JPH08100242A - Alloy wire with high strength, high toughness and low thermal expansion and its production - Google Patents

Alloy wire with high strength, high toughness and low thermal expansion and its production

Info

Publication number
JPH08100242A
JPH08100242A JP23697894A JP23697894A JPH08100242A JP H08100242 A JPH08100242 A JP H08100242A JP 23697894 A JP23697894 A JP 23697894A JP 23697894 A JP23697894 A JP 23697894A JP H08100242 A JPH08100242 A JP H08100242A
Authority
JP
Japan
Prior art keywords
less
strength
toughness
alloy wire
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23697894A
Other languages
Japanese (ja)
Inventor
Yoshiki Masukata
芳樹 舛形
Koji Sato
光司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP23697894A priority Critical patent/JPH08100242A/en
Publication of JPH08100242A publication Critical patent/JPH08100242A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: To produce a new low thermal expansion alloy wire, that is, an Fe-Ni alloy wire capable of improving toughness while maintaining strength at high level. CONSTITUTION: An Fe-Ni alloy stock, preferably, an alloy consisting essentially of, by weight, 0.1-0.5% C, 35-45% Ni, and the balance Fe and containing <=1.0% Si, <=1.0% Mn, and <=4.0% Mo is used. This alloy is hot-worked, cold-worked at 20-60% reduction of area, recovery-treated at 550-800 deg.C, and then cold-worked at 60-95% reduction of area and finished to the prescribed wire diameter, followed by stress relief annealing at 400-650 deg.C. By this method, characteristics of >=115kg/mm<2> tensile strength, >=3.5% elongation, >=70 times twisting value, and <=6×10<-6> / deg.C (30 to 310 deg.C) coefficient of linear expansion can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低弛度耐熱送電線用芯
線等に使用される高強度かつ高靱性のFe−Ni系の高
強度高靱性低熱膨張合金線およびその製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength and high-toughness Fe-Ni-based high-strength, high-toughness low-thermal-expansion alloy wire for use in core wires for low-sag heat-resistant power transmission lines and a method for producing the same. is there.

【0002】[0002]

【従来の技術】近年、高強度で低い熱膨張係数を持つF
e−Ni系の合金が、例えば低弛度の架空送電線(AC
SR)中心部用の線として、その開発が望まれている。
このような用途に対し、特公昭56−45990号,特
開昭55−41928号,特公昭57−17942号,
特開昭55−128565号,特公平3−21622
号,特公平3−21623号,特開昭56−14285
1号,特開昭57−26144号,特開昭58−117
67号および特開昭58−11768号等において、F
e−Ni合金にC,N,Cr,Mo,W,Ti等の合金
元素を添加して強度を高めた合金が開示されている。さ
らに、Fe−Ni系合金の強度と靱性を向上させる目的
で、特開昭58−210126号,特公平5−2592
5号,特開昭57−41350号および特公平3−72
365号等で、仕上げ伸線後に歪取焼鈍を行なう製造方
法が開示されている。
2. Description of the Related Art In recent years, F having high strength and low thermal expansion coefficient
An e-Ni alloy is, for example, a low sag overhead power transmission line (AC
It is desired to develop it as a line for the SR) center part.
For such applications, Japanese Patent Publication No. 56-45990, Japanese Patent Publication No. 55-41928, Japanese Patent Publication No. 57-19942,
JP-A-55-128565, JP-B-3-21622
Japanese Patent Publication No. 3-21623, Japanese Patent Laid-Open No. 56-14285.
1, JP-A-57-26144, JP-A-58-117.
67 and JP-A-58-11768.
An alloy in which alloy elements such as C, N, Cr, Mo, W, and Ti are added to an e-Ni alloy to increase strength is disclosed. Furthermore, for the purpose of improving the strength and toughness of Fe-Ni alloys, JP-A-58-210126 and JP-B-5-2592.
5, JP-A-57-41350 and JP-B-3-72.
No. 365 and the like disclose a manufacturing method in which strain relief annealing is performed after finish drawing.

【0003】また、本発明者らはMoを添加したFe−
Ni系合金に、固溶化熱処理を行ったのち、減面率20
〜60%の冷間加工を行った後、550〜800℃の回
復熱処理を行い、ついで減面率65%以上の冷間加工を
施す方法を、特開平4−311548号で提案した。こ
の方法は、固溶化熱処理および回復熱処理を施すことに
よって{111}結晶面の配向度を高め、結果として、
ばらつきが無く、高い捻回特性を有するFe−Ni系合
金線を得るというものである。
The inventors of the present invention have also added Fe-containing Mo.
After the solution heat treatment is performed on the Ni-based alloy, the surface reduction rate is 20.
Japanese Patent Laid-Open No. 4-311548 proposes a method in which after cold working at .about.60%, recovery heat treatment at 550 to 800.degree. C. is performed, and then cold working at a surface reduction rate of 65% or more is performed. This method increases the degree of orientation of the {111} crystal faces by performing solution heat treatment and recovery heat treatment, and as a result,
It is intended to obtain an Fe-Ni based alloy wire which has no twist and high twisting characteristics.

【0004】[0004]

【発明が解決しようとする課題】上述した、固溶化熱処
理および回復熱処理の適用は、Fe−Ni系合金の捻回
特性を高める点で極めて有効である。しかし、上述した
技術で得られるFe−Ni系合金線としては、115k
gf/mm2以上という高い引張強度とすると、いずれ
もせいぜい3%程度の伸びしか得られておらず、高靭性
という点では要求特性を充分に満足するものとは言えな
いものである。本発明は、Fe−Ni系合金線に対す
る、さらなる高強度化、高靭性化および捻回特性の向上
に答えるべく、最近の上述した特開平4−311548
号に開示したFe−Ni系合金線を改良して、特に強度
を高く保ったまま靭性の向上が達成できる製造方法およ
び新規な高強度高靭性低熱膨張合金線を提供することを
目的とする。
The application of the solution heat treatment and the recovery heat treatment described above is extremely effective in improving the twisting characteristics of the Fe-Ni alloy. However, the Fe-Ni alloy wire obtained by the above-mentioned technique is 115 k
When the tensile strength is as high as gf / mm 2 or more, in each case, elongation of at most about 3% is obtained, and it cannot be said that the required characteristics are sufficiently satisfied in terms of high toughness. The present invention, in order to respond to the further strengthening, the toughness and the improvement of the twisting property of the Fe-Ni alloy wire, has been recently described in Japanese Patent Laid-Open No. 4-311548.
An object of the present invention is to provide a manufacturing method and a novel high-strength, high-toughness, low thermal expansion alloy wire by improving the Fe-Ni-based alloy wire disclosed in Japanese Patent No. 3,096,981, in which the toughness can be improved particularly while keeping the strength high.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め本発明者らは、合金組成と製造方法の検討を行ない、
様々な方法によって得られるFe−Ni系合金線の引張
特性,捻回特性および線膨張係数を調査した。その結
果、冷間加工の途中でFe−Ni合金線の横断面に{1
11}結晶面を配向することができる550〜800℃
の回復処理を施すことに加えて、所定の線径に仕上げた
後に、400〜650℃の歪取焼鈍を行なうことで、高
強度と安定した捻回特性を保ったまま、従来の材料をは
るかに上回る優れた靭性特性を有する低膨張合金線材を
得られることがわかった。
[Means for Solving the Problems] In order to achieve the above object, the present inventors have studied the alloy composition and the manufacturing method,
The tensile properties, twisting properties, and linear expansion coefficient of Fe-Ni alloy wires obtained by various methods were investigated. As a result, the cross section of the Fe--Ni alloy wire was {1
11} 550 to 800 ° C. capable of orienting crystal faces
In addition to the recovery treatment described above, after finishing to a predetermined wire diameter, strain relief annealing at 400 to 650 ° C. is performed to maintain the strength of the conventional material and the stable twisting property. It has been found that a low expansion alloy wire rod having excellent toughness characteristics exceeding that of the above can be obtained.

【0006】すなわち本発明の製造方法は、Fe−Ni
系合金素材を熱間加工後、減面率20〜60%の冷間加
工した後、550〜800℃の回復処理を施し、次いで
減面率60〜95%減面率の冷間加工を加えて所定線径
に仕上げた後に、400〜650℃の歪取焼鈍を行なう
ことを特徴とする高強度高靱性低膨張合金線の製造方法
である。
That is, the manufacturing method of the present invention uses Fe--Ni
After hot-working a system alloy material, cold working with a surface reduction rate of 20 to 60%, recovery treatment at 550 to 800 ° C., and then cold working with a surface reduction rate of 60 to 95% And a strain relieving annealing at 400 to 650 ° C. are performed after finishing to a predetermined wire diameter to obtain a high strength and high toughness low expansion alloy wire.

【0007】好ましくは、熱間加工の後、または熱間加
工後の冷間加工の途中で1010〜1150℃の温度で
固溶化処理を行ない、その後減面率20〜60%の冷間
加工を加えてから550〜800℃の回復処理を施し、
その後に減面率60〜95%の冷間加工を加えて所定線
径に仕上げ、ついで400〜650℃の歪取焼鈍を行な
うものとする。
Preferably, after the hot working or during the cold working after the hot working, a solution treatment is performed at a temperature of 1010 to 1150 ° C., and then a cold working with a surface reduction rate of 20 to 60% is performed. After the addition, a recovery treatment of 550-800 ° C is applied,
After that, cold working with a surface reduction rate of 60 to 95% is added to finish to a predetermined wire diameter, and then strain relief annealing at 400 to 650 ° C. is performed.

【0008】本発明に適用するFe−Ni系合金素材の
具体的な好ましい組成は、重量%でC0.1%以上0.
5%以下,Ni35%以上45%以下、残部Feを基本
成分に、Si1.0%以下,Mn1.0%以下,Mo
4.0%以下含むことを特徴とする。
A specific preferable composition of the Fe-Ni alloy material applied to the present invention is 0.1% by weight or more and 0.1% by weight or less.
5% or less, Ni 35% or more and 45% or less, balance Fe as a basic component, Si 1.0% or less, Mn 1.0% or less, Mo
It is characterized by containing 4.0% or less.

【0009】また、Crを3.0%以下、Niの一部を
Co10%以下で置換し、Ni+Coで35%以上45
%以下、W4.0%以下,V0.5%以下,Nb0.5
%以下の群より選ばれる一種もしくは二種以上の元素、
B0.02%以下、の合金元素の添加は、高強度高靭性
低熱膨張特性を得る上で有効である。
Further, Cr is replaced by 3.0% or less and a part of Ni is replaced by Co10% or less, and Ni + Co is replaced by 35% or more and 45% or more.
% Or less, W4.0% or less, V0.5% or less, Nb0.5
%, One or more elements selected from the group below,
The addition of alloying elements containing B of 0.02% or less is effective in obtaining high strength, high toughness and low thermal expansion characteristics.

【0010】上述した本発明の製造方法によって得られ
る本発明の高強度高靭性低熱膨張合金線は、Fe−Ni
系合金であって、最終加工線径にて引張強さ115kgf
/mm2以上,伸び4.0%以上(標点距離=250m
m),捻回値70回以上(つかみ間距離=自己線径×1
00mm),線膨張係数6×10-6/℃(30〜310
℃)以下を有する高強度高靱性低膨張合金線である。本
発明の具体的な好ましい高強度高靱性低膨張合金線の組
成範囲は、上述したFe−Ni系合金素材の組成範囲と
一致するものである。
The high strength, high toughness, low thermal expansion alloy wire of the present invention obtained by the above-described manufacturing method of the present invention is Fe-Ni.
This is a series alloy and has a tensile strength of 115 kgf at the final processed wire diameter.
/ Mm 2 or more, elongation 4.0% or more (gage length = 250 m
m), twist value 70 times or more (distance between grips = self wire diameter x 1
300 mm), linear expansion coefficient 6 × 10- 6 / ℃ (30~310
It is a high-strength, high-toughness, low-expansion alloy wire having a temperature of (° C. The composition range of the specific preferred high-strength, high-toughness, low-expansion alloy wire of the present invention is in agreement with the composition range of the above-mentioned Fe-Ni alloy material.

【0011】[0011]

【作用】上述したように本発明の特徴の一つは、冷間加
工の途中で回復処理を施すとともに、冷間加工後に40
0〜650℃の特定の範囲の歪取焼鈍を行うことにあ
る。本発明の最大の特徴の一つである回復処理は、回復
処理を行なうことによって、冷間加工によって導入され
た多くの転位が合金線の長手方向に再配列し、亜結晶粒
界を形成する。その際に、MoやCrの炭化物が亜結晶
粒界に微細に析出し、亜結晶粒界をピン止めする作用を
もつ。この効果のために再結晶温度は高められ、最終冷
間加工後に合金線横断面に{111}結晶面の配向度の
高い組織が得られる。この最終冷間加工後の合金線横断
面に{111}結晶面を集合させておくことにより、本
発明のもう一つの重要な特徴である歪取焼鈍を適用した
時に、高強度および安定した捻回特性を保ったまま、高
い靭性(伸び)を得ることができるのである。
As described above, one of the features of the present invention is that the recovery treatment is performed during the cold working, and the recovery treatment is performed after the cold working.
It is to perform strain relief annealing in a specific range of 0 to 650 ° C. One of the greatest features of the present invention is the recovery treatment. By performing the recovery treatment, many dislocations introduced by cold working are rearranged in the longitudinal direction of the alloy wire to form sub-grain boundaries. . At that time, carbides of Mo and Cr are finely precipitated at the sub-grain boundaries and have a function of pinning the sub-grain boundaries. Due to this effect, the recrystallization temperature is raised, and after the final cold working, a structure having a high degree of orientation of the {111} crystal plane is obtained in the cross section of the alloy wire. By gathering {111} crystal planes in the cross section of the alloy wire after the final cold working, it is possible to obtain high strength and stable twist when applying stress relief annealing which is another important feature of the present invention. It is possible to obtain high toughness (elongation) while maintaining the rolling characteristics.

【0012】本発明における回復処理の前に行う冷間加
工の減面率は、最低20%以上を必要とし、60%を超
えると回復,再結晶温度が低下し、炭化物の析出温度域
よりも低下してしまい、{111}結晶面の配向度が低
下してしまう。従って、回復処理前の冷間加工の減面率
は、20〜60%に規定した。さらに、回復処理温度に
ついては、550℃未満の温度では転位の再配列が生じ
ず、逆に800℃を超えると再結晶が生じて転位が消失
するとともに、炭化物が粗大化し、以降の冷間加工時の
加工硬化度が小さくなり、目標とする引張強さを有する
合金線が製造できなくなるため、回復処理温度は、55
0〜800℃の範囲に限定する。
In the present invention, the reduction ratio of the cold working performed before the recovery treatment needs to be at least 20% or more, and if it exceeds 60%, the recovery and recrystallization temperatures are lowered, and the reduction temperature is lower than the carbide precipitation temperature range. And the degree of orientation of the {111} crystal plane is reduced. Therefore, the reduction rate of the cold working before the recovery treatment is specified to be 20 to 60%. Further, regarding the recovery treatment temperature, dislocation rearrangement does not occur at a temperature lower than 550 ° C., and conversely, when it exceeds 800 ° C., recrystallization occurs and dislocation disappears, and carbide becomes coarse, and subsequent cold working is performed. Since the work hardening degree at that time becomes small and the alloy wire having the target tensile strength cannot be manufactured, the recovery treatment temperature is 55
It is limited to the range of 0 to 800 ° C.

【0013】上述したように、本発明の重要な特徴であ
る歪取焼鈍は、回復処理によって合金線の横断面に{1
11}結晶面が集合されていることによって、最終冷間
加工によって高められた引張強さを目標値以下にまで落
さずに、また安定した捻回特性を保ったまま、大幅な靱
性の向上が得られるものである。この歪取焼鈍温度は、
冷間加工率の大きさによって異なるが、60〜95%の
加工率に対しては、400℃未満では十分な靱性の向上
が望めず、また650℃を超えると極端な引張強さの低
下を招き、目標とする引張強さが得られなくなるため、
400〜650℃の範囲に限定した。
As described above, the stress relief annealing, which is an important feature of the present invention, has a {1
11} Due to the aggregation of crystal planes, the tensile strength increased by the final cold working does not drop below the target value, and the toughness is greatly improved while maintaining stable twisting characteristics. Is obtained. This strain relief annealing temperature is
Although it depends on the size of the cold working rate, for a working rate of 60 to 95%, it is not possible to expect sufficient improvement in toughness at a temperature of less than 400 ° C, and when the temperature exceeds 650 ° C, the tensile strength is extremely lowered. And the target tensile strength cannot be obtained,
The range was limited to 400 to 650 ° C.

【0014】また、本発明における回復処理後に行う冷
間加工は、引張強度を高めるために行なわれ、目標の引
張強度を得るためには、少なくとも60%以上の減面率
が不可欠である。しかし95%を超える強加工を行なっ
ても、引張強度はあまり増加せず、無為な伸線工数が増
えて経済性に欠けるため上限は95%に抑えた。
Further, the cold working carried out after the recovery treatment in the present invention is carried out in order to increase the tensile strength, and in order to obtain the target tensile strength, a surface reduction rate of at least 60% or more is indispensable. However, even if strong working exceeding 95% is performed, the tensile strength does not increase so much and the number of unnecessary wire drawing steps increases, which is not economical, so the upper limit was kept at 95%.

【0015】また、本発明の好ましい形態としては熱間
加工後に固溶化処理を行うものとする。熱間加工後に行
う固溶化処理は、熱間加工時に生じた歪を除去するため
に行なうものである。これにより線材長手方向の歪のバ
ラツキをなくし、最終線径での特性を安定化させる働き
がある。固溶化処理温度としては、再結晶が起こる10
10℃以上、脱炭,結晶粒の粗大化が発生しにくい11
50℃以下とすることが望ましい。
In a preferred embodiment of the present invention, the solution treatment is performed after hot working. The solution treatment performed after hot working is performed to remove the strain generated during hot working. This has the function of eliminating the variation in strain in the longitudinal direction of the wire and stabilizing the characteristics at the final wire diameter. Recrystallization occurs at a solution treatment temperature of 10
Decarburization and grain coarsening are less likely to occur at 10 ° C or higher 11
It is desirable to set the temperature to 50 ° C or lower.

【0016】上述した本発明の製造方法により初めて、
Fe−Ni系合金であって、最終加工線径にて引張強さ
115kgf/mm2以上,伸び3.5%以上(標点距離=
250mm),捻回値70回以上(つかみ間距離=自己線
径×100mm),線膨張係数6×10-6/℃(30〜3
10℃)以下を有する高強度高靱性低膨張合金線を得る
ことができる。
Only by the manufacturing method of the present invention described above,
Fe-Ni based alloy, tensile strength 115kgf / mm 2 or more at the final processed wire diameter, elongation 3.5% or more (gage length =
250 mm), or more twisting value 70 times (distance between grips = self wire diameter × 100 mm), linear expansion coefficient 6 × 10- 6 / ℃ (30~3
It is possible to obtain a high strength, high toughness, low expansion alloy wire having a temperature of 10 ° C. or less.

【0017】次に、本発明の好ましい合金組成の規定理
由について述べる。Cは以下に述べるMoとともに本発
明合金線の冷間加工硬化能を著しく高める作用を持つ。
そのために必要なCは、重量%で最低0.1%である
が、0.5%を超える過度のCの添加は熱膨張係数の増
加を招くため、C量は、0.1〜0.5%に限定した。
Si,Mnは脱酸元素として本発明合金に含まれる。た
だし過度のSi,Mnは熱膨張係数の増加を招くため、
それぞれ1.0%以下の添加に抑えた。
Next, the reasons for defining the preferred alloy composition of the present invention will be described. C, together with Mo described below, has a function of significantly enhancing the cold work hardening ability of the alloy wire of the present invention.
The C content necessary for this is at least 0.1% by weight, but excessive addition of C exceeding 0.5% leads to an increase in the coefficient of thermal expansion, so the C content is 0.1 to 0. Limited to 5%.
Si and Mn are included in the alloy of the present invention as deoxidizing elements. However, since excessive Si and Mn increase the coefficient of thermal expansion,
The addition was suppressed to 1.0% or less in each case.

【0018】Moは数多くの強化元素のうち、Cと複合
添加した場合の冷間加工による硬化能が最も大きい。こ
れは、固溶状態における侵入型固溶強化元素であるMo
と置換型固溶強化元素であるCの相互作用、さらに一部
がMo2Cの微細炭化物として析出することが原因と考
えられる。この微細2次炭化物は、固溶化熱処理の後の
冷間加工後の回復熱処理時に亜結晶粒界に沿って析出
し、その後の冷間加工によって転位が長手方向に再配列
して{111}結晶面の配向度を高め、強度を低下させ
ることなく靭性の向上に寄与する。ただし過度のMoの
添加はやはり熱膨張係数の増加を招くので、4.0%を
上限とした。
Of the many strengthening elements, Mo has the highest hardening ability by cold working when it is added in combination with C. This is Mo which is an interstitial solid solution strengthening element in a solid solution state.
It is considered that this is due to the interaction between C and the substitution type solid solution strengthening element, and partly to precipitate as fine carbide of Mo 2 C. The fine secondary carbides are precipitated along the sub-grain boundaries during the recovery heat treatment after the cold working after the solution heat treatment, and the dislocations are rearranged in the longitudinal direction by the cold working thereafter, and the {111} crystals are formed. It contributes to improving the toughness without increasing the degree of orientation of the surface and reducing the strength. However, excessive addition of Mo also causes an increase in the thermal expansion coefficient, so 4.0% was made the upper limit.

【0019】またCrはMoと同様の元素で、Moと同
様の理由で強化に寄与するが、過度の添加はMo以上に
熱膨張係数を増加させるので、3.0%を上限とした。
Bは本発明合金線において、Moの2次炭化物と同様、
回復熱処理時の亜結晶粒界に偏析して亜結晶粒界をピン
止めし、回復熱処理温度の適正域を広める効果をもつ。
しかし0.02%を超える過度の添加は、熱間加工性を
低下させるので、Bは0.02%以下に限定する。W、
VおよびNbは、Cと結び付いて炭化物を形成し、冷間
加工での加工硬化能の向上に寄与する元素であるが、過
度の添加は熱間加工性を低下させるので、Wは4.0%
以下、Vは0.5%以下、Nbは0.5%以下に限定し
た。
Cr is an element similar to Mo and contributes to strengthening for the same reason as Mo, but excessive addition increases the coefficient of thermal expansion more than Mo, so 3.0% was made the upper limit.
B is the same as the secondary carbide of Mo in the alloy wire of the present invention.
It has the effect of segregating to the sub-grain boundaries during the recovery heat treatment and pinning the sub-grain boundaries, and expanding the appropriate range of the recovery heat treatment temperature.
However, excessive addition exceeding 0.02% deteriorates hot workability, so B is limited to 0.02% or less. W,
V and Nb are elements that combine with C to form a carbide and contribute to the improvement of work hardening ability in cold working. However, excessive addition deteriorates hot workability, so W is 4.0. %
Hereinafter, V is limited to 0.5% or less and Nb is limited to 0.5% or less.

【0020】Fe−Ni系合金を強化する添加元素は上
記したCやCr、Mo、W、V、Nb以外に種々考えら
れるが、Cとの親和力の高いTi,Ta,Hf,Zr等
の炭化物形成元素は、塊状の硬い1次炭化物を生成し、
冷間加工時に欠陥を作りやすく、捻回値のばらつきの原
因となるので、本発明合金線に対し、過度の添加は好ま
しくない。したがって、これらの元素はいずれも上限を
0.5%程度に抑制することが望ましい。
Various additive elements for strengthening the Fe-Ni alloy are conceivable other than the above-mentioned C, Cr, Mo, W, V and Nb, but carbides such as Ti, Ta, Hf and Zr having a high affinity with C. The forming element produces lumpy hard primary carbides,
It is not preferable to add excessively to the alloy wire of the present invention, because it is likely to cause defects during cold working and cause variations in twist value. Therefore, it is desirable to suppress the upper limit of each of these elements to about 0.5%.

【0021】本発明において、Niの合有量は熱膨張特
性に大きく影響をおよぼす。とくに、常温から230℃
までの平均熱膨張係数を低下させる目的に対して、Ni
量は35%を下回る場合には、低熱膨張特性を消失する
温度を意味する変移点が低温側に移行し、230℃まで
の熱膨張係数が増加してしまう。逆にNiが45%を超
えると変移点は高温側に移行するものの、低温側の熱膨
張率が全体に高くなるので同じく230℃までの熱膨張
係数が増加してしまう。以上の理由により、Niは35
%以上45%未満の範囲に限定する。
In the present invention, the content of Ni has a great influence on the thermal expansion characteristics. Especially from room temperature to 230 ℃
For the purpose of lowering the average coefficient of thermal expansion up to
If the amount is less than 35%, the transition point, which means the temperature at which the low thermal expansion characteristic disappears, shifts to the low temperature side, and the thermal expansion coefficient up to 230 ° C. increases. On the other hand, when Ni exceeds 45%, the transition point shifts to the high temperature side, but the thermal expansion coefficient on the low temperature side becomes high as a whole, so that the thermal expansion coefficient up to 230 ° C. also increases. For the above reasons, Ni is 35
% To less than 45%.

【0022】CoはNiの一部を置換することにより、
Ni単独の場合よりも、さらに230℃までの熱膨張係
数を低下させることができる。しかし、CoはNiより
も冷間加工中のマルテンサイト変態を生じやすく、オー
ステナイト相を不安定する働きが強いのでCoはNiと
複合添加される場合、35%以上45%未満のNiと1
0%以下のCoをNi+Coで35%以上45%未満の
範囲に限定する。
By substituting a part of Ni for Co,
The coefficient of thermal expansion up to 230 ° C. can be further reduced as compared with the case of using Ni alone. However, Co is more likely to cause martensitic transformation during cold working than Ni and has a strong effect of destabilizing the austenite phase. Therefore, when Co is added in combination with Ni, Co is present in an amount of 35% or more and less than 45% of Ni and 1
Co of 0% or less is limited to 35% or more and less than 45% of Ni + Co.

【0023】また、O,N等ガス成分は合金中で介在物
を生成し、同じく捻回値のばらつきの原因となるので、
本発明合金線においてはそれぞれ、0.01%以下に限
定する。また、脱酸や脱硫を目的として添加されるA
l,Mg,Ca,REM等の元素は通常含まれる下記に
示す量の含有はなんら特性上差し支えない。 Al,REM ≦0.1% Mg,Ca ≦ 0.0
2%
Further, gas components such as O and N form inclusions in the alloy, which also causes variations in twist values.
The alloy wire of the present invention is limited to 0.01% or less. A added for the purpose of deoxidation and desulfurization
Elements such as 1, Mg, Ca, and REM are usually contained, but the amounts shown below may be contained in terms of characteristics. Al, REM ≦ 0.1% Mg, Ca ≦ 0.0
2%

【0024】[0024]

【実施例】【Example】

(実施例1)表1に示す組成のFe−Ni系合金を溶製
し、熱間鍛造ならびに熱間圧延によって直径9.5mmの
線材とし、表1に示す種々の伸線および熱処理条件でコ
イル線材を作製した。この時冷間伸線は、アプローチ角
度2α=12°,ベアリング長さ20〜50%×D(D
=伸線径)の超硬合金製のダイスを使用し、1パス当り
約20%の減面率で伸線した。これらの線材の引張特
性,捻回特性,および熱膨張特性を調査した。引張試験
の伸びは標点間距離250mmで測定し、引張強度と伸
びは各線材10本ずつの平均値を求めた。また捻回試験
は、掴み間距離を自己径の100倍とし、回転数60r
pmで破断までの捻回回数を各条件5本ずつ測定し、平
均値と標準偏差を求めた。表3に、各製造条件で製作し
た線材の特性試験結果を比較例とともに示す。
(Example 1) A Fe-Ni alloy having the composition shown in Table 1 was melted, hot-forged and hot-rolled into a wire having a diameter of 9.5 mm, and coiled under various wire drawing and heat treatment conditions shown in Table 1. A wire rod was produced. At this time, the cold wire drawing has an approach angle 2α = 12 °, a bearing length of 20 to 50% × D (D
= Wire drawing diameter) and using a die made of cemented carbide, wire drawing was performed at a surface reduction rate of about 20% per pass. The tensile properties, twisting properties, and thermal expansion properties of these wires were investigated. The elongation in the tensile test was measured at a gauge length of 250 mm, and the tensile strength and the elongation were obtained by averaging 10 wires. In the twisting test, the distance between the grips is 100 times the self-diameter, and the rotation speed is 60r.
The number of twists until breakage was measured at 5 pm for each condition, and the average value and standard deviation were obtained. Table 3 shows the characteristic test results of the wire rods manufactured under each manufacturing condition together with comparative examples.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【表3】 [Table 3]

【0028】表3より、回復処理と歪取焼鈍をともに適
用する本発明の製造方法で製造した線材は高強度で、し
かも、伸びが大きく高い靱性値を有することがわかる。
これに対して、歪取焼鈍のない比較例の試料Lおよび歪
取焼鈍温度が本発明の範囲よりも低い比較例の試料M
は、引張強度こそ本発明例と同等の値が得られているも
のの、伸びの値は高々2%台と低く、靱性の点で本発明
例よりも劣っている。また歪取焼鈍温度の異なる本発明
線材G(560℃)およびI(480℃)を見た場合、
ともに高い伸び値を保持した上で、しかも捻回特性も劣
化させることなく高い引張強度を得ることができた。本
発明線材GおよびIの結果から、最終工程に相当する歪
取焼鈍温度を調整することで、強度,靱性を調整して線
材を製造することが可能であることがわかる。
From Table 3, it can be seen that the wire rod manufactured by the manufacturing method of the present invention in which both the recovery treatment and the strain relief annealing are applied has a high strength, a large elongation and a high toughness value.
On the other hand, the sample L of the comparative example without the stress relief annealing and the sample M of the comparative example in which the stress relief annealing temperature is lower than the range of the present invention.
Although the tensile strength was equivalent to the value of the present invention example, the elongation value was as low as 2% at most, and the toughness was inferior to the present invention example. Further, when looking at the wire rods G (560 ° C.) and I (480 ° C.) of the present invention having different strain relief annealing temperatures,
In addition to maintaining a high elongation value, high tensile strength could be obtained without deteriorating the twisting property. From the results of the wire rods G and I of the present invention, it is understood that it is possible to manufacture the wire rod by adjusting the strength and toughness by adjusting the strain relief annealing temperature corresponding to the final step.

【0029】また、回復処理のない比較例Qにおいて
は、合金線横断面の{111}結晶面の集合度が低い値
となり、本発明と同様の歪取焼鈍を行っても、大きな伸
びが得られず、捻回値が低く、そのばらつきが大きいも
のとなっている。
In Comparative Example Q without the recovery treatment, the degree of aggregation of the {111} crystal planes in the cross section of the alloy wire was low, and a large elongation was obtained even when the strain relief annealing similar to the present invention was performed. However, the twist value is low and the variation is large.

【0030】(実施例2)表4に示す組成のFe−Ni
系合金を溶製し、熱間鍛造並びに熱間圧延によって直径
9.5mmの線材とした後、表2のGと同じ製造条件で組
成の異なるFe−Ni系線材を作製し、実施例1と同じ
確性試験を実施した。確性試験結果を表5に示す。
(Example 2) Fe-Ni having the composition shown in Table 4
After melting a system alloy and making it into a wire having a diameter of 9.5 mm by hot forging and hot rolling, an Fe-Ni wire having a different composition was produced under the same manufacturing conditions as G in Table 2, and was used as Example 1. The same accuracy test was performed. Table 5 shows the accuracy test results.

【0031】[0031]

【表4】 [Table 4]

【0032】[0032]

【表5】 [Table 5]

【0033】いずれの合金線材も、高強度,高靱性を有
しており、上述の如く固溶化処理,回復処理,および歪
取焼鈍の全ての熱処理を行った本製造方法は、Fe−N
i系合金線材の製造方法として優れた方法であることが
わかる。
All of the alloy wire rods have high strength and high toughness, and the Fe-N is used in the present manufacturing method in which all the heat treatments of solution treatment, recovery treatment, and strain relief annealing are performed as described above.
It can be seen that this is an excellent method for producing an i-based alloy wire rod.

【0034】[0034]

【発明の効果】本発明の製造方法によって得られるFe
−Ni系合金線は、高強度であると同時に、捻回特性の
ばらつきが少なく、かつ優れた捻回値を有しており、さ
らに従来高靭性とされていたFe−Ni系合金線より
も、さらに優れた靭性を有するものとなる。したがっ
て、従来の低弛度送電線よりも更に送電容量が高く、信
頼性に優れた電力の輸送を目的とする送電線用材料とし
て好適である。
EFFECT OF THE INVENTION Fe obtained by the production method of the present invention
The -Ni-based alloy wire has high strength, has less variation in twisting characteristics, and has an excellent twisting value. Further, it has a higher toughness than that of the Fe-Ni-based alloy wire. , Which has even more excellent toughness. Therefore, the power transmission capacity is higher than that of the conventional low-sag transmission line, and the material is suitable as a material for a transmission line for the purpose of highly reliable transport of electric power.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 Fe−Ni系合金であって、最終加工線
径にて引張強さ115kgf/mm2以上,伸び3.5%以
上(標点距離=250mm),捻回値70回以上(つかみ
間距離=自己線径×100mm),線膨張係数6×10-6
/℃(30〜310℃)以下を有する高強度高靱性低膨
張合金線。
1. An Fe-Ni alloy, which has a tensile strength of 115 kgf / mm 2 or more at the final processed wire diameter, an elongation of 3.5% or more (gauge length = 250 mm), and a twist value of 70 times or more ( the distance between grips = self wire diameter × 100 mm), linear expansion coefficient 6 × 10- 6
Strength / high toughness low expansion alloy wire having a temperature of / ° C (30 to 310 ° C) or less.
【請求項2】 Fe−Ni系合金線の合金組成が、重量
%でC0.1%以上0.5%以下,Ni35%以上45
%以下、残部Feを基本成分に、Si1.0%以下,M
n1.0%以下,Mo4.0%以下を含むことを特徴と
する請求項1に記載の高強度高靱性低膨張合金線。
2. The alloy composition of the Fe—Ni alloy wire is such that the weight percentage of C is 0.1% or more and 0.5% or less, and Ni is 35% or more and 45%.
% Or less, the balance Fe as a basic component, Si 1.0% or less, M
The high-strength, high-toughness low-expansion alloy wire according to claim 1, characterized in that the content of n is 1.0% or less and Mo is 4.0% or less.
【請求項3】 Crを3.0%以下含むことを特徴とす
る請求項2に記載の高強度低熱膨張合金線。
3. The high-strength, low-thermal expansion alloy wire according to claim 2, which contains Cr in an amount of 3.0% or less.
【請求項4】 Niの一部をCo10%以下で置換し、
Ni+Coで35%以上45%以下とすることを特徴と
する請求項1ないし3のいずれかに記載の高強度高靱性
低膨張合金線。
4. A part of Ni is replaced by Co 10% or less,
The high-strength, high-toughness, low-expansion alloy wire according to any one of claims 1 to 3, wherein the content of Ni + Co is 35% or more and 45% or less.
【請求項5】 W4.0%以下,V0.5%以下,Nb
0.5%以下の群より選ばれる一種もしくは二種以上の
元素を含有する請求項2ないし4のいずれかに記載の高
強度高靱性低膨張合金線。
5. W4.0% or less, V0.5% or less, Nb
The high-strength, high-toughness, low-expansion alloy wire according to any one of claims 2 to 4, which contains one or more elements selected from the group of 0.5% or less.
【請求項6】 B0.02%以下含むことを特徴とする
請求項2ないし5のいずれかに記載の高強度高靭性低熱
膨張合金線。
6. The high-strength, high-toughness low-thermal expansion alloy wire according to claim 2, wherein the content of B is 0.02% or less.
【請求項7】 Fe−Ni系合金素材を熱間加工後、減
面率20〜60%の冷間加工した後、550〜800℃
の回復処理を施し、次いで減面率60〜95%減面率の
冷間加工を加えて所定線径に仕上げた後に、400〜6
50℃の歪取焼鈍を行なうことを特徴とする高強度高靱
性低膨張合金線の製造方法。
7. An Fe—Ni alloy material is hot-worked and then cold-worked at a surface reduction rate of 20 to 60%, and then at 550 to 800 ° C.
After performing the recovery treatment of No. 6, then cold-working with a surface reduction rate of 60 to 95% to finish to a predetermined wire diameter, 400 to 6
A method for manufacturing a high-strength, high-toughness, low-expansion alloy wire, which comprises performing stress relief annealing at 50 ° C.
【請求項8】 Fe−Ni系合金素材を熱間加工後また
は熱間加工後の冷間加工の途中で1010〜1150℃
の温度で固溶化処理を行ない、その後減面率20〜60
%の冷間加工を加えてから550〜800℃の回復処理
を施し、その後に減面率60〜95%の冷間加工を加え
て所定線径に仕上げ、ついで400〜650℃の歪取焼
鈍を行なうことを特徴とする高強度高靱性低膨張合金線
の製造方法。
8. A Fe—Ni alloy material is subjected to hot working or 1010 to 1150 ° C. during cold working after hot working.
Solution treatment is performed at the temperature of, and then the area reduction rate is 20 to 60.
% Cold working, then 550 to 800 ° C. recovery treatment, then 60 to 95% surface reduction cold working to finish to a predetermined wire diameter, then 400 to 650 ° C. strain relief annealing. A method for producing a high-strength, high-toughness, low-expansion alloy wire, which comprises:
【請求項9】 Fe−Ni系合金素材は、重量%でC
0.1%以上0.5%以下,Ni35%以上45%以
下、残部Feを基本成分に、Si1.0%以下,Mn
1.0%以下,Mo4.0%以下含むことを特徴とする
請求項8に記載の高強度高靱性低膨張合金線の製造方
法。
9. The Fe—Ni alloy material is C in weight%.
0.1% or more and 0.5% or less, Ni 35% or more and 45% or less, balance Fe as a basic component, Si 1.0% or less, Mn
The method for producing a high-strength, high-toughness low-expansion alloy wire according to claim 8, wherein the content is 1.0% or less and Mo is 4.0% or less.
【請求項10】 Crを3.0%以下含むことを特徴と
する請求項9に記載の高強度高靭性低熱膨張合金線の製
造方法。
10. The method for producing a high strength and high toughness low thermal expansion alloy wire according to claim 9, wherein the content of Cr is 3.0% or less.
【請求項11】 Niの一部をCo10%以下で置換
し、Ni+Coで35%以上45%以下とすることを特
徴とする請求項9ないし10のいずれかに記載の高強度
高靱性低膨張合金線の製造方法。
11. The high-strength, high-toughness, low-expansion alloy according to claim 9, wherein a part of Ni is replaced with Co of 10% or less and Ni + Co is 35% or more and 45% or less. Wire manufacturing method.
【請求項12】 W4.0%以下,V0.5%以下,N
b0.5%以下の群より選ばれる一種もしくは二種以上
の元素を含有する請求項9ないし11のいずれかに記載
の高強度高靱性低膨張合金線の製造方法。
12. W 4.0% or less, V 0.5% or less, N
The method for producing a high-strength, high-toughness, low-expansion alloy wire according to any one of claims 9 to 11, which contains one or more elements selected from the group having a b content of 0.5% or less.
【請求項13】 B0.02%以下含むことを特徴とす
る請求項9ないし12のいずれかに記載の高強度高靭性
低熱膨張合金線の製造方法。
13. The method for producing a high strength and high toughness low thermal expansion alloy wire according to claim 9, wherein the content of B is 0.02% or less.
JP23697894A 1994-09-30 1994-09-30 Alloy wire with high strength, high toughness and low thermal expansion and its production Pending JPH08100242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23697894A JPH08100242A (en) 1994-09-30 1994-09-30 Alloy wire with high strength, high toughness and low thermal expansion and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23697894A JPH08100242A (en) 1994-09-30 1994-09-30 Alloy wire with high strength, high toughness and low thermal expansion and its production

Publications (1)

Publication Number Publication Date
JPH08100242A true JPH08100242A (en) 1996-04-16

Family

ID=17008586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23697894A Pending JPH08100242A (en) 1994-09-30 1994-09-30 Alloy wire with high strength, high toughness and low thermal expansion and its production

Country Status (1)

Country Link
JP (1) JPH08100242A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001021848A1 (en) * 1999-09-17 2001-03-29 Krupp Vdm Gmbh Iron-nickel alloy with low thermal expansion coefficient and exceptional mechanical properties
WO2001092587A1 (en) * 2000-05-30 2001-12-06 Imphy Ugine Precision Hardened fe-ni alloy for making integrated circuit grids and method for making same
JP2003082439A (en) * 2001-09-13 2003-03-19 Daido Steel Co Ltd Invar alloy wire having excellent strength and twisting property, and production method therefor
WO2004005565A1 (en) * 2001-01-05 2004-01-15 Hitachi Metals, Ltd. Casting steel having high strength and low thermal expansion
US6846368B2 (en) 2001-01-05 2005-01-25 Hitachi Metals, Ltd. Casting steel having high strength and low thermal expansion
JP2011523436A (en) * 2008-05-08 2011-08-11 ティッセンクルップ ファオ デー エム ゲゼルシャフト ミット ベシュレンクテル ハフツング Iron nickel alloy
CN112458374A (en) * 2020-10-26 2021-03-09 江苏新核合金科技有限公司 Du-Mg wire material and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001021848A1 (en) * 1999-09-17 2001-03-29 Krupp Vdm Gmbh Iron-nickel alloy with low thermal expansion coefficient and exceptional mechanical properties
JP2004500482A (en) * 1999-09-17 2004-01-08 ティッセンクルップ ファオ デー エム ゲゼルシャフト ミット ベシュレンクテル ハフツング Low thermal expansion iron-nickel alloy with special mechanical properties
US6692992B1 (en) 2000-05-23 2004-02-17 Imphy Ugine Precision Hardened Fe-Ni alloy for the manufacture of integrated circuit leaderframes and manufacturing process
WO2001092587A1 (en) * 2000-05-30 2001-12-06 Imphy Ugine Precision Hardened fe-ni alloy for making integrated circuit grids and method for making same
FR2809747A1 (en) * 2000-05-30 2001-12-07 Imphy Ugine Precision CURED FE-NI ALLOY FOR MANUFACTURING INTEGRATED CIRCUIT SUPPORT GRIDS AND METHOD OF MANUFACTURE
WO2004005565A1 (en) * 2001-01-05 2004-01-15 Hitachi Metals, Ltd. Casting steel having high strength and low thermal expansion
US6846368B2 (en) 2001-01-05 2005-01-25 Hitachi Metals, Ltd. Casting steel having high strength and low thermal expansion
JP2003082439A (en) * 2001-09-13 2003-03-19 Daido Steel Co Ltd Invar alloy wire having excellent strength and twisting property, and production method therefor
WO2003025239A1 (en) * 2001-09-13 2003-03-27 Daido Tokushukou Kabushiki Kaisha Invar alloy wire excellent in strength and turning characteristics and method for production thereof
KR100910332B1 (en) * 2001-09-13 2009-07-31 스미토모 덴키 고교 가부시키가이샤 Invar alloy wire excellent in strength and turning characteristics and method for production thereof
JP2011523436A (en) * 2008-05-08 2011-08-11 ティッセンクルップ ファオ デー エム ゲゼルシャフト ミット ベシュレンクテル ハフツング Iron nickel alloy
CN112458374A (en) * 2020-10-26 2021-03-09 江苏新核合金科技有限公司 Du-Mg wire material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4212553B2 (en) High-strength stainless steel wire with excellent twist value and rigidity and manufacturing method thereof
US12000021B2 (en) α+β type titanium alloy wire and manufacturing method of α+β type titanium alloy wire
JP6626571B2 (en) Wire rod excellent in cold forgeability and its manufacturing method
JP3842053B2 (en) High strength low thermal expansion alloy with excellent twisting characteristics and its alloy wire
JPH05263191A (en) Hot rolled steel sheet high in young&#39;s modulus in width direction and its manufacture
JP4797305B2 (en) Invar alloy wire with excellent strength and twisting characteristics and manufacturing method thereof
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JPH08100242A (en) Alloy wire with high strength, high toughness and low thermal expansion and its production
JP3737323B2 (en) Steel wire rod and bar steel excellent in cold forgeability after spheronization and manufacturing method thereof
JP2019502815A (en) Non-heat treated wire excellent in strength and cold workability and method for producing the same
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JPH10306345A (en) Wire rod and bar steel for cold forging, excellent in strain aging characteristic, and their manufacture
JP2000119806A (en) Steel wire rod excellent in cold workability, and its manufacture
JPH0570894A (en) Alloy wire having high strength and low thermal expansion and excellent in twisting characteristic and its production
JP3191010B2 (en) High-strength low-thermal-expansion alloy wire having excellent torsion characteristics and method for producing the same
JPH07150244A (en) Production of ferritic stainless steel for cold working
JP2001247938A (en) Austenitic stainless steel sheet for electronic equipment component
JPH10130734A (en) Production of austenitic stainless steel sheet for roll forming
JP4201310B2 (en) High strength steel plate with excellent SR resistance and method for producing the same
JPH06279945A (en) Wire with high strength and low thermal expansion and its production
JPH0673502A (en) High carbon steel wire rod or high carbon steel wire excellent in wire drawability and its production
JP3216824B2 (en) High strength low thermal expansion alloy
JPH01123029A (en) Production of seamless stainless steel pipe
JP3387235B2 (en) Precipitation hardening stainless steel
JP3954153B2 (en) Cold forging wire rod and bar steel excellent in Cu age hardening and method for producing the same