JPH07150244A - Production of ferritic stainless steel for cold working - Google Patents

Production of ferritic stainless steel for cold working

Info

Publication number
JPH07150244A
JPH07150244A JP31900393A JP31900393A JPH07150244A JP H07150244 A JPH07150244 A JP H07150244A JP 31900393 A JP31900393 A JP 31900393A JP 31900393 A JP31900393 A JP 31900393A JP H07150244 A JPH07150244 A JP H07150244A
Authority
JP
Japan
Prior art keywords
steel
less
ferritic stainless
temperature
cold working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31900393A
Other languages
Japanese (ja)
Inventor
Shoji Nishimura
彰二 西村
Shuichi Fukushima
秀一 福島
Tadayuki Mino
匡之 三野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP31900393A priority Critical patent/JPH07150244A/en
Publication of JPH07150244A publication Critical patent/JPH07150244A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a material having uniform deformability against high speed and high-degree working by hot rolling a ferritic stainless steel of specific composition under specific conditions, applying cold working strain, and then performing annealing treatment at a temp. in a specific region. CONSTITUTION:The steel has a composition consisting of, by weight, <=0.0100% C, <=0.40% Si, <=0.50% Mn, <0.20% N, 11.0-18.0% Cr, <=0.0120% N, 0-0.10% Nb, 0-0.10% Ti, 0-0.10% Al, 0-0.50% Mo, 0-0.50% Cu, and the balance Fe with inevitable impurities. This steel is heated up to 700-950 deg.C, hot rolled at a finishing temp. controlled to 700-850 deg.C, and finished to frrite grain size No.3 or above. Then, cold working is done at =25% reduction of area. Further, the steel is reheated to 750-850 deg.C and tempered. By this method, the ferritic stainless steel for cold working, withstanding high speed and heavy draft and having uniform deformability, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は冷間加工性のすぐれたフ
ェライトステンレス鋼の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ferritic stainless steel having excellent cold workability.

【0002】[0002]

【従来の技術】近年、経済性のすぐれたステンレス鋼と
してCrを11〜28%を含むフェライトステンレス鋼
の用途が拡大している。これらのCr系フェライトステ
ンレス鋼は安価であるばかりでなく強度も高くまた塩素
イオンを含む環境中での耐食性がすぐれているという利
点を有している。
2. Description of the Related Art In recent years, the use of ferritic stainless steel containing 11 to 28% Cr has been expanding as a highly economical stainless steel. These Cr-based ferritic stainless steels have the advantages that they are not only inexpensive but also have high strength and that they have excellent corrosion resistance in environments containing chloride ions.

【0003】しかしこれらのCr系フェライトステンレ
ス鋼は、一般に極めて脆く、冷間加工性が劣ることが知
られている。また、一般に、熱間圧延後の素材に対して
各種冷間加工(鍛造、伸線、圧延、据込、剪断、押出な
ど)を施したとき、加工割れが生ずることがあり、この
ため複雑な形状を有する製品を製造するときは歩留りを
犠牲にして冷間切削加工を採用することが多い。しかし
切削加工に歩留り低下を招くとともに加工工程が長くな
り全体としてコストアップの要因となる。例えばSUS
410L(JIS G4303-1981、代表的成分:0. 02C−
0. 5Si−0. 6Mn−13Cr)は加工性のすぐれ
たフェライトステンレス鋼として知られているが、加工
工程において据込加工率60%を超えるような冷間強加
工には耐えられないという問題点を有している。
However, it is known that these Cr-based ferritic stainless steels are generally extremely brittle and have poor cold workability. Further, in general, when various cold workings (forging, wire drawing, rolling, upsetting, shearing, extrusion, etc.) are performed on the material after hot rolling, work cracks may occur, which results in complicated When manufacturing shaped products, cold cutting is often employed at the expense of yield. However, the cutting yield is reduced and the machining process becomes long, resulting in an increase in cost as a whole. For example SUS
410L (JIS G4303-1981, typical component: 0.02C-
0.5Si-0.6Mn-13Cr) is known as a ferritic stainless steel with excellent workability, but the problem that it cannot withstand cold working with an upsetting ratio exceeding 60% in the working process. Have a point.

【0004】これは、硬さ、強度要因以外に、フェライ
トステンレス鋼が高速変形能に劣ることが、大きな要因
と考えられる。すなわち、フェライトステンレス鋼は靱
性が一般に劣り、高速変形を伴う加工に追従できない欠
点を有している。
This is considered to be due to the fact that the ferritic stainless steel is inferior in high-speed deformability in addition to the factors of hardness and strength. That is, ferritic stainless steel generally has poor toughness and has the drawback that it cannot follow the processing accompanied by high-speed deformation.

【0005】また、この改善策として、フェライトステ
ンレス鋼に少量のNiを添加することによって変形工程
中に結晶粒に交差辷りを生じ易くしたり(例えば特開昭
63ー219551号公報)、低温圧延等の制御圧延に
より、組織を細粒化する方法(たとえば、特開昭63ー
219527号公報、特開昭63ー235450号公
報)が考えられる。しかし、この場合、結晶粒の交差辷
りの発生の容易化や細粒化によって靱性の向上は認めら
れるものの、低温圧延により組織の集合化(異方性の劣
化)が進み、冷間加工時に均一な変形性能が得られな
い。
As a remedy for this, a small amount of Ni is added to ferritic stainless steel to facilitate the occurrence of cross flicker in the crystal grains during the deformation process (for example, Japanese Patent Laid-Open No. 63-219551) and low temperature rolling. A method of fine-graining the structure by controlled rolling such as (for example, JP-A-63-219527 and JP-A-63-235450) can be considered. However, in this case, although the toughness is improved by facilitating the generation of cross grain of the crystal grains and making the grains finer, the aggregation of the structure (deterioration of anisotropy) progresses due to the low temperature rolling, and it becomes uniform during cold working. Deformation performance cannot be obtained.

【0006】[0006]

【発明が解決すべき課題】上記成分範囲に示す鋼を含
め、フェライトステンレス鋼は熱間圧延時および常温に
おいてフェライト単相およびフェライト相が大部分を占
めるのを特徴としている。これらの鋼はNiの少量添加
や低温圧延では靱性の向上(高速変形能の向上)を図っ
ても、異方性の問題は解決されず、実用上充分な冷間加
工性は得られない。この解決策として本発明者らは冷間
加工と熱処理との間に最適な組合せ条件があることを発
見したので、以下にその詳細を述べる。
The ferritic stainless steels, including the steels shown in the above composition ranges, are characterized in that the ferrite single phase and the ferrite phase occupy most of them during hot rolling and at room temperature. Even if a small amount of Ni is added or low temperature rolling is performed to improve the toughness (improvement of high-speed deformability) of these steels, the problem of anisotropy is not solved and practically sufficient cold workability cannot be obtained. As a solution to this problem, the present inventors have discovered that there is an optimum combination condition between cold working and heat treatment, and the details will be described below.

【0007】[0007]

【課題を解決するための手段】本発明は、このような問
題点を解決するために、フェライトステンレス鋼の化学
成分を規定し、さらに熱延圧延時の加熱温度や仕上げ圧
延温度を規定することによって素材の初期粒径の細粒化
をはかる。しかる後、一定の冷間加工歪を加え、さらに
規制された温度域で、焼なましを施すことによって、従
来鋼では到底得られなかった高靱性でかつ、異方性に優
れた冷間加工用フェライトステンレス鋼を得るものであ
る。すなわち、本発明は以下のような課題解決手段を提
供するものである。
In order to solve such problems, the present invention defines the chemical composition of ferritic stainless steel, and further defines the heating temperature and finish rolling temperature during hot rolling. To reduce the initial particle size of the material. After that, by applying a certain amount of cold working strain and then annealing in a regulated temperature range, cold working with high toughness and excellent anisotropy that could not be obtained with conventional steel For obtaining ferritic stainless steel for use. That is, the present invention provides the following means for solving the problems.

【0008】重量で、C:0.0100%以下、Si:
0.40%以下、Mn :0.50%以下、Ni:0.20
%未満、Cr:11.0〜18.0%、N:0.0120
%以下、Nb:0〜0.10%、Ti:0〜0.10%、
Al:0〜0.10%、Mo:0〜0.50%、Cu:0
〜0.50%、残部Feおよび不可避的不純物よりなる
鋼を950℃以下700℃以上の温度に加熱後、仕上げ
温度850℃以下、700℃以上に制御して、熱間圧延
を施し、フェライト粒度番号3番以上に仕上げ、しかる
後、減面率25%以上の冷間加工を施したのち750〜
850℃の温度域に再加熱して、焼なましを施すことに
より、高速高加工度に耐え、かつ、均一な変形性を有す
る冷間加工用フェライトステンレス鋼の製造方法。
By weight, C: 0.0100% or less, Si:
0.40% or less, Mn: 0.50% or less, Ni: 0.20
%, Cr: 11.0 to 18.0%, N: 0.0120
% Or less, Nb: 0 to 0.10%, Ti: 0 to 0.10%,
Al: 0 ~ 0.10%, Mo: 0 ~ 0.50%, Cu: 0
~ 0.50%, the balance Fe and unavoidable impurities steel is heated to a temperature of 950 ℃ or less 700 ℃ or more, finish temperature 850 ℃ or less, controlled to 700 ℃ or more, hot rolling is performed, ferrite grain size. After finishing to No. 3 or more and then cold working with a surface reduction rate of 25% or more, 750 to 750
A method for producing a ferritic stainless steel for cold working, which can withstand high-speed and high-working degree and has uniform deformability by reheating to a temperature range of 850 ° C. and annealing.

【作用】[Action]

【0009】まず、本発明において成分を上述のように
限定している理由を下記に示す。 C: Cは鋼に所定の強度を付与するのに必要な元素で
あるが、反面耐食性、靱性、加工性を劣化させる元素で
もある。本発明の目的である冷間加工性向上を実現する
ためには0.0100%以下に制御することが不可欠の
要件である。
First, the reason why the components are limited as described above in the present invention is shown below. C: C is an element necessary for imparting a predetermined strength to steel, but it is also an element that deteriorates corrosion resistance, toughness, and workability. In order to realize the improvement of the cold workability which is the object of the present invention, it is an essential requirement to control to 0.0100% or less.

【0010】Si: Siは鋼の脱酸に必要な元素であ
り、また鋼の所定の強度を付与するのにも必要な元素で
あるが、その含有量が0.40%を超えると耐食性、溶
接性および粗粒化を誘発し、冷間加工性が劣化するので
0.40%以下にする必要がある。
Si: Si is an element necessary for deoxidizing the steel and also for imparting a predetermined strength to the steel, but if its content exceeds 0.40%, corrosion resistance, Since weldability and coarsening are induced, and cold workability deteriorates, it is necessary to set the content to 0.40% or less.

【0011】Mn: MnはSi同様、鋼の脱酸に必要
な元素であるが、その含有量が0.50%を超えるとフ
ェライト中に一部オーステナイト相が混入し、冷間加工
性を劣化させるためにその上限を0. 50%とする。
Mn: Mn, like Si, is an element necessary for deoxidizing steel, but if its content exceeds 0.50%, some austenite phase is mixed in the ferrite and cold workability deteriorates. Therefore, the upper limit is set to 0.5%.

【0012】Ni: Niは一般にはフェライト相の靱
性を向上させる元素ではあるが、本発明の対象であるC
r系フェライトステンレス鋼では0.2%未満に制御す
る必要がある。これは0.20%以上に添加すると、N
iはオーステナイト安定化元素であるためフェライト中
にオーステナイトを混入し、冷間加工性を損うので本発
明においてはNiを0.20%未満とする。
Ni: Ni is an element that generally improves the toughness of the ferrite phase, but it is the object of the present invention C
In r-type ferritic stainless steel, it is necessary to control to less than 0.2%. If this is added to 0.20% or more, N
Since i is an austenite-stabilizing element, austenite is mixed in the ferrite and impairs the cold workability. Therefore, in the present invention, Ni is set to less than 0.20%.

【0013】Cr: Crはフェライト相を安定化させ
るとともに所定の耐食性を付与するのに必要な元素であ
るが、11.0%未満では上記の効果が十分に発揮され
ず、フェライト単相とはならず、一部にオーステナイト
相が混入するので、冷間加工性が劣化する。一方、18
%を超えると強度の上昇が著しくなり、かつ靱性や冷間
加工性が劣化するので18%を上限とする。
Cr: Cr is an element necessary for stabilizing the ferrite phase and imparting a predetermined corrosion resistance, but if it is less than 11.0%, the above effect is not sufficiently exhibited, and the ferrite single phase is However, since the austenite phase is mixed in part, the cold workability deteriorates. On the other hand, 18
If it exceeds 0.1%, the strength is remarkably increased, and the toughness and cold workability are deteriorated, so the upper limit is 18%.

【0014】N: NはCと同様、鋼に所定の強度を付
与するのに必要な元素であるが、反面、耐食性、冷間加
工性を劣化させる元素である。従来、Crを11.0〜
18.0%を含有するフェライトステンレス鋼における
N含有量の効果は明確にされておらず、JIS G-4303-198
1 の11.0〜18.0%Cr系フェライトステンレス鋼
においてもN含有量に関する規定はない。しかし、本発
明においてはN含有量がフェライト相の塑性変形挙動に
およぼす影響を詳細かつ系統的に調査した結果、下記の
知見を得た。即ち、N含有量が0.0120%を超える
と、常温での塑性変形において交差すべりが著しく抑制
され、塑性変形が局部的に集中しそれによって塑性変形
の集中部のみが加工硬化し、その部分で割れが発生す
る。従って、冷間加工性を向上させるためには、N含有
量を0.0120%以下にすることが必要である。
N: Like C, N is an element necessary for imparting a predetermined strength to steel, but on the other hand, it is an element that deteriorates corrosion resistance and cold workability. Conventionally, Cr is 11.0
The effect of N content in ferritic stainless steel containing 18.0% has not been clarified, and JIS G-4303-198
There is no stipulation regarding the N content in 11.0 to 18.0% Cr ferritic stainless steel. However, in the present invention, the following findings were obtained as a result of detailed and systematic investigation of the influence of the N content on the plastic deformation behavior of the ferrite phase. That is, when the N content exceeds 0.0120%, cross-slip is significantly suppressed during plastic deformation at room temperature, the plastic deformation is locally concentrated, and only the concentrated portion of the plastic deformation is work-hardened. Cracks occur. Therefore, in order to improve the cold workability, the N content needs to be 0.0120% or less.

【0015】Nb: Nbは微細な炭窒化物を鋼中に析
出せしめ、実質的にはCやN含有量を低下させる働きを
するとともにフェライト粒を微細化する働きも有するの
で、とくに冷間加工性を向上させたい場合に有効であ
る。効果を充分発揮させるためには、0.01%以上と
するのが好ましく、また0.10%を超えるとNbの炭
窒化物が粗大化してフェライトを脆化させ、その結果、
冷間加工性がかえって劣化するので、含有量は0.10
%以下とし、好ましい含有量は0.01〜0.10%とす
る。
Nb: Nb precipitates fine carbonitrides in the steel, substantially reduces the C and N contents, and also has the function of refining ferrite grains. It is effective when you want to improve the quality. In order to fully exert the effect, it is preferable to set it to 0.01% or more, and if it exceeds 0.10%, the carbonitride of Nb is coarsened to embrittle the ferrite, and as a result,
The cold workability rather deteriorates, so the content is 0.10.
%, And the preferable content is 0.01 to 0.10%.

【0016】Ti: TiはNbと同様に鋼中で微細な
炭窒化物を析出せしめ実質的にはCやN含有量を低下さ
せる働きをするとともに、フェライト粒を微細化する働
きも有するので、特に靱性や冷間加工性を向上させたい
場合に有効な元素である。効果を充分発揮させるために
は、0.01%以上の添加が好ましい。また0.10%を
超えるとTiの炭窒化物が粗大化し、その粗大析出物が
起点となって冷間加工時に割れが生ずるので、含有量は
0.10%以下とし、好ましい含有量は0.01〜0.1
0%とする。
Ti: Ti, like Nb, has the function of precipitating fine carbonitrides in the steel to substantially reduce the C and N contents, and also has the function of refining ferrite grains. In particular, it is an effective element when it is desired to improve toughness and cold workability. In order to fully exert the effect, addition of 0.01% or more is preferable. On the other hand, if it exceeds 0.10%, the carbonitride of Ti becomes coarse, and the coarse precipitates become the starting point to cause cracking during cold working. Therefore, the content is set to 0.10% or less, and the preferable content is 0%. 0.01-0.1
0%

【0017】Al: Alは鋼の脱酸効果を通じて冷間
加工性を向上させるので有効な元素である。効果を充分
発揮させるためには0.01%以上の添加が好ましい。
一方0.10%を超えて添加すると鋼中の粗大なAlの
酸化物が形成され、冷間加工中にそれを起点として割れ
が生ずるので、含有量は0.10%以下とし、好ましい
含有量を0.01〜0.10%とする。
Al: Al is an effective element because it improves cold workability through the deoxidizing effect of steel. Addition of 0.01% or more is preferable in order to sufficiently bring out the effect.
On the other hand, if added in excess of 0.10%, coarse Al oxide in the steel is formed, and cracks occur from it during cold working, so the content should be 0.10% or less, and the preferred content is Is set to 0.01 to 0.10%.

【0018】Mo: Moはフェライトステンレス鋼の
耐食性を著しく向上させるので、要求される耐食性のレ
ベルに応じて添加することができる。耐食性向上効果を
充分発揮させるためには0.01%以上の添加が好まし
いが、0.50%を超えると経済性が損われるで、0.5
0%を上限とする。したがって、含有量は0.50%以
下とし、好ましい含有量を0.01〜0.50%とする。
Mo: Mo significantly improves the corrosion resistance of ferritic stainless steel, so it can be added depending on the required level of corrosion resistance. In order to fully exert the effect of improving the corrosion resistance, addition of 0.01% or more is preferable, but if it exceeds 0.50%, the economical efficiency is impaired.
The upper limit is 0%. Therefore, the content is set to 0.50% or less, and the preferable content is set to 0.01 to 0.50%.

【0019】Cu: CuはMoと同様、フェライトス
テンレス鋼の耐食性を向上させるのに有効であるので、
要求される耐食性のレベルに応じて添加することができ
るが、上記効果を充分発揮させるためには、0.01%
以上の添加が好ましい。一方0.50%を超えて添加す
ると、熱間圧延時に割れが生じやすくなるので0.50
%を上限とする。したがって、含有量は0.50%以下
とし、好ましい含有量を0.01〜0.50%とする。
Cu: Cu, like Mo, is effective for improving the corrosion resistance of ferritic stainless steel,
It can be added according to the required level of corrosion resistance, but in order to fully exhibit the above effects, 0.01%
The above additions are preferred. On the other hand, if added over 0.50%, cracks are likely to occur during hot rolling.
% Is the upper limit. Therefore, the content is set to 0.50% or less, and the preferable content is set to 0.01 to 0.50%.

【0020】本発明においては、上記の成分限定を不可
欠の要件とするが、この成分限定だけでは本発明の目的
とする靱性の向上(シャルピー衝撃試験におけるエネル
ギー遷移温度(vrE)の0℃以下の確保)、異方性の
向上および冷間加工性(冷間据込加工における割れ発生
限界圧縮率60%以上の確保)を図ることができず、次
に述べる熱間圧延時における諸条件および冷間加工歪と
その後の焼なまし温度域の規定が必要である。
In the present invention, the above component limitation is an indispensable requirement, but the improvement of toughness, which is the object of the present invention (energy transition temperature ( v TrE ) at 0 ° C. in the Charpy impact test), which is the object of the present invention, is limited only by this component limitation. The following conditions), improvement in anisotropy and cold workability (a crack compression limit compression ratio of 60% or more in cold upsetting cannot be ensured), and various conditions during hot rolling described below. It is necessary to specify the cold working strain and the subsequent annealing temperature range.

【0021】従来、フェライトステンレス鋼の熱間圧延
は、熱間変形抵抗およびそれによる熱間圧延機への負荷
を考慮して、鋼片の加熱温度を1000℃以上となして
熱間圧延するのか一般的であった。しかしながら、本発
明では、上記成分規定に基く鋼を熱間圧延時、950℃
以下、700℃以上の加熱温度に均熱してから、熱間圧
延を行うことを特徴とするものである。950℃を超え
る温度に加熱するとフェライト結晶粒の粗大化による冷
間加工性と靱性の劣化を招くだけでなく、熱間圧延中に
微細なCr炭窒化物がフェライト・マトリックス中に歪
誘起析出し、フェライト・マトリックスそのものも脆化
させて、冷間加工性の劣化をさらに助長させることが知
見された。また、加熱温度が700℃以下では、熱間変
形抵抗が大きくなり、それによる熱間圧延機への負荷が
増大し好ましくない。その他、熱間変形能が低下し圧延
材の表面性状が著しくそこなわれる。したがって、熱間
圧延時の加熱温度は950℃以下700℃以上とするこ
とが必要である。
Conventionally, in the hot rolling of ferritic stainless steel, in consideration of the hot deformation resistance and the resulting load on the hot rolling mill, is the hot rolling of the steel billet performed at 1000 ° C. or higher? It was common. However, in the present invention, at the time of hot rolling the steel based on the above-mentioned compositional regulations, at 950 ° C.
Hereinafter, it is characterized in that hot rolling is performed after soaking at a heating temperature of 700 ° C. or higher. Heating above 950 ° C not only causes deterioration of cold workability and toughness due to coarsening of ferrite crystal grains, but also fine Cr carbonitrides are strain-induced precipitated in the ferrite matrix during hot rolling. It has been found that the ferrite matrix itself also becomes brittle, which further promotes the deterioration of cold workability. Further, if the heating temperature is 700 ° C. or lower, the hot deformation resistance becomes large, which increases the load on the hot rolling mill, which is not preferable. In addition, the hot deformability is lowered and the surface properties of the rolled material are markedly impaired. Therefore, the heating temperature during hot rolling needs to be 950 ° C. or lower and 700 ° C. or higher.

【0022】一方、常温で安定した靱性を得るには、シ
ャルピー衝撃試験でエネルギー遷移温度(vrE)を0
℃以下にする必要があり、そのためには、鋼材のフェラ
イト粒度番号を3番以上に制御する必要であることが研
究の結果明らかとなった。このフェライト粒度番号3番
以上を確保するには、熱間圧延での加熱温度を上述の如
く950℃以下にし、初期粒径の粗大化を制御すること
は勿論であるが、仕上げ温度を規制することも重要であ
る。
On the other hand, to obtain a stable toughness at room temperature, energy transition temperature Charpy impact test (v T rE) 0
As a result of research, it has been clarified that it is necessary to control the temperature to be equal to or lower than 0 ° C., and for that purpose, it is necessary to control the ferrite grain size number of the steel material to 3 or higher. In order to secure the ferrite grain size number 3 or more, it is needless to say that the heating temperature in hot rolling is set to 950 ° C. or less as described above and the coarsening of the initial grain size is controlled, but the finishing temperature is regulated. That is also important.

【0023】仕上げ温度が850℃以上では、圧延終了
後の放冷時に結晶粒が粗大化し、フェライト粒度番号3
番以下となる。一方仕上げ温度が、700℃以下では圧
延終了後の放冷時での粒成長は抑制されるが、圧延加工
により集合組織が発達し、異方性が生じる。この集合組
織による異方性は、冷間加工時に不均一な変形を生じる
ため好ましくない。それ故、仕上げ圧延温度は850℃
以下、700℃以上と規制する必要がある。
When the finishing temperature is 850 ° C. or higher, the crystal grains become coarse during the standing cooling after the rolling, and the ferrite grain size number 3
It will be the number below. On the other hand, when the finishing temperature is 700 ° C. or less, grain growth during cooling after completion of rolling is suppressed, but the texture develops by rolling and anisotropy occurs. The anisotropy due to this texture is not preferable because it causes nonuniform deformation during cold working. Therefore, the finish rolling temperature is 850 ℃
Hereinafter, it is necessary to regulate the temperature to 700 ° C. or higher.

【0024】以上の圧延条件で得られた圧延材はフェラ
イト粒度番号は3番以上となるが、圧延温度が比較的低
いため、集合組織による異方性は皆無とは言えず、若干
の影響が認められる。そこで、この異方性を完全に解消
するには、冷間加工と熱処理の最適組合せで実現するこ
とが知見された。即ち、圧延材を冷間にて減面率25%
以上、40%以下の加工(例えば引抜、冷間圧延)を行
い、マトリックス中に歪を導入する。この際減面率が2
5%未満では歪導入量が少なく、次の熱処理で再結晶の
核が少ないため微細で均一な再結晶を起こしにくく、む
しろ粒の粗大化や混粒化を招く。減面率は一般に大きい
方が熱処理による粒の微細再結晶化には有効であるが、
40%を超えて加工を行なってもその細粒化効果は飽和
する。また大きな加工を加えるには、設備の大型化や、
冷間加工の繰返しにより経済的でない。従って冷間加工
の減面率は25%以上、40%以下が最適な条件であ
る。
The rolled material obtained under the above rolling conditions has a ferrite grain size number of 3 or more, but since the rolling temperature is relatively low, the anisotropy due to the texture cannot be said to be nonexistent, and there is some influence. Is recognized. Therefore, it has been found that in order to completely eliminate this anisotropy, an optimum combination of cold working and heat treatment is realized. That is, the reduction ratio of the rolled material is 25% when cold.
As described above, processing of 40% or less (for example, drawing, cold rolling) is performed to introduce strain into the matrix. At this time, the reduction rate is 2
If it is less than 5%, the amount of strain introduced is small, and the nuclei of recrystallization are small in the subsequent heat treatment, so that it is difficult to cause fine and uniform recrystallization, and rather, coarsening and mixing of grains are caused. Larger area reduction is generally more effective for fine recrystallization of grains by heat treatment,
Even if the processing is performed over 40%, the grain refining effect is saturated. In addition, in order to add large processing, equipment size increase,
Not economical due to repeated cold working. Therefore, the optimal condition for the reduction rate of cold working is 25% or more and 40% or less.

【0025】次に熱処理温度であるが、熱処理温度が7
50℃未満では主として冷間加工歪の解放が進み、か
つ、粒界の移動による不均一な結晶(混粒組織)を生じ
る。また850℃を超える温度で熱処理を行うと、それ
までの結晶核となっていた有用な微細炭窒化物が、母相
への固溶や凝集粗大化が生じるため結晶粒の粗大化を生
じることが判明した。
Next, regarding the heat treatment temperature, the heat treatment temperature is 7
If the temperature is lower than 50 ° C., the release of cold work strain mainly proceeds, and the nonuniform crystal (mixed grain structure) is generated due to the movement of grain boundaries. Further, when heat treatment is performed at a temperature higher than 850 ° C., useful fine carbonitrides that have been the crystal nuclei up to that point cause solid solution in the mother phase and coarsening of agglomerates, resulting in coarsening of crystal grains. There was found.

【0026】以上述べたように、750℃以上、850
℃以下で熱処理を行うと、冷間加工歪部を新たな起点と
した微細でかつ均一な再結晶組織が得られ、異方性が完
全に消失する。以下実施例を示して本発明の特徴を明確
にする。
As described above, 750 ° C. or higher, 850
When the heat treatment is performed at a temperature of not higher than 0 ° C., a fine and uniform recrystallized structure with the cold-working strained portion as a new starting point is obtained, and the anisotropy disappears completely. The features of the present invention will be clarified by showing examples below.

【0027】[0027]

【実施例】【Example】

[実施例1]表1、表2に示す化学成分を有する鋼を真
空溶解後1トン鋼塊とした。この鋼塊を分塊圧延にて1
60mm角鋼片に熱延した。この鋼片を900℃に1時間
加熱後25mmφの棒鋼に連続熱間圧延し常温まで空冷し
た。この時の仕上げ圧延温度は800℃になるべく調整
した。
[Example 1] Steels having the chemical components shown in Tables 1 and 2 were vacuum-melted into 1-ton ingots. 1 by slab rolling of this steel ingot
Hot rolled to a 60 mm square billet. This steel slab was heated at 900 ° C. for 1 hour, continuously hot-rolled into a 25 mmφ steel bar, and air-cooled to room temperature. The finish rolling temperature at this time was adjusted to 800 ° C.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】このようにして得られた25mmφ棒鋼を用
い、引張り試験を行い、0.2%耐力、引張り強さ及び
絞り値を測定した。また、フェライト粒度はJIS G0552
のフェライト結晶粒度試験法に準じて測定した。
Using the 25 mmφ steel bar thus obtained, a tensile test was conducted to measure 0.2% proof stress, tensile strength and drawing value. The ferrite grain size is JIS G0552.
The ferrite grain size was measured according to the ferrite grain size test method.

【0031】さらに本発明の主目的である靱性および冷
間加工性については、次のような評価法によって行っ
た。まず、靱性は25mmφ棒鋼の中心部より軸方向にJI
S Z2202 「金属材料衝撃試験片」に定められる4号試験
片(2mmVノッチシャルピー試験片)を採取し、エネル
ギー遷移温度(vrE)を求めた。この遷移温度の評価
は常温での安定した靱性を確保する観点より、vrE
℃以下であることを評価の分岐点とした。
The toughness and cold workability, which are the main objects of the present invention, were evaluated by the following evaluation methods. First, the toughness is JI in the axial direction from the center of the 25 mmφ steel bar.
S Z2202 A No. 4 test piece (2 mmV notch Charpy test piece) defined in “Metallic material impact test piece” was sampled, and the energy transition temperature ( v TrE ) was obtained. The evaluation of the transition temperature is v Tr E 0 from the viewpoint of ensuring stable toughness at room temperature.
The point at which the temperature was lower than or equal to ℃ was used as a branch point for evaluation.

【0032】また、冷間加工性については、25mmφ棒
鋼より切削加工にて20mmφ×30mm(ho) の据込み圧
縮試験片を作成(図1(a) 参照)し、この試験片を
常温にて静的に圧縮(図1(b)参照)し、円周側面に
割れが発生したときの圧縮率(φc)を次式により求め
た。
Regarding cold workability, an upsetting compression test piece of 20 mmφ × 30 mm (ho) was prepared by cutting from a 25 mmφ steel bar (see FIG. 1 (a)), and this test piece was kept at room temperature. The compression ratio (φc) when statically compressed (see FIG. 1B) and cracks were generated on the circumferential side surface was calculated by the following equation.

【0033】このとき割れを生じた圧縮率を限界圧縮率
(φc)とし、実用上の加工性を区分する観点より、限
界圧縮率60%を評価の分岐点とした。また、圧縮試験
後の試験片の最も張り出した部位(高さ方向)の最大張
り出し長さ(Dmax)と最小張り出し長さ(Dmin)より
下式に基づき変形比率を求め、異方性評価の指標とし
た。図2(c),(d)および(f)に試験片の最初の
形状および張り出した形状を示している。
At this time, the compression rate at which cracking occurred was set as the limit compression rate (φc), and from the viewpoint of dividing the practical workability, the limit compression rate of 60% was set as the evaluation branch point. In addition, the deformation ratio is calculated from the maximum overhang length (Dmax) and the minimum overhang length (Dmin) of the most overhanging portion (height direction) of the test piece after the compression test based on the following formula, and an index for anisotropy evaluation. And 2C, 2D and 2F show the initial shape and the overhanging shape of the test piece.

【0034】この変形比率が100%であることは、圧
縮試験時に均一に張り出し(変形)していることを示し
ている。
When the deformation ratio is 100%, it means that the film is uniformly projected (deformed) during the compression test.

【0035】なお、圧縮試験において、限界圧縮率が6
0%に達しないものは、基本的に冷間変形能を有しない
ものとして変形比率の評価を省略した。
In the compression test, the limit compression rate was 6
The evaluation of the deformation ratio was omitted because those that did not reach 0% basically had no cold deformability.

【0036】[0036]

【数1】変形比率=[1−(Dmax/Dmin)]×100 [ここにおいて、Dmaxは最大張り出し径、Dminは最小
張り出し径である。]
## EQU1 ## Deformation ratio = [1− (Dmax / Dmin)] × 100 [where Dmax is the maximum overhang diameter and Dmin is the minimum overhang diameter. ]

【0037】[0037]

【数2】 φc =[(ho−hf)/ho]×100(%) [ここにおいて、hoは上記据込圧縮試験片の圧縮前の
高さ(30mm)、hfは圧縮後の高さである。]
## EQU2 ## φc = [(ho-hf) / ho] × 100 (%) [where ho is the height (30 mm) before compression of the upsetting compression test piece, and hf is the height after compression. is there. ]

【0038】上記表1、表2には、それぞれ鋼について
引張り特性、フェライト粒度、エネルギー遷移温度、割
れ発生限界圧縮率(以下φcと略す)および変形比率の
値も併記した。
In Tables 1 and 2, the tensile properties, ferrite grain size, energy transition temperature, cracking limit compression rate (hereinafter abbreviated as φc) and deformation rate of steel are also shown.

【0039】本発明に規定する化学成分を有する本発明
鋼1〜22はいずれもvrE 0℃以下、φc60%以上
の値を有しており、高靱性でかつ冷間加工性に優れてい
る。これらに対し、本発明に規定する化学成分の範囲か
ら外れた成分を有する比較鋼では、フェライト粒度が#
3.0以上であれば、vrEは0℃以下は得られるものの
延性値(絞り値)が全体に乏しく、φcが60%未満と
なっている。
All of the steels 1 to 22 of the present invention having the chemical composition defined in the present invention have values of v TrE of 0 ° C. or less and φc of 60% or more, and have high toughness and excellent cold workability. There is. On the other hand, in the comparative steel having a composition outside the range of the chemical composition defined in the present invention, the ferrite grain size is #
If 3.0 or more, v T rE ductility values 0 ℃ below that is obtained (aperture value) is poor overall, .phi.c has become less than 60%.

【0040】これは、C、N、Nb、Tiが過剰に添加
されると比較的大きな炭窒化物の生成により脆化するた
めである。(鋼番号 NO.23、29、30、31、3
3、36および37)また、Mn、Niの過剰添加でオ
ーステナイトの生成により(2相鋼化)加工性が阻害さ
れたものである。(鋼番号 No.25、26および34)
その他Siの過剰添加で粗粒化を生じたもの(鋼番号 N
o.24)や、Cr、Mnの過剰添加により強度が上昇し
延性が低下したもの(鋼番号 No.28、35)およびA
lの過剰添加により鋼中にアルミナ系介在物が生成し、
加工性が害なわれるもの(鋼番号No. 32、37)等に
より加工性が低下したものである。
This is because if C, N, Nb, and Ti are excessively added, they become brittle due to the formation of relatively large carbonitrides. (Steel No. 23, 29, 30, 31, 3
(3, 36 and 37) Further, excessive addition of Mn and Ni impairs workability due to austenite formation (two-phase steel formation). (Steel No. 25, 26 and 34)
Others that have coarsened due to excessive addition of Si (steel number N
o.24), those whose strength increased and ductility decreased due to excessive addition of Cr and Mn (steel No. 28, 35) and A
Alumina-based inclusions are generated in the steel by the excessive addition of 1
The workability is deteriorated due to the deterioration of the workability (Steel No. 32, 37).

【0041】これにより、本発明に規定した鋼の加熱温
度(950℃以下)を満足した場合でも、本発明に規定
する化学成分の範囲より外れた比較鋼においては、靱性
および冷間加工性の両特性を具備した材料が得られない
ことが明らかである。
As a result, even if the heating temperature (950 ° C. or less) of the steel specified in the present invention is satisfied, the toughness and cold workability of the comparative steels out of the range of the chemical composition specified in the present invention It is clear that a material having both properties cannot be obtained.

【0042】[実施例2]次に本発明鋼1(表1)を用
いて、熱間圧延条件の影響に関する実施例を示す。本発
明鋼1の160mm角鋼片を800、850、900、9
50、960、1000℃の6条件で1時間均熱し、実
施例1と同じ熱間圧延によって25mmφ棒鋼とした。な
お、仕上げ圧延温度は途中冷却や圧延速度の調整によ
り、750、800、850、860、900℃に制御
した。得られた棒鋼より実施例1と同じ内容の特性調査
を行った。その結果を表3に示す。
Example 2 Next, using Steel 1 of the present invention (Table 1), an example relating to the effect of hot rolling conditions will be shown. A 160 mm square steel piece of the invention steel 1 is 800, 850, 900, 9
The steel was soaked under 6 conditions of 50, 960, and 1000 ° C. for 1 hour, and was hot-rolled in the same manner as in Example 1 to obtain a 25 mmφ steel bar. The finish rolling temperature was controlled to 750, 800, 850, 860, 900 ° C by cooling in the middle and adjusting the rolling speed. The characteristics of the steel bar thus obtained were investigated in the same manner as in Example 1. The results are shown in Table 3.

【0043】[0043]

【表3】 [Table 3]

【0044】表3により、本発明で規定する加熱温度お
よび仕上げ圧延温度範囲に制御すれば、フェライト粒度
は3番以下となり、vrEは0℃以下で、かつφcが6
0%以上の値が得られる。しかしながら、比較法に示す
如く、加熱温度および仕上げ圧延温度が本発明で規定す
る範囲より外れると、vrEおよびφcが所定の値に達
しないことが判る。
According to Table 3, when the heating temperature and finish rolling temperature ranges specified in the present invention are controlled, the ferrite grain size becomes 3 or less, v T rE is 0 ° C. or less, and φc is 6 or less.
Values of 0% and above are obtained. However, as shown in the comparative method, when the heating temperature and the finish rolling temperature are out of the ranges specified in the present invention, it is understood that v T rE and φc do not reach the predetermined values.

【0045】なお、加熱温度の下限については特に規定
しないが、圧延機の能力からして、700℃程度が実用
的には、その目安と考えられる。また、仕上げ圧延温度
も同様に、特に下限を定めるものではないが、熱間加工
性や圧延機の能力からして、700℃程度が実用上の目
安と考えられる。
The lower limit of the heating temperature is not particularly specified, but from the capability of the rolling mill, about 700 ° C. is considered to be a practical standard. Further, similarly, the finish rolling temperature is not particularly limited, but it is considered that about 700 ° C. is a practical standard in view of the hot workability and the ability of the rolling mill.

【0046】[実施例3]以上実施例1および実施例2
よりそれぞれ最適な化学成分および熱間圧延条件が明確
となった。しかしながら、熱間圧延条件は比較的低温で
行われることから、圧延時に集合組織が形成されやす
く、表1および表3に示すように均一変形能に乏しい
(変形比率が低い)ことも判明した。そこで、冷間引抜
(伸線)と焼なまし温度との組合せによる変形比率の改
善例を以下に示す。
[Embodiment 3] Above Embodiments 1 and 2
The optimum chemical composition and hot rolling conditions were clarified. However, since the hot rolling condition is performed at a relatively low temperature, it was found that a texture is likely to be formed during rolling and the uniform deformability is poor (the deformation ratio is low) as shown in Tables 1 and 3. Therefore, an example of improving the deformation ratio by a combination of cold drawing (drawing) and annealing temperature will be shown below.

【0047】本発明鋼1(表1)を用い、異方性の最も
生じやすい熱間圧延条件(表3中の区分1)で圧延した
25mmφ棒鋼を素材として、減面率0、20、25、3
0、35、40、45および50%の8水準に冷間引抜
を行った後、それぞれの引抜材を550、600、65
0、700、750、800、850および900℃の
8水準の温度で1時間保持して焼なました。それぞれの
焼なまし材により(高さ/直径)=1.5の円筒試験片
[図2(c)および(e)参照]を作成し、常温にて7
0%の静的圧縮試験を行い、先の例に従い変形比率を求
めた。この変形比率は95%未満では冷間圧造時に欠肉
や張り出し不足による形状異常が生じ、実用に供されな
いため、95%を評価の分岐点とした。すなわち、変形
比率が95%以上確保できる条件を“良”と評価した。
Using the steel 1 of the present invention (Table 1), a 25 mmφ steel bar rolled under hot rolling conditions (Category 1 in Table 3) in which anisotropy is most likely to occur is used as a material, and the area reduction ratio is 0, 20, 25. Three
After cold drawing to 8 levels of 0, 35, 40, 45 and 50%, each drawing material was 550, 600, 65
It was annealed by holding it at 8 levels of 0, 700, 750, 800, 850 and 900 ° C for 1 hour. Cylindrical test pieces of [height / diameter] = 1.5 were prepared [see FIGS. 2 (c) and (e)] from each of the annealed materials, and the temperature was set to 7 at room temperature.
A 0% static compression test was performed and the deformation ratio was determined according to the previous example. If this deformation ratio is less than 95%, shape defects will occur due to lack of wall or insufficient overhang during cold heading, and it will not be put to practical use. Therefore, 95% was used as the evaluation branch point. That is, the condition that a deformation ratio of 95% or more can be secured was evaluated as “good”.

【0048】[0048]

【表4】 [Table 4]

【0049】実用上の問題を考慮して上記の変形比が9
5%以上確保できる条件を“良”と評価した。表4より
比較的温度の低い650℃以下の焼なましでは、引抜加
工による硬化温度が不足のため十分軟化されず70%以
下の圧縮率で割れが生じている。一方900℃でも加工
割れが生じているが、顕微鏡観察の結果、粗大(フェラ
イト粒度3番以下)な結晶粒が混在していることおよび
凝集析出した炭窒化物が観察された。
Considering practical problems, the above deformation ratio is 9
The condition that 5% or more can be secured was evaluated as “good”. In the case of annealing at 650 ° C. or lower, which is relatively low temperature as shown in Table 4, since the hardening temperature by the drawing process is insufficient, it is not sufficiently softened and cracks occur at a compressibility of 70% or less. On the other hand, work cracking occurred at 900 ° C., but as a result of microscopic observation, it was observed that coarse (ferrite grain size 3 or less) crystal grains coexisted and coagulated carbonitride was precipitated.

【0050】したがって、均一な冷間加工性を確保する
には、減面率25%以上の冷間加工後700〜850℃
で焼なますことが必須条件である。なお、冷間加工度は
実生産活動においてはあまり大きくすると経済的でな
く、減面率を高くしても均一な冷間加工ができるので、
特に上限は限定しないが、25〜40%程度が効率的な
加工といえる。
Therefore, in order to ensure uniform cold workability, 700 to 850 ° C. after cold working with a surface reduction rate of 25% or more.
Annealing in is a prerequisite. It should be noted that if the degree of cold working is too large in actual production activities, it is not economical, and even if the area reduction rate is increased, uniform cold working is possible.
The upper limit is not particularly limited, but about 25 to 40% can be said to be efficient processing.

【0051】[0051]

【発明の効果】以上述べたように本発明の要件を満た
す、成分組成を有する鋼を本発明に規定する熱間圧延件
にて圧延することにより、動的および静的な冷間加工性
に極めて優れたフェライトステンレス鋼が得られる。し
かしながら、本発明に規定する圧延条件は比較的低温で
制御することから、異方性を生じることがあるが、これ
も本発明に規定する冷間引抜等の加工とその後に行う焼
なましにより、実用上問題ない程度に改善されることが
判明した。その結果、従来、フェライト系ステンレス鋼
では到底不可能とされていた、高速で、かつ高加工度の
冷間加工用途に対して、均一変形能に優れた材料の提供
が可能となった。
As described above, by rolling the steel having the chemical composition satisfying the requirements of the present invention under the hot rolling conditions specified in the present invention, the dynamic and static cold workability can be improved. A very good ferritic stainless steel is obtained. However, since the rolling conditions specified in the present invention are controlled at a relatively low temperature, anisotropy may occur, which is also caused by the processing such as cold drawing specified in the present invention and the subsequent annealing. It turned out that it was improved to the extent that there was no problem in practical use. As a result, it has become possible to provide a material having excellent uniform deformability for high-speed cold-working applications of high workability, which has hitherto been impossible with ferritic stainless steel.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は冷間加工性の評価法に用いる据込圧縮
試験片の圧縮試験前の状態、(b)はその圧縮試験後の
試験片の状態を示す図である。
FIG. 1A is a diagram showing a state of an upsetting compression test piece before a compression test used in an evaluation method of cold workability, and FIG. 1B is a diagram showing a state of the test piece after the compression test.

【図2】(c)は圧縮試験片の変形比を求めるために行
う圧縮試験前の試験片の見取図、(d)はその圧縮試験
後の試験片の見取図、(e)は圧縮試験の試験片(c)
のA−A’断面、(f)は圧縮試験後の試験片(d)の
B−B’断面を示す。
FIG. 2 (c) is a sketch of the test piece before the compression test performed to obtain the deformation ratio of the compression test piece, (d) is a sketch of the test piece after the compression test, and (e) is the test of the compression test. Piece (c)
A-A 'cross section, and (f) shows a BB' cross section of the test piece (d) after the compression test.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量で、C:0.0100%以下、S
i:0.40%以下、Mn:0.50%以下、Ni:0.2
0%未満、Cr:11.0〜18.0%、N:0.012
0%以下、Nb:0〜0.10%、Ti:0〜0.10
%、Al:0〜0.10%、Mo:0〜0.50%、C
u:0〜0.50%、残部Feおよび不可避的不純物よ
りなる鋼を950℃以下700℃以上の温度に加熱後、
仕上げ温度850℃以下、700℃以上に制御して、熱
間圧延を施し、フェライト粒度番号3番以上に仕上げ、
しかる後、減面率25%以上の冷間加工を施したのち7
50〜850℃の温度域に再加熱して、焼なましするこ
とを特徴とする高靱性でかつ異方性に優れた、冷間加工
用フェライトステンレス鋼の製造方法。
1. C: 0.0100% or less by weight, S
i: 0.40% or less, Mn: 0.50% or less, Ni: 0.2
Less than 0%, Cr: 11.0 to 18.0%, N: 0.012
0% or less, Nb: 0 to 0.10%, Ti: 0 to 0.10
%, Al: 0 to 0.10%, Mo: 0 to 0.50%, C
u: 0 to 0.50%, the steel consisting of the balance Fe and inevitable impurities is heated to a temperature of 950 ° C or lower and 700 ° C or higher,
The finishing temperature is controlled to 850 ° C or lower and 700 ° C or higher, and hot rolling is performed to finish the ferrite grain size number 3 or higher.
Then, after cold working with a surface reduction rate of 25% or more, 7
A method for producing a ferritic stainless steel for cold working, which has high toughness and is excellent in anisotropy, which comprises reheating to a temperature range of 50 to 850 ° C and annealing.
JP31900393A 1993-11-25 1993-11-25 Production of ferritic stainless steel for cold working Pending JPH07150244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31900393A JPH07150244A (en) 1993-11-25 1993-11-25 Production of ferritic stainless steel for cold working

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31900393A JPH07150244A (en) 1993-11-25 1993-11-25 Production of ferritic stainless steel for cold working

Publications (1)

Publication Number Publication Date
JPH07150244A true JPH07150244A (en) 1995-06-13

Family

ID=18105419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31900393A Pending JPH07150244A (en) 1993-11-25 1993-11-25 Production of ferritic stainless steel for cold working

Country Status (1)

Country Link
JP (1) JPH07150244A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0953155A (en) * 1995-08-14 1997-02-25 Kawasaki Steel Corp Iron-chrome alloy excellent in ridging resistance and surface property
JPWO2006016417A1 (en) * 2004-08-11 2008-05-01 株式会社日立製作所 Structure having tubular portion, manufacturing method and manufacturing apparatus thereof
EP2220260A1 (en) * 2007-11-22 2010-08-25 Posco Low chrome ferritic stainless steel with high corrosion resistance and stretchability and method of manufacturing the same
CN101942609A (en) * 2010-08-09 2011-01-12 振石集团东方特钢股份有限公司 Ferrite stainless steel with low ductile-brittle transition temperature
WO2018043214A1 (en) 2016-09-02 2018-03-08 Jfeスチール株式会社 Duplex stainless steel and method for manufacturing same
CN110669988A (en) * 2019-09-29 2020-01-10 宁波宝新不锈钢有限公司 Ferritic stainless steel for nuclear power heat exchanger and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0953155A (en) * 1995-08-14 1997-02-25 Kawasaki Steel Corp Iron-chrome alloy excellent in ridging resistance and surface property
JPWO2006016417A1 (en) * 2004-08-11 2008-05-01 株式会社日立製作所 Structure having tubular portion, manufacturing method and manufacturing apparatus thereof
EP2220260A1 (en) * 2007-11-22 2010-08-25 Posco Low chrome ferritic stainless steel with high corrosion resistance and stretchability and method of manufacturing the same
EP2220260A4 (en) * 2007-11-22 2011-05-04 Posco Low chrome ferritic stainless steel with high corrosion resistance and stretchability and method of manufacturing the same
CN101942609A (en) * 2010-08-09 2011-01-12 振石集团东方特钢股份有限公司 Ferrite stainless steel with low ductile-brittle transition temperature
WO2018043214A1 (en) 2016-09-02 2018-03-08 Jfeスチール株式会社 Duplex stainless steel and method for manufacturing same
US11566301B2 (en) 2016-09-02 2023-01-31 Jfe Steel Corporation Dual-phase stainless steel, and method of production thereof
CN110669988A (en) * 2019-09-29 2020-01-10 宁波宝新不锈钢有限公司 Ferritic stainless steel for nuclear power heat exchanger and preparation method thereof

Similar Documents

Publication Publication Date Title
EP1288316B1 (en) Method for making high-strength high-toughness martensitic stainless steel seamless pipe
JPH07138704A (en) High strength and high ductility dual-phase stainless steel and its production
JP6682988B2 (en) High-tensile steel plate with excellent ductility and method of manufacturing the same
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JP3449126B2 (en) Austenitic stainless cold-rolled steel sheet with small springback amount and method for producing the same
JP2004204263A (en) Steel material for case hardening superior in cold workability and coarse-particle-preventing property in carburization, and manufacturing method therefor
JPH07150244A (en) Production of ferritic stainless steel for cold working
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JPH06184636A (en) Production of high strength and high toughness seamless steel pipe excellent in weldability
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
JP3290595B2 (en) Method for manufacturing high-tensile steel plate with excellent toughness and weldability
JP3246993B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP2000119806A (en) Steel wire rod excellent in cold workability, and its manufacture
JP3077567B2 (en) Method of manufacturing steel for low-temperature rebar
JP4393344B2 (en) Manufacturing method of case hardening steel with excellent cold workability and grain coarsening resistance
JPH0726149B2 (en) Method for manufacturing high-strength stainless steel section
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP3077568B2 (en) Method of manufacturing steel for low-temperature rebar
JPS585965B2 (en) The first and last day of the year.
JPH10130734A (en) Production of austenitic stainless steel sheet for roll forming
JPH1192860A (en) Steel having ultrafine ferritic structure
JP5228994B2 (en) Manufacturing method of ferritic stainless steel material and manufacturing method of ferritic stainless steel pipe
JPH0841594A (en) Dual phase stainless steel sheet excellent in elongation characteristic and its production
JP3923485B2 (en) Manufacturing method of ferritic single-phase stainless steel with excellent deep drawability
JPS63219527A (en) Manufacture of ferritic stainless steel excellent in cold workability