JP3191010B2 - High-strength low-thermal-expansion alloy wire having excellent torsion characteristics and method for producing the same - Google Patents

High-strength low-thermal-expansion alloy wire having excellent torsion characteristics and method for producing the same

Info

Publication number
JP3191010B2
JP3191010B2 JP10320391A JP10320391A JP3191010B2 JP 3191010 B2 JP3191010 B2 JP 3191010B2 JP 10320391 A JP10320391 A JP 10320391A JP 10320391 A JP10320391 A JP 10320391A JP 3191010 B2 JP3191010 B2 JP 3191010B2
Authority
JP
Japan
Prior art keywords
less
alloy wire
heat treatment
wire
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10320391A
Other languages
Japanese (ja)
Other versions
JPH04311548A (en
Inventor
光司 佐藤
勉 乾
醇昌 門脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP10320391A priority Critical patent/JP3191010B2/en
Publication of JPH04311548A publication Critical patent/JPH04311548A/en
Application granted granted Critical
Publication of JP3191010B2 publication Critical patent/JP3191010B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は低弛度耐熱送電線用芯線
等に使用される強度と捻回特性に優れたFe−Ni系の
捻回特性の優れた高強度低熱膨張合金線に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength, low-thermal-expansion alloy wire having excellent torsion characteristics of an Fe-Ni series having excellent strength and torsion characteristics, which is used for a core wire for a low sag heat-resistant transmission line. It is.

【0002】[0002]

【従来の技術】近年、高強度で低い熱膨張係数をもつF
e−Ni系の合金線が、たとえば低弛度の架空送電線
(ACSR)中心部用の線として、その開発が望まれて
いる。このような用途に対し、特公昭56−45990
号、特開昭55−41928号、特公昭57−1794
2号、特開昭55−122855号、特開昭55−12
8565号、特開昭55−131155号、特開昭56
−142851号、特開昭57−26144号、特開昭
57−41350号、特開昭58−11767号および
特開昭58−11768号等の合金が開示されている。
さらに、これらの合金の強度と捻回特性を向上させる目
的で、特公昭63−56289号、特公昭60−346
13号、特開昭57−110659号、特公平2−15
606号、特開昭58−77525号、特開昭58−2
10126号、特開昭58−221225号、特開昭5
7−41350号、特公平2−41577号および特公
平2−55495号等の高強度低熱膨張合金線あるいは
合金線の製造方法が開示されている。
2. Description of the Related Art In recent years, F having a high strength and a low coefficient of thermal expansion has been developed.
It is desired to develop an e-Ni-based alloy wire, for example, as a wire for the central portion of an overhead transmission line (ACSR) with low sag. For such an application, Japanese Patent Publication No. 56-59990
No., JP-A-55-41928, JP-B-57-1794.
No. 2, JP-A-55-122855, JP-A-55-12
No. 8565, JP-A-55-131155, JP-A-56
Japanese Patent Application Laid-Open Nos. -142851, 57-26144, 57-41350, 58-11767 and 58-11768 are disclosed.
Furthermore, for the purpose of improving the strength and torsion characteristics of these alloys, JP-B-63-56289, JP-B-60-346.
No. 13, JP-A-57-110659, Tokuhei 2-15
606, JP-A-58-77525, JP-A-58-2
10126, JP-A-58-221225, JP-A-5-222
No. 7-41350, Japanese Patent Publication No. 2-41577 and Japanese Patent Publication No. 2-55495 disclose a method for producing a high-strength low-thermal-expansion alloy wire or alloy wire.

【0003】[0003]

【発明が解決しようとする課題】上述した従来の高強度
低熱膨張合金はいずれもNiまたはNi+Coを35〜
50%の範囲で含み、さらにCやNの侵入型固溶強化元
素やCr、Moなどの数種の置換型固溶強化元素やT
i、Nbなどの数種の析出強化型元素を低熱膨張特性を
損なわない範囲で含み残部Feからなる合金組成をも
つ。これらの合金はいずれも固溶化熱処理あるいは、焼
鈍熱処理状態においては、良好な捻回特性が得られるも
のの、引張強さはたかだか50〜80kgf/mm2の範囲で
あり、この状態では低弛度架空送電線用芯線の用途には
適さない。しかし、これらの合金はいずれも加工硬化能
が、従来の低熱膨張合金である36%Ni−Fe合金
や、42%Ni−Fe合金など代表的なFe−Ni系合
金に比べて大きく、冷間加工によって100kgf/mm2
上の引張強さが得られる。ただし、単純に冷間域で強加
工を加えただけでは捻回特性は大きく低下してしまうの
で、引張強さと捻回特性を両立させるために種々の製造
方法が提案されている。
The above-mentioned conventional high-strength low-thermal-expansion alloys all contain 35% or more of Ni or Ni + Co.
In the range of 50%, C and N interstitial solid solution strengthening elements, and several substitutional solid solution strengthening elements such as Cr and Mo, and T
It has an alloy composition consisting of several kinds of precipitation strengthening elements such as i and Nb in a range not impairing the low thermal expansion characteristics, and the balance being Fe. In any of these alloys, in the solution heat treatment or the annealing heat treatment, good torsion characteristics can be obtained, but the tensile strength is at most 50 to 80 kgf / mm 2 , and in this state, low sag overhead It is not suitable for applications of core wires for power transmission lines. However, each of these alloys has a higher work hardening ability than a typical Fe-Ni alloy such as a 36% Ni-Fe alloy or a 42% Ni-Fe alloy which is a conventional low thermal expansion alloy, A tensile strength of 100 kgf / mm 2 or more can be obtained by processing. However, simply applying strong working in the cold region greatly reduces the torsion characteristics. Therefore, various manufacturing methods have been proposed to achieve both tensile strength and torsion characteristics.

【0004】たとえば、特公昭60−34613号や特
公平2−15606号ではいずれも冷間加工の前段階ま
たは冷間加工の途中で歪取焼鈍を実施し、強度と捻回特
性の両立が試みられている。これらの製造方法には皮剥
によって生じる表面の歪みを焼鈍熱処理で除去すること
により、良好な捻回特性が得られると明記されている。
本発明者もこの手法によって、高強度低熱膨張合金線の
製造テストを行なったところ、必ずしも捻回特性は安定
せず、5〜80回の範囲でばらつきが見られた。
For example, in Japanese Patent Publication No. 60-34613 and Japanese Patent Publication No. 2-15606, strain relief annealing is performed in a stage before cold working or in the middle of cold working to try to achieve both strength and torsion characteristics. Have been. It is specified in these manufacturing methods that good twisting characteristics can be obtained by removing surface distortion caused by peeling by annealing heat treatment.
The present inventor also performed a manufacturing test of a high-strength low-thermal-expansion alloy wire by this method. As a result, the twisting characteristics were not always stable, and variation was observed in the range of 5 to 80 times.

【0005】これに対し、特公平2−41577号およ
び特公平2−55495号に開示される合金線は上記の
特公昭60−34613号や特公平2−15606号と
ほぼ同一の製造プロセスをとるが、ここでは、冷間加工
後の焼鈍時に生成するMo2C炭化物が強度と捻回特性
の向上に寄与すると述べられている。特公平2−415
77号および特公平2−55495号の発明者の1人は
「Effect of processes of drawing on torsional prop
erty of high-tensile strength Invar alloywire」(Wir
e Journal International vol.21,No.4(1988),P84)と題
して捻回特性の改善に触れている。
On the other hand, the alloy wire disclosed in Japanese Patent Publication No. 2-41577 and Japanese Patent Publication No. 2-55495 uses almost the same manufacturing process as the above-mentioned Japanese Patent Publication No. 60-34613 and Japanese Patent Publication No. 2-15606. However, it is described here that Mo2C carbide generated during annealing after cold working contributes to improvement in strength and torsion characteristics. Tokuho 2-415
One of the inventors of Japanese Patent Publication No. 77 and Japanese Patent Publication No. 2-55495 is "Effect of processes of drawing on torsional prop".
erty of high-tensile strength Invar alloywire '' (Wir
e Journal International vol.21, No.4 (1988), p.

【0006】この論文において、捻回特性の改善は冷間
加工後にMo2C炭化物を析出させる焼鈍熱処理を実施
するだけでは不十分で、とくに引抜後の合金線の横断面
の硬さ分布において、中心部の硬さがもっとも高くなる
ように、ダイスの引抜角を小さく、かつ潤滑性を高める
ためのクリストファーソンチューブと称される特殊な治
具が必要であると報告されている。この論文より、上記
の4つの特許公報(特公昭60−34613号、特公平
2−15606号、特公平2−41577号および特公
平2−55495号)に開示されている方法は、いずれ
も捻回特性の優れた高強度低熱膨張合金線の製造に関
し、必要条件ではあっても、十分条件ではないことが明
らかである。
In this paper, the improvement of the torsion characteristics is not sufficient only by performing an annealing heat treatment for precipitating Mo 2 C carbide after cold working. In particular, in the hardness distribution of the cross section of the alloy wire after drawing, It is reported that a special jig called a Christopherson tube is required to reduce the die withdrawal angle and increase lubricity so that the hardness of the central portion becomes the highest. From this paper, the methods disclosed in the above-mentioned four patent publications (Japanese Patent Publication No. 60-34613, Japanese Patent Publication No. 2-15606, Japanese Patent Publication No. 2-41577 and Japanese Patent Publication No. 2-55495) are all disclosed by Regarding the production of a high-strength low-thermal-expansion alloy wire having excellent turning characteristics, it is clear that the necessary conditions are not sufficient conditions.

【0007】しかして、ダイスの引抜角を小さくした
り、潤滑性を高めるためのクリストファーソンチューブ
と称される特殊な治具を使用して捻回特性を高めること
は、引抜パス回数の増大(引抜角が小さくなると1パス
あたりの減面率を高くとることが出来ない)を招き、ラ
インの工程変更にも時間がとられ、全長数kmにもおよ
ぶ合金線の製造に対してははなはだ効率の悪い製造方法
である。以上の問題点を鑑み、本発明者らは捻回機構を
解明した上で、通常の磨棒鋼の製造プロセスを利用し
て、なおかつ高い捻回値が得られる合金線の製造を試み
た。
However, increasing the twisting characteristics by using a special jig called a Christopherson tube for reducing the die withdrawal angle or improving lubricity increases the number of drawing passes ( If the drawing angle is small, it is not possible to increase the reduction in area per pass), and it takes time to change the process of the line, and it is extremely efficient for the production of alloy wires having a total length of several km. Is a bad manufacturing method. In view of the above problems, the present inventors have elucidated the twisting mechanism, and have attempted to manufacture an alloy wire that can obtain a high twisting value by using a normal process of manufacturing a steel bar.

【0008】[0008]

【課題を解決するための手段】本発明者らは、種々の添
加元素を配合したFe−Ni系合金の熱間圧延素材を用
い、いくつかの製造プロセスによって素線を製造し、そ
の合金線の引張特性、捻回特性および熱膨張係数を調査
した。その結果、120kgf/mm2以上の引張強さをもつ
低熱膨張合金線を得るためには合金線の横断面の集合組
織を揃えることが重要で、特に横断面の集合組織におい
て{111}結晶面の配向度を60%以上とすること
で、いずれも安定して70回以上の高い捻回値が得られ
ることがわかった。さらにこのような{111}結晶面
の配向度の高い合金線を得るための最適な固溶化処理、
回復熱処理および冷間加工条件も見だした。また、これ
らのFe−Ni系高捻回高強度高強度低熱膨張合金の中
でもとくに実際の送電線の通常使用上限温度である23
0℃までの平均熱膨張係数をもっとも低いレベルの値に
押えることができる組成範囲もあきらかにした。
Means for Solving the Problems The inventors of the present invention have manufactured a wire by a number of manufacturing processes using a hot-rolled Fe-Ni-based alloy material mixed with various additive elements, and manufactured the alloy wire. The tensile properties, torsion properties, and thermal expansion coefficient of the rubber were investigated. As a result, in order to obtain a low-thermal-expansion alloy wire having a tensile strength of 120 kgf / mm 2 or more, it is important to make the texture of the cross section of the alloy wire uniform. It was found that, by setting the degree of orientation to 60% or more, a high twist value of 70 times or more can be stably obtained. Further, an optimal solution treatment for obtaining an alloy wire having a high degree of orientation of the {111} crystal plane,
Recovery heat treatment and cold working conditions were also found. Among these Fe—Ni-based high-torsion, high-strength, high-strength, low-thermal-expansion alloys, in particular, the upper limit temperature of the actual use of transmission lines is 23
The composition range in which the average coefficient of thermal expansion up to 0 ° C. can be suppressed to the lowest level was also clarified.

【0009】すなわち、本発明の捻回特性の優れた高強
度低熱膨張合金線のうち、第1発明は、最終加工線径に
て120kgf/mm2以上の引張強さを有するFe−Ni系
合金線で、合金線の横断面の集合組織において、{11
1}結晶面の配向度が60%以上であることを特徴とす
る捻回特性の優れた高強度低熱膨張合金線であり、第2
発明は、合金線が特に、重量%でC0.15〜0.30
%、Si0.5%以下、Mn0.5%以下、Mo1.0
〜4.0%、およびNi30%以上38%未満とCo8
%以下の一種又は二種をNi+Coで35%以上38%
未満の範囲で含み残部は不純物を除きFeからなる組成
を有し、最終加工線径にて120kgf/mm2以上の引張強
さを有するFe−Ni系合金線であって、合金線の横断
面の集合組織において、{111}結晶面の配向度が6
0%以上であることを特徴とする捻回特性の優れた高強
度低熱膨張合金線であり、
That is, among the high-strength low-thermal-expansion alloy wires having excellent torsion characteristics according to the present invention, the first invention relates to a Fe—Ni-based alloy having a tensile strength of 120 kgf / mm 2 or more in a final processed wire diameter. In the texture of the cross section of the alloy wire,
(1) A high-strength low-thermal-expansion alloy wire having excellent twisting characteristics, wherein the degree of orientation of the crystal plane is 60% or more;
The invention is based on the finding that the alloy wire particularly has a C content of 0.15 to 0.30% by weight.
%, Si 0.5% or less, Mn 0.5% or less, Mo1.0
-4.0%, and Ni 30% or more and less than 38% and Co8
% Or less of Ni + Co is 35% or more and 38%
Fe-Ni-based alloy wire having a composition of Fe excluding impurities and a balance of less than 120 kgf / mm 2 in the final processed wire diameter, and a cross section of the alloy wire In the texture of, the degree of orientation of the {111} crystal plane is 6
It is a high-strength low-thermal-expansion alloy wire excellent in twisting characteristics characterized by being 0% or more,

【0010】第3発明は、合金線が特に、重量%でC
0.15〜0.30%、Si0.5%以下、Mn0.5
%以下、Mo1.0〜4.0%、B0.0005〜0.
02およびNi30%以上38%未満とCo8%以下の
一種又は二種をNi+Coで35%以上38%未満の範
囲で含み残部は不純物を除きFeからなる組成を有し、
最終加工線径にて120kgf/mm2以上の引張強さを有す
るFe−Ni系合金線であって、合金線の横断面の集合
組織において、{111}結晶面の配向度が60%以上
であることを特徴とする捻回特性の優れた高強度低熱膨
張合金線である。
[0010] The third invention is based on the invention that the alloy wire has C
0.15 to 0.30%, Si 0.5% or less, Mn 0.5
% Or less, Mo 1.0 to 4.0%, B 0.0005 to 0.
02 and one or two of 30% or more and less than 38% of Ni and 8% or less of Ni in the range of 35% or more and less than 38% of Ni + Co, with the balance being Fe, excluding impurities,
A Fe—Ni-based alloy wire having a tensile strength of 120 kgf / mm 2 or more at the final processing wire diameter, and in the texture of the cross section of the alloy wire, the degree of orientation of the {111} crystal plane is 60% or more. It is a high-strength low-thermal-expansion alloy wire excellent in twisting characteristics.

【0011】また、本願の第4発明は、Fe−Ni系合
金線を熱間加工後または該熱間加工後伸線を施し、10
10〜1150℃の固溶化熱処理を行ない、その後減面
率20〜60%の冷間加工を加えた後に550〜800
℃の回復熱処理を実施し、ついで減面率65%以上の冷
間加工を加えて所定線径にすることを特徴とする捻回特
性の優れた高強度低熱膨張合金線の製造方法であり、
In a fourth aspect of the present invention, a Fe—Ni alloy wire is drawn after hot working or after hot working.
A solution heat treatment at 10 to 1150 ° C. is performed, and then cold working at a surface reduction rate of 20 to 60% is performed.
A high strength low thermal expansion alloy wire having excellent torsion characteristics, characterized by performing a recovery heat treatment at ℃ and then performing cold working with a surface reduction rate of 65% or more to obtain a predetermined wire diameter.

【0012】第5発明は、重量%で、C0.15〜0.
30%、Si0.5%以下、Mn0.5%以下、Mo
1.0〜4.0%、およびNi30%以上38%未満と
Co8%以下の一種又は二種をNi+Coで35%以上
38%未満の範囲で含み残部は不純物を除きFeからな
る組成の合金素材を、熱間加工後または該熱間加工後伸
線を施し、1010〜1150℃の固溶化熱処理を行な
い、その後減面率20〜60%の冷間加工を加えた後に
550〜800℃の回復熱処理を実施し、ついで減面率
65%以上の冷間加工を加えて所定線径にすることを特
徴とする捻回特性の優れた高強度低熱膨張合金線の製造
方法であり、
The fifth invention is characterized in that, in terms of% by weight, C 0.15 to 0.
30%, Si 0.5% or less, Mn 0.5% or less, Mo
An alloy material having a composition of 1.0 to 4.0%, and one or two of Ni 30% or more and less than 38% and Co 8% or less in the range of 35% or more and less than 38% by Ni + Co, with the balance being Fe excluding impurities. After hot working or after the hot working, wire drawing is performed, solution heat treatment at 1010 to 1150 ° C is performed, and then cold working at a surface reduction rate of 20 to 60% is applied, and then recovery at 550 to 800 ° C is performed. A method for producing a high-strength low-thermal-expansion alloy wire having excellent torsion characteristics, which comprises performing a heat treatment and then performing cold working with a surface reduction rate of 65% or more to obtain a predetermined wire diameter;

【0013】第6発明は、重量%で、C0.15〜0.
30%、Si0.5%以下、Mn0.5%以下、Mo
1.0〜4.0%、B0.0005〜0.02%および
Ni30%以上38%未満とCo8%以下の1種または
2種をNi+Coで35%以上38%未満の範囲で含み
残部は不純物を除きFeからなる組成の合金素材を、熱
間加工後または該熱間加工後伸線を施し、1010〜1
150℃の固溶化熱処理を行ない、その後減面率30〜
60%の冷間加工を加えた後に550〜800℃の回復
熱処理を実施し、ついで減面率65%以上の冷間加工を
加えて所定線径にすることを特徴とする捻回特性の優れ
た高強度低熱膨張合金線の製造方法である。
The sixth invention is characterized in that, in terms of% by weight, C 0.15-0.
30%, Si 0.5% or less, Mn 0.5% or less, Mo
One or two of 1.0 to 4.0%, B 0.0005 to 0.02%, Ni 30% or more and less than 38%, and Co 8% or less in the range of 35% or more and less than 38% by Ni + Co, with the balance being impurities. , After hot working or after the hot working, wire-drawing the alloy material having a composition of Fe
Perform a solution heat treatment at 150 ° C., and then reduce the area
After the 60% cold working, a recovery heat treatment at 550 to 800 ° C. is performed, and then the cold working with a surface reduction rate of 65% or more is performed to obtain a predetermined wire diameter. This is a method for producing a high-strength low-thermal-expansion alloy wire.

【0014】本願の第1発明、第4発明でいうFe−N
i系合金線とはNiまたはNi+Coを35〜50%の
範囲で含み、さらにC,N,Cr,Moなどから選択し
て添加される固溶強化元素や、必要に応じてTi,N
b,Wなどの析出強化元素を低熱膨張特性を損なわない
範囲で含み、残部実質的にFeからなる合金組成を有す
る。また、第2発明、第3発明、第5発明、および第6
発明で規定する合金組成は、組成としても新規なもので
ある。
In the first and fourth aspects of the present invention, Fe-N
The i-based alloy wire includes Ni or Ni + Co in a range of 35 to 50%, and further includes a solid solution strengthening element selected from C, N, Cr, Mo, and the like, and Ti, N if necessary.
It has an alloy composition containing precipitation hardening elements such as b and W within a range that does not impair the low thermal expansion characteristics, and the balance substantially consisting of Fe. Further, the second invention, the third invention, the fifth invention, and the sixth invention
The alloy composition specified in the invention is also novel as a composition.

【0015】本発明において合金線の横断面の結晶方位
の比率は通常のX線回折パターンによって得られた(1
11)、(200)、(220)および(311)に該
当するピーク強度比から{111}、{200}、{2
20}および{311}の比率を求めている。{11
1}結晶面はオーステナイト系合金の主すべり面であ
り、製造段階において合金線の横断面に{111}結晶
面の配向度を高めておくことは、捻回試験時の剪断方向
のすべりを容易にし、局部的な捩れ、すなわち合金線の
破断を起こりにくくする。{111}結晶面の配向度が
60%未満の合金線は捩りが局部的に生じるようにな
り、捻回値が5〜80回の範囲で大きくばらつくように
なる。したがって、本発明によって得られる最終加工線
径にて120kgf/mm2以上の引張強さと安定して70回
以上の高い捻回値を有するFe−Ni系合金線の最終加
工時の横断面の{111}結晶面の配向度は60%以上
が必要である。本発明のもっとも大きな特徴はこのよう
な結晶配向度と捻回特性の関係を見出したことにあり、
この点が従来技術との比較で大きな相違点の1つであ
る。
In the present invention, the ratio of the crystal orientation in the cross section of the alloy wire was obtained by a normal X-ray diffraction pattern (1).
{111}, {200}, {2} from the peak intensity ratios corresponding to (11), (200), (220) and (311).
The ratio between 20} and {311} is determined. $ 11
1} The crystal plane is the main slip plane of the austenitic alloy, and increasing the degree of orientation of the {111} crystal plane in the cross section of the alloy wire during the manufacturing stage makes it easy to slip in the shear direction during the torsion test. In this way, local twisting, that is, breaking of the alloy wire is less likely to occur. The alloy wire having a degree of orientation of the {111} crystal plane of less than 60% causes local torsion, and greatly varies in the range of 5 to 80 twists. Therefore, in the final working wire diameter obtained by the present invention, the tensile strength of 120 kgf / mm 2 or more and the stable cross section of the Fe-Ni-based alloy wire having a high torsion value of 70 times or more at the time of the final working are as follows: The degree of orientation of the 111 ° crystal plane needs to be 60% or more. The greatest feature of the present invention is that the relationship between the degree of crystal orientation and the twisting characteristic has been found,
This is one of the major differences from the prior art.

【0016】本発明者らは、上記のような{111}結
晶面の配向度が高い合金線を製造するためにはMoある
いはCrの炭化物の固溶と析出の制御を綿密に行なう必
要のあることを明らかにした。すなわち、Moあるいは
Crの炭化物は、熱間加工後または熱間加工後の伸線途
中で、その後の回復熱処理の際に炭化物を微細に析出さ
せる目的のために一度高温で十分に固溶させる必要があ
る。従来の高強度低熱膨張合金線および合金線の製造方
法において高温での加熱を記載している公知例はわずか
に、特開昭57−41350号に見られるだけであり、
従来ほとんど着目されていなかった技術である。特開昭
57−41350号において合金線は900〜1000
℃の熱処理を行なうとあるが、その目的は不明瞭であ
り、実際この温度域での熱処理ではMoあるいはCrの
炭化物の固溶は不十分であり、その後の焼鈍温度域も低
めであるために実施例に見られる捻回値はたかだか25
〜50回のレベルにとどまっている。したがって、ばら
つきも考慮すると架空用送電線の芯線として、十分な捻
回特性を有しているとは言い難い。
The present inventors need to carefully control the solid solution and precipitation of Mo or Cr carbide in order to produce an alloy wire having a high degree of orientation of the {111} crystal plane as described above. It revealed that. That is, the carbide of Mo or Cr needs to be sufficiently dissolved once at a high temperature for the purpose of precipitating the carbide finely during hot-working or during drawing after hot-working and subsequent recovery heat treatment. There is. There are only a few known examples that describe heating at a high temperature in the conventional method for producing a high-strength low-thermal-expansion alloy wire and alloy wire, which can be found only in JP-A-57-41350.
This is a technology that has received little attention in the past. In JP-A-57-41350, the alloy wire is 900 to 1000
Although the purpose is unclear, heat treatment in this temperature range is inadequate because the solid solution of carbides of Mo or Cr is insufficient, and the subsequent annealing temperature range is also low. The torsion value seen in the example is at most 25
It stays at the level of ~ 50 times. Therefore, it is hard to say that the core wire of the overhead power transmission line has sufficient twisting characteristics in consideration of variation.

【0017】MoあるいはCrの炭化物の固溶温度は1
010℃以上であり、後工程において十分な引張強さと
捻回値改善のための微細なMoあるいはCrの炭化物を
析出させるためには、熱間加工後または熱間加工後の伸
線途中でこの温度以上に加熱して十分な固溶化熱処理を
実施する必要がある。しかし、固溶化熱処理温度が11
50℃を超えると脱炭が生じるとともに結晶粒が粗大化
し強度を低下させるので、本発明合金線の熱間加工後ま
たは熱間加工後の伸線途中の固溶化熱処理は1010〜
1150℃の範囲に限定する。高強度低熱膨張合金線に
おいて、このような高温の固溶化熱処理を実施すること
でその後の回復熱処理の際に炭化物を均一微細に析出さ
せ、{111}結晶面の配向度を高めたことも本発明の
特徴の一つである。
The solid solution temperature of the carbide of Mo or Cr is 1
010 ° C. or higher, and in order to precipitate fine Mo or Cr carbide for sufficient tensile strength and torsion value improvement in a post-process, it is necessary to carry out this process during hot working or during drawing after hot working. It is necessary to heat the solution to a temperature or more to perform a sufficient solution heat treatment. However, the solution heat treatment temperature is 11
If the temperature exceeds 50 ° C., decarburization occurs and the crystal grains become coarse and the strength decreases. Therefore, the solution heat treatment during the hot drawing of the alloy wire of the present invention or during the drawing after the hot working is 1010 to 1010.
Limit to the range of 1150 ° C. In the case of high-strength low-thermal-expansion alloy wires, by performing such a high-temperature solution heat treatment, carbides were uniformly and finely precipitated during the subsequent recovery heat treatment, and the degree of orientation of the {111} crystal plane was increased. This is one of the features of the invention.

【0018】固溶化熱処理を行なうのは、熱間加工後で
もよいし、熱間加工後の冷間加工中の工程に行なっても
よい。本発明を達成するためには、固溶化熱処理の後
に、減面率20〜60%の冷間加工とその後の回復熱処
理、および減面率65%以上の冷間加工での工程が入っ
ておればよい。固溶化熱処理は高温での加熱であるの
で、線材の表面に酸化層(いわゆるスケール)が付着す
る場合には、冷間加工の前に必要に応じてその酸化層を
除去する工程が入るのは当然である。酸化層の除去は研
削、切削、または酸洗いなどの方法が採用される。
The solution heat treatment may be performed after hot working, or may be performed in a step during cold working after hot working. In order to achieve the present invention, a step of cold working with a surface reduction of 20 to 60%, a subsequent recovery heat treatment, and a cold working with a surface reduction of 65% or more is included after the solution treatment. I just need. Since the solution heat treatment is heating at a high temperature, if an oxide layer (so-called scale) adheres to the surface of the wire, a step of removing the oxide layer as necessary before cold working is required. Of course. The removal of the oxide layer employs a method such as grinding, cutting, or pickling.

【0019】十分に固溶化熱処理された合金線はMoや
Crが炭化物として存在する合金線よりも後工程の冷間
加工で加工硬化し、120kgf/mm2以上の引張強さが容
易に得られる。しかし、その際{111}結晶面の配向
度の高い合金線を製造するためには、前記の固溶化熱処
理ばかりではなく、冷間加工の途中で回復熱処理を行な
うことも非常に重要である。回復熱処理を行なうことに
よって、冷間加工によって導入された多くの転位が合金
線の長手方向に再配列し、亜結晶粒界を形成する(図1
−bに代表的組織を示す)。その際に、MoやCrの炭
化物が亜結晶粒界に微細に析出し、亜結晶粒界をピン止
めする作用をもつ。この効果のために、再結晶温度は高
められ{111}結晶面の配向度の高い回復組織が広い
熱処理温度範囲で得られるようになる。
The alloy wire which has been subjected to a solution heat treatment is work-hardened in a later step of cold working than the alloy wire in which Mo or Cr exists as a carbide, and a tensile strength of 120 kgf / mm 2 or more can be easily obtained. . However, in this case, in order to manufacture an alloy wire having a high degree of orientation of the {111} crystal plane, not only the solution heat treatment but also the recovery heat treatment during the cold working is very important. By performing the recovery heat treatment, many dislocations introduced by the cold working rearrange in the longitudinal direction of the alloy wire to form sub-grain boundaries (FIG. 1).
-B shows a representative tissue). At that time, carbides of Mo and Cr are finely precipitated at the sub-crystal grain boundaries, and have an effect of pinning the sub-crystal grain boundaries. Due to this effect, the recrystallization temperature is increased, and a recovered structure having a high degree of orientation of the {111} crystal plane can be obtained in a wide heat treatment temperature range.

【0020】このような回復組織を得るために、固溶化
熱処理後の回復熱処理までの冷間加工率と回復熱処理温
度を規定する必要がある。回復熱処理時に均一な転位の
再配列組織を得るためには、冷間加工で十分な加工ひず
みを導入する必要がある。そのために冷間加工率は最低
20%以上を必要とするが、冷間加工率が60%を超え
ると回復・再結晶温度が低下し、MoやCrの炭化物の
析出温度域よりも低下してしまい、{111}結晶面の
配向度が低下してしまう。したがって、本発明合金線の
固溶化熱処理と回復熱処理間の冷間加工率は20〜60
%に規定する。
In order to obtain such a recovery structure, it is necessary to define a cold working ratio and a recovery heat treatment temperature after the solution heat treatment until the recovery heat treatment. In order to obtain a uniform rearrangement structure of dislocations during the recovery heat treatment, it is necessary to introduce sufficient working strain by cold working. For this purpose, the cold work rate needs to be at least 20% or more. However, when the cold work rate exceeds 60%, the recovery / recrystallization temperature decreases, and the temperature falls below the precipitation temperature range of Mo or Cr carbide. As a result, the degree of orientation of the {111} crystal plane decreases. Therefore, the cold working ratio between the solution heat treatment and the recovery heat treatment of the alloy wire of the present invention is 20 to 60.
%.

【0021】さらに、回復熱処理温度については図1−
aのように550℃未満の温度では転位の再配列が生じ
ず、逆に図1−cのように800℃を超えると再結晶が
生じて転位が消失するとともに、MoやCrの炭化物が
粗大化し、以後の冷間加工時の加工硬化度が小さくな
り、容易に120kgf/mm2以上の引張強さを有する合金
線が製造出来なくなるため、回復熱処理温度は図1−b
のような回復組織が得られる550〜800℃の範囲に
限定する。
FIG. 1 shows the recovery heat treatment temperature.
At a temperature lower than 550 ° C. as shown in FIG. 1A, rearrangement of dislocations does not occur. Conversely, when the temperature exceeds 800 ° C. as shown in FIG. 1C, recrystallization occurs and dislocations disappear, and carbides of Mo and Cr are coarse. Since the degree of work hardening during subsequent cold working is reduced and alloy wires having a tensile strength of 120 kgf / mm 2 or more cannot be easily manufactured, the recovery heat treatment temperature is shown in FIG.
Is limited to the range of 550 to 800 ° C at which such a recovery tissue is obtained.

【0022】上述した固溶化熱処理、冷間加工および回
復熱処理を経た合金線は引続き65%以上の冷間加工を
実施することで高い捻回特性を維持したまま、120kg
f/mm2以上の引張強さを有することが出来る。回復熱処
理後の冷間加工率が70%に満たない場合は、120kg
f/mm2以上の引張強さが得られず、架線用送電線の芯線
として適さないので、回復熱処理後の冷間加工率は65
%以上に限定する。
The alloy wire that has been subjected to the solution heat treatment, the cold working and the recovery heat treatment described above is subjected to a cold working of 65% or more to maintain a high twisting characteristic of 120 kg.
It can have a tensile strength of f / mm 2 or more. 120 kg if the cold work rate after recovery heat treatment is less than 70%
Since the tensile strength of f / mm 2 or more cannot be obtained and it is not suitable as the core wire of overhead power transmission lines, the cold working rate after recovery heat treatment is 65%.
% Or more.

【0023】このような高強度低熱膨張合金線を芯線に
もつAl送電線のAl合金の耐熱温度は連続通電温度で
最大230℃程度であり、弛度をおさえるための芯線に
は常温から230℃の温度範囲で低い熱膨張係数が要求
される。従来の高強度低熱膨張合金線は230℃よりも
さらに高い温度、たとえば、300℃までの平均熱膨張
係数に重点をおいた開発がなされている。しかし、実際
にはAlの耐熱温度により送電線の使用温度の上限が決
定されてしまうので、高強度低熱膨張合金にはAl合金
の連続通電温度の上限である230℃までの平均熱膨張
係数がとくに問題となる。
The heat resistant temperature of the Al alloy of the Al transmission line having such a high-strength low-thermal-expansion alloy wire as the core wire is a maximum of approximately 230 ° C. at a continuous energizing temperature, and the core wire for suppressing the sag is from normal temperature to 230 ° C. A low coefficient of thermal expansion is required in the above temperature range. Conventional high-strength low-thermal-expansion alloy wires have been developed with emphasis on the average thermal expansion coefficient up to a temperature higher than 230 ° C., for example, up to 300 ° C. However, in practice, the upper limit of the operating temperature of the transmission line is determined by the heat resistant temperature of Al. Therefore, the high-strength low-thermal-expansion alloy has an average thermal expansion coefficient up to 230 ° C., which is the upper limit of the continuous conduction temperature of the Al alloy. This is particularly problematic.

【0024】以下、Fe−Ni系高捻回高強度低熱膨張
合金線のなかでも、常温から230℃までの平均熱膨張
係数がとくに低い値をとる新規な合金組成範囲について
成分限定理由を述べる。Cは以下に述べるMoとともに
本発明合金線の冷間加工硬化能を著しく高める作用をも
つ。そのために必要なCは最低0.15%であるが、
0.3%を超える過度のCの添加は熱膨張係数の増加を
招くため、C量は0.15〜0.30%に限定する。S
i,Mnは脱酸元素として本発明合金線に含まれる。だ
だし、過度のSi,Mnは熱膨張係数の増加を招くた
め、それぞれ0.5%以下の添加にとどめる。
The reasons for limiting the components of the novel alloy composition range in which the average thermal expansion coefficient from room temperature to 230 ° C. is particularly low among the Fe—Ni high twist high strength low thermal expansion alloy wires will be described below. C has the effect of significantly improving the cold work hardening ability of the alloy wire of the present invention together with Mo described below. C required for that is at least 0.15%,
Since excessive addition of C exceeding 0.3% causes an increase in the coefficient of thermal expansion, the amount of C is limited to 0.15 to 0.30%. S
i and Mn are included in the alloy wire of the present invention as deoxidizing elements. However, excessive amounts of Si and Mn cause an increase in the coefficient of thermal expansion.

【0025】Moは数多くの強化元素のうち、Cと複合
添加した場合の冷間加工による硬化能がもっとも大き
い。これは、固溶状態における侵入型固溶強化元素であ
るMoと置換型固溶強化元素であるCの相互作用、さら
に一部がMo2Cの微細2次炭化物として析出すること
が原因と考えられる。また、この微細2次炭化物は、固
溶化熱処理の後の冷間加工後の回復熱処理時に亜結晶粒
界に沿って析出し、転位が合金線の長手方向に再配列し
て{111}結晶面の配向度を高め、強度を低下させる
ことなく捻回特性の向上に寄与する。一方、CrはMo
と同族の元素でMoと同様の理由で強化に寄与するが、
Moと同じだけ固溶強化させようとすると熱膨張係数が
高くなりすぎるため、とくに230℃までの熱膨張係数
を低くする目的に対しては、Mo単独添加の方がより効
果的である。そのために、必要なMoは最低1.0%で
あるが4.0%を超える過度の添加は熱膨張係数の増加
を招くのでMoは1.0〜4.0%に限定する。
Of the many strengthening elements, Mo has the greatest hardening ability by cold working when added in combination with C. This is thought to be due to the interaction between Mo, which is an interstitial solid-solution strengthening element, and C, which is a substitutional solid-solution strengthening element, in a solid solution state, and furthermore, a part thereof is precipitated as a fine secondary carbide of Mo 2 C. Can be In addition, the fine secondary carbides precipitate along the sub-grain boundaries during the recovery heat treatment after the cold working after the solution heat treatment, and the dislocations rearrange in the longitudinal direction of the alloy wire to form {111} crystal planes. Increases the degree of orientation and contributes to the improvement of the twisting characteristics without lowering the strength. On the other hand, Cr is Mo
And contributes to strengthening for the same reason as Mo.
Since the thermal expansion coefficient becomes too high when solid solution strengthening is attempted as much as Mo, the addition of Mo alone is more effective, particularly for the purpose of lowering the thermal expansion coefficient up to 230 ° C. Therefore, the required Mo is at least 1.0%, but an excessive addition exceeding 4.0% causes an increase in the coefficient of thermal expansion, so that the Mo is limited to 1.0 to 4.0%.

【0026】Bは本発明合金線において、Moの2次炭
化物と同様回復熱処理時の亜結晶粒界に偏析して、亜結
晶粒界をピン止めし、回復熱処理温度の適正域を広める
効果をもつ。すなわち。Bの添加がないと760〜78
0℃以上では実用上支障はないものの若干捻回値が低下
してくるが、Bを添加した材料は800℃まで捻回値の
低下はなく、広い温度範囲が採用できることになる。し
かし、0.02%を超える過度に添加は、熱間加工性を
低下させるので、Bは0.02%以下に限定する。従来
のFe−Ni系高強度低熱膨張合金線では、このような
B添加の効果に着目した発明は見られず、この点も本発
明の特徴の1つである。
In the alloy wire of the present invention, B segregates at the sub-grain boundary during the recovery heat treatment, like the secondary carbide of Mo, pinning the sub-grain boundary, and has the effect of expanding the proper range of the recovery heat treatment temperature. Have. That is. Without addition of B, 760-78
At 0 ° C. or higher, there is no problem in practical use, but the torsion value slightly decreases. However, the material to which B is added does not decrease the torsion value to 800 ° C., and a wide temperature range can be adopted. However, excessive addition exceeding 0.02% reduces hot workability, so B is limited to 0.02% or less. In the conventional Fe—Ni-based high-strength low-thermal-expansion alloy wire, there is no invention focusing on the effect of the addition of B, and this is one of the features of the present invention.

【0027】本発明において、Niの含有量は熱膨張特
性に大きく影響をおよぼす。とくに、常温から230℃
までの平均熱膨張係数を低下させる目的に対して、Ni
量はNiを単独で添加する場合は35%以上38%未満
の範囲内が望ましい。Ni量が35%を下回る場合に
は、低熱膨張特性の消失する温度を意味する変移点が低
温側に移行し、230℃までの熱膨張係数が増加してし
まう。逆にNiが38%を超えると変移点は高温側に移
行するものの、低温側の熱膨張率が全体に高くなるので
同じく230℃までの熱膨張係数が増加してしまう。以
上の理由により、Niは35%以上38%未満の範囲に
限定する。
In the present invention, the Ni content greatly affects the thermal expansion characteristics. Especially from room temperature to 230 ° C
For the purpose of lowering the average coefficient of thermal expansion up to
When adding Ni alone, the amount is preferably in the range of 35% or more and less than 38%. If the amount of Ni is less than 35%, the transition point meaning the temperature at which the low thermal expansion characteristic disappears shifts to the lower temperature side, and the thermal expansion coefficient up to 230 ° C increases. Conversely, when Ni exceeds 38%, the transition point shifts to the high temperature side, but the coefficient of thermal expansion on the low temperature side increases as a whole, so that the coefficient of thermal expansion up to 230 ° C. also increases. For the above reasons, Ni is limited to the range of 35% or more and less than 38%.

【0028】CoはNiの一部を置換することにより、
Ni単独の場合よりも、さらに230℃までの熱膨張係
数を低下させることができる。しかし、CoはNiより
も冷間加工中のマルテンサイト変態を生じやすく、オー
ステナイト相を不安定する働きが強いのでCoは8%以
下の範囲でNiと置換可能である。よって、CoがNi
と複合添加される場合、30%以上38%未満のNiと
8%以下のCoをNi+Coで35%以上38%未満の
範囲に限定する。Fe−Ni系合金を強化する添加元素
は上記したCやCr、Mo以外に種々考えられるが、T
i,Nb,Ta,Hf,Zr,W等の元素はCとの親和
力が強く、塊状の硬い1次炭化物を生成し、冷間加工時
に欠陥を作りやすく、捻回値のばらつきの原因となるの
で、本発明合金線に対し、過度の添加は好ましくない。
したがって、これらの元素はいずれも上限を0.2%程
度に抑制することが望ましい。
Co is obtained by substituting a part of Ni.
The coefficient of thermal expansion up to 230 ° C. can be further reduced as compared with the case of using Ni alone. However, Co is more susceptible to martensitic transformation during cold working than Ni, and has a strong function of destabilizing the austenite phase. Therefore, Co can be replaced with Ni in a range of 8% or less. Therefore, Co becomes Ni
When combined with Ni, 30% or more and less than 38% of Ni and 8% or less of Co are limited to a range of 35% or more and less than 38% by Ni + Co. There are various possible addition elements for strengthening the Fe-Ni alloy other than the above-mentioned C, Cr and Mo.
Elements such as i, Nb, Ta, Hf, Zr, and W have a strong affinity for C, generate a lump-shaped hard primary carbide, easily form defects during cold working, and cause variations in torsion values. Therefore, excessive addition to the alloy wire of the present invention is not preferable.
Therefore, it is desirable that the upper limit of each of these elements is suppressed to about 0.2%.

【0029】また、O,N等のガス成分は合金中で介在
物を生成し、同じく捻回値のばらつきの原因となるの
で、本発明合金線においてはそれぞれ、0.01%以下
に限定する。また、脱酸や脱硫を目的として添加される
Al,Mg,Ca,REM等の元素は通常含まれる下記
に示す量の含有はなんら特性上に差し支えない。 Al,REM ≦ 0.1% Mg,Ca ≦ 0.02% 本発明にかかる特に常温から230℃までの熱膨張係数
の低下を意図した合金線は上述した合金元素と残部Fe
から構成される新規な組成を有するFe−Ni系高強度
低熱膨張合金線である。
Further, gas components such as O and N form inclusions in the alloy and also cause variation in the twist value. Therefore, in the alloy wire of the present invention, each is limited to 0.01% or less. . In addition, elements such as Al, Mg, Ca, and REM added for the purpose of deoxidation and desulfurization, which are usually contained in the following amounts, may have no problem in properties. Al, REM ≤ 0.1% Mg, Ca ≤ 0.02% The alloy wire according to the present invention, in particular, intended to lower the coefficient of thermal expansion from normal temperature to 230 ° C.
Is a Fe-Ni-based high-strength low-thermal-expansion alloy wire having a novel composition composed of:

【0030】[0030]

【実施例】(実施例1) 表1に示す組成のFe−Ni系合金を溶製し、熱間鍛造
ならびに熱間圧延によって直径11.2mmの丸棒に仕上
げた。
EXAMPLES (Example 1) An Fe-Ni-based alloy having the composition shown in Table 1 was melted and finished into a round bar having a diameter of 11.2 mm by hot forging and hot rolling.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】この試料を用いて、表2に示す種々の製造
条件で直径4.6mmあるいは直径3.5mmのコイルを作
製した(表2の比較合金線Mのみ固溶化熱処理時の素材
直径を9.8mmにあらかじめ調整した)。冷間引抜はご
く一般的なアプローチ角12゜のWC製のダイスを使用
し、1パスあたり、20%前後の減面率で伸線した。そ
の際の伸線速度は、通常の鋼線の伸線速度と同程度の速
度で行なった。これらの線材を用いて最終加工ままの状
態で引張試験、捻回試験、熱膨張試験およびX線回折を
実施した。引張試験の伸びは標点間250mmで測定し、
引張強さと伸びについていずれも3本の平均値を求め
た。また捻回試験は、掴み間を自己径の100倍とし、
回転数60rpmで破断までの捻回値をそれぞれ10本
測定して、平均値と標準偏差を求めた。X線回折は合金
線の横断面の(111)、(200)、(220)およ
び(311)のX線回折パターンに該当するピーク強度
比から{111}結晶面の配向度を求めた。これらの試
験結果をまとめて表3に示す。また、図1のa,bおよ
びcにそれぞれ比較合金線L、本発明合金線Aおよび比
較合金線Kの回復熱処理後の透過電子顕微鏡組織を示
す。
Using this sample, a coil having a diameter of 4.6 mm or 3.5 mm was manufactured under various manufacturing conditions shown in Table 2 (only the comparative alloy wire M in Table 2 had a material diameter of 9 during solution heat treatment). .8 mm). Cold drawing was performed using a very common WC die having an approach angle of 12 °, and the wire was drawn with a reduction in area of about 20% per pass. The drawing speed at that time was the same speed as the drawing speed of a normal steel wire. Using these wires, a tensile test, a twist test, a thermal expansion test and an X-ray diffraction were carried out in the state of final processing. The elongation of the tensile test was measured at 250 mm between the gauge points,
The average value of tensile strength and elongation was determined for each of the three samples. In the torsion test, the distance between grips was 100 times the self-diameter,
Ten torsion values until breakage were measured at a rotation speed of 60 rpm, and an average value and a standard deviation were determined. In the X-ray diffraction, the degree of orientation of the {111} crystal plane was determined from the peak intensity ratio corresponding to the (111), (200), (220), and (311) X-ray diffraction patterns in the cross section of the alloy wire. Table 3 summarizes the results of these tests. 1A, 1B and 1C show the structures of the comparative alloy wire L, the inventive alloy wire A and the comparative alloy wire K after recovery heat treatment, respectively.

【0034】[0034]

【表3】 [Table 3]

【0035】表3より、本発明合金線A〜D(いずれも
第3発明の合金線である)は、とくに引抜工程を煩雑に
することなく、いずれも{111}結晶面の配向度が高
く、高い引張強さと安定して高い捻回値が得られる。本
発明合金線Aの回復熱処理後のミクロ組織を図1−bに
示すが、回復熱処理後にこのような引抜方向に転位が再
配列した組織をもつことが本発明合金線の最大の特徴で
ある。また、本発明合金線は30〜230℃の平均熱膨
張係数も低い値を示す。それに対し、比較合金線H〜M
は本発明合金線と同一の化学組成をもつにもかかわら
ず、本発明合金線よりも特性が劣っている。比較合金線
Hは本発明合金線Dの固溶化熱処理を省略したものであ
るが、この合金線は引張強さこそ本発明合金線に近い値
が得られるものの、{111}結晶面の配向度が低いた
めに、捻回値が低く、捻回値のばらつきも大きいことが
わかる。この結果から、捻回特性の安定化に対し、いか
に固溶化熱処理が影響を及ぼしているかが明らかであ
る。また、比較合金線Iは固溶化熱処理は実施している
もののこの熱処理温度が低いために、Moの炭化物の固
溶が不十分となり、{111}結晶面の配向度がまだ不
十分で、捻回値も十分に安定しているとは言えない。
As can be seen from Table 3, the alloy wires A to D of the present invention (all of which are the alloy wires of the third invention) have a high degree of orientation of the {111} crystal plane without complicating the drawing step. , A high tensile strength and a stable high torsion value can be obtained. The microstructure of the alloy wire A of the present invention after the recovery heat treatment is shown in FIG. 1-b. The greatest feature of the alloy wire of the present invention is that it has such a structure in which dislocations rearrange in the drawing direction after the recovery heat treatment. . The alloy wire of the present invention also shows a low average thermal expansion coefficient at 30 to 230 ° C. In contrast, comparative alloy wires H to M
Has the same chemical composition as the alloy wire of the present invention, but is inferior in characteristics to the alloy wire of the present invention. The comparative alloy wire H was obtained by omitting the solution heat treatment of the alloy wire D of the present invention. Although the tensile strength of this alloy wire was close to that of the alloy wire of the present invention, the degree of orientation of the {111} crystal plane was high. It can be seen that the torsion value is low and the variation in the torsion value is large due to the low. From these results, it is clear how the solution heat treatment affects the stabilization of the torsion characteristics. Further, although the solution heat treatment was performed on the comparative alloy wire I, since the heat treatment temperature was low, the solid solution of Mo carbide was insufficient, and the degree of orientation of the {111} crystal plane was still insufficient, and The rounds are not sufficiently stable.

【0036】比較合金線Jは本発明合金線Bに対し、中
間の冷間引抜率を高めた合金線であり、この場合同じ7
30℃の回復熱処理でも比較合金線Jは完全に再結晶を
生じてしまい、炭化物と転位の相互作用による高い加工
硬化能が得られず、本発明合金線に比べ引張強さが低く
なる。比較合金線Kは本発明合金線Aの回復熱処理温度
を高めた合金であり、図1−cに示すように回復熱処理
温度が高すぎると完全な再結晶組織となり、炭化物も粗
大化していることがわかる。このような組織になると以
後の冷間加工での加工硬化能が低下し、十分な引張強さ
が得られなくなる。
The comparative alloy wire J is an alloy wire having an intermediate cold drawing rate higher than that of the alloy wire B of the present invention.
Even in the recovery heat treatment at 30 ° C., the comparative alloy wire J is completely recrystallized, so that high work hardening ability due to the interaction between carbide and dislocation cannot be obtained, and the tensile strength is lower than that of the alloy wire of the present invention. The comparative alloy wire K is an alloy obtained by increasing the recovery heat treatment temperature of the alloy wire A of the present invention. As shown in FIG. 1-c, when the recovery heat treatment temperature is too high, a complete recrystallized structure is obtained, and the carbide is also coarsened. I understand. With such a structure, the work hardening ability in the subsequent cold working is reduced, and sufficient tensile strength cannot be obtained.

【0037】比較合金線Lは逆に本発明合金線Dの回復
熱処理温度を低めた合金であり、図1−aに示すように
回復熱処理温度が低すぎると冷間加工ままの組織とな
り、回復現象が生じない。そのために、引張強さは高い
が{111}結晶面の配向度が低く、捻回値が大幅に低
い。比較合金線Mは、本発明合金線Aに対し、仕上冷間
加工率の低い合金線であり、仕上冷間加工率が低すぎて
も本発明合金線並みの引張強さが得られないことがわか
る。
On the contrary, the comparative alloy wire L is an alloy obtained by lowering the recovery heat treatment temperature of the alloy wire D of the present invention. If the recovery heat treatment temperature is too low as shown in FIG. No phenomenon occurs. Therefore, although the tensile strength is high, the degree of orientation of the {111} crystal plane is low, and the twist value is significantly low. The comparative alloy wire M is an alloy wire having a lower finish cold work rate than the alloy wire A of the present invention. Even if the finish cold work rate is too low, the same tensile strength as the alloy wire of the present invention cannot be obtained. I understand.

【0038】(実施例2) 表4に示す組成のFe−Ni系合金を溶製し、熱間鍛造
によって直径11.2mmの丸棒に仕上げた。
Example 2 An Fe—Ni-based alloy having a composition shown in Table 4 was melted and finished into a round bar having a diameter of 11.2 mm by hot forging.

【0039】[0039]

【表4】 [Table 4]

【0040】この試料を用いて、表2のBと同じ製造条
件で直径4.6mmのコイルを作製し、実施例1と同じ確
性試験を実施した。確性試験結果を表5に示す。
Using this sample, a coil having a diameter of 4.6 mm was manufactured under the same manufacturing conditions as in B of Table 2, and the same reliability test as in Example 1 was performed. Table 5 shows the accuracy test results.

【0041】[0041]

【表5】 [Table 5]

【0042】合金線No.1、2、5、7および8はいず
れも本発明の合金線であり、No.1、2,3は第1発
明、No.11,12,13は第2発明、No.5,No.7,
8,21は第3発明に相当する合金線である。いずれの
合金線も{111}結晶面の配向度が高く、高い引張強
さと安定して高い捻回値が得られるが熱膨張係数には合
金組成の影響が大きく、第1発明の合金線に対し、第
2,第3発明のようにC、MoおよびNiの含有量を限
定した範囲内では、30〜230℃までの平均熱膨張係
数がより低い値をとることができる。特にNiの一部を
Coに置き変えた合金線はさらに良好な低熱膨張特性を
有することがわかる。第3発明の合金線がC、Moとい
った固溶強化元素を第1発明の合金線と同等以下(Cr
はMo当量に換算すると1.85倍)の量しか含まない
のに、引張強さが同等以上の値を示すのは、回復熱処理
時に亜結晶粒界に偏析するBの効果が大きいものと推察
される。
Alloy wires Nos. 1, 2, 5, 7 and 8 are all alloy wires of the present invention, Nos. 1, 2, and 3 are first inventions, and No. 11, 12, and 13 are second inventions. , No.5, No.7,
8 and 21 are alloy wires corresponding to the third invention. Each alloy wire has a high degree of orientation of the {111} crystal plane, and a high tensile strength and a stable high torsion value can be obtained. However, the thermal expansion coefficient is greatly affected by the alloy composition. On the other hand, when the contents of C, Mo and Ni are limited as in the second and third inventions, the average coefficient of thermal expansion from 30 to 230 ° C. can take a lower value. In particular, it can be seen that the alloy wire in which part of Ni is replaced with Co has better low thermal expansion characteristics. The alloy wire of the third invention has a solid solution strengthening element such as C or Mo equal to or less than that of the alloy wire of the first invention (Cr
(Equivalent to 1.85 times in terms of Mo equivalent), but the tensile strength shows a value equal to or more than that. It is presumed that the effect of B segregating at sub-grain boundaries during recovery heat treatment is large. Is done.

【0043】[0043]

【発明の効果】本発明の合金線は、横断面の集合組織が
{111}結晶面の配向度が60%以上に揃っているの
で、高い引張強さと高い捻回値が得られる。さらに本発
明の製造方法によれば、特に固溶化熱処理と固溶化熱処
理の組合せにより炭化物を均一に微細に析出させ得るの
で安定した高い捻回特性が得られる。さらに本発明で開
示した特定の合金組成にすることにより、上記の効果と
共に、より低い熱膨張係数を有する低弛度送電線の芯線
の製造が可能となり、従来の低弛度送電線よりもさらに
送電容量が高く、信頼性にすぐれた電力の輸送が可能と
なる。
The alloy wire of the present invention has a high tensile strength and a high torsion value because the texture of the cross section is uniform in the degree of orientation of the {111} crystal plane to 60% or more. Further, according to the production method of the present invention, a carbide can be uniformly and finely precipitated by a combination of a solution heat treatment and a solution heat treatment, so that a stable and high twist characteristic can be obtained. Further, by making the specific alloy composition disclosed in the present invention, together with the above effects, it becomes possible to produce a core wire of a low sag transmission line having a lower coefficient of thermal expansion, and more than the conventional low sag transmission line Power transmission with high transmission capacity and excellent reliability becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明合金線および比較合金線の回復熱処理後
の透過電子顕微鏡金属組織写真である。
FIG. 1 is a transmission electron microscope microstructure photograph of the alloy wire of the present invention and a comparative alloy wire after recovery heat treatment.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭55−41928(JP,A) 特開 昭58−210126(JP,A) 特開 平6−279945(JP,A) 特開 平3−115543(JP,A) 特開 昭55−119156(JP,A) 特表 平6−500361(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 C21D 7/10,8/06 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-55-41928 (JP, A) JP-A-58-210126 (JP, A) JP-A-6-279945 (JP, A) JP-A-3-3 115543 (JP, A) JP-A-55-119156 (JP, A) Table 6 6-500361 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38/00-38 / 60 C21D 7 / 10,8 / 06

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 最終加工線径にて120kgf/mm2以上の
引張強さを有するFe−Ni系合金線で、合金線の横断
面の集合組織において、{111}結晶面の配向度が6
0%以上であることを特徴とする捻回特性の優れた高強
度低熱膨張合金線。
1. An Fe—Ni-based alloy wire having a tensile strength of 120 kgf / mm 2 or more at the final working wire diameter, wherein the degree of orientation of the {111} crystal plane is 6 in the texture of the cross section of the alloy wire.
A high-strength low-thermal-expansion alloy wire excellent in twisting characteristics, characterized in that it is 0% or more.
【請求項2】 請求項1に記載のFe−Ni系合金線の
合金組成が、重量%でC0.15〜0.30%、Si
0.5%以下、Mn0.5%以下、Mo1.0〜4.0
%、およびNi30%以上38%未満とCo8%以下の
一種又は二種をNi+Coで35%以上38%未満の範
囲で含み残部は不純物を除きFeからなることを特徴と
する捻回特性の優れた高強度低熱膨張合金線。
2. The alloy composition of the Fe—Ni-based alloy wire according to claim 1, wherein C is 0.15 to 0.30% by weight,
0.5% or less, Mn 0.5% or less, Mo 1.0 to 4.0
% And one or two of Ni 30% or more and less than 38% and Co 8% or less in the range of 35% or more and less than 38% by Ni + Co, and the balance is made of Fe excluding impurities. High strength low thermal expansion alloy wire.
【請求項3】 請求項1に記載のFe−Ni系合金線の
合金組成が、重量%でC0.15〜0.30%、Si
0.5%以下、Mn0.5%以下、Mo1.0〜4.0
%、B0.0005〜0.02%およびNi30%以上
38%未満とCo8%以下の一種又は二種をNi+Co
で35%以上38%未満の範囲で含み残部は不純物を除
きFeからなることを特徴とする捻回特性の優れた高強
度低熱膨張合金線。
3. The alloy composition of the Fe—Ni alloy wire according to claim 1, wherein the alloy composition is such that C is 0.15 to 0.30% by weight,
0.5% or less, Mn 0.5% or less, Mo 1.0 to 4.0
%, B 0.0005 to 0.02%, Ni 30% or more and less than 38% and Co 8% or less Ni + Co
A high-strength low-thermal-expansion alloy wire having excellent torsion characteristics, characterized by containing Fe in the range of 35% or more and less than 38% and the balance being Fe.
【請求項4】 Fe−Ni系合金線を熱間加工後または
該熱間加工後伸線を施し、1010〜1150℃の固溶
化熱処理を行ない、その後減面率20〜60%の冷間加
工を加えた後に550〜800℃の回復熱処理を実施
し、ついで減面率65%以上の冷間加工を加えて所定線
径にすることを特徴とする特許請求項1に記載の捻回特
性の優れた高強度低熱膨張合金線の製造方法。
4. After hot working or after hot working, the Fe—Ni alloy wire is drawn, subjected to a solution heat treatment at 1010 to 1150 ° C., and then cold worked at a surface reduction rate of 20 to 60%. 2. The twisting characteristic according to claim 1, wherein a recovery heat treatment at 550 to 800 ° C. is performed after the addition of the steel, and then a cold working with a surface reduction rate of 65% or more is performed to obtain a predetermined wire diameter. Manufacturing method of excellent high strength low thermal expansion alloy wire.
【請求項5】 重量%で、C0.15〜0.30%、S
i0.5%以下、Mn0.5%以下、Mo1.0〜4.
0%、およびNi30%以上38%未満とCo8%以下
の一種又は二種をNi+Coで35%以上38%未満の
範囲で含み残部は不純物を除きFeからなる組成の合金
素材を、熱間加工後または該熱間加工後伸線を施し、1
010〜1150℃の固溶化熱処理を行ない、その後減
面率20〜60%の冷間加工を加えた後に550〜80
0℃の回復熱処理を実施し、ついで減面率65%以上の
冷間加工を加えて所定線径にすることを特徴とする捻回
特性の優れた高強度低熱膨張合金線の製造方法。
5% by weight of C, 0.15 to 0.30%, S
i 0.5% or less, Mn 0.5% or less, Mo 1.0 to 4.
An alloy material having a composition of 0% and one or two of Ni 30% or more and less than 38% and Co 8% or less in the range of 35% or more and less than 38% of Ni + Co, with the balance being Fe and excluding impurities, after hot working Alternatively, after the hot working, wire drawing is performed, and 1
A solution heat treatment at 010 to 1150 ° C. is performed, and then a cold working at a surface reduction rate of 20 to 60% is performed.
A method for producing a high-strength low-thermal-expansion alloy wire having excellent twisting characteristics, comprising performing a recovery heat treatment at 0 ° C., and then performing cold working with a surface reduction rate of 65% or more to obtain a predetermined wire diameter.
【請求項6】 重量%で、C0.15〜0.30%、S
i0.5%以下、Mn0.5%以下、Mo1.0〜4.
0%、B0.0005〜0.02、およびNi30%以
上38%未満とCo8%以下の一種又は二種をNi+C
oで35%以上38%未満の範囲で含み残部は不純物を
除きFeからなる組成の合金素材を、熱間加工後または
熱間加工後の伸線途中で1010〜1150℃の固溶化
熱処理を行ない、その後減面率20〜60%の冷間加工
を加えた後に550〜800℃の回復熱処理を実施し、
ついで減面率65%以上の冷間加工を加えて所定線径に
することを特徴とする捻回特性の優れた高強度低熱膨張
合金線の製造方法。
6. C 0.15 to 0.30% by weight, S
i 0.5% or less, Mn 0.5% or less, Mo 1.0 to 4.
0%, B 0.0005 to 0.02, and one or two types of Ni 30% or more and less than 38% and Co 8% or less as Ni + C
The alloy material having a composition of Fe, excluding impurities in the range of 35% or more and less than 38% in o, is subjected to a solution heat treatment at 1010 to 1150 ° C. after hot working or during wire drawing after hot working. After that, after performing cold working with a surface reduction rate of 20 to 60%, a recovery heat treatment at 550 to 800 ° C. is performed,
A method for producing a high-strength low-thermal-expansion alloy wire having excellent torsion characteristics, wherein cold-working with a surface reduction rate of 65% or more is performed to obtain a predetermined wire diameter.
JP10320391A 1991-04-08 1991-04-08 High-strength low-thermal-expansion alloy wire having excellent torsion characteristics and method for producing the same Expired - Fee Related JP3191010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10320391A JP3191010B2 (en) 1991-04-08 1991-04-08 High-strength low-thermal-expansion alloy wire having excellent torsion characteristics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10320391A JP3191010B2 (en) 1991-04-08 1991-04-08 High-strength low-thermal-expansion alloy wire having excellent torsion characteristics and method for producing the same

Publications (2)

Publication Number Publication Date
JPH04311548A JPH04311548A (en) 1992-11-04
JP3191010B2 true JP3191010B2 (en) 2001-07-23

Family

ID=14347964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10320391A Expired - Fee Related JP3191010B2 (en) 1991-04-08 1991-04-08 High-strength low-thermal-expansion alloy wire having excellent torsion characteristics and method for producing the same

Country Status (1)

Country Link
JP (1) JP3191010B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19944578C2 (en) * 1999-09-17 2001-08-23 Krupp Vdm Gmbh Use of a low-expansion iron-nickel alloy with special mechanical properties
CN110106448B (en) * 2019-06-17 2020-10-02 江苏省沙钢钢铁研究院有限公司 Low-expansion alloy material and preparation method thereof

Also Published As

Publication number Publication date
JPH04311548A (en) 1992-11-04

Similar Documents

Publication Publication Date Title
JP3997867B2 (en) Steel wire, method for producing the same, and method for producing steel wire using the steel wire
EP1728883A1 (en) High strength bolt excellent in characteristics of resistance to delayed fracture and resistance to relaxation
JP2567150B2 (en) Manufacturing method of high strength low yield ratio line pipe material for low temperature
JP2006506534A (en) Cold-worked steel with pocket-laser martensite / austenite microstructure
JP2000073137A (en) Steel wire rod excellent in cold workability
JP3842053B2 (en) High strength low thermal expansion alloy with excellent twisting characteristics and its alloy wire
JP4797305B2 (en) Invar alloy wire with excellent strength and twisting characteristics and manufacturing method thereof
JP2609387B2 (en) High-strength high-toughness ultrafine steel wire wire, high-strength high-toughness ultrafine steel wire, twisted product using the ultrafine steel wire, and method for producing the ultrafine steel wire
JPH0913136A (en) Spiral spring and its production
JP3536684B2 (en) Steel wire with excellent wire drawing workability
JP3737323B2 (en) Steel wire rod and bar steel excellent in cold forgeability after spheronization and manufacturing method thereof
JP4267375B2 (en) Wire material for high-strength steel wire, high-strength steel wire, and production method thereof
JP3191010B2 (en) High-strength low-thermal-expansion alloy wire having excellent torsion characteristics and method for producing the same
JPH08100242A (en) Alloy wire with high strength, high toughness and low thermal expansion and its production
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JPH0570894A (en) Alloy wire having high strength and low thermal expansion and excellent in twisting characteristic and its production
JPH07150244A (en) Production of ferritic stainless steel for cold working
JP3417016B2 (en) Manufacturing method of high toughness martensitic stainless steel seamless steel pipe with excellent hot workability and corrosion resistance
JP4976986B2 (en) Manufacturing method of steel wire with excellent low-temperature torsional characteristics
JPH06279945A (en) Wire with high strength and low thermal expansion and its production
JP3216824B2 (en) High strength low thermal expansion alloy
JP4976985B2 (en) Manufacturing method of wire rod and steel bar with excellent low-temperature torsional characteristics
JP3061977B2 (en) High strength low thermal expansion alloy
JP4201310B2 (en) High strength steel plate with excellent SR resistance and method for producing the same
JP3077568B2 (en) Method of manufacturing steel for low-temperature rebar

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees