less. When Nb and V are added, the solid solution C calculated using the left side of the above equation (2) instead of the above equation (1) needs to be 0 or less.

Cr、Mo、Ni、B:Cr、Mo、Ni、Bは、焼入れ性を高め、組織を細粒化することで高強度化に寄与する。このような効果を得るには、Cr量を0.05%以上、Mo量を0.05%以上、Ni量を0.05%以上、B量を0.0005%以上とする必要がある。一方、Cr量が1.0%を超えると、Mo量が1.0%を超えると、Ni量が1.0%を超えると、またB量が0.00030%を超えると、その効果が飽和するとともに、熱間圧延や冷間圧延時の圧延荷重を増加させる。したがって、Cr量は1.0%以下、Mo量は1.0%以下、Ni量は1.0%以下、B量は0.00030%以下とする必要がある。さらに、Tiに対してMoが多いと、TiとMoの複合炭化物を形成してMoの焼入れ効果が低減することから、Mo<Ti-1/0.6を満たすようにMoを添加するのが好ましい。 Cr, Mo, Ni, B: Cr, Mo, Ni, and B contribute to high strength by increasing hardenability and making the structure finer. In order to obtain such an effect, it is necessary that the Cr content is 0.05% or more, the Mo content is 0.05% or more, the Ni content is 0.05% or more, and the B content is 0.0005% or more. On the other hand, when the Cr content exceeds 1.0%, the Mo content exceeds 1.0%, the Ni content exceeds 1.0%, and the B content exceeds 0.00030%, the effect is saturated, and hot rolling and Increase the rolling load during cold rolling. Therefore, it is necessary that the Cr content is 1.0% or less, the Mo content is 1.0% or less, the Ni content is 1.0% or less, and the B content is 0.00030% or less. Further, if Mo is more than Ti, a composite carbide of Ti and Mo is formed and the effect of quenching of Mo is reduced. Therefore, it is preferable to add Mo so as to satisfy Mo <Ti −1 /0.6.

Cu:Cuは、微細な析出物を形成することで高強度化に寄与する。この効果を得るためには、Cu量を0.1%以上とする必要がある。一方、Cu量が2.0%を超えると熱間での延性を低下させて、熱間圧延時の割れにともなう表面欠陥を誘発するとともに、焼入れ性の効果も飽和する。したがって、Cu量は2.0%以下とする必要がある。なお、Cuを添加する場合、熱間圧延時の割れが発生し易いが、これを防止するためには、前述のNiを合わせて添加するのが好ましい。   Cu: Cu contributes to high strength by forming fine precipitates. In order to obtain this effect, the Cu content needs to be 0.1% or more. On the other hand, if the amount of Cu exceeds 2.0%, the hot ductility is lowered, surface defects accompanying cracks during hot rolling are induced, and the effect of hardenability is saturated. Therefore, the amount of Cu needs to be 2.0% or less. In addition, when adding Cu, although the crack at the time of hot rolling tends to generate | occur | produce, in order to prevent this, it is preferable to add together the above-mentioned Ni.

W:Wは、固溶元素や炭化物として存在することで、剛性を向上させる。この効果を得るためには、W量を0.1%以上とする必要がある。一方、W量が2.0%を超えると合金コストが増加することから、W量は2.0%以下とする必要がある。   W: W improves rigidity by existing as a solid solution element or carbide. In order to obtain this effect, the W amount needs to be 0.1% or more. On the other hand, if the amount of W exceeds 2.0%, the alloy cost increases, so the amount of W needs to be 2.0% or less.

2)ミクロ組織
ミクロ組織をフェライト単相とすることで、特に、圧延方向、圧延方向に対して45°方向、圧延方向に対して90°方向の平均のヤング率を向上させることができる。
2) Microstructure By making the microstructure a ferrite single phase, the average Young's modulus in the rolling direction, the 45 ° direction with respect to the rolling direction, and the 90 ° direction with respect to the rolling direction can be improved.

3)集合組織
(111)[1-10]〜(111)[-1-12]方位や(113)[1-10]〜(223)[1-10]方位の集合組織を発達させることで、剛性を向上させることができることから、鋼板の1/4板厚における板面の(111)[1-10]〜(111)[-1-12]方位における平均のODF(Orientation Distribution Function)解析強度fを5以上に、また(113)[1-10]〜(223)[1-10]方位における平均のODF解析強度fを3以上にする必要がある。
3) Texture
Stiffness is improved by developing textures in the (111) [1-10] to (111) [-1-12] and (113) [1-10] to (223) [1-10] orientations Therefore, the average ODF (Orientation Distribution Function) analysis strength f in the (111) [1-10] to (111) [-1-12] orientations of the plate surface at 1/4 thickness of the steel plate is 5 In addition, the average ODF analysis strength f in the (113) [1-10] to (223) [1-10] directions needs to be 3 or more.

ここで、(111)[1-10]〜(111)[-1-12]方位や(113)[1-10]〜(223)[1-10]方位における平均のODF解析強度fは以下のようにして求めた。すなわち、加工歪みの影響を除去するため化学研磨により1/4板厚まで減厚したのち、シュルツ法により(110)、(200)、(211)極点図を求め、非特許文献1に記載されたADC法によりODF解析を行い、φ1=0°、Φ=55°において、φ2=0°、5°、10°、・・・90°(φ2は、0°から90°まで5°間隔の値とした)ときの解析強度の平均値を(111)[1-10]〜(111)[-1-12]方位における平均のODF解析強度fとし、φ1=0°、φ2=45°において、Φが25°、30°、35°、45°のときの解析強度の平均値を(113)[1-10]〜(223)[1-10]方位における平均のODF解析強度fとした。 Here, the average ODF analysis strength f in the (111) [1-10] to (111) [-1-12] and (113) [1-10] to (223) [1-10] orientations is I asked for it. In other words, after reducing the thickness to 1/4 by chemical polishing in order to remove the influence of processing strain, (110), (200), (211) pole figures were obtained by the Schulz method and described in Non-Patent Document 1. ODF analysis using the ADC method, φ 1 = 0 °, φ = 55 °, φ 2 = 0 °, 5 °, 10 °, ... 90 ° (φ 2 is 5 from 0 ° to 90 ° The average value of the analysis intensity at (°) is the average ODF analysis intensity f in the (111) [1-10] to (111) [-1-12] direction, φ 1 = 0 °, φ 2 = 45 °, the average value of the analysis intensity when Φ is 25 °, 30 °, 35 °, 45 ° is the average ODF in the (113) [1-10] to (223) [1-10] orientations It was set as analysis strength f.

本発明が対象とする薄鋼板の中には、熱延鋼板や冷延鋼板の他に、合金化を含む溶融亜鉛めっき材や電気亜鉛めっき材などの表面処理を施した鋼板も含まれる。   In addition to hot-rolled steel sheets and cold-rolled steel sheets, steel sheets subjected to surface treatment such as hot-dip galvanized materials including alloying and electrogalvanized materials are also included in the thin steel plates targeted by the present invention.

4)製造方法
本発明の高強度薄鋼板は、例えば、上記のような成分組成からなる鋼を、スラブ鋳造し、熱間圧延を行い熱延鋼板とし、巻取った後、酸洗し、冷間圧延を行って冷延鋼板とし、焼鈍を行って製造されるが、以下にその詳細を説明する。
4) Manufacturing method The high-strength thin steel sheet of the present invention is, for example, slab casted steel having the above composition, hot-rolled into a hot-rolled steel sheet, wound up, pickled, cooled It is cold rolled steel sheet by hot rolling and is manufactured by annealing, the details of which will be described below.

4-1)仕上圧延終了温度
熱間圧延時の仕上圧延の圧延終了温度(仕上圧延終了直後の温度)がAr3変態点を下回ると、フェライト粒が粗大化したり、巻取温度が低い場合には未再結晶の組織となって、剛性を向上させる集合組織を発達させることができない。したがって、仕上圧延終了温度はAr3変態点以上とする必要がある。
4-1) Finish rolling finish temperature When the finish rolling temperature of finish rolling during hot rolling (the temperature immediately after finish rolling) falls below the Ar 3 transformation point, the ferrite grains become coarse or the coiling temperature is low. Becomes an unrecrystallized structure and cannot develop a texture that improves rigidity. Therefore, the finish rolling finish temperature needs to be higher than the Ar 3 transformation point.

なお、仕上圧延を行うに際し、Ar3変態点直上での圧延を行うと、組織を細粒化し、冷間圧延において、剛性向上に有利な集合組織を発達させることができる。それには、(Ar3変態点+100)℃以下における合計圧下率を50%以上として仕上圧延を行い、かつ仕上圧延終了温度をAr3変態点〜(Ar3変態点+50)℃の温度範囲とすることが好ましい。また、仕上圧延を行うに際し、潤滑圧延を行うと高剛性化に不利な剪断歪による集合組織の発達を抑制できる。 When performing the finish rolling, if the rolling is performed immediately above the Ar 3 transformation point, the structure can be refined, and a texture that is advantageous for improving the rigidity can be developed in cold rolling. For this purpose, finish rolling is carried out with the total rolling reduction at (Ar 3 transformation point +100) ° C. or less being 50% or more, and the finish rolling finish temperature ranges from Ar 3 transformation point to (Ar 3 transformation point +50) ° C. It is preferable that Further, when performing finish rolling, if lubricated rolling is performed, it is possible to suppress the development of texture due to shear strain that is disadvantageous for high rigidity.

4-2)巻取温度
熱間圧延後の鋼板を巻取るにあたり、巻取温度が500℃を下回るとTiの炭化物が析出せず、剛性を向上させる集合組織を発達させることができなくなる。したがって、巻取温度は500℃以上とする必要がある。一方、巻取温度が700℃を超えるとスケールが成長することで歩留まりの低下を招くことから、巻取温度は700℃以下とすることが好ましい。
4-2) Winding temperature When winding the steel sheet after hot rolling, if the winding temperature falls below 500 ° C, Ti carbides do not precipitate, and it becomes impossible to develop a texture that improves rigidity. Therefore, the coiling temperature needs to be 500 ° C. or higher. On the other hand, when the coiling temperature exceeds 700 ° C., the scale grows and the yield is reduced, so the coiling temperature is preferably 700 ° C. or lower.

巻取り後の熱延鋼板は、スケールを除去するため冷間圧延前に酸洗を行う必要がある。なお、酸洗条件は通常の条件で行えばよい。   The hot-rolled steel sheet after winding needs to be pickled before cold rolling in order to remove scale. In addition, what is necessary is just to perform pickling conditions on normal conditions.

4-3)冷間圧延時の圧下率
酸洗後の熱延鋼板を冷間圧延する際に、その圧下率を最適化することで、剛性の向上に有効な(111)[1-10]〜(111)[-1-12]方位および(113)[1-10]〜(223)[1-10]方位に回転させることができる。このような方位を発達させるには圧下率を20〜85%とする必要がある。一方、圧下率が高い場合は、圧延荷重が高くなり操業上のコストが増加することから、圧下率は60%以下とすることが好ましく、50%以下とすることがより好ましい。
4-3) Reduction ratio during cold rolling When cold rolling a hot-rolled steel sheet after pickling, it is effective to improve rigidity by optimizing the reduction ratio (111) [1-10] It can be rotated to (111) [-1-12] orientation and (113) [1-10] to (223) [1-10] orientation. In order to develop such an orientation, the rolling reduction needs to be 20 to 85%. On the other hand, when the rolling reduction is high, the rolling load increases and the operational cost increases, so the rolling reduction is preferably 60% or less, and more preferably 50% or less.

4-4)焼鈍時の昇温速度
焼鈍時の昇温速度が極端に遅いと、昇温途中でフェライトの再結晶が促進し、剛性が低下することから、焼鈍時の昇温速度は室温から820℃までの平均で1℃/s以上とする必要がある。なお、昇温速度は、特に上限を設けるものではないが、大きな昇温速度を得るには急速加熱設備等が必要となり製造コストが上昇するため、平均で30℃/s未満とすることが好ましい。
4-4) Rate of temperature increase during annealing If the rate of temperature increase during annealing is extremely slow, recrystallization of ferrite is promoted during temperature increase and the rigidity decreases, so the rate of temperature increase during annealing is from room temperature. It must be 1 ° C / s or higher on average up to 820 ° C. The heating rate is not particularly set as an upper limit, but in order to obtain a large heating rate, a rapid heating facility or the like is required and the manufacturing cost is increased. Therefore, the heating rate is preferably less than 30 ° C./s on average. .

4-5)焼鈍時の加熱温度
焼鈍時の加熱温度が820℃未満だと、焼鈍後に未再結晶が残り、加工性が著しく低下するので、加熱温度は820℃以上とする必要がある。一方、加熱温度が900℃を超えると、剛性の向上に有効な集合組織の発達が阻害されることから、加熱温度は900℃以下とする必要がある。
4-5) Heating temperature during annealing If the heating temperature during annealing is less than 820 ° C, unrecrystallized remains after annealing, and the workability is remarkably reduced, so the heating temperature needs to be 820 ° C or higher. On the other hand, if the heating temperature exceeds 900 ° C., the development of the texture effective for improving the rigidity is hindered, so the heating temperature needs to be 900 ° C. or less.

4-6)焼鈍加熱時の滞留時間
焼鈍時の加熱温度が本発明範囲内であっても、長時間滞留させると粒成長しすぎて剛性の向上に有効な集合組織の発達が阻害されることから、820〜900℃の温度範囲に上記(3)式を満たすような時間v(s)滞留させる必要がある。ここで、(3)式は、所定の集合組織を得ることができるような滞留時間を求めた実験式である。なお、820〜900℃の温度範囲では、上記滞留時間v(s)を満足しさえすればよく、この温度範囲における熱履歴は、特に規定する必要はなく、製造設備に合わせ設定すればよい。
4-6) Residence time during annealing heating Even if the heating temperature during annealing is within the range of the present invention, if the residence time is kept for a long time, the grain growth is excessive and the development of the texture effective in improving the rigidity is inhibited. Therefore, it is necessary to hold for a time v (s) that satisfies the above expression (3) in the temperature range of 820 to 900 ° C. Here, the equation (3) is an empirical equation for obtaining a residence time at which a predetermined texture can be obtained. In the temperature range of 820 to 900 ° C., it is only necessary to satisfy the residence time v (s), and the heat history in this temperature range does not need to be specified in particular and may be set according to the manufacturing equipment.

焼鈍時の加熱後の冷却は、特に規定されないが、冷却速度が遅いと粒成長により強度低下を招くことから、3℃/s以上の平均冷却速度で冷却することが好ましい。一方、冷却速度が極端に速くすると製造コストの増大を招くので、50℃/s以下の冷速速度で冷却することが好ましい。   Although the cooling after heating at the time of annealing is not particularly defined, it is preferable to cool at an average cooling rate of 3 ° C./s or more because a slow cooling rate causes a drop in strength due to grain growth. On the other hand, if the cooling rate is extremely high, the production cost is increased. Therefore, it is preferable to cool at a cooling rate of 50 ° C./s or less.

なお、焼鈍後は、形状を矯正するとともに、加工により結晶が回転することでさらに剛性を向上させることができるので、0.3%以上の伸び率で調質圧延を行うことができる。   In addition, after annealing, the shape can be corrected and the rigidity can be further improved by rotating the crystal by processing, so that temper rolling can be performed at an elongation of 0.3% or more.

発明の実施に当たっては、目的とする強度レベルに応じた化学成分の鋼を、通常の転炉法、電炉法などで溶製する。溶製された鋼は、スラブに鋳造後、そのまま、あるいは一旦冷却後再加熱して熱間圧延される。焼鈍時には、冷却途中で過時効処理を行ってもよいし、一旦冷却した後、再加熱して過時効処理を行ってもよい。溶融亜鉛めっき鋼板を製造する場合には、溶融亜鉛中に浸漬させることでめっきすることもできるし、浸漬後、めっき層の合金化処理のため500℃以上の再加熱を行うこともできる。   In carrying out the invention, steel having a chemical composition corresponding to the intended strength level is melted by a normal converter method, electric furnace method, or the like. The molten steel is hot-rolled after being cast into a slab, as it is, or once cooled and then reheated. At the time of annealing, an overaging treatment may be performed in the middle of cooling, or after cooling, the overaging treatment may be performed by reheating. In the case of producing a hot dip galvanized steel sheet, it can be plated by immersing in hot dip galvanized steel, or after immersing, reheating at 500 ° C. or higher can be performed for alloying treatment of the plating layer.

表1に示す成分組成を有する鋼A〜Jを溶製し、スラブに鋳造した後、スラブを再加熱して表2に示す熱延条件で熱延鋼板を作製した。ここで、表1のAr3変態点は、発明者らが求めた実験式である900-200×C0.5+40×Si-30×Mn+40×Al-10×Cr+30×Mo-15×Ni-20×Cu+10×Wより求めた(ただし、各元素記号は各元素の含有量を表す。)。その後、酸洗し、表2に示す圧下率で冷間圧延し、表2に示す焼鈍時の加熱条件で加熱を行い、加熱後は820℃から10℃/sの平均冷却速度で冷却して鋼板1〜21を作製した。なお、焼鈍時の冷却途中で350℃で150sの時効処理を行って冷延鋼板を、あるいは冷却途中の470℃で溶融亜鉛めっき後、500〜550℃に再加熱して合金化処理を行って合金化溶融亜鉛めっき鋼板を製造した。 Steels A to J having the component compositions shown in Table 1 were melted and cast into slabs, and then the slabs were reheated to produce hot rolled steel sheets under the hot rolling conditions shown in Table 2. Here, the Ar 3 transformation point in Table 1 is an empirical formula obtained by the inventors 900-200 × C 0.5 + 40 × Si-30 × Mn + 40 × Al-10 × Cr + 30 × Mo-15 × Ni-20 × Cu + 10 × W (However, each element symbol represents the content of each element.) Thereafter, pickling, cold rolling at the rolling reduction shown in Table 2, and heating under the annealing conditions shown in Table 2, after cooling at an average cooling rate of 820 ℃ to 10 ℃ / s Steel plates 1 to 21 were produced. In addition, the steel sheet is aged at 350 ° C. for 150 s during cooling during annealing, or after galvanizing at 470 ° C. during cooling and reheated to 500 to 550 ° C. for alloying treatment. An alloyed hot dip galvanized steel sheet was produced.

そして、鋼板の板厚断面を研磨後ナイタール腐食し、光学顕微鏡で組織観察を行い、3ヶ所の30×30μm域を画像処理して、フェライト相の面積率を測定した。また、上記した方法で、鋼板の1/4板厚における板面の(111)[1-10]〜(111)[-1-12]方位における平均のODF解析強度f1および(113)[1-10]〜(223)[1-10]方位における平均のODF解析強度f2を測定した。さらに、圧延方向に対して0°、45°および90°方向を長手方向として10×60mmの試験片を切り出し、横振動型の共振周波数測定装置を用いて、American Society for Testing Materialsの基準(C1259)に従い、圧延方向に対して0°、45°および90°方向のヤング率E0、E45、E90(GPa)を測定し、平均ヤング率Eave[=(E0+2E45+E90)/4]を求めた。さらにまた、圧延方向に対して90°方向の引張特性値を、JIS 5 号引張試験片を用い、引張速度1mm/分で求めた。 Then, the plate thickness cross section of the steel plate was polished and then subjected to Nital corrosion, and the structure was observed with an optical microscope. Three 30 × 30 μm regions were image-processed, and the area ratio of the ferrite phase was measured. In addition, by the above-described method, the average ODF analysis strength f 1 in the (111) [1-10] to (111) [-1-12] orientations of the plate surface at a 1/4 plate thickness of the steel plate and (113) [ 1-10] ~ (223) [1-10] was measured average ODF analysis intensities f 2 of the azimuth. Further, a 10 × 60 mm test piece with 0 °, 45 ° and 90 ° directions as the longitudinal direction with respect to the rolling direction was cut out, and a transverse vibration type resonance frequency measuring device was used, and the standard of American Society for Testing Materials (C1259 ), The Young's moduli E 0 , E 45 , E 90 (GPa) in the 0 °, 45 ° and 90 ° directions with respect to the rolling direction are measured, and the average Young's modulus Eave [= (E 0 + 2E 45 + E 90 ) / 4]. Furthermore, a tensile property value in the direction of 90 ° with respect to the rolling direction was obtained at a tensile speed of 1 mm / min using a JIS No. 5 tensile test piece.

結果を表2、図1〜2に示す。本発明例は、いずれもTSが590MPa以上、圧延方向に対して90°方向のヤング率E90が230GPa以上、かつ圧延方向に対して0°、45°および90°方向の平均ヤング率Eaveが215GPa以上であり、剛性に優れた高強度薄鋼板であることがわかる。 The results are shown in Table 2 and FIGS. In the examples of the present invention, TS is 590 MPa or more, Young's modulus E 90 in the 90 ° direction with respect to the rolling direction is 230 GPa or more, and average Young's modulus Eave in the 0 °, 45 °, and 90 ° directions with respect to the rolling direction is It can be seen that it is a high-strength steel sheet having a rigidity of 215 GPa or more and excellent in rigidity.

Figure 2007092130
Figure 2007092130

Figure 2007092130
Figure 2007092130

ヤング率E90および平均ヤング率Eaveと(111)[1-10]〜(111)[-1-12]方位における平均のODF解析強度f1および(113)[1-10]〜(223)[1-10]方位における平均のODF解析強度f2との関係を示す図である。Young's modulus E 90 and average Young's modulus Eave and average ODF analysis strength f 1 in the (111) [1-10] to (111) [-1-12] orientation and (113) [1-10] to (223) FIG. 6 is a diagram showing a relationship with an average ODF analysis strength f 2 in the [1-10] orientation.

Claims (6)

質量%で、C:0.02〜0.15%、Si:0.3%以下、Mn:1.0〜3.5%、P:0.05%以下、S:0.01%以下、Al:1.0%以下、N:0.01%以下、Ti:0.1〜1.0%を含有し、C、N、S、Tiの含有量が下記の(1)式を満たし、残部がFeおよび不可避的不純物からなる組成を有し、フェライト単相のミクロ組織を有し、かつ鋼板の1/4板厚における板面の(111)[1-10]〜(111)[-1-12]方位における平均のODF解析強度fが5以上であり、(113)[1-10]〜(223)[1-10]方位における平均のODF解析強度fが3以上であることを特徴とする剛性に優れた高強度薄鋼板;
C-(12/47.9)×Ti-1≦0・・・・・(1)
ここで、[1-10]、[-1-12]は、それぞれ(1,-1,0)、(-1,-1,2)の方向を表し、Ti-1=Ti-(47.9/14)×N-(47.9/32.1)×Sであり、式中の各元素記号は各元素の含有量(質量%)を表す。
In mass%, C: 0.02 to 0.15%, Si: 0.3% or less, Mn: 1.0 to 3.5%, P: 0.05% or less, S: 0.01% or less, Al: 1.0% or less, N: 0.01% or less, Ti: Containing 0.1 to 1.0%, the content of C, N, S, Ti satisfies the following formula (1), the balance is composed of Fe and inevitable impurities, and has a ferrite single phase microstructure And the average ODF analysis strength f in the (111) [1-10] to (111) [-1-12] orientations of the plate surface at a quarter thickness of the steel plate is 5 or more, (113) [ 1-10] to (223) high-strength steel sheet with excellent rigidity characterized by an average ODF analysis strength f of 3 or more in the [1-10] orientation;
C- (12 / 47.9) × Ti -1 ≦ 0 ... (1)
Here, [1-10] and [-1-12] represent directions of (1, -1,0) and (-1, -1,2), respectively, and Ti -1 = Ti- (47.9 / 14) × N- (47.9 / 32.1) × S, and each element symbol in the formula represents the content (% by mass) of each element.
さらに、質量%で、Nb:0.005〜0.2%、V:0.01〜1.0%から選ばれた少なくとも1種の元素を含有し、上記の(1)式に代わり、C、N、S、Ti、Nb、Vの含有量が下記の(2)式を満たすことを特徴とする請求項1に記載の剛性に優れた高強度薄鋼板;
C-(12/47.9)×Ti-1-(12/92.9)×Nb-(12/50.9)×V≦0・・・・・(2)
ただし、式中の各元素記号は各元素の含有量(質量%)を表す。
Further, it contains at least one element selected from Nb: 0.005 to 0.2% and V: 0.01 to 1.0% by mass%, and instead of the above formula (1), C, N, S, Ti, Nb The high-strength thin steel sheet having excellent rigidity according to claim 1, wherein the V content satisfies the following formula (2):
C- (12 / 47.9) × Ti -1- (12 / 92.9) × Nb- (12 / 50.9) × V ≦ 0 ... (2)
However, each element symbol in the formula represents the content (% by mass) of each element.
さらに、質量%で、Cr:0.05〜1.0%、Mo:0.05〜1.0%、Ni:0.05〜1.0%、B:0.0005〜0.0030%の中から選ばれた少なくとも1種の元素を含有することを特徴とする請求項1または請求項2に記載の剛性に優れた高強度薄鋼板。   Furthermore, it is characterized by containing at least one element selected from Cr: 0.05-1.0%, Mo: 0.05-1.0%, Ni: 0.05-1.0%, B: 0.0005-0.0030% by mass%. The high-strength thin steel sheet having excellent rigidity according to claim 1 or 2. さらに、質量%で、Cu:0.1〜2.0%を含有することを特徴とする請求項1から請求項3のいずれか1項に記載の剛性に優れた高強度薄鋼板。   4. The high-strength thin steel sheet having excellent rigidity according to any one of claims 1 to 3, further comprising Cu: 0.1 to 2.0% by mass. さらに、質量%で、W:0.1〜2.0%を含有することを特徴とする請求項1から請求項4のいずれか1項に記載の剛性に優れた高強度薄鋼板。   5. The high-strength thin steel sheet having excellent rigidity according to any one of claims 1 to 4, further comprising W: 0.1 to 2.0% by mass%. 請求項1から請求項5のいずれか1項に記載の組成からなる鋼を、鋳造し、Ar3変態点以上の仕上圧延終了温度で熱間圧延し、500℃以上の巻取温度で巻取った後、酸洗を行い、20〜85%の範囲の圧下率で冷間圧延を行った後、焼鈍を行うに際し、室温から820℃までを平均1℃/s以上の昇温速度で加熱し、820〜900℃の温度範囲に下記の(3)式を満たすような時間v(s)滞留させることを特徴とする剛性に優れた高強度薄鋼板の製造方法;
Figure 2007092130
ここで、F(w)は、鋼板が820℃になってから820〜900℃の温度範囲内に滞留する時間v(s)内の任意の時間w(s)のときの温度(℃)を表す。
A steel having the composition according to any one of claims 1 to 5 is cast, hot-rolled at a finish rolling finish temperature not lower than the Ar 3 transformation point, and wound at a winding temperature of 500 ° C or higher. Then, pickling and cold rolling at a reduction rate in the range of 20 to 85%, followed by heating from room temperature to 820 ° C at an average rate of 1 ° C / s or higher when annealing. , A method for producing a high-strength thin steel sheet having excellent rigidity, characterized in that the residence time v (s) satisfies the following formula (3) in a temperature range of 820 to 900 ° C .;
Figure 2007092130
Here, F (w) is the temperature (° C) at an arbitrary time w (s) within the time v (s) that the steel sheet stays in the temperature range of 820 to 900 ° C after it reaches 820 ° C. To express.
JP2005283415A 2005-09-29 2005-09-29 High-strength thin steel sheet with excellent rigidity and manufacturing method thereof Expired - Fee Related JP4867256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005283415A JP4867256B2 (en) 2005-09-29 2005-09-29 High-strength thin steel sheet with excellent rigidity and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005283415A JP4867256B2 (en) 2005-09-29 2005-09-29 High-strength thin steel sheet with excellent rigidity and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007092130A true JP2007092130A (en) 2007-04-12
JP4867256B2 JP4867256B2 (en) 2012-02-01

Family

ID=37978177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005283415A Expired - Fee Related JP4867256B2 (en) 2005-09-29 2005-09-29 High-strength thin steel sheet with excellent rigidity and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4867256B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008307979A (en) * 2007-06-13 2008-12-25 Nippon Steel Corp Chassis frame
JP2009013478A (en) * 2007-07-05 2009-01-22 Nippon Steel Corp High-rigidity and high-strength cold-rolled steel sheet and manufacturing method therefor
JP2010132065A (en) * 2008-12-03 2010-06-17 Nissan Motor Co Ltd Structure of side sill of vehicle body
JP2013087332A (en) * 2011-10-18 2013-05-13 Jfe Steel Corp Manufacturing method of thin steel sheet of high rigidity and excellent in balance of strength and workability
US20140034195A1 (en) * 2011-04-21 2014-02-06 Jfe Steel Corporation Steel sheet for can with high barrel-part buckling strength under external pressure and with excellent formability and excellent surface properties after forming, and process for producing same
WO2015015738A1 (en) 2013-08-02 2015-02-05 Jfeスチール株式会社 High-strength, high-young's modulus steel plate, and manufacturing method thereof
WO2015015739A1 (en) 2013-08-02 2015-02-05 Jfeスチール株式会社 High-strength, high-young's modulus steel plate, and manufacturing method thereof
US20150299828A1 (en) * 2012-11-07 2015-10-22 Jef Steel Corporation Steel sheet for three-piece can and method for manufacturing the same
KR20170106457A (en) 2015-02-03 2017-09-20 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and production method therefor
KR20170107053A (en) 2015-02-03 2017-09-22 제이에프이 스틸 가부시키가이샤 High-strength steel shhet and production method therefor
KR20170107054A (en) 2015-02-03 2017-09-22 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and production method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263191A (en) * 1992-01-24 1993-10-12 Sumitomo Metal Ind Ltd Hot rolled steel sheet high in young's modulus in width direction and its manufacture
JP2002317246A (en) * 2001-04-19 2002-10-31 Nippon Steel Corp Automobile thin steel sheet having excellent notch fatigue resistance and burring workability and production method therefor
JP2003160836A (en) * 2001-11-26 2003-06-06 Nippon Steel Corp Drawable high-strength steel thin-sheet with burring property superior in shape freezability, and manufacturing method therefor
JP2005120472A (en) * 2003-09-26 2005-05-12 Jfe Steel Kk High-strength steel sheet and its production method
JP2005120453A (en) * 2003-10-20 2005-05-12 Nippon Steel Corp Cold rolled steel sheet having developed {100}<011> orientation and excellent shape freezing property, and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263191A (en) * 1992-01-24 1993-10-12 Sumitomo Metal Ind Ltd Hot rolled steel sheet high in young's modulus in width direction and its manufacture
JP2002317246A (en) * 2001-04-19 2002-10-31 Nippon Steel Corp Automobile thin steel sheet having excellent notch fatigue resistance and burring workability and production method therefor
JP2003160836A (en) * 2001-11-26 2003-06-06 Nippon Steel Corp Drawable high-strength steel thin-sheet with burring property superior in shape freezability, and manufacturing method therefor
JP2005120472A (en) * 2003-09-26 2005-05-12 Jfe Steel Kk High-strength steel sheet and its production method
JP2005120453A (en) * 2003-10-20 2005-05-12 Nippon Steel Corp Cold rolled steel sheet having developed {100}<011> orientation and excellent shape freezing property, and its manufacturing method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008307979A (en) * 2007-06-13 2008-12-25 Nippon Steel Corp Chassis frame
JP2009013478A (en) * 2007-07-05 2009-01-22 Nippon Steel Corp High-rigidity and high-strength cold-rolled steel sheet and manufacturing method therefor
JP2010132065A (en) * 2008-12-03 2010-06-17 Nissan Motor Co Ltd Structure of side sill of vehicle body
US10174393B2 (en) * 2011-04-21 2019-01-08 Jfe Steel Corporation Steel sheet for can with high barrel-part buckling strength under external pressure and with excellent formability and excellent surface properties after forming, and process for producing same
US20140034195A1 (en) * 2011-04-21 2014-02-06 Jfe Steel Corporation Steel sheet for can with high barrel-part buckling strength under external pressure and with excellent formability and excellent surface properties after forming, and process for producing same
JP2013087332A (en) * 2011-10-18 2013-05-13 Jfe Steel Corp Manufacturing method of thin steel sheet of high rigidity and excellent in balance of strength and workability
US10392682B2 (en) * 2012-11-07 2019-08-27 Jfe Steel Corporation Steel sheet for three-piece can and method for manufacturing the same
US20150299828A1 (en) * 2012-11-07 2015-10-22 Jef Steel Corporation Steel sheet for three-piece can and method for manufacturing the same
WO2015015738A1 (en) 2013-08-02 2015-02-05 Jfeスチール株式会社 High-strength, high-young's modulus steel plate, and manufacturing method thereof
KR20160014686A (en) 2013-08-02 2016-02-11 제이에프이 스틸 가부시키가이샤 High-strength, high-young's modulus steel plate, and manufacturing method thereof
KR20160014687A (en) 2013-08-02 2016-02-11 제이에프이 스틸 가부시키가이샤 High-strength, high-young's modulus steel plate, and manufacturing method thereof
US10385431B2 (en) 2013-08-02 2019-08-20 Jfe Steel Corporation High strength steel sheet having high young's modulus and method for manufacturing the same
WO2015015739A1 (en) 2013-08-02 2015-02-05 Jfeスチール株式会社 High-strength, high-young's modulus steel plate, and manufacturing method thereof
US10563279B2 (en) 2013-08-02 2020-02-18 Jfe Steel Corporation High strength steel sheet having high Young's modulus and method for manufacturing the same
US11085100B2 (en) 2013-08-02 2021-08-10 Jfe Steel Corporation High strength steel sheet having high Young's modulus and method for manufacturing the same
KR20170106457A (en) 2015-02-03 2017-09-20 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and production method therefor
KR20170107053A (en) 2015-02-03 2017-09-22 제이에프이 스틸 가부시키가이샤 High-strength steel shhet and production method therefor
KR20170107054A (en) 2015-02-03 2017-09-22 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and production method therefor
US10472697B2 (en) 2015-02-03 2019-11-12 Jfe Steel Corporation High-strength steel sheet and production method therefor
US10934600B2 (en) 2015-02-03 2021-03-02 Jfe Steel Corporation High-strength steel sheet and production method therefor
US11035019B2 (en) 2015-02-03 2021-06-15 Jfe Steel Corporation High-strength steel sheet and production method therefor

Also Published As

Publication number Publication date
JP4867256B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP4867256B2 (en) High-strength thin steel sheet with excellent rigidity and manufacturing method thereof
JP5157215B2 (en) High rigidity and high strength steel plate with excellent workability
JP5018935B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP4959161B2 (en) Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet with excellent corrosion resistance, elongation and hole expansibility
JP5233142B2 (en) High-stiffness and high-strength steel sheet excellent in hole expansibility and method for producing the same
KR101986598B1 (en) High-strength steel sheet
JP4665692B2 (en) High-strength steel sheet with excellent bending rigidity and method for producing the same
JP4867257B2 (en) High-strength thin steel sheet with excellent rigidity and manufacturing method thereof
JP5370620B1 (en) Thin steel plate and manufacturing method thereof
KR101986595B1 (en) High-strength steel sheet
JP2008291304A (en) High-strength cold-rolled steel sheet and high strength hot-dip galvanized steel sheet both excellent in deep-drawability and strength-ductility balance, and producing method of the both
JP2007321168A (en) High-rigidity low-density steel sheet and its manufacturing method
JP2008156680A (en) High-strength cold rolled steel sheet having high yield ratio, and its production method
JP4501699B2 (en) High-strength steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
JPWO2015015738A1 (en) High strength high Young&#39;s modulus steel plate and method for producing the same
KR20170107053A (en) High-strength steel shhet and production method therefor
KR20140044938A (en) High strength hot dip galvanized steel sheet having excellent deep-drawability, and method for producing same
JP4506434B2 (en) High strength steel plate with excellent rigidity and method for producing the same
JP4644077B2 (en) Hot-dip galvanized high-strength steel sheet and alloyed hot-dip galvanized high-strength steel sheet excellent in corrosion resistance and formability, and methods for producing them
JP5845837B2 (en) High-strength thin steel sheet with excellent rigidity and manufacturing method thereof
JP4815974B2 (en) Manufacturing method of high strength cold-rolled steel sheet with excellent rigidity
KR102274284B1 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP4867258B2 (en) High-strength thin steel sheet with excellent rigidity and workability and manufacturing method thereof
WO2018092735A1 (en) High strength steel sheet, production method therefor, and high strength galvanized steel sheet
JP4622783B2 (en) High-strength thin steel sheet with excellent rigidity and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R150 Certificate of patent or registration of utility model

Ref document number: 4867256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees