JP3216824B2 - High strength low thermal expansion alloy - Google Patents

High strength low thermal expansion alloy

Info

Publication number
JP3216824B2
JP3216824B2 JP10256492A JP10256492A JP3216824B2 JP 3216824 B2 JP3216824 B2 JP 3216824B2 JP 10256492 A JP10256492 A JP 10256492A JP 10256492 A JP10256492 A JP 10256492A JP 3216824 B2 JP3216824 B2 JP 3216824B2
Authority
JP
Japan
Prior art keywords
alloy
phase
less
metal structure
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10256492A
Other languages
Japanese (ja)
Other versions
JPH05171358A (en
Inventor
光司 佐藤
力蔵 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP10256492A priority Critical patent/JP3216824B2/en
Publication of JPH05171358A publication Critical patent/JPH05171358A/en
Application granted granted Critical
Publication of JP3216824B2 publication Critical patent/JP3216824B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は使用中に昇温の可能性の
ある精密機械部品や低弛度耐熱送電線用芯線等に使用さ
れる高強度低熱膨張合金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength and low-thermal-expansion alloy used for precision mechanical parts and core wires for heat-resisting transmission lines having a low sag during use.

【0002】[0002]

【従来の技術】従来より、架空送電線については、鋼芯
アルミ撚線(ACSR線)が使用されてきたが、近年の
電力需要の増大と地価高騰が相まって従来の鋼芯アルミ
撚線に代わる高強度で低い熱膨張係数をもつ合金線が望
まれるようになった。このような用途に対し、特公昭5
6−45990号、特開昭55−41928号、特公昭
57−17942号、特開昭55−122855号、特
開昭55−128565号、特開昭55−131155
号、特開昭56−142851号、特開昭57−261
44号、特開昭58−11767号および特開昭58−
11768号等のFe−Ni系合金が開示されている。
さらに、これらの合金の強度と捻回特性を向上させる目
的で、特公昭63−56289号、特公昭60−346
13号、特開昭57−110659号、特公平2−15
606号、特開昭58−77525号、特開昭58−2
10126号、特開昭58−221225号、特開昭5
7−41350号、特公平2−41577号および特公
平2−55495号等の高強度低熱膨張合金線あるいは
合金線の製造方法が開示されている。
2. Description of the Related Art Conventionally, steel core aluminum stranded wires (ACSR wires) have been used for overhead power transmission lines. However, recent increases in power demand and rising land prices have replaced the conventional steel core aluminum stranded wires. An alloy wire having high strength and low coefficient of thermal expansion has been desired. For such applications,
6-45990, JP-A-55-41928, JP-B-57-17942, JP-A-55-122855, JP-A-55-128565, and JP-A-55-131155.
JP-A-56-142851, JP-A-57-261
No. 44, JP-A-58-11767 and JP-A-58-11867.
No. 11768 and the like are disclosed.
Furthermore, for the purpose of improving the strength and torsion characteristics of these alloys, JP-B-63-56289, JP-B-60-346.
No. 13, JP-A-57-110659, Tokuhei 2-15
606, JP-A-58-77525, JP-A-58-2
10126, JP-A-58-221225, JP-A-5-222
No. 7-41350, Japanese Patent Publication No. 2-41577 and Japanese Patent Publication No. 2-55495 disclose a method for producing a high-strength low-thermal-expansion alloy wire or alloy wire.

【0003】[0003]

【発明が解決しようとする課題】上述した従来の高強度
低熱膨張合金はいずれもNiまたはNi+Coを35〜
50%の範囲で含み、さらにCやNの侵入型固溶強化元
素やCr、Moなどの数種の置換型固溶強化元素やT
i、Nbなどの数種の析出強化型元素を低熱膨張特性を
損なわない範囲で含み残部Feからなる合金組成をも
つ。これらの合金はいずれも固溶化熱処理あるいは、焼
鈍熱処理状態においては、良好な捻回特性が得られるも
のの、引張強さはたかだか50〜80kgf/mm2の範囲で
あり、この状態では低弛度架空送電線用芯線の用途には
適さない。しかし、これらの合金はいずれも加工硬化能
が、従来の低熱膨張合金である36%Ni−Fe合金
や、42%Ni−Fe合金に比べて大きく、冷間加工に
よって100〜130kgf/mm2の引張強さが得られ、一
部で実用化されるようになった。しかし、従来の鋼芯ア
ルミ撚線の芯線に用いられているピアノ線の強度は、1
70kgf/mm2クラスのものがより多くをしめており、こ
れらの送電線の送電容量を鉄塔の建て替えなしに高める
ためには、170kgf/mm2クラスのピアノ線と同程度の
引張強さをもつ、低熱膨張合金線が必要となっていた。
また、ここで述べた従来の高強度低熱膨張合金線は、単
純に冷間域で強加工を加えただけでは捻回特性は大きく
低下してしまうので、引張強さと捻回特性を両立させる
ために上記の公報に種々の煩雑な製造方法が提案されて
いる。たとえば、特公昭60−34613号や特公平2
−15606号では、いずれも冷間加工の前段階または
冷間加工の途中で歪取焼鈍を実施し、強度と捻回特性の
両立が試みられている。これらの製造方法には皮剥によ
って生じる表面の歪みを焼鈍熱処理で除去することによ
り、良好な捻回特性が得られると明記されている。
The above-mentioned conventional high-strength low-thermal-expansion alloys all contain 35% or more of Ni or Ni + Co.
In the range of 50%, C and N interstitial solid solution strengthening elements, and several substitutional solid solution strengthening elements such as Cr and Mo, and T
It has an alloy composition consisting of several kinds of precipitation strengthening elements such as i and Nb in a range not impairing the low thermal expansion characteristics, and the balance being Fe. In any of these alloys, in the solution heat treatment or the annealing heat treatment, good torsion characteristics can be obtained, but the tensile strength is at most 50 to 80 kgf / mm 2 , and in this state, low sag overhead It is not suitable for applications of core wires for power transmission lines. However, each of these alloys has a work hardening ability which is larger than that of conventional low thermal expansion alloys of 36% Ni-Fe alloy and 42% Ni-Fe alloy, and is 100 to 130 kgf / mm 2 by cold working. Tensile strength was obtained, and some of them became practical. However, the strength of the piano wire used for the conventional steel core aluminum stranded core wire is 1
Those 70 kgf / mm 2 class have tighten more, in order to increase the transmission capacity of the transmission line without rebuilding the tower has a 170kgf / mm 2 class piano wire about the same tensile strength, A low thermal expansion alloy wire was required.
In addition, the conventional high-strength low-thermal-expansion alloy wire described here simply deteriorates the torsion characteristics by simply applying strong working in the cold range, so that it is necessary to achieve both tensile strength and torsion characteristics. In the above publication, various complicated production methods are proposed. For example, Japanese Patent Publication No. 60-34613 and
In -15606, strain relief annealing is performed in a stage before cold working or in the middle of cold working to try to achieve both strength and torsion characteristics. It is specified in these manufacturing methods that good twisting characteristics can be obtained by removing surface distortion caused by peeling by annealing heat treatment.

【0004】これに対し、特公平2−41577号およ
び特公平2−55495号に開示される合金線は上記の
特公昭60−34613号や特公平2−15606号と
ほぼ同一の製造プロセスをとるが、ここでは、冷間加工
後の焼鈍時に生成するMoC炭化物が強度と捻回特性
の向上に寄与すると述べられている。しかし、特公平2
−41577号および特公平2−55495号の発明人
の1人は「Effect ofprocesses o
f drawing on torsional pr
operty of high−tensile st
rength Invar alloy wire」
(Wire Journal Internation
al vol.21,No.4(1988),P84)
と題して捻回特性の改善に触れている。この論文におい
て、捻回特性の改善は冷間加工後にMo2C炭化物を析
出させる焼鈍熱処理を実施するだけでは不十分で、とく
に引抜後の合金線の横断面の硬さ分布において、中心部
の硬さがもっとも高くなるように、ダイスの引抜角を小
さく、かつ潤滑性を高めるためのクリストファーソンチ
ューブと称される特殊な治具が必要であると報告されて
いる。しかし、ダイスの引抜角を小さくしたり、潤滑性
を高めるためのクリストファーソンチューブと称される
特殊な治具を使用して捻回特性を高めることは、引抜パ
ス回数の増大(引抜角が小さくなると1パスあたりの減
面率を高くとることができない)を招き、ラインの工程
変更にも時間がとられ、全長数kmにもおよぶ合金線の
製造に対してははなはだ効率の悪い製造方法である。以
上の問題点を鑑み、本発明は、従来のFe−Ni系高強
度低熱膨張合金よりも、さらにワンランク上、つまりピ
アノ線に匹敵する引張強さをもち、かつ煩雑な工程を経
ずとも安定して高い捻回特性をもつ高強度低熱膨張合金
を提供することを目的とする。
On the other hand, the alloy wire disclosed in Japanese Patent Publication No. 2-41577 and Japanese Patent Publication No. 2-55495 uses almost the same manufacturing process as the above-mentioned Japanese Patent Publication No. 60-34613 and Japanese Patent Publication No. 2-15606. However, it is described herein that Mo 2 C carbide generated during annealing after cold working contributes to improvement in strength and torsion characteristics. However, Tokuhei 2
One of the inventors of U.S. Patent No. 41577 and Japanese Patent Publication No. 2-55495 is "Effect of processes o
f drawing on tortional pr
goodness of high-tensilest
length Invar alloy wire "
(Wire Journal International
al vol. 21, No. 4 (1988), P84)
The improvement of the torsion characteristics. In this paper, the improvement of the torsion characteristics is not sufficient only by performing an annealing heat treatment for precipitating Mo 2 C carbides after cold working. In particular, in the hardness distribution of the cross section of the alloy wire after drawing, the hardness distribution at the center is not sufficient. It is reported that a special jig called a Christopherson tube for reducing the die withdrawal angle and improving lubricity so as to maximize the hardness is required. However, increasing the torsion characteristics by using a special jig called a Christopherson tube for reducing the die pulling angle or improving lubricity increases the number of drawing passes (the pulling angle becomes smaller). In other words, it is impossible to increase the reduction in area per pass), and it takes time to change the process of the line, and it is a very inefficient manufacturing method for manufacturing alloy wires having a total length of several kilometers. is there. In view of the above problems, the present invention has a higher rank than conventional Fe-Ni-based high-strength low-thermal-expansion alloys, that is, has a tensile strength comparable to that of a piano wire, and is stable without a complicated process. And to provide a high-strength low-thermal-expansion alloy having high torsion characteristics.

【0005】[0005]

【課題を解決するための手段】本発明者らは、Fe−C
o−Ni系合金に種々の合金元素を添加した組成の合金
の熱間圧延素材を用い、その合金線の引張特性、捻回特
性および熱膨張係数を調査した。その結果、従来のオー
ステナイト相が強度の冷間加工を加えても安定なFe−
Ni系高強度低熱膨張合金ではピアノ線並みの高強度を
得ることができないことがわかった。そこで、本発明が
目的とするレベルの高強度を得るためには、強度の冷間
加工によってオーステナイト相の一部がマルテンサイト
相に変態するような合金組成を選び、さらにその時の冷
間加工前の合金組成が、もっとも低熱膨張係数が得られ
る組成に最適化しておくことで、高強度と低熱膨張特性
の両立が可能であることを見いだした。さらに低弛度耐
熱送電線用芯線の用途に対しては、本発明合金は、通常
の皮剥後の冷間伸線工程でとくに中間で煩雑な焼鈍工程
を入れる必要もなく、単純な冷間引抜工程を行なうだけ
で、従来のピアノ線と同じレベルの捻回値と捻回値の安
定化をもたらすことが明らかとなり、送電線用芯線とし
てとくに適していることがわかった。このような合金組
成領域は、ステンレスインバーと呼ばれる54Co−9
Cr−残部Feの合金とスーパーインバーと呼ばれる3
1Ni−6Co−残部Feの合金をよりオーステナイト
相が不安定な方向の組成とした合金を比例関係で結ぶ領
域(図1)に位置し、さらにオーステナイト相の加工硬
化と加工誘起マルテンサイトの強度向上に大きく寄与す
るCを適量加えることで、目的とするレベルの合金が得
られることがわかった。
Means for Solving the Problems The present inventors have proposed Fe-C
Using a hot-rolled material having an alloy composition in which various alloying elements were added to an o-Ni-based alloy, the tensile properties, torsion properties and thermal expansion coefficient of the alloy wire were investigated. As a result, the conventional austenite phase is stable Fe-
It has been found that a Ni-based high-strength low-thermal-expansion alloy cannot provide high strength comparable to a piano wire. Therefore, in order to obtain a high strength at a level intended by the present invention, an alloy composition in which a part of the austenite phase is transformed into a martensite phase by the cold working of the strength is selected, and further, before the cold working at that time, It has been found that by optimizing the composition of the alloy to obtain the lowest coefficient of thermal expansion, it is possible to achieve both high strength and low thermal expansion characteristics. Furthermore, for applications of core wires for low sag heat-resistant transmission lines, the alloy of the present invention requires no complicated intermediate annealing step in the normal cold drawing step after stripping, and simple cold drawing. It has been clarified that the twisting value and the stabilization of the twisting value are the same level as those of the conventional piano wire only by performing the process, and it has been found that it is particularly suitable as a core wire for power transmission lines. Such an alloy composition region is referred to as 54Co-9 called stainless invar.
An alloy of Cr-remainder Fe and super invar 3
It is located in a region (FIG. 1) in which the alloy of 1Ni-6Co-balance Fe is made in a proportionate relationship with an alloy having a composition in which the austenite phase is more unstable. It has been found that by adding an appropriate amount of C which greatly contributes to the above, an alloy having a desired level can be obtained.

【0006】すなわち、本発明の高捻回高強度低熱膨張
合金線のうち第1発明は、重量%で、C0.06〜0.
50%、Si0.5%以下、Mn1.5%以下、Ni2
5〜30%、Co2〜16.3%を含み、さらにNiと
Coの関係が52−(5/3)Ni≦Co≦58−(5
/3)Niからなり、残部は不純物を除きFeからなる
組成で、実質的にオーステナイト相とマルテンサイト相
との2相でなる金属組織でなり、且つ金属組織中のオー
ステナイト相が65%以上、前記マルテンサイト相は加
工誘起によって生じるマルテンサイト相を含む金属組織
としたことを特徴とする高強度低熱膨張合金であり、第
2発明は、重量%で、C0.02〜0.50%、Si
0.5%以下、Mn1.5%以下、Ni30%以下、C
o2〜58%、Cr10%以下とMo3%以下の1種ま
たは2種を含み、さらにNiとCoの関係が52−(5
/3)Ni≦Co≦58−(5/3)NiおよびNiと
(Cr+Mo)の関係が5−(1/5)Ni≦(Cr+
Mo)≦10−(1/5)Niからなり、残部は不純物
を除きFeからなる組成で、実質的にオーステナイト相
とマルテンサイト相との2相でなる金属組織でなり、且
つ金属組織中のオーステナイト相が65%以上、前記マ
ルテンサイト相は加工誘起によって生じるマルテンサイ
ト相を含む金属組織としたことを特徴とする高強度低熱
膨張合金であり、第3発明は重量%で、C0.02〜
0.50%、Si0.5%以下、Mn1.5%以下、C
o52〜58%、Cr10%以下もしくはさらにMo3
%以下を合計で5〜10%含み、残部は不純物を除きF
eからなる組成で、実質的にオーステナイト相とマルテ
ンサイト相との2相でなる金属組織でなり、且つ金属組
織中のオーステナイト相が65%以上、前記マルテンサ
イト相は加工誘起によって生じるマルテンサイト相を含
む金属組織としたことを特徴とする高強度低熱膨張合金
である。
That is, in the high twist high strength low thermal expansion alloy wire of the present invention, the first invention has a C content of 0.06-0.
50%, Si 0.5% or less, Mn 1.5% or less, Ni2
5-30%, Co2-16.3%, and the relationship between Ni and Co is 52- (5/3) Ni ≦ Co ≦ 58- (5
/ 3) The composition is composed of Ni and the remainder is composed of Fe excluding impurities, and is substantially composed of an austenite phase and a martensite phase.
And a metal structure consisting of two phases
The martensitic phase is at least 65%,
A high-strength low-thermal-expansion alloy characterized by having a metal structure containing a martensite phase generated by work-inducing . The second invention is a 0.02 to 0.50% by weight C, Si
0.5% or less, Mn 1.5% or less, Ni 30% or less, C
o-58%, one or two of Cr 10% or less and Mo 3% or less, and the relationship between Ni and Co is 52- (5
/ 3) Ni ≦ Co ≦ 58− (5/3) Ni and the relationship between Ni and (Cr + Mo) is 5- (1/5) Ni ≦ (Cr +
Mo) .ltoreq.10- (1/5) Ni, the balance being Fe excluding impurities, substantially austenitic phase
And a martensitic phase.
The austenitic phase in the metallic structure is 65% or more,
The martensite phase is a martensite produced by process induction.
A high-strength low-thermal-expansion alloy characterized by having a metal structure containing a G phase.
0.50%, Si 0.5% or less, Mn 1.5% or less, C
o 52-58%, Cr 10% or less or Mo3
% Or less, and the remainder is F
e, consisting essentially of an austenitic phase and
Metal structure consisting of two phases
The austenite phase in the weave is 65% or more;
Theite phase contains a martensitic phase generated by processing induction.
This is a high-strength low-thermal-expansion alloy characterized by having a metal structure .

【0007】第4発明は、合金組成が第1発明ないし第
3発明のいずれかに記載の上に、さらに重量%で、B
0.02%以下、Mg0.02%以下およびCa0.0
2%以下の1種または2種以上を含み、実質的にオース
テナイト相とマルテンサイト相との2相でなる金属組織
でなり、且つ金属組織中のオーステナイト相が65%以
上、前記マルテンサイト相は加工誘起によって生じるマ
ルテンサイト相を含む金属組織としたことを特徴とする
高強度低熱膨張合金である
In a fourth aspect of the present invention, the alloy composition further comprises, in addition to the alloy composition of any one of the first to third aspects, further comprising:
0.02% or less, Mg 0.02% or less and Ca0.0
Contains 1% or less of 2% or less and is substantially aus
Metal structure consisting of two phases, tenite phase and martensite phase
And the austenite phase in the metal structure is 65% or less.
In addition, the martensite phase is formed by
High strength low thermal expansion alloy is characterized in that a metal structure containing martensite phase.

【0008】[0008]

【作用】以下、本発明の高強度低熱膨張合金の化学組成
範囲について成分限定理由を述べる。Cは本発明合金に
おいて冷間加工時のオーステナイト相の加工硬化と加工
誘起マルテンサイトの強度向上にもっとも寄与する元素
である。また、オーステナイト安定化元素としてNiや
Coの一部を置換することもできる。このような効果を
得るために、Cは、CrまたはMoを含む場合は、最低
0.02%以上、CrとMoをともに含まない場合は合
金の加工硬化性の低下とオーステナイト相を不安定化す
るため、最低0.06%を必要とするが、逆に0.50
%を越えるCは、オーステナイト相を過度に安定化させ
て、マルテンサイト変態を起こしにくくするとともに、
熱膨張係数の増加を招く。したがって、C量は、Crま
たはMoを含む場合は、0.02〜0.50%、Crと
Moのいずれも含まない場合は0.06〜0.50%に
限定する。ステンレスインバーの合金組成とスーパーイ
ンバーの合金組成を直線で結ぶ領域がいずれもインバー
特性を示すことは公知であるが、Cの添加なしでは、本
発明が意図するところの強度と低熱膨張特性を得ること
ができず、本発明は、組成的にはこのような合金組成領
域に適量のCを添加したことが大きな特徴の1つであ
る。より望ましいCの範囲は0.10〜0.30%であ
る。
The reasons for limiting the components in the chemical composition range of the high-strength low-thermal-expansion alloy of the present invention will be described below. C is an element that most contributes to the work hardening of the austenite phase during cold working and the improvement of the strength of work-induced martensite in the alloy of the present invention. Further, a part of Ni or Co can be substituted as an austenite stabilizing element. In order to obtain such an effect, when C contains Cr or Mo, at least 0.02% or more, and when both C and Mo are not contained, the work hardenability of the alloy is lowered and the austenite phase is destabilized. Requires at least 0.06%, but conversely 0.50%
% Of C excessively stabilizes the austenite phase and makes it difficult to cause martensitic transformation.
This leads to an increase in the coefficient of thermal expansion. Therefore, the C content is limited to 0.02 to 0.50% when Cr or Mo is included, and 0.06 to 0.50% when neither Cr nor Mo is included. It is known that any region connecting the alloy composition of stainless steel Invar and the alloy composition of Super Invar with a straight line shows invar properties, but without the addition of C, the strength and low thermal expansion properties intended by the present invention are obtained. One of the major features of the present invention is that an appropriate amount of C is added to such an alloy composition region in terms of composition. A more desirable range of C is 0.10 to 0.30%.

【0009】Si,Mnは脱酸元素として本発明合金に
含まれる。だだし、過度のSi,Mnは熱膨張係数の増
加を招くため、それぞれ0.5%以下および1.5%以
下の添加にとどめる。Ni、Coおよび(Cr+Mo)
は本発明合金において、残部を構成するFeとともに合
金にインバー特性を与えるのに不可欠な元素である。本
発明で3%以下のMoは後述のように等量のCrと置換
できる。Ni、Coおよび(Cr+Mo)の成分範囲
は、図1の斜線部内における相互の関係を満たす範囲内
においてのみ、低熱膨張特性と高強度の両立が可能であ
る。斜線部よりも右上の領域Aの合金組成になると、オ
ーステナイト相が強度の冷間加工を加えても安定にな
り、領域Aの中でも最適な組成を選ぶことで、熱膨張係
数を十分に低めることができるが引張強さがせいぜい1
30kgf/mm2程度でこれ以上の加工硬化が望めない。一
方斜線部よりも左下の領域Bでは、オーステナイト相が
もはや冷間加工の前段階で常温で安定に存在することが
できず、マルテンサイト相が生成するために、低熱膨張
特性が失われる。したがって、本発明合金のNi、Co
および(Cr+Mo)量は、図1に示すごとく、30%
以下のNiと、2〜58%のCoと、10%以下のCr
と3%以下のMoの1種または2種を含み、かつ以下の
NiとCoの関係およびNiと(Cr+Mo)の関係を
満たす範囲内に限定する。この領域は第2発明を意味す
る。 52−(5/3)Ni≦Co≦58−(5/3)Ni ・・・(1) 5−(1/5)Ni≦(Cr+Mo)≦10−(1/5)Ni ・・・(2) ここで、上の両式で、Ni=0と(Cr+Mo)=0とは
同時に起らないとする。
[0009] Si and Mn are contained in the alloy of the present invention as deoxidizing elements. However, excessive amounts of Si and Mn cause an increase in the coefficient of thermal expansion. Therefore, the contents are limited to 0.5% or less and 1.5% or less, respectively. Ni, Co and (Cr + Mo)
In the alloy of the present invention, is an element indispensable for giving Invar characteristics to the alloy together with Fe constituting the balance. In the present invention, 3% or less of Mo can be replaced with an equal amount of Cr as described later. The component ranges of Ni, Co, and (Cr + Mo) can achieve both low thermal expansion characteristics and high strength only within a range that satisfies the mutual relationship in the hatched portion in FIG. When the alloy composition in the region A at the upper right of the hatched portion becomes stable, the austenite phase becomes stable even when a strong cold work is applied, and by selecting the optimum composition in the region A, the coefficient of thermal expansion is sufficiently reduced. Can be produced but the tensile strength is at most 1
At about 30 kgf / mm 2 , no further work hardening can be expected. On the other hand, in the region B at the lower left of the shaded portion, the austenite phase can no longer exist stably at room temperature before the cold working, and the low thermal expansion characteristic is lost because the martensite phase is generated. Therefore, the Ni, Co
And the amount of (Cr + Mo) was 30% as shown in FIG.
The following Ni, 2-58% Co, and 10% or less Cr
And 3% or less of Mo, and is limited to a range satisfying the following relationship between Ni and Co and the relationship between Ni and (Cr + Mo). This region represents the second invention. 52- (5/3) Ni≤Co≤58- (5/3) Ni (1) 5- (1/5) Ni≤ (Cr + Mo) ≤10- (1/5) Ni ... ( 2) Here, in both equations, it is assumed that Ni = 0 and (Cr + Mo) = 0 do not occur at the same time.

【0010】特に(Cr+Mo)が0%の場合は基地の
加工硬化能の低下とオーステナイト相を不安定化するた
め、Cの下限は、0.06%以上にする必要がある。N
iは、(2)式の(Cr+Mo)=0を代入すると、 25≦Ni が得られ、また、ここでNiは前記の30%以下の関係
から、これらのNi値を(1)式に代入すると、 2≦Co≦16.3 が得られ、このNiとCoの領域は第1発明を意味す
る。また、(1)式および(2)式にNi=Oを代入す
ると、それぞれ52≦Co≦58および5≦Cr+Mo
≦10が得られ、この領域は第1発明を意味する。さら
に、Crについては、インバー合金に耐食性を付与する
ため、とくに高Co−高Crの領域では、良好な耐食性
が得られるので、従来のFe−Ni系高強度低熱膨張合
金線のようなかなり厚いAl被覆あるいはZnめっき処
理が不要あるいは、大幅に被膜厚さを減少させることが
でき、送電線の重量の低減に役立つ。また、MoはCr
と同属の元素で、Crと同様の効果をもつために、Cr
の一部を図1の斜線部の領域内で重量%で等量に置換す
ることができる。ただし、置換する量が3.0%を超え
るとMo2C炭化物の析出量が多くなりすぎて、強度、
熱膨張係数および捻回特性の点で不利に働くので、Mo
は3.0%以下とし、かつ、5−(1/5)Ni≦Cr
+Mo≦10−(1/5)Niの範囲内の添加とする。
In particular, when (Cr + Mo) is 0%, the work hardening ability of the matrix decreases and the austenite phase becomes unstable, so the lower limit of C must be 0.06% or more. N
By substituting (Cr + Mo) = 0 in the equation (2), 25 ≦ Ni is obtained. In this case, Ni is substituted into the equation (1) from the relationship of 30% or less. Then, 2 ≦ Co ≦ 16.3 is obtained, and the region of Ni and Co indicates the first invention. Also, when Ni = O is substituted into the equations (1) and (2), 52 ≦ Co ≦ 58 and 5 ≦ Cr + Mo, respectively.
≦ 10, which means the first invention. Further, as for Cr, in order to impart corrosion resistance to the Invar alloy, particularly in the region of high Co-high Cr, good corrosion resistance can be obtained, so that it is quite thick like the conventional Fe-Ni-based high-strength low-thermal-expansion alloy wire. Al coating or Zn plating is unnecessary or the coating thickness can be greatly reduced, which helps to reduce the weight of the transmission line. Mo is Cr
An element belonging to the same genus as Cr and having the same effect as Cr,
Can be replaced by an equivalent amount by weight in the shaded region of FIG. However, when the replacement amount exceeds 3.0%, the precipitation amount of Mo 2 C carbide becomes too large, and the strength,
Mo is disadvantageous in terms of the coefficient of thermal expansion and the torsion characteristics.
Is 3.0% or less, and 5- (1/5) Ni ≦ Cr
+ Mo ≦ 10− (1/5) Ni.

【0011】Bはオーステナイト結晶粒界に偏析して粒
界を強化し、本発明合金の熱間加工性の改善や常温の延
性改善に役立つ。また、MgやCaは、Sと結びついて
粒状の硫化物をつくり、Bと同様、熱間加工性の改善や
常温の延性改善に役立つ。このような効果のために、
B、MgおよびCaは1種または2種以上を同時に添加
することができるが、いずれも0.02%を超える過度
の添加は、合金の融点を下げて、逆に熱間加工性を低下
させるのでB、MgおよびCaはいずれも0.02%以
下の添加とする。なお、Fe−Ni−Co系合金を強化
する添加元素は上記したCやCr、Mo以外に種々考え
られるが、Ti,Nb,Ta,Hf,Zr等の元素はC
との親和力が強く、塊状の硬い1次炭化物を生成し、冷
間加工時に欠陥を作りやすく、引張伸びの低下や捻回値
のばらつきの原因となるので、本発明合金線に対し、過
度の添加は好ましくない。したがって、これらの元素は
いずれも上限を0.2%以下に限定する。
B segregates at the austenite crystal grain boundaries to strengthen the grain boundaries, and is useful for improving the hot workability and ductility at room temperature of the alloy of the present invention. Also, Mg and Ca combine with S to form granular sulfides, and like B, help to improve hot workability and ductility at room temperature. For such an effect,
One, two or more of B, Mg and Ca can be added simultaneously, but excessive addition of more than 0.02% lowers the melting point of the alloy and conversely lowers the hot workability. Therefore, B, Mg and Ca are all added in an amount of 0.02% or less. Various additional elements for strengthening the Fe-Ni-Co-based alloy can be considered in addition to the above-mentioned C, Cr and Mo, but elements such as Ti, Nb, Ta, Hf and Zr are C
Has a strong affinity with the alloy, generates a hard primary carbide in a lump, easily forms defects during cold working, causes a reduction in tensile elongation and a variation in torsion value. Addition is not preferred. Therefore, each of these elements limits the upper limit to 0.2% or less.

【0012】また、O、N等のガス成分は合金中で介在
物を生成し、同じく捻回値のばらつきの原因となるの
で、本発明合金線においてはそれぞれ、0.01%以下
に限定する。また、脱酸や脱硫を目的として添加される
Al,REM等の元素は通常含まれる下記に示す量の含
有はなんら特性上に差し支えない。 Al,REM ≦ 0.1% 本発明にかかる合金は、上述した合金元素と残部Feか
ら構成される高強度低熱膨張合金である。次に、本願の
第5発明合金において、オーステナイト量は65%以上
とする。オーステナイト量が65%未満であると、熱膨
張係数が大きくなり、本発明の低熱膨張の特性が低下す
るからである。
Further, since gas components such as O and N form inclusions in the alloy and similarly cause variation in the twist value, each of the alloy wires of the present invention is limited to 0.01% or less. . In addition, elements such as Al and REM added for the purpose of deoxidation and desulfurization, which are usually contained in the following amounts, may have no problem in properties. Al, REM ≦ 0.1% The alloy according to the present invention is a high-strength low-thermal-expansion alloy composed of the above-mentioned alloy elements and the balance Fe. Next, in the fifth invention alloy of the present application, the amount of austenite is set to 65% or more. If the amount of austenite is less than 65%, the coefficient of thermal expansion increases, and the low thermal expansion characteristic of the present invention decreases.

【0013】上記の組成の本発明合金は、熱間加工後あ
るいは固溶化熱処理後に急冷しても常温ではオーステナ
イト相が安定である。しかし、十分に冷間加工を加える
ことで、加工誘起変態によって、マルテンサイト変態を
生じる。冷間加工による加工硬化は、C添加によるオー
ステナイト基地の加工硬化能アップに加え、マルテンサ
イト変態による効果が大きく、特に高Co、高(Cr+
Mo)領域での強度は、ピアノ線に匹敵するレベルであ
る。また、本発明合金は線材に加工すると、特に冷間引
抜の中間工程で焼鈍処理を行なわなくても、40回前後
の安定した捻回値が得られる。このレベルの捻回値は従
来のピアノ線の捻回値のレベルと同等のものであり、こ
れは、冷間加工によってすでに存在する加工誘起マルテ
ンサイト相あるいは捻回中におきるオーステナイト相か
らマルテンサイト相への変態による応力の緩和による効
果が大きいものと推察される。インバー合金の基地が強
度の冷間加工を加えても、オーステナイト相が安定の場
合は、熱膨張係数は低いが引張強さが不十分であった
り、線材に冷間加工した際、単純な冷間引抜の工程で
は、捻回特性が不十分になったりする。逆に、オーステ
ナイト相が不安定になりすぎると、熱間加工後あるい
は、固溶化処理後の冷却過程で、マルテンサイト変態が
生じて、もはやインバー特性を得ることができなくな
る。以上述べた理由により、本発明合金が高い強度と低
い熱膨張係数および高い捻回値を同時に得るためには、
オーステナイト相と加工誘起変態によって、生じるマル
テンサイト相との2相をあわせもつ必要がある。
In the alloy of the present invention having the above composition, the austenite phase is stable at room temperature even after quenching after hot working or solution heat treatment. However, by sufficiently performing cold working, a martensitic transformation occurs due to a work-induced transformation. Work hardening by cold working has a large effect on martensitic transformation, in addition to an increase in work hardening ability of austenite matrix by addition of C, and particularly high Co and high (Cr +
The intensity in the Mo) region is at a level comparable to a piano wire. Further, when the alloy of the present invention is processed into a wire, a stable torsion value of about 40 times can be obtained without performing an annealing treatment particularly in an intermediate step of cold drawing. The torsion value at this level is equivalent to the level of the torsion value of a conventional piano wire, which is based on the work-induced martensite phase already existing by cold working or the austenite phase that occurs during twisting. It is presumed that the effect of the relaxation of the stress due to the transformation into the phase is large. If the austenitic phase is stable even when the matrix of the Invar alloy is subjected to a strong cold working, the coefficient of thermal expansion is low but the tensile strength is insufficient, or when the wire is cold worked, a simple cold working is performed. In the thinning process, the torsion characteristics may be insufficient. Conversely, if the austenite phase becomes too unstable, martensitic transformation occurs in the cooling process after hot working or after solution treatment, and it is no longer possible to obtain invar characteristics. For the reasons described above, in order for the alloy of the present invention to simultaneously obtain high strength, a low coefficient of thermal expansion, and a high torsion value,
It is necessary to have two phases, that is, an austenite phase and a martensite phase generated by the process-induced transformation.

【0014】このような加工誘起マルテンサイトのオー
ステナイトへの逆変態温度は550℃以上の温度であ
り、送電線として使用される最高温度である300℃前
後の連続的な使用は本発明合金において特性上、なんら
問題はない。また、加工誘起マルテンサイトは、送電線
として使用される際の中間および仕上げ製造工程におけ
るAl被覆処理やZnメッキ処理のような400〜500
℃の加熱で一部が炭化物とフェライトに分解することも
あるが、本発明合金において、少量のフェライトの存在
は、特性上なんら問題はない。
The reverse transformation temperature of such work-induced martensite to austenite is a temperature of 550 ° C. or more, and continuous use at about 300 ° C., which is the highest temperature used as a power transmission line, is a characteristic of the alloy of the present invention. Above, there is no problem. Further, the work-induced martensite is used in the intermediate and finish production steps when used as a transmission line, such as in the case of Al coating treatment or Zn plating treatment.
Although a part of the alloy may be decomposed into carbide and ferrite by heating at ° C., the presence of a small amount of ferrite in the alloy of the present invention does not cause any problem in characteristics.

【0015】[0015]

【実施例】表1に示す組成のFe−Co−{Ni−(C
r+Mo)}系合金を溶製し、熱間鍛造によって直径1
3.0mmの丸棒に仕上げた。その後、980℃で30分
保持後水冷の固溶化処理と表面の皮剥を行ない、直径1
2.3mmとした。さらにこの試料を用いて、熱膨張率を
測定するとともに、冷間引抜により加工率86%で、直
径4.6mmのコイルを作製した。冷間引抜は、ごく一般
的なアプローチ角12゜のWC製のダイスを使用し、1
パスあたり、20%前後の減面率で伸線した。その際の
伸線速度は、通常の鋼線の伸線速度と同程度の速度で行
なった。これらの線材を用いて最終加工ままの状態で引
張試験、捻回試験、熱膨張試験、巻付・巻戻し試験およ
び合金中のオーステナイト量の測定を実施した。この結
果を表2に示す。
EXAMPLES The composition of Fe-Co- @ Ni- (C
r + Mo)} alloy is melted and hot forged with a diameter of 1
Finished into a 3.0 mm round bar. After that, the solution was kept at 980 ° C. for 30 minutes, and then subjected to a solution treatment of water cooling and peeling of the surface.
2.3 mm. Further, using this sample, the coefficient of thermal expansion was measured, and a coil having a workability of 86% and a diameter of 4.6 mm was produced by cold drawing. For cold drawing, a very common WC die with an approach angle of 12 ° is used.
Wire was drawn at a reduction in area of about 20% per pass. The drawing speed at that time was the same speed as the drawing speed of a normal steel wire. Using these wires, a tensile test, a torsion test, a thermal expansion test, a winding / unwinding test, and a measurement of the amount of austenite in the alloy were performed in the state of final processing. Table 2 shows the results.

【0016】引張試験の伸びは標点間250mmで測定
し、引張強さと絞りについていずれも5本の平均値を求
めた。また捻回試験は、掴み間を自己径の100倍と
し、回転数60rpmで破断までの捻回値をそれぞれ1
0本測定して、平均値を求めた。巻付・巻戻し試験につ
いては、自己径の1.5倍の芯線に各8回巻付・巻戻し
した際に試験片が破断するか否かを調査した。さらに一
部の試料については、試料横断面のX線回折を行ない、
以下の式によりオーステナイト量を求めた。 オーステナイト相(%)={Iγ/(Iγ+Iα)}×
100 Iγ=Iγ(111)+Iγ(200)+Iγ(220)+Iγ(311)γ(111)等はオーステナイトのX線回折強度 Iα=Iα(110)+Iα(200)+Iα(220)+Iα(211)α(110)等はマルテンサイトのX線回折強度
The elongation in the tensile test was measured at a point of 250 mm between the gauge points, and the average value of the tensile strength and the drawing was determined for each of the five specimens. In the torsion test, the distance between the grips was set to 100 times the self-diameter, and the torsion value until breaking at a rotation speed of 60 rpm was 1 for each.
Zero measurements were made to determine the average value. Regarding the winding / unwinding test, it was examined whether or not the test piece would break when wound and unwound eight times each on a core wire 1.5 times its own diameter. Further, for some samples, X-ray diffraction of the sample cross section was performed,
The amount of austenite was determined by the following equation. Austenite phase (%) = { / ( + )} ×
100 I γ = I γ (111 ) + I γ (200) + I γ (220) + I γ (311) I γ (111) , etc. X-ray diffraction intensity of austenite I α = I α (110) + I α (200) + I α (220) + I α (211) I α (110) is the X-ray diffraction intensity of martensite

【0017】[0017]

【表1】 [Table 1]

【0018】表1に示す合金のうち、No.1〜16は本
発明合金、No.21〜25は比較合金およびNo.31は、
特開平3−115543号に開示される高強度低熱膨張
合金である。また、No.1〜25のNiとCoあるいは
NiとCr(+Mo)の関係は図1にあわせ示してい
る。表2より、本発明合金は86%の冷間加工後に14
5〜200kgf/mm2の引張強さと6.0×10マイナス
6乗/℃以下の熱膨張係数をあわせもち、従来のピアノ
線と同等あるいはそれに近い引張強さとピアノ線の1/
2以下の熱膨張係数が得られることがわかる(ピアノ線
の熱膨張係数α30-230℃≒11.5〜13×10マイナ
ス6乗/℃)。これらの特性は従来のFe−Ni系の高
強度低熱膨張合金、たとえば、従来合金No.31と比べ
ると、熱膨張係数はやや劣るが、引張強度には格段の差
が見られる。既存鉄塔の建て替えなしに、送電線を張り
替えるためには、ピアノ線と同等の強度を持つことが絶
対条件となるので、弛度の点では、やや従来のFe−N
i系の高強度低熱膨張合金線に劣るが、強度面では、は
るかに従来のFe−Ni系の高強度低熱膨張合金線を上
回ることがわかる。また、本発明合金の中でも、B、M
gおよびCaのいずれも添加していないNo.4,12〜
14および16は他の本発明合金に比べ、引張の絞り値
が小さいが、これは、これらの微量元素の添加の有無に
よるところが大きい。
Of the alloys shown in Table 1, Nos. 1 to 16 are alloys of the present invention, Nos. 21 to 25 are comparative alloys, and No. 31 is
This is a high-strength low-thermal-expansion alloy disclosed in JP-A-3-115543. The relationship between Ni and Co or Ni and Cr (+ Mo) of Nos. 1 to 25 is also shown in FIG. Table 2 shows that the alloy of the present invention was 14% after 86% cold working.
It has a tensile strength of 5 to 200 kgf / mm 2 and a coefficient of thermal expansion of 6.0 × 10−6 / ° C. or less.
It can be seen that a coefficient of thermal expansion of 2 or less can be obtained (coefficient of thermal expansion of piano wire α 30-230 ° C. ≒ 11.5-13 × 10 minus 6 / ° C.). These properties are slightly inferior in the coefficient of thermal expansion as compared with the conventional high-strength Fe-Ni-based low-thermal-expansion alloy, for example, conventional alloy No. 31, but there is a marked difference in tensile strength. In order to replace the transmission line without rebuilding the existing tower, it is absolutely necessary to have the same strength as the piano wire, so in terms of sag, the conventional Fe-N
Although it is inferior to the i-type high-strength low-thermal-expansion alloy wire, it can be seen that the strength is far higher than that of the conventional Fe-Ni-based high-strength low-thermal-expansion alloy wire. Further, among the alloys of the present invention, B, M
Nos. 4, 12 to which neither g nor Ca was added
14 and 16 have smaller tensile drawing values than the other alloys of the present invention, but this is largely due to the presence or absence of these trace elements.

【0019】[0019]

【表2】 [Table 2]

【0020】また、表2より、本発明合金は高い捻回値
と優れた巻付・巻戻し特性を有することがわかる。この
ような効果は、冷間加工時に存在する加工誘起マルテン
サイトおよびこれらの各種試験の塑性変形中に生じるオ
ーステナイト相から、マルテンサイト相への変態によっ
てもたらされる。表2より本発明合金No.2,5,9,
11,14および15は、68〜88%のオーステナイ
ト相と約12〜32%のマルテンサイト相からなってい
ることがわかる(正確にはMoやCの炭化物も少量存在
する)。通常、オーステナイト安定型のインバー合金
は、冷間加工によって熱膨張係数が低下するが、本発明
合金は冷間加工前よりも、冷間加工後の状態の方が熱膨
張係数がいずれも高くなることから、No.2,5,9,
11,14および15以外の本発明合金もすべて冷間加
工によって加工誘起変態が生じていると思われる。
Further, from Table 2, it can be seen that the alloy of the present invention has a high twist value and excellent winding / unwinding characteristics. Such an effect is brought about by the transformation from the austenitic phase which occurs during the plastic deformation of the work-induced martensite and the various tests present during the cold working to the martensite phase. From Table 2, the alloys of the present invention Nos. 2, 5, 9,
It can be seen that 11, 14, and 15 consist of 68-88% of austenite phase and about 12-32% of martensite phase (more precisely, small amounts of Mo and C carbides are also present). Usually, the austenitic stable type Invar alloy has a lower coefficient of thermal expansion due to cold working, but the alloy of the present invention has a higher coefficient of thermal expansion in the state after cold working than before cold working. Therefore, No.2,5,9,
All of the alloys of the present invention other than 11, 14, and 15 are considered to have undergone work-induced transformation by cold working.

【0021】一方、比較合金No.21のようにCが本発
明合金に比べて低い場合、あるいはNo.22のようにC
oが本発明合金よりも低く図1の領域Bに属するように
なると、オーステナイト相はもはや常温で安定に存在す
ることができず、マルテンサイト変態を起こして熱膨張
係数が高くなってしまう(No.21ではオーステナイト量
はわずか3%である)。逆に、比較合金No.23や24の
ようにCrやCoが高すぎて、いずれか一方でも図1の
領域Aに属するようになるとオーステナイト相が安定に
なりすぎて(No.23,24では100%オーステナイ
ト相で加工誘起変態が生じていない)、熱膨張係数は、
従来合金No.31と同様冷間加工によって低くなるが、
引張強さが本発明合金よりも劣るようになる。また、比
較合金No.23、24および従来合金No.31は、皮剥後
に単純に冷間加工を行なうだけでは、捻回値が10回以
下の低値となり、送電線の芯線の用途に対しては、適さ
なくなる。また、比較合金No.25は、NiとCoは本
願の第1発明合金の範囲を満たすが、(Cr+Mo)無
添加でCが0.04%の組成のものである。この合金の
場合は、加工硬化に寄与するCrやCが無添加あるいは
添加されていても少量のために、冷間加工で熱膨張係数
が増加し、捻回値も高く、オーステナイト量も60%で
確かに加工誘起マルテンサイト変態を生じているが、強
度がそれほど高くはなっておらず、本発明合金No.6と
同程度のC量ながら、Crも含まないために両者には、
強度に大きな差が出ている。
On the other hand, when C is lower than that of the alloy of the present invention as in Comparative Alloy No. 21, or when C is lower as in No. 22
When o is lower than that of the alloy of the present invention and belongs to the region B of FIG. 1, the austenite phase can no longer exist stably at room temperature, and undergoes martensitic transformation to increase the coefficient of thermal expansion (No. At .21 the amount of austenite is only 3%). Conversely, when the Cr or Co is too high as in Comparative Alloy Nos. 23 and 24, and either of them belongs to the region A in FIG. 1, the austenite phase becomes too stable (No. 23, 24). No work-induced transformation occurs in the 100% austenite phase), and the coefficient of thermal expansion is
Like conventional alloy No. 31, it is lowered by cold working,
The tensile strength becomes inferior to the alloy of the present invention. Further, the comparative alloy Nos. 23 and 24 and the conventional alloy No. 31 have a low torsion value of 10 times or less if simply cold-worked after peeling. Becomes unsuitable. Comparative alloy No. 25 has a composition in which Ni and Co satisfy the range of the first invention alloy of the present application, but do not contain (Cr + Mo) and C is 0.04%. In the case of this alloy, even if Cr or C that contributes to work hardening is not added or is added in a small amount, the coefficient of thermal expansion increases by cold working, the torsion value is high, and the amount of austenite is 60%. Indeed, work-induced martensitic transformation has occurred, but the strength is not so high, and although the amount of C is almost the same as that of the alloy No. 6 of the present invention but does not contain Cr, both of them have:
There is a big difference in strength.

【0022】[0022]

【発明の効果】以上述べたように本発明の合金は、従来
の低熱膨張合金より、ワンランク上、つまりピアノ線と
同等あるいはそれに近い引張強さと、簡便な製造工程で
もピアノ線並みの安定して高い捻回値が得られ、ピアノ
線の1/2以下の低い熱膨張係数を有するものである。
本発明合金により、信頼性に優れ、従来のピアノ線を芯
線に用いた送電線よりも送電容量が高い低弛度送電線の
製造が可能となり、したがって、比較的容易に送電線の
送電容量アップが可能となる。
As described above, the alloy of the present invention is one rank higher than that of the conventional low thermal expansion alloy, that is, has a tensile strength equivalent to or close to that of a piano wire, and is as stable as a piano wire even in a simple manufacturing process. It has a high torsion value and has a low coefficient of thermal expansion less than half that of a piano wire.
The alloy of the present invention makes it possible to manufacture a low sag transmission line that is excellent in reliability and has a higher transmission capacity than a transmission line using a conventional piano wire as a core wire, and therefore can relatively easily increase the transmission capacity of the transmission line. Becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明合金および比較合金の各化学成分をプロ
ットした図である。
FIG. 1 is a diagram in which respective chemical components of an alloy of the present invention and a comparative alloy are plotted.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 302 C22C 38/08 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C22C 38/00 302 C22C 38/08

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、C0.06〜0.50%、S
i0.5%以下、Mn1.5%以下、Ni25〜30
%、Co2〜16.3%を含み、さらにNiとCoの関
係が52−(5/3)Ni≦Co≦58−(5/3)N
iからなり、残部は不純物を除きFeからなる組成で、
実質的にオーステナイト相とマルテンサイト相との2相
でなる金属組織でなり、且つ金属組織中のオーステナイ
ト相が65%以上、前記マルテンサイト相は加工誘起に
よって生じるマルテンサイト相を含む金属組織としたこ
とを特徴とする高強度低熱膨張合金。
C. 0.06 to 0.50% by weight, S
i 0.5% or less, Mn 1.5% or less, Ni 25 to 30
%, Co2 to 16.3%, and the relationship between Ni and Co is 52- (5/3) Ni ≦ Co ≦ 58- (5/3) N
i, and the balance is Fe, excluding impurities.
Substantially two phases of austenite and martensite
Austenitic metal structure
G phase is 65% or more, and the martensite phase
A high-strength low-thermal-expansion alloy characterized by having a metal structure containing a martensitic phase generated thereby.
【請求項2】 重量%で、C0.02〜0.50%、S
i0.5%以下、Mn1.5%以下、Ni30%以下、
Co2〜58%、Cr10%以下とMo3%以下の1種
または2種を含み、さらにNiとCoの関係が52−
(5/3)Ni≦Co≦58−(5/3)NiおよびN
iと(Cr+Mo)の関係が5−(1/5)Ni≦(C
r+Mo)≦10−(1/5)Niからなり、残部は不
純物を除きFeからなる組成で、実質的にオーステナイ
ト相とマルテンサイト相との2相でなる金属組織でな
り、且つ金属組織中のオーステナイト相が65%以上、
前記マルテンサイト相は加工誘起によって生じるマルテ
ンサイト相を含む金属組織としたことを特徴とする高強
度低熱膨張合金。
2. 0.02 to 0.50% by weight of C,
i 0.5% or less, Mn 1.5% or less, Ni 30% or less,
Co2 to 58%, one or two of Cr 10% or less and Mo 3% or less, and the relationship between Ni and Co is 52-
(5/3) Ni ≦ Co ≦ 58− (5/3) Ni and N
The relationship between i and (Cr + Mo) is 5- (1/5) Ni ≦ (C
r + Mo) ≦ 10− (1/5) Ni, and the remainder is composed of Fe excluding impurities, and is substantially austenitic.
Metal structure consisting of two phases,
And the austenite phase in the metal structure is 65% or more,
The martensitic phase is formed by the process
A high-strength low-thermal-expansion alloy characterized by having a metal structure containing an incite phase .
【請求項3】 重量%で、C0.02〜0.50%、S
i0.5%以下、Mn1.5%以下、Co52〜58
%、Cr10%以下もしくはさらにMo3%以下を合計
で5〜10%含み、残部は不純物を除きFeからなる組
成で、実質的にオーステナイト相とマルテンサイト相と
の2相でなる金属組織でなり、且つ金属組織中のオース
テナイト相が65%以上、前記マルテンサイト相は加工
誘起によって生じるマルテンサイト相を含む金属組織
したことを特徴とする高強度低熱膨張合金。
C. 0.02 to 0.50% by weight, S
i 0.5% or less, Mn 1.5% or less, Co 52 to 58
%, 10% or less of Cr or 3% or less of Mo in total, and the remainder is composed of Fe excluding impurities, substantially consisting of an austenite phase and a martensite phase.
Metal structure consisting of two phases
The martensite phase is processed by 65% or more of the tenite phase
A high-strength low-thermal-expansion alloy characterized by having a metal structure containing a martensite phase generated by induction .
【請求項4】 合金組成が請求項1〜3のいずれかに記
載の上に、さらに重量%で、B0.02%以下、Mg
0.02%以下およびCa0.02%以下の1種または
2種以上を含み、実質的にオーステナイト相とマルテン
サイト相との2相でなる金属組織でなり、且つ金属組織
中のオーステナイト相が65%以上、前記マルテンサイ
ト相は加工誘起によって生じるマルテンサイト相を含む
金属組織としたことを特徴とする高強度低熱膨張合金
4. The alloy according to claim 1, wherein said alloy composition further comprises, by weight%, B 0.02% or less,
It comprises one or more of the following and Ca0.02% 0.02% substantially austenitic phase and martensite
Metal structure consisting of two phases, site phase and metal structure
65% or more of the austenite phase in
The g phase contains a martensitic phase generated by processing induction
A high-strength low-thermal-expansion alloy characterized by having a metal structure .
JP10256492A 1991-10-25 1992-04-22 High strength low thermal expansion alloy Expired - Fee Related JP3216824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10256492A JP3216824B2 (en) 1991-10-25 1992-04-22 High strength low thermal expansion alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27927991 1991-10-25
JP3-279279 1991-10-25
JP10256492A JP3216824B2 (en) 1991-10-25 1992-04-22 High strength low thermal expansion alloy

Publications (2)

Publication Number Publication Date
JPH05171358A JPH05171358A (en) 1993-07-09
JP3216824B2 true JP3216824B2 (en) 2001-10-09

Family

ID=26443260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10256492A Expired - Fee Related JP3216824B2 (en) 1991-10-25 1992-04-22 High strength low thermal expansion alloy

Country Status (1)

Country Link
JP (1) JP3216824B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101910744B1 (en) * 2017-07-26 2018-10-22 포항공과대학교 산학협력단 Medium-entropy alloys with excellent cryogenic properties

Also Published As

Publication number Publication date
JPH05171358A (en) 1993-07-09

Similar Documents

Publication Publication Date Title
KR100264494B1 (en) Precipitation hardenable martensitic stainless steel
JP4212553B2 (en) High-strength stainless steel wire with excellent twist value and rigidity and manufacturing method thereof
JP3288497B2 (en) Austenitic stainless steel
AU2003200351B2 (en) Duplex stainless steel for urea manufacturing plants
JP6858931B2 (en) Stainless steel wire and its manufacturing method, and spring parts
JP2003525354A (en) Duplex stainless steel
JP3106674B2 (en) Martensitic stainless steel for oil wells
JP5154122B2 (en) High strength stainless steel and high strength stainless steel wire using the same
JP3842053B2 (en) High strength low thermal expansion alloy with excellent twisting characteristics and its alloy wire
JP4797305B2 (en) Invar alloy wire with excellent strength and twisting characteristics and manufacturing method thereof
JP2008045177A (en) High strength high elasticity stainless steel and stainless steel wire
JP3746877B2 (en) Stainless steel wire for springs with excellent corrosion resistance and spring characteristics
JP3011596B2 (en) Low thermal expansion high strength core wire for transmission line and low sag wire using the same
JP3216824B2 (en) High strength low thermal expansion alloy
JP2668113B2 (en) Method for producing high-strength non-magnetic stainless steel material with excellent workability
JPH08100242A (en) Alloy wire with high strength, high toughness and low thermal expansion and its production
JP7504672B2 (en) Stainless steel wire, its manufacturing method, and spring parts
JP3061977B2 (en) High strength low thermal expansion alloy
JPH07228947A (en) Alloy with high strength and low thermal expansion
JP2715033B2 (en) Non-magnetic PC steel wire and method of manufacturing the same
JP3757027B2 (en) High strength hot rolled steel with excellent weldability, high strength steel wire and high strength steel bar using the same
JPH0570894A (en) Alloy wire having high strength and low thermal expansion and excellent in twisting characteristic and its production
JP2000256794A (en) High toughness high damping alloy and its production
JP3191010B2 (en) High-strength low-thermal-expansion alloy wire having excellent torsion characteristics and method for producing the same
JPH06279945A (en) Wire with high strength and low thermal expansion and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees