JPH05263191A - Hot rolled steel sheet high in young's modulus in width direction and its manufacture - Google Patents

Hot rolled steel sheet high in young's modulus in width direction and its manufacture

Info

Publication number
JPH05263191A
JPH05263191A JP30007392A JP30007392A JPH05263191A JP H05263191 A JPH05263191 A JP H05263191A JP 30007392 A JP30007392 A JP 30007392A JP 30007392 A JP30007392 A JP 30007392A JP H05263191 A JPH05263191 A JP H05263191A
Authority
JP
Japan
Prior art keywords
less
modulus
hot
young
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30007392A
Other languages
Japanese (ja)
Inventor
Tomoki Fukagawa
智機 深川
Yasuhiro Maehara
泰裕 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Publication of JPH05263191A publication Critical patent/JPH05263191A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To provide a hot rolled steel sheet high in a Young's modulus in the width direction and to provide its manufacturing method. CONSTITUTION:(1) This hot rolled steel sheet high in a Young's modulus contains, by weight, <=0.8% C, <=3% Si, 0.1 to 3.0% Mn and 0.01 to 3% sol.Al, and the balance Fe with inevitable impurities, and in which the reflection strength on the {311} plane parallel to the sheet face shows >= five times as much by random ratio. (2) This is a method for manufacturing the steel sheet high in a Young's modulus (1) characterized by heating steel stock having the said chemical compsn. in the range of 920 to 1250 deg.C, thereafter executing hot rolling in such a manner that the total draft in the alpha+gamma two phase region is regulated to >=50% and the finishing temp. of the hot rolling is regulated to the Ar1 to (the Ar1 -70 deg.C) and coiling it at the Ar1 to (the Ar1 -250 deg.C) or executing annealing at the Ar1 to (the Ar1 -250 deg.C) after the coiling at the Ar1 point or below. This steel in the (1) and steel stock in the (2) may be incorporated with <=2.5% Ni and/or one or more kinds among <=0.1% Nb, <=0.2% V and <=0.1% Ti.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、幅方向のヤング率の
高い熱延鋼板およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot rolled steel sheet having a high Young's modulus in the width direction and a method for producing the hot rolled steel sheet.

【0002】[0002]

【従来の技術】例えば自動車や家電製品のような、鋼板
を主な構成材料とした構造物の剛性を確保する手段とし
ては構成材料である鋼板自体の剛性を高くするか、構造
物としての形状を工夫するということになるのである
が、鋼板自体の剛性を改善すること、すなわち高ヤング
率化に関しては現在までは研究の成果に見るべきものは
無かった。
2. Description of the Related Art As means for ensuring the rigidity of a structure mainly composed of a steel plate such as automobiles and home electric appliances, the rigidity of the steel plate itself which is a constituent material is increased or the shape of the structure is used. However, until now, there has been nothing to be seen in the results of research on improving the rigidity of the steel sheet itself, that is, increasing the Young's modulus.

【0003】鋼のヤング率は他の構造用材料に比べると
極めて高く、その値はおおむね21000kgf/mm2程度の一定
値として機器の設計がなされてきた。しかしながら、α
Fe単結晶でみると、ヤング率は異方性を持ち、<111
>軸方向のヤング率が 29000kgf/mm2 と最も高く、<1
00>軸方向は13150kgf/mm2と最小の値で、前者は後者
に比べて2倍以上にも達している。このような事情から
鉄鋼材料のヤング率は集合組織に大きく依存しており、
それを制御することによって、特定方向のヤング率を高
くすることが可能となってくるのである。例えば、鋼板
の場合にはその面内の特定一方向のヤング率を高めるに
は、その方向に<111>軸に近い方位を強く集積させ
ればよいのである。しかしながら、冷延後再結晶させた
鋼板の集合組織は、主方位が{111}<UVW>であ
って面内には<111>軸あるいはそれに近い方位は存
在しないことになる。一方、熱延鋼板の集合組織はほと
んどランダムである。
The Young's modulus of steel is extremely higher than that of other structural materials, and the value of steel has been designed to be a constant value of about 21000 kgf / mm 2 . However, α
Looking at the Fe single crystal, the Young's modulus has anisotropy, <111
>Young's modulus in the axial direction is the highest at 29000kgf / mm 2 , <1
The 00> axial direction has a minimum value of 13150 kgf / mm 2, and the former is more than twice as large as the latter. Under these circumstances, the Young's modulus of steel materials greatly depends on the texture,
By controlling it, Young's modulus in a specific direction can be increased. For example, in the case of a steel sheet, in order to increase the Young's modulus in a specific one direction within the plane, it is sufficient to strongly integrate the orientation close to the <111> axis in that direction. However, in the texture of the steel sheet recrystallized after cold rolling, the main orientation is {111} <UVW>, and there is no <111> axis or orientation close to it in the plane. On the other hand, the texture of hot-rolled steel sheet is almost random.

【0004】近年、鋼板の含有成分や、製造条件を変え
て集合組織を制御し、特定方向のヤング率を高くする試
みが行われてきた。例えば、特開昭56−23223 号公報に
は熱間加工する際に、圧延の一部でα+γ二相域圧延を
行い、Ar3 温度以下での加工圧下率を5%以上にとり、
圧延仕上後の冷却速度を制御し、次いで焼戻すことを特
徴とする方法が提案されているが、どの集合組織を発達
させるかは具体的に示しておらず、また板幅方向のヤン
グ率も10%程度しか向上していない。
In recent years, attempts have been made to increase the Young's modulus in a specific direction by controlling the texture by changing the components contained in the steel sheet and the manufacturing conditions. For example, in Japanese Unexamined Patent Publication (Kokai) No. 56-23223, during hot working, α + γ two-phase region rolling is performed as part of the rolling, and the working reduction rate at the Ar 3 temperature or less is set to 5% or more.
A method characterized by controlling the cooling rate after rolling finish and then tempering is proposed, but it is not specifically shown which texture is developed, and the Young's modulus in the strip width direction is also not shown. Only about 10% has improved.

【0005】一方、特開昭59-83721号公報に開示されて
いる発明は、フェライト域熱延安定方位である{11
2}<110>をそのまま利用するものであるが、通常
の圧延でこの方位を集積させるのには高圧下率が必要
で、実施例に記載されている圧下率では高々24000kgf/m
m2のヤング率しか得られない。
On the other hand, the invention disclosed in Japanese Patent Laid-Open No. 59-83721 has a hot rolling stability orientation in the ferrite region {11.
2} <110> is used as it is, but a high pressure reduction ratio is required to integrate this orientation in ordinary rolling, and the reduction ratio described in the embodiment is 24000 kgf / m at most.
Only Young's modulus of m 2 can be obtained.

【0006】特開昭64-11926号公報の発明は、フェライ
ト域で熱間圧延した後、再結晶させて{110}<00
1>を集積させ、板幅方向のヤング率を高めようとする
試みである。しかし、実施例に示されているように、や
はり24000kgf/mm2程度のヤング率しか得られない。
The invention disclosed in Japanese Patent Laid-Open No. 64-11926 is {110} <00 after hot rolling in the ferrite region and recrystallization.
It is an attempt to increase the Young's modulus in the plate width direction by accumulating 1>. However, as shown in the examples, only Young's modulus of about 24000 kgf / mm 2 is obtained.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、面内
の特定の方向におけるヤング率が極めて高い鋼板と、こ
れを製造する実際的な方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a steel sheet having a very high Young's modulus in a specific in-plane direction, and a practical method for producing the steel sheet.

【0008】[0008]

【課題を解決するための手段】本発明は、下記 (1)ない
し(4) の熱延鋼板と (5)および(6) のその製造方法を要
旨とする。
SUMMARY OF THE INVENTION The gist of the present invention is the following hot rolled steel sheets (1) to (4) and their manufacturing methods (5) and (6).

【0009】(1) 重量%で、C: 0.8%以下、Si:3%
以下、Mn: 0.1〜3.0 %、sol.Al:0.01〜3%を含有
し、残部はFeおよび不可避的不純物からなり、板面と平
行な{311}面反射強度がランダム比で5倍以上であ
る板幅方向のヤング率の高い熱延鋼板。
(1) C: 0.8% or less, Si: 3% by weight
Below, Mn: 0.1 to 3.0%, sol.Al: 0.01 to 3%, the balance consisting of Fe and unavoidable impurities, the {311} plane reflection intensity parallel to the plate surface is 5 times or more at random ratio. A hot rolled steel sheet with a high Young's modulus in the width direction.

【0010】(2) 重量%で、C: 0.8%以下、Si:3%
以下、Mn: 0.1〜3.0 %、sol.Al:0.01〜3%、Ni:2.
5 %以下を含有し、残部はFeおよび不可避的不純物から
なり、板面と平行な{311}面反射強度がランダム比
で5倍以上である板幅方向のヤング率の高い熱延鋼板。
(2) C: 0.8% or less, Si: 3% by weight
Below, Mn: 0.1-3.0%, sol.Al: 0.01-3%, Ni: 2.
A hot-rolled steel sheet having a high Young's modulus in the sheet width direction, containing 5% or less, the balance being Fe and inevitable impurities, and having a {311} plane reflection intensity parallel to the sheet surface of 5 times or more in a random ratio.

【0011】(3) 重量%で、C: 0.8%以下、Si:3%
以下、Mn: 0.1〜3.0 %、sol.Al:0.01〜3%、ならび
にNb: 0.1%以下、V: 0.2%以下およびTi: 0.1%以
下のうちの1種以上を含有し、残部はFeおよび不可避的
不純物からなり、板面と平行な{311}面反射強度が
ランダム比で5倍以上である板幅方向のヤング率の高い
熱延鋼板。
(3) W: C: 0.8% or less, Si: 3%
Below, Mn: 0.1 to 3.0%, sol.Al: 0.01 to 3%, and Nb: 0.1% or less, V: 0.2% or less and Ti: 0.1% or less, and the balance contains Fe and A hot-rolled steel sheet having a high Young's modulus in the sheet width direction, which is composed of inevitable impurities and has a reflection intensity of {311} plane parallel to the sheet surface of 5 times or more at a random ratio.

【0012】(4) 重量%で、C: 0.8%以下、Si:3%
以下、Mn: 0.1〜3.0 %、sol.Al:0.01〜3%、Ni:2.
5 %以下ならびにNb: 0.1%以下、V: 0.2%以下およ
びTi:0.1%以下のうちの1種以上を含有し、残部はFe
および不可避的不純物からなり、板面と平行な{31
1}面反射強度がランダム比で5倍以上である板幅方向
のヤング率の高い熱延鋼板。
(4) C: 0.8% or less, Si: 3% by weight
Below, Mn: 0.1-3.0%, sol.Al: 0.01-3%, Ni: 2.
5% or less, Nb: 0.1% or less, V: 0.2% or less and Ti: 0.1% or less, and the balance is Fe.
And unavoidable impurities, parallel to the plate surface {31
A hot-rolled steel sheet having a high Young's modulus in the sheet width direction and having a 1} plane reflection intensity of 5 times or more in random ratio.

【0013】(5) (1)ないし(4) のいずれかに記載の組
成からなる鋼素材を 920〜1250℃の範囲で加熱した後、
α+γ二相域での総圧下量が50%以上、熱延仕上げ温度
が Ar1〜(Ar1+70℃) となるように熱間圧延し、 Ar1
(Ar1−250 ℃) で巻き取ることを特徴とする (1)〜(4)
のいずれかに記載の熱延鋼板の製造方法。
(5) After heating the steel material having the composition according to any one of (1) to (4) in the range of 920 to 1250 ° C.,
alpha + gamma total reduction amount in the two-phase region is 50% or more, and hot rolled to hot rolled finishing temperature is Ar 1 ~ (Ar 1 + 70 ℃), Ar 1 ~
Wherein the winding in (Ar 1 -250 ℃) (1 ) ~ (4)
The method for manufacturing a hot rolled steel sheet according to any one of 1.

【0014】(6) (1)ないし(4) のいずれかに記載の組
成からなる鋼素材を 920〜1250℃の範囲で加熱した後、
α+γ二相域での総圧下量が50%以上、熱延仕上げ温度
が Ar1〜(Ar1+70℃) となるように熱間圧延し、 Ar1
下で巻き取った後 Ar1〜(Ar1−250 ℃) で焼鈍すること
を特徴とする (1)〜(4) のいずれかに記載の熱延鋼板の
製造方法。
(6) After heating the steel material having the composition according to any one of (1) to (4) in the range of 920 to 1250 ° C.,
Hot rolling is performed so that the total reduction amount in the α + γ two-phase region is 50% or more and the hot rolling finish temperature is Ar 1 to (Ar 1 + 70 ° C), and after winding at Ar 1 or less, Ar 1 to (Ar The method for producing a hot-rolled steel sheet according to any one of (1) to (4), characterized in that annealing is performed at 1 to 250 ° C.

【0015】[0015]

【作用】鋼板の成分を限定し、その製造条件、例えば熱
延条件を選ぶことによって板幅方向のヤング率を向上さ
せることができる。
The Young's modulus in the sheet width direction can be improved by limiting the components of the steel sheet and selecting the production conditions, for example, hot rolling conditions.

【0016】本発明者は、この製造条件を変えた場合に
鋼板の集合組織がどのように変化し、それに伴うヤング
率変化の態様が如何なるものであるかを調査した。
The present inventor investigated how the texture of the steel sheet changes when the manufacturing conditions are changed, and what kind of mode the Young's modulus changes with it.

【0017】まず、γ相の再結晶を抑制するために微量
のNb、V、Tiを添加した低炭素綱を用いてγ相未再結晶
域で強加工を加え、種々の冷却速度で冷却した鋼板につ
いて調べた。γ相未再結晶域で強加工することによって
α核の生成サイトであるγ粒界や焼鈍双晶境界の表面積
が増大するため、変態後に微細なフェライト・パーライ
ト組織を得ることができるのであるが、この時に形成さ
れる集合組織は、γ域あるいはα+γ二相域での圧延に
よって形成され、最終的にはαの集合組織として残るも
のであり、その過程での回復、再結晶あるいは炭窒化物
の析出やγからαへの変態挙動によって影響を受ける。
この集合組織として特徴的な方位成分は{311}<0
11>および{332}<113>である。そしてこれ
らの方位成分はほとんど同じであった。
First, in order to suppress the recrystallization of the γ phase, a low carbon steel containing a small amount of Nb, V, and Ti was used to perform strong working in the γ phase unrecrystallized region and to cool at various cooling rates. The steel plate was investigated. By performing strong working in the γ-phase unrecrystallized region, the surface area of the γ grain boundary, which is the α-nucleus generation site, and the annealing twin boundary increases, so it is possible to obtain a fine ferrite-pearlite structure after transformation. The texture formed at this time is formed by rolling in the γ region or α + γ two-phase region, and finally remains as the texture of α, and recovery, recrystallization or carbonitride in the process occurs. It is affected by the precipitation of and the transformation behavior from γ to α.
The orientation component characteristic of this texture is {311} <0
11> and {332} <113>. And these azimuth components were almost the same.

【0018】{311}<011>方位成分のTD方向
は<332>であり、これはさきに述べたごとくαFe単
結晶に於ける最大のヤング率を示す方位軸<111>に
極めて近いので、ヤング率の向上をはかるためにはこの
<011>方位成分を増加させる手段を講じればよいこ
とになる。
The TD direction of the {311} <011> orientation component is <332>, which is very close to the orientation axis <111> showing the maximum Young's modulus in the αFe single crystal as described above. In order to improve the Young's modulus, a means for increasing the <011> direction component should be taken.

【0019】次いで、同じ成分の鋼板についてγ相未再
結晶域ではなく、α+γの二相領域で熱間圧延をして、
その圧延終了温度を Ar1点直上にして、その後ゆっくり
変態させた結果、変態集合組織の方位成分の{311}
<011>が{332}<113>に比べてはるかに強
く集積し、ヤング率が大きく向上することが確認され
た。
Next, the steel sheets having the same composition are hot-rolled in the α + γ two-phase region, not in the γ-phase non-recrystallization region,
The rolling end temperature was set just above the Ar 1 point and then slowly transformed. As a result, the orientation component of the transformation texture {311}
It was confirmed that <011> accumulates much more strongly than {332} <113> and Young's modulus is greatly improved.

【0020】以下、本発明の熱延鋼板およびその製造方
法における諸条件を詳しく説明する。
Hereinafter, various conditions in the hot rolled steel sheet and the method for producing the same of the present invention will be described in detail.

【0021】(A) 熱延鋼板 (a)化学組成 (以下、合金成分の含有量の「%」は全て
「重量%」である。) 本発明の熱延鋼板における合金元素のうち、C、Si、M
n、sol.AlおよびNiは、α+γ→α変態後の集合組織を
制御するためにα+γ二相域が適切な広さで現れるよう
に選択する。
(A) Hot-rolled steel sheet (a) Chemical composition (hereinafter, all "%" of the content of alloy components are "% by weight.") Of the alloy elements in the hot-rolled steel sheet of the present invention, C, Si, M
n, sol.Al and Ni are selected so that the α + γ two-phase region appears in an appropriate width in order to control the texture after the α + γ → α transformation.

【0022】C(炭素): 0.8%以下 Cは、α+γ二相域での再結晶を抑制する微細炭化物を
生成し、α+γ→α変態による集合組織の制御を行うた
めに含有することが好ましい元素である。しかし、Cが
あまりに多くなるとα+γ二相域がなくなるので上限は
共析濃度である0.8%とするが、α+γ二相域が適当な
広さをもっていれば前記 (5)、(6) の本発明方法を実施
しやすいので 0.2%以下であることが好ましい。
C (carbon): 0.8% or less C is an element which is preferably contained in order to form a fine carbide that suppresses recrystallization in the α + γ two-phase region and to control the texture by the α + γ → α transformation. Is. However, when C is too large, the α + γ two-phase region disappears, so the upper limit is 0.8%, which is the eutectoid concentration. However, if the α + γ two-phase region has an appropriate width, the invention of the above (5) and (6) It is preferably 0.2% or less because the method is easy to carry out.

【0023】Si(ケイ素):3%以下 Siはα安定化元素であり、α+γ→α変態による集合組
織の制御を行うためのα+γ二相域を拡大させる。ま
た、脱酸材としても作用する元素である。しかし、Si含
有量が多すぎると、固溶硬化により鋼の圧延性を低下さ
せ、また、低融点酸化物ファイヤライト(Fe2SiO4) の生
成が促進されるので、熱間圧延後の酸洗が困難となった
り、溶接性が劣化して酸洗ラインにおいて溶接接続部の
破断をまねく。これらの弊害を避けるためにSi含有量の
上限は3%とする。ただし、この元素が存在しなくとも
α+γ二相域が消えるわけではないので必ずしも含有さ
せる必要はない。
Si: 3% or less Si is an α-stabilizing element and expands the α + γ two-phase region for controlling the texture by α + γ → α transformation. It is also an element that acts as a deoxidizer. However, if the Si content is too high, the solutionability of the steel decreases due to solid solution hardening, and the formation of low-melting-point oxide firelite (Fe 2 SiO 4 ) is promoted. It becomes difficult to wash, and the weldability deteriorates, leading to breakage of the welded joint in the pickling line. In order to avoid these adverse effects, the upper limit of Si content is 3%. However, even if this element does not exist, the α + γ two-phase region does not disappear, so it is not always necessary to include it.

【0024】Mn(マンガン): 0.1%以上、 3.0%以下 Mnはγ安定化元素であり、α+γ→α変態による集合組
織の制御を行うためのα+γ二相域の調節を目的として
添加する元素である。また、熱間圧延の際の脆性破壊の
原因となるS(硫黄)をMnSとして固定する元素でもあ
るので、 0.1%以上、好ましくは 1.5%程度含有させる
のが望ましい。しかし、Mnの含有量が多すぎると固溶硬
化により圧延性を損なうので、その上限を 3.0%とす
る。
Mn (manganese): 0.1% or more and 3.0% or less Mn is a γ-stabilizing element, and is an element added for the purpose of controlling the α + γ two-phase region for controlling the texture by α + γ → α transformation. is there. It is also an element that fixes S (sulfur), which causes brittle fracture during hot rolling, as MnS, so it is desirable to contain 0.1% or more, preferably about 1.5%. However, if the Mn content is too high, solution hardening is impaired by solid solution hardening, so the upper limit is made 3.0%.

【0025】sol.Al(アルミニウム):0.01%以上、3
%以下 Alはα安定化元素であり、α+γ→α変態による集合組
織の制御を行うためのα+γ二相域を拡大させる目的で
添加する。また、Alは鋼の脱酸剤としても役立つ。これ
らの作用効果を得るには、sol.Alとして少なくとも0.01
%の含有量が必要である。
Sol.Al (aluminum): 0.01% or more, 3
% Or less Al is an α-stabilizing element and is added for the purpose of expanding the α + γ two-phase region for controlling the texture by α + γ → α transformation. Al also serves as a deoxidizer for steel. To obtain these effects, at least 0.01 as sol.Al.
% Content is required.

【0026】Alが少ない場合には析出するAlNが微細に
なり、これが結晶粒の成長を妨げる。従って、AlNが結
晶粒成長を妨げない程度に粗大になるようにsol.Al含有
量を0.2%程度以上とするのが望ましい。一方、Alをあ
まり添加しすぎると固溶硬化のために圧延性が著しく損
なわれるから、sol.Al含有量の上限は3%とする。
When the amount of Al is small, the precipitated AlN becomes fine, which hinders the growth of crystal grains. Therefore, it is desirable to set the sol.Al content to about 0.2% or more so that the AlN becomes coarse enough not to hinder the crystal grain growth. On the other hand, if too much Al is added, the solution property is significantly impaired due to solid solution hardening, so the upper limit of the sol.Al content is 3%.

【0027】以上の成分の外、残部はFeと不可避的不純
物からなるが、必要に応じてNiを含有しても良い。
In addition to the above components, the balance consists of Fe and inevitable impurities, but Ni may be contained if necessary.

【0028】Ni(ニッケル): 2.5%以下 Niはγ安定化元素であり、α+γ→α変態による集合組
織の制御を行うためのα+γ二相域拡大を目的として添
加するのが好ましい。しかしながら、Niは高価な元素で
あるから、経済性を考慮してその上限を 2.5%とする。
Ni (nickel): 2.5% or less Ni is a γ-stabilizing element and is preferably added for the purpose of expanding the α + γ two-phase region for controlling the texture by α + γ → α transformation. However, since Ni is an expensive element, its upper limit is set to 2.5% in consideration of economic efficiency.

【0029】上記各成分の外に、Nb、VおよびTiからな
る元素群から選んだ1種以上の元素を含有するのが望ま
しい。
In addition to the above components, it is desirable to contain one or more elements selected from the element group consisting of Nb, V and Ti.

【0030】Nb(ニオブ): 0.1%以下 Nbはα+γ二相域での再結晶を抑制する微細析出物を生
成させるために0.01%以上含有量させるのが望ましい。
さらに好ましいのは0.03%以上含有させることである。
しかし、Nbの含有量があまり多くなると、析出物が粗大
となり、再結晶抑制効果がなくなる。従って、Nb含有量
の上限は 0.1%とする。
Nb (niobium): 0.1% or less Nb is preferably contained in an amount of 0.01% or more in order to form a fine precipitate that suppresses recrystallization in the α + γ two-phase region.
It is more preferable to contain 0.03% or more.
However, if the Nb content is too large, the precipitates become coarse and the effect of suppressing recrystallization is lost. Therefore, the upper limit of the Nb content is 0.1%.

【0031】V(バナジウム): 0.2%以下 VもNbと同じくα+γ二相域での再結晶を抑制する微細
析出物を生成する。この効果を得るために0.01%以上含
有させるのが望ましい。一層望ましい含有量は0.03%以
上である。しかし、上記Nbと同じ理由でV含有量の上限
は 0.2%とする。
V (vanadium): 0.2% or less V, like Nb, also produces fine precipitates that suppress recrystallization in the α + γ two-phase region. In order to obtain this effect, it is desirable to contain 0.01% or more. A more desirable content is 0.03% or more. However, the upper limit of V content is 0.2% for the same reason as Nb.

【0032】Ti(チタン): 0.1%以下 Tiの作用効果も、上記のNbおよびVと同じである。望ま
しくは0.01%以上、更に望ましくは0.03%以上含有させ
る。上限はNbおよびVと同じ理由で 0.1%までとする。
Ti (titanium): 0.1% or less The effect of Ti is the same as that of Nb and V described above. Desirably, the content is 0.01% or more, and more desirably 0.03% or more. The upper limit is 0.1% for the same reason as Nb and V.

【0033】(b) 集合組織 本発明の熱延鋼板は、上記の化学組成を持ち、さらに板
面と平行な{311}面反射強度がランダム比で5倍以
上であることが特徴である。
(B) Texture The hot-rolled steel sheet of the present invention has the above-mentioned chemical composition, and is characterized in that the {311} plane reflection intensity parallel to the sheet surface is 5 times or more at a random ratio.

【0034】前述のように、αFe単結晶のヤング率は、
最大値の<111>方向が29000kgf/mm2、最小値の<1
00>方向が13150kgf/mm2である。従って、集合組織の
制御によるヤング率の向上に効果的な集積度は、X線回
折による{311}面反射強度がランダム比で5倍以
上、好ましくは10倍以上とする。2 〜3 倍程度ではラン
ダム配向と同程度で、ヤング率向上には効果的でない。
As described above, the Young's modulus of αFe single crystal is
Maximum value <111> direction is 29,000 kgf / mm 2 , minimum value is <1
The 00> direction is 13150 kgf / mm 2 . Therefore, the degree of integration effective for improving the Young's modulus by controlling the texture is such that the {311} plane reflection intensity by X-ray diffraction is 5 times or more, preferably 10 times or more in random ratio. When it is about 2 to 3 times, it is almost the same as the random orientation, and it is not effective for improving the Young's modulus.

【0035】(B) 製造方法 上記のような集合組織をもつ本発明の鋼板は、前記 (5)
および(6) の方法で製造することができる。
(B) Manufacturing Method The steel sheet of the present invention having the above-mentioned texture has the above-mentioned (5)
And it can be manufactured by the method of (6).

【0036】本発明方法ではα+γの二相を含む領域で
熱間圧延することを必須条件とする。さらに、結晶粒の
成長をできるだけ抑えて、変態後のα粒が核発生するγ
粒界の面積をできるだけ大きいままに維持するために、
鋼素材(例えばスラブ)の加熱温度はできるだけ低くす
るのがよい。ただし、低温に過ぎた場合は圧延荷重が過
大となる。これらの理由から、熱間圧延の際の加熱温度
の適正範囲は 920℃から1250℃までである。
In the method of the present invention, hot rolling is an essential condition in a region containing two phases of α + γ. Furthermore, the growth of crystal grains is suppressed as much as possible, and α grains after transformation are nucleated γ
In order to keep the grain boundary area as large as possible,
The heating temperature of the steel material (for example, slab) should be as low as possible. However, if the temperature is too low, the rolling load becomes excessive. For these reasons, the appropriate heating temperature range for hot rolling is 920 ° C to 1250 ° C.

【0037】鋼板の集合組織で{332}<113>方
位成分の発生を抑えて、{311}<011>方位成分
の割合を増加させるためには、α+γ域における累積圧
下量を50%以上としなければならない。特に二相域での
圧下率が80%以上の場合には{311}<011>方位
成分の増加が著しい。
In order to suppress the generation of the {332} <113> orientation component and increase the proportion of the {311} <011> orientation component in the texture of the steel sheet, the cumulative reduction amount in the α + γ region should be 50% or more. There must be. Particularly, when the rolling reduction in the two-phase region is 80% or more, the increase of {311} <011> orientation component is remarkable.

【0038】このα+γ域においての圧下率は、 Ar3
と Ar1点の差が大きければ必然的に大きくすることが可
能であるが、この差が小さい場合でも圧延中に再加熱や
保温を行って、α+γ域に保って圧延すれば累積圧下率
を大きくすることができる。
The rolling reduction in the α + γ range can be inevitably increased if the difference between the Ar 3 point and the Ar 1 point is large. However, even if this difference is small, reheating or heat retention during rolling can be performed. The rolling reduction can be increased by carrying out rolling while maintaining the temperature in the α + γ range.

【0039】さらに、未再結晶のγ相の割合をできるだ
け多くするために、圧延は Ar1点〜(Ar1点+70℃) の温
度域で仕上げる。また、変態をゆっくり進行させて、変
態集合組織を十分発達させるために、圧延終了後の冷却
速度を小さくするのがよい。
Further, in order to increase the ratio of the unrecrystallized γ phase as much as possible, the rolling is finished in the temperature range of Ar 1 point to (Ar 1 point + 70 ° C.). Further, in order to allow the transformation to proceed slowly and to develop the transformation texture sufficiently, it is preferable to reduce the cooling rate after the completion of rolling.

【0040】圧延後にこの熱延鋼板を巻き取る際には、
その温度(巻き取り温度)は Ar1点〜(Ar1点− 250℃)
の範囲にするのが望ましい。 Ar1点を超えた温度で巻き
取るとγ相が再結晶して変態集合組織が発達しにくい。
逆にこの温度が(Ar1点− 250℃) よりも低いとα粒成長
による{311}<011>集合組織を発達させる効果
が乏しくなるので好ましくない。この{311}<01
1>方位の集合組織はAr1点以下のできるだけ高い温度
の方が発達しやすいので Ar1点〜(Ar1点− 150℃) で巻
き取るのがより好ましい。
When winding this hot-rolled steel sheet after rolling,
The temperature (winding temperature) is Ar 1 point ~ (Ar 1 point-250 ° C)
It is desirable to set it in the range of. If the coil is wound at a temperature above the Ar 1 point, the γ phase recrystallizes and the transformation texture is hard to develop.
On the contrary, if this temperature is lower than (Ar 1 point −250 ° C.), the effect of developing {311} <011> texture due to α grain growth becomes poor, which is not preferable. This {311} <01
The texture of 1> orientation is more likely to develop at a temperature as high as Ar 1 point or less, so that it is more preferable to wind it at Ar 1 point to (Ar 1 point −150 ° C.).

【0041】また、この熱延鋼板に焼鈍を施す際も Ar1
点〜(Ar1点− 250℃) の温度域で行うのがよい。 Ar1
を超えた温度で行うと集合組織が発達せず、ランダム化
するし、逆にこの温度が(Ar1点− 250℃) よりも低いと
α粒成長による{311}<011>集合組織が発達し
にくくなるので好ましくない。この温度も{311}<
011>方位の集合組織をより発達させるために Ar1
〜(Ar1点− 150℃) であるのがより好ましい。巻取り温
度が(Ar1点− 250℃) 未満であった場合にもこの焼鈍処
理を施すことによって、本発明の鋼材を製造することが
できる。
When the hot rolled steel sheet is annealed, Ar 1
It is recommended to perform in the temperature range from 1 point to (Ar 1 point-250 ° C). Ar does not develop the texture and performed at one point the temperature exceeding, to randomize, the temperature (Ar 1 point - 250 ° C.) in the opposite {311} by low and α grain growth than <011> set It is not preferable because the tissue is hard to develop. This temperature is also {311} <
In order to further develop the texture of 011> orientation, Ar 1 point to (Ar 1 point−150 ° C.) is more preferable. Even when the coiling temperature is lower than (Ar 1 point −250 ° C.), the steel material of the present invention can be manufactured by performing this annealing treatment.

【0042】[0042]

【実施例1】表1に示す化学組成の鋼塊を熱間鍛造によ
って厚さ50mmの鋼片とした。鋼種として変態温度および
α+γ二相域の温度範囲(Ar3点と Ar1点の間)が異なる
ものを種々調整した。表1に Ar3点− Ar1点の実測値を
示す。
Example 1 A steel ingot having a chemical composition shown in Table 1 was hot-forged into a steel piece having a thickness of 50 mm. Various kinds of steels having different transformation temperatures and α + γ two-phase temperature range (between Ar 3 point and Ar 1 point) were adjusted. Table 1 shows the measured values from Ar 3 points to Ar 1 points.

【0043】表1に示すように鋼種によって変態温度が
異なるので、熱間圧延終了温度と巻取り温度を表2に示
すように個々に選定して熱間圧延を行い、最終板厚を3
mmとした。これら熱延鋼板の中心部から、0.5mm 厚×25
mm幅×25mm長のX線回折用試料および板幅方向に長手軸
を有する 2mm厚×10mm幅×20mm長のヤング率測定用試料
を切り出した。
Since the transformation temperature varies depending on the steel type as shown in Table 1, the hot rolling finish temperature and the coiling temperature are individually selected as shown in Table 2 and hot rolling is performed to obtain the final strip thickness of 3
mm. From the center of these hot-rolled steel sheets, 0.5 mm thickness x 25
An X-ray diffraction sample having a width of 25 mm and a length of 25 mm and a Young's modulus measuring sample having a thickness of 10 mm, a width of 20 mm and a length of 20 mm having a longitudinal axis in the plate width direction were cut out.

【0044】表3にX線回折による{110}、{22
0}、{211}、{222}、{322}、{62
2}面の反射強度(対ランダム比)、ヤング率および引
張強度の測定結果を示す。なお、{311}面の反射強
度は直接測定できないため、これに代わるものとして
{622}面の反射強度を測定した。この測定値は実質
的に{311}面の反射強度を意味する。
Table 3 shows {110}, {22 by X-ray diffraction.
0}, {211}, {222}, {322}, {62
The measurement results of the reflection strength (relative to the random ratio), Young's modulus and tensile strength of the 2} plane are shown. Since the reflection intensity of the {311} plane cannot be measured directly, the reflection intensity of the {622} plane was measured as an alternative. This measured value substantially means the reflection intensity of the {311} plane.

【0045】鋼種A〜Kの{622}面反射強度は5倍
以上と極めて高くなり、板幅方向のヤング率はいずれも
24000kgf/mm2 以上であった。しかしながら、鋼種L〜
Tでは{622}面反射強度が弱く、ヤング率も 18500
〜21000kgf/mm2 と低い。鋼種Q、R、S、Tはα域だ
けの状態で圧延したので、圧延集合組織の主成分である
{200}、即ち{100}<011>が極めて高く、
ヤング率は21000kgf/mm2以下となっている。
The {622} plane reflection strengths of the steel types A to K are extremely high, being 5 times or more, and the Young's modulus in the plate width direction is all high.
It was 24000 kgf / mm 2 or more. However, steel grade L ~
At T, the {622} plane reflection intensity is weak and the Young's modulus is 18500.
It is as low as ~ 21000kgf / mm 2 . Since the steel types Q, R, S, and T were rolled only in the α region, {200}, which is the main component of the rolling texture, that is, {100} <011>, is extremely high.
Young's modulus is 21,000 kgf / mm 2 or less.

【0046】鋼種LとMは、α+γ二相域での累積圧下
率が低いために、ヤング率は鋼種A〜Kに比べて低く、
21000kgf/mm2 前後にとどまっている。
Since the steel types L and M have a low cumulative rolling reduction in the α + γ two-phase region, the Young's modulus is lower than that of the steel types A to K.
It stays around 21000kgf / mm 2 .

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【表2】 [Table 2]

【0049】[0049]

【表3】 [Table 3]

【0050】[0050]

【実施例2】表1の鋼種Aの鋼片を表4に示すように、
加熱温度、熱間圧延終了温度、巻取り温度の異なる条件
で熱間圧延し、実施例1と同様に試料を切り出し、X線
回折による{110}、{220}、{211}、{2
22}、{322}、{622}面反射強度および板幅
方向のヤング率を比較した。その結果を表5に示す。
Example 2 As shown in Table 4, steel pieces of steel type A in Table 1 are
Hot rolling was performed under different conditions of heating temperature, hot rolling end temperature, and winding temperature, and a sample was cut out in the same manner as in Example 1 and {110}, {220}, {211}, {2 by X-ray diffraction.
22}, {322}, and {622} plane reflection intensity and Young's modulus in the plate width direction were compared. The results are shown in Table 5.

【0051】先に述べたように、鋼板の集合組織でヤン
グ率の向上に有効な方位成分{311}<011>の割
合を増加させる条件の一つは、α+γ域に於ける累積圧
下量を多くすることと、未再結晶のγ相の割合をできる
だけ多くするために、圧延はAr1 点以上で(Ar1点+70
℃)以下の温度で仕上げることが好ましい。A鋼につい
てこの条件を考察すると、熱延終了温度は793 ℃(Ar
1点) と、793 ℃+70℃の間とするのが望ましく、更
に、累積圧下量をなるべく大きくとるためには下限の 7
93℃に近い温度が望ましいことになる。この熱延終了温
度が 793℃よりも下がると、α領域での圧下率が増加し
てα+γ領域での圧下率は減少することになり、好まし
くないのである。
As described above, one of the conditions for increasing the ratio of the orientation component {311} <011> effective for improving the Young's modulus in the texture of the steel sheet is the cumulative rolling reduction amount in the α + γ region. In order to increase the amount and the ratio of the unrecrystallized γ phase as much as possible, the rolling should be performed with Ar 1 point or more (Ar 1 point +70
It is preferable to finish at a temperature of (° C.) or less. Considering this condition for steel A, the hot rolling finish temperature is 793 ℃ (Ar
(1 point) and 793 ℃ + 70 ℃ are desirable, and in order to maximize the cumulative reduction, the lower limit of 7
Temperatures close to 93 ° C would be desirable. When the hot rolling end temperature is lower than 793 ° C, the rolling reduction in the α region increases and the rolling reduction in the α + γ region decreases, which is not preferable.

【0052】表4にみるようにA3鋼とA4鋼とでは Ar3
熱延終了温度が 200℃に近いので、α+γ域での圧下率
を77%および88%と、他のA1,A2,A5,A6 鋼の33〜46%に
比べてかなり大きくすることができ、第5表に示すよう
に、X線回析による{622}面反射強度はA3とA4がそ
れぞれ 8.0および 6.1倍と、他のそれが 1.8から 2.9倍
であるのに比較して高い。そして板幅方向のヤング率は
A3およびA4が24500kgf/mm2および25600kgf/mm2で、他の
15800〜19500kgf/mm2に比べて著しく高い値となってい
る。
As shown in Table 4, in the case of A3 steel and A4 steel, Ar 3
Since the hot rolling end temperature is close to 200 ° C, the rolling reductions in the α + γ range can be 77% and 88%, which is considerably higher than the 33-46% of other A1, A2, A5, A6 steels. As shown in Table 5, the X-ray diffraction-induced {622} plane reflection intensities are 8.0 and 6.1 times higher for A3 and A4, respectively, compared to 1.8 to 2.9 times higher for others. And the Young's modulus in the width direction is
A3 and A4 are 24500kgf / mm 2 and 25600kgf / mm 2 , other
The value is remarkably higher than that of 15800 to 19500 kgf / mm 2 .

【0053】[0053]

【表4】 [Table 4]

【0054】[0054]

【表5】 [Table 5]

【0055】[0055]

【実施例3】表1の鋼種Iの鋼片(50mm厚) を表6に示
すように、加熱温度、熱間圧延終了温度、巻取り温度の
異なる条件で3mm厚まで熱間圧延し、実施例1と同様に
試料を切り出して、X線回折による{622}面反射強
度および板幅方向のヤング率を測定した。その結果を表
6に併記する。
Example 3 As shown in Table 6, a steel piece of steel type I (50 mm thick) in Table 1 was hot-rolled to a thickness of 3 mm under different heating temperature, hot rolling end temperature, and coiling temperature. A sample was cut out in the same manner as in Example 1, and the {622} plane reflection intensity by X-ray diffraction and the Young's modulus in the plate width direction were measured. The results are also shown in Table 6.

【0056】圧延前のスラブ加熱温度が高すぎる3-1
や、熱延仕上げ温度がAr1 点以下である3-5 では{62
2}面反射強度および板幅方向のヤング率がどちらも低
くなっている。
Heating temperature of slab before rolling is too high 3-1
Or, in the case of 3-5 where the hot rolling finishing temperature is 1 point or less of Ar, {62
Both the 2} plane reflection intensity and the Young's modulus in the plate width direction are low.

【0057】[0057]

【表6】 [Table 6]

【0058】[0058]

【実施例4】表1の鋼種Cの鋼片(50mm厚) を表7に示
すように、加熱温度、熱間圧延終了温度、巻取り温度の
異なる条件で3mm厚まで熱間圧延し、実施例1と同様に
試料を切り出して、X線回折による{622}面反射強
度および板幅方向のヤング率を測定した。その結果を表
7に併記する。
Example 4 As shown in Table 7, steel pieces of steel type C in Table 1 (thickness: 50 mm) were hot-rolled to a thickness of 3 mm under different heating temperature, hot-rolling end temperature, and coiling temperature. A sample was cut out in the same manner as in Example 1, and the {622} plane reflection intensity by X-ray diffraction and the Young's modulus in the plate width direction were measured. The results are also shown in Table 7.

【0059】巻取り温度が(Ar1−250 ℃) より低かった
4-5 では{622}面反射強度および板幅方向のヤング
率がどちらも低いものとなった。
[0059] coiling temperature was lower than (Ar 1 -250 ℃)
In 4-5, both the {622} plane reflection intensity and the Young's modulus in the plate width direction were low.

【0060】この試料4-5 に、 680℃で10時間の焼鈍処
理を施したものを表7に4-6 として示す。板厚中心部か
ら同寸の試験片を切り出してX線回折による{622}
面反射強度および板幅方向のヤング率を測定したとこ
ろ、{622}面反射強度は12.7、ヤング率は24802kgf
/mm2であった。
This sample 4-5 was annealed at 680 ° C. for 10 hours and is shown in Table 7 as 4-6. A test piece of the same size was cut out from the center part of the plate thickness and analyzed by X-ray diffraction {622}
When the surface reflection strength and the Young's modulus in the plate width direction were measured, the {622} surface reflection strength was 12.7 and the Young's modulus was 24802 kgf.
It was / mm 2 .

【0061】[0061]

【表7】 [Table 7]

【0062】[0062]

【発明の効果】本発明の熱延鋼板は、板幅方向のヤング
率が極めて高く、自動車の外板パネル等に用いるのに好
適である。そして、この熱延鋼板は、前述の本発明方法
によって、比較的容易にかつ安価に製造することができ
る。
The hot-rolled steel sheet of the present invention has a very high Young's modulus in the sheet width direction and is suitable for use as an outer panel of an automobile. The hot rolled steel sheet can be manufactured relatively easily and inexpensively by the above-described method of the present invention.

【0063】[0063]

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C: 0.8%以下、Si:3%以
下、Mn: 0.1〜3.0 %、sol.Al:0.01〜3%を含有し、
残部はFeおよび不可避的不純物からなり、板面と平行な
{311}面反射強度がランダム比で5倍以上である板
幅方向のヤング率の高い熱延鋼板。
1. C .: 0.8% or less, Si: 3% or less, Mn: 0.1 to 3.0%, sol.Al: 0.01 to 3% by weight.
The balance consists of Fe and unavoidable impurities, and the {311} plane reflection intensity parallel to the plate surface is 5 times or more at a random ratio.
【請求項2】重量%で、C: 0.8%以下、Si:3%以
下、Mn: 0.1〜3.0 %、sol.Al:0.01〜3%、Ni:2.5
%以下を含有し、残部はFeおよび不可避的不純物からな
り、板面と平行な{311}面反射強度がランダム比で
5倍以上である板幅方向のヤング率の高い熱延鋼板。
2. By weight%, C: 0.8% or less, Si: 3% or less, Mn: 0.1 to 3.0%, sol.Al: 0.01 to 3%, Ni: 2.5.
% Or less, the balance consisting of Fe and unavoidable impurities, and the {311} plane reflection intensity parallel to the plate surface is 5 times or more at a random ratio, with a high Young's modulus in the plate width direction.
【請求項3】重量%で、C: 0.8%以下、Si:3%以
下、Mn: 0.1〜3.0 %、sol.Al:0.01〜3%、ならびに
Nb: 0.1%以下、V: 0.2%以下およびTi: 0.1%以下
のうちの1種以上を含有し、残部はFeおよび不可避的不
純物からなり、板面と平行な{311}面反射強度がラ
ンダム比で5倍以上である板幅方向のヤング率の高い熱
延鋼板。
3. In% by weight, C: 0.8% or less, Si: 3% or less, Mn: 0.1 to 3.0%, sol.Al: 0.01 to 3%, and
Contains at least one of Nb: 0.1% or less, V: 0.2% or less, and Ti: 0.1% or less, the balance being Fe and inevitable impurities, and the {311} plane reflection intensity parallel to the plate surface is random. A hot-rolled steel sheet having a high Young's modulus in the sheet width direction that is 5 times or more the ratio.
【請求項4】重量%で、C: 0.8%以下、Si:3%以
下、Mn: 0.1〜3.0 %、sol.Al:0.01〜3%、Ni:2.5
%以下ならびにNb: 0.1%以下、V: 0.2%以下および
Ti: 0.1%以下のうちの1種以上を含有し、残部はFeお
よび不可避的不純物からなり、板面と平行な{311}
面反射強度がランダム比で5倍以上である板幅方向のヤ
ング率の高い熱延鋼板。
4. By weight%, C: 0.8% or less, Si: 3% or less, Mn: 0.1 to 3.0%, sol.Al: 0.01 to 3%, Ni: 2.5.
% Or less and Nb: 0.1% or less, V: 0.2% or less and
Ti: Contains at least one of 0.1% or less, the balance being Fe and inevitable impurities, and parallel to the plate surface {311}
A hot-rolled steel sheet having a high Young's modulus in the sheet width direction having a surface reflection strength of 5 times or more in a random ratio.
【請求項5】請求項1ないし4のいずれかに記載の組成
からなる鋼素材を 920〜1250℃の範囲で加熱した後、α
+γ二相域での総圧下量が50%以上、熱延仕上げ温度が
Ar1〜(Ar1+70℃) となるように熱間圧延し、 Ar1〜(A
r1−250 ℃) で巻き取ることを特徴とする請求項1ない
し4のいずれかに記載の熱延鋼板の製造方法。
5. A steel material having the composition according to any one of claims 1 to 4 is heated in the range of 920 to 1250 ° C., and then α
The total rolling reduction in the + γ two-phase region is 50% or more, and the hot rolling finishing temperature is
Hot-roll to Ar 1 ~ (Ar 1 + 70 ° C), then Ar 1 ~ (A
The method for producing a hot-rolled steel sheet according to claim 1, wherein the hot-rolled steel sheet is wound at r 1 -250 ° C.).
【請求項6】請求項1ないし4のいずれかに記載の組成
からなる鋼素材を 920〜1250℃の範囲で加熱した後、α
+γ二相域での総圧下量が50%以上、熱延仕上げ温度が
Ar1〜(Ar1+70℃) となるように熱間圧延し、 Ar1以下
で巻き取った後 Ar1〜(Ar1−250 ℃) で焼鈍することを
特徴とする請求項1ないし4のいずれかに記載の熱延鋼
板の製造方法。
6. A steel material having the composition according to any one of claims 1 to 4 is heated in the range of 920 to 1250 ° C., and then α
The total rolling reduction in the + γ two-phase region is 50% or more, and the hot rolling finishing temperature is
5. Hot rolling to obtain Ar 1 to (Ar 1 + 70 ° C.), winding at Ar 1 or less, and annealing at Ar 1 to (Ar 1 −250 ° C.). The method for manufacturing a hot-rolled steel sheet according to any one of claims.
JP30007392A 1992-01-24 1992-11-10 Hot rolled steel sheet high in young's modulus in width direction and its manufacture Pending JPH05263191A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4-11142 1992-01-24
JP1114292 1992-01-24

Publications (1)

Publication Number Publication Date
JPH05263191A true JPH05263191A (en) 1993-10-12

Family

ID=11769774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30007392A Pending JPH05263191A (en) 1992-01-24 1992-11-10 Hot rolled steel sheet high in young's modulus in width direction and its manufacture

Country Status (1)

Country Link
JP (1) JPH05263191A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314792A (en) * 2004-03-31 2005-11-10 Jfe Steel Kk High-rigidity high-strength thin steel sheet and method for producing same
JP2006152362A (en) * 2004-11-29 2006-06-15 Jfe Steel Kk High-strength steel plate having excellent rigidity and production method thereof
JP2006183130A (en) * 2004-03-31 2006-07-13 Jfe Steel Kk High-rigidity/high-strength thin steel sheet and manufacturing method therefor
JP2006183131A (en) * 2004-03-31 2006-07-13 Jfe Steel Kk High-rigidity/high-strength thin steel sheet and manufacturing method therefor
EP1731627A1 (en) * 2004-03-31 2006-12-13 JFE Steel Corporation High-rigidity high-strength thin steel sheet and method for producing same
EP1731626A1 (en) * 2004-03-31 2006-12-13 JFE Steel Corporation High-rigidity high-strength thin steel sheet and method for producing same
JP2007092132A (en) * 2005-09-29 2007-04-12 Jfe Steel Kk High-strength steel sheet having excellent rigidity and workability, and its production method
JP2007092131A (en) * 2005-09-29 2007-04-12 Jfe Steel Kk High strength thin steel sheet having excellent rigidity, and its production method
JP2007092130A (en) * 2005-09-29 2007-04-12 Jfe Steel Kk High-strength steel sheet having excellent rigidity and its production method
JP2007321168A (en) * 2006-05-30 2007-12-13 Jfe Steel Kk High-rigidity low-density steel sheet and its manufacturing method
JP2010132065A (en) * 2008-12-03 2010-06-17 Nissan Motor Co Ltd Structure of side sill of vehicle body
US8057913B2 (en) * 2004-07-27 2011-11-15 Nippon Steel Corporation Steel sheet having high young'S modulus, hot-dip galvanized steel sheet using the same, alloyed hot-dip galvanized steel sheet, steel pipe having high young'S modulus and methods for manufacturing the same
JP2012136773A (en) * 2010-12-07 2012-07-19 Nippon Steel Corp High strength hot-rolled steel plate excellent in low temperature toughness and hole expansibility and method of producing the same
CN105220066A (en) * 2015-10-29 2016-01-06 中北大学 A kind of nano-beads body of light steel and preparation method thereof
JP2016028174A (en) * 2014-07-08 2016-02-25 新日鐵住金株式会社 High strength hot rolled steel sheet and hot-dip galvanized high strength hot rolled steel sheet excellent in flageability and punchability and production methods of them

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8802241B2 (en) 2004-01-08 2014-08-12 Nippon Steel & Sumitomo Metal Corporation Steel sheet having high young's modulus, hot-dip galvanized steel sheet using the same, alloyed hot-dip galvanized steel sheet, steel pipe having high young's modulus, and methods for manufacturing the same
JP2006183130A (en) * 2004-03-31 2006-07-13 Jfe Steel Kk High-rigidity/high-strength thin steel sheet and manufacturing method therefor
JP2006183131A (en) * 2004-03-31 2006-07-13 Jfe Steel Kk High-rigidity/high-strength thin steel sheet and manufacturing method therefor
EP1731627A1 (en) * 2004-03-31 2006-12-13 JFE Steel Corporation High-rigidity high-strength thin steel sheet and method for producing same
EP1731626A1 (en) * 2004-03-31 2006-12-13 JFE Steel Corporation High-rigidity high-strength thin steel sheet and method for producing same
JP2005314792A (en) * 2004-03-31 2005-11-10 Jfe Steel Kk High-rigidity high-strength thin steel sheet and method for producing same
EP1731627A4 (en) * 2004-03-31 2007-10-31 Jfe Steel Corp High-rigidity high-strength thin steel sheet and method for producing same
EP1731626A4 (en) * 2004-03-31 2007-10-31 Jfe Steel Corp High-rigidity high-strength thin steel sheet and method for producing same
US8057913B2 (en) * 2004-07-27 2011-11-15 Nippon Steel Corporation Steel sheet having high young'S modulus, hot-dip galvanized steel sheet using the same, alloyed hot-dip galvanized steel sheet, steel pipe having high young'S modulus and methods for manufacturing the same
EP2700730A2 (en) 2004-07-27 2014-02-26 Nippon Steel & Sumitomo Corporation Steel sheet having high Young's modulus, hot-dip galvanized steel sheet using the same, alloyed hot-dip galvanized steel sheet, steel pipe having high Young's modulus, and methods for manufacturing these
JP2006152362A (en) * 2004-11-29 2006-06-15 Jfe Steel Kk High-strength steel plate having excellent rigidity and production method thereof
JP2007092130A (en) * 2005-09-29 2007-04-12 Jfe Steel Kk High-strength steel sheet having excellent rigidity and its production method
JP2007092131A (en) * 2005-09-29 2007-04-12 Jfe Steel Kk High strength thin steel sheet having excellent rigidity, and its production method
JP2007092132A (en) * 2005-09-29 2007-04-12 Jfe Steel Kk High-strength steel sheet having excellent rigidity and workability, and its production method
JP2007321168A (en) * 2006-05-30 2007-12-13 Jfe Steel Kk High-rigidity low-density steel sheet and its manufacturing method
JP2010132065A (en) * 2008-12-03 2010-06-17 Nissan Motor Co Ltd Structure of side sill of vehicle body
JP2012136773A (en) * 2010-12-07 2012-07-19 Nippon Steel Corp High strength hot-rolled steel plate excellent in low temperature toughness and hole expansibility and method of producing the same
JP2016028174A (en) * 2014-07-08 2016-02-25 新日鐵住金株式会社 High strength hot rolled steel sheet and hot-dip galvanized high strength hot rolled steel sheet excellent in flageability and punchability and production methods of them
CN105220066A (en) * 2015-10-29 2016-01-06 中北大学 A kind of nano-beads body of light steel and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH05263191A (en) Hot rolled steel sheet high in young&#39;s modulus in width direction and its manufacture
JPH10298645A (en) Manufacture of hot rolled high tensile strength steel plate
JPH07316650A (en) Production of high strength hot rolled steel plate with low yield ratio
JP2987815B2 (en) Method for producing high-tensile cold-rolled steel sheet excellent in press formability and secondary work cracking resistance
JPH08100242A (en) Alloy wire with high strength, high toughness and low thermal expansion and its production
JP2000256794A (en) High toughness high damping alloy and its production
JP3299287B2 (en) High strength steel sheet for forming and its manufacturing method
JPS62192539A (en) Manufacture of high gamma value hot rolled steel plate
JPH10130734A (en) Production of austenitic stainless steel sheet for roll forming
JP3839955B2 (en) Manufacturing method of hot-rolled steel sheet with high tensile strength and excellent shape freezing and formability
JP3818025B2 (en) Method for producing cold-rolled steel sheet with small anisotropy
JPH01116031A (en) Manufacture of hot rolled high si-high carbon steel sheet having superior toughness
KR100276300B1 (en) The manufacturing method of high strength hot rolling steel sheet with having low tensil strength
JP2003112204A (en) High-strength hot-rolled steel sheet and method for manufacturing the same
JP2000119804A (en) Hot rolled steel plate excellent in deep drawability, and its manufacture
JPS604248B2 (en) Manufacturing method for hot-rolled non-temperature high-strength steel sheets
JPH0953118A (en) Production of hot rolled steel plate with high young&#39;s modulus
JPH04168217A (en) Manufacture of high toughness and high tensile strength hot rolled steel sheet excellent in uniformity
JPH09256103A (en) Hot rolled steel plate capable of providing steel plate member of low yield ratio after hot forming, and the hot rolled steel plate member
JPS5848616B2 (en) Manufacturing method for low yield ratio hot-rolled high-strength steel plate with excellent ductility
JPH0941035A (en) Production of low yield ratio hot rolled steel sheet excellent in toughness
KR900004847B1 (en) Making process for high-tensile cold rolled steel plate
JPS62235428A (en) Manufacture of cold rolled steel sheet for deep drawing by continuous annealing
KR100276295B1 (en) The manufacturing method for high work used cold rolling steel sheet with excellent resirtance weldability
JPH11343521A (en) Production of high tensile strength hot rolled steel plate excellent in workability