KR101910744B1 - Medium-entropy alloys with excellent cryogenic properties - Google Patents

Medium-entropy alloys with excellent cryogenic properties Download PDF

Info

Publication number
KR101910744B1
KR101910744B1 KR1020170094759A KR20170094759A KR101910744B1 KR 101910744 B1 KR101910744 B1 KR 101910744B1 KR 1020170094759 A KR1020170094759 A KR 1020170094759A KR 20170094759 A KR20170094759 A KR 20170094759A KR 101910744 B1 KR101910744 B1 KR 101910744B1
Authority
KR
South Korea
Prior art keywords
phase
alloy
cryogenic
fcc
bcc
Prior art date
Application number
KR1020170094759A
Other languages
Korean (ko)
Inventor
김형섭
문종언
배재웅
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to KR1020170094759A priority Critical patent/KR101910744B1/en
Priority to US16/308,517 priority patent/US20210054486A1/en
Priority to EP17912348.4A priority patent/EP3660178B1/en
Priority to JP2018565038A priority patent/JP2019532169A/en
Priority to PCT/KR2017/009364 priority patent/WO2019022283A1/en
Application granted granted Critical
Publication of KR101910744B1 publication Critical patent/KR101910744B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Hard Magnetic Materials (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

The present invention relates to a medium-entropy alloy with much more improved cryogenic mechanical properties of a conventional FCC-based high-entropy alloy and a competitive price. The medium-entropy alloy according to the present invention comprises: 6-15 at% of Cr; 50-64 at% of Fe; 13-25 at% of Co; 13-25 at% of Ni; and the remaining including inevitable impurities. The medium-entropy alloy includes a metastable FCC phase and has excellent cryogenic mechanical properties by having strain induced transformation from the FCC phase to a BCC phase occurring in plastic deformation of alloys.

Description

극저온 특성이 우수한 중엔트로피 합금{Medium-entropy alloys with excellent cryogenic properties}[0002] Medium-entropy alloys with excellent cryogenic properties < RTI ID = 0.0 >

본 발명은 극저온 기계적 물성이 우수한 중엔트로피 합금(medium-entropy alloys, MEAs)에 관한 것으로, 저가의 Fe 원소를 50 at% 이상 포함하여 가격 경쟁력이 우수하면서도, 합금 원소 조절을 통한 FCC 및 BCC 상 안정성을 조절하여 극저온 변형 중에 변형유기 상변태를 유도함으로써 우수한 극저온 기계적 물성을 구현할 수 있는 중엔트로피 합금에 관한 것이다.The present invention relates to medium-entropy alloys (MEAs) which are excellent in cryogenic mechanical properties. The present invention relates to medium-entropy alloys (MEAs) having excellent cryogenic mechanical properties, To induce modified organic phase transformation during cryogenic deformation, thereby achieving excellent cryogenic mechanical properties.

고엔트로피 합금(high-entropy alloys, HEAs)은 합금을 구성하는 주된 원소(major element) 대신 다섯 가지 이상의 구성 원소를 비슷한 비율로 합금화하여 얻어지는 다원소 합금이다. 고엔트로피 합금은 합금 내의 혼합 엔트로피가 높아 금속간화합물 또는 중간상이 형성되지 않고 면심입방격자(face-centered cubic, FCC) 또는 체심입방격자(body-centered cubic, BCC)와 같은 단상(single phase) 조직을 갖는 금속 소재이다.High-entropy alloys (HEAs) are multi-element alloys obtained by alloying five or more constituent elements at a similar rate, instead of the major element constituting the alloy. The entropy alloy has a high entropy of mixing in the alloy, so that a single phase structure such as a face-centered cubic (FCC) or a body-centered cubic (BCC) .

특히, Co-Cr-Fe-Mn-Ni 계열의 고엔트로피 합금의 경우, 우수한 극저온 물성, 높은 파괴인성과 내식성을 가지기 때문에 극한환경에 적용할 수 있는 소재로 각광받고 있다.Especially, in the case of the Co-Cr-Fe-Mn-Ni series high entropy alloy, it has excellent cryogenic properties, high fracture toughness and corrosion resistance.

이러한 고엔트로피 합금을 설계하는 데 있어 중요한 두 가지 요소는 합금을 구성하는 원소들의 조성 비율과 합금계의 구성 엔트로피이다.Two important factors in designing such a high entropy alloy are the composition ratio of the constituent elements of the alloy and the constituent entropy of the alloy system.

그중에서 첫 번째는 고엔트로피 합금의 조성 비율이다. 고엔트로피 합금은 최소 다섯 가지 이상의 원소들로 합금을 구성하고 있어야 하며, 각각의 합금 구성 원소의 조성 비율은 5 ~ 35 at%로 정의된다. 또한, 고엔트로피 합금의 제조 시에 주요 합금 구성 원소 외에 다른 원소를 첨가할 경우, 그 첨가량은 5 at% 이하여야 한다.The first is the composition ratio of the entropy alloy. The entropy alloy should be composed of at least five elements, and the composition ratio of each alloy constituent element is defined as 5 to 35 at%. In addition, when an element other than the main alloy constituent element is added in the production of the high entropy alloy, the addition amount thereof should be 5 at% or less.

통상 합금은 합금 원소의 조성에 따른 구성 엔트로피(△Sconf)에 따라 고엔트로피 합금, 중엔트로피 합금(medium-entropy alloys, MEAs), 저엔트로피 합금(low-entropy alloys, LEAs)으로 나뉘며, 아래 [식 1]로 구해지는 구성 엔트로피 값에 따라 [식 2]의 조건으로 구분된다.In general, alloys are classified into high entropy alloys, medium-entropy alloys (MEAs) and low-entropy alloys (LEAs) according to the compositional entropy (ΔS conf ) 1] and the constituent entropy value obtained by [1].

[식 1][Formula 1]

Figure 112017072045156-pat00001
Figure 112017072045156-pat00001

(R: 기체 상수(Gas constant), Xi: i 원소의 몰분율, n: 구성 원소의 수)(R: gas constant, X i : mole fraction of i element, n: number of constituent elements)

[식 2][Formula 2]

Figure 112017072045156-pat00002
Figure 112017072045156-pat00002

대표적인 극저온용 FCC 계열 고엔트로피 합금인 Co20Cr20Fe20Mn20Ni20 (at%) 합금의 경우, 첨가된 합금 원소의 가격이 높아, 가격 경쟁력이 낮다. 따라서 우수한 극저온 물성에도 불구하고 기존의 철강 소재를 대체하여 해양 플랜트, LNG 소재, 극저온 탱크, 선박/해양 소재 등을 대체하기에는 한계가 있다.In the case of Co 20 Cr 20 Fe 20 Mn 20 Ni 20 (at%) alloy, which is a representative cryogenic FCC type entropy alloy, the price of the added alloying element is high and the price competitiveness is low. Therefore, despite its excellent cryogenic properties, there is a limit to replacing existing steel materials with marine plants, LNG materials, cryogenic tanks, and marine / marine materials.

따라서 고엔트로피 합금의 산업화를 위해서는 합금 원소의 조절을 통한 가격 경쟁력 확보와 동시에 우수한 극저온 특성을 구현하는 것이 필수적이다.Therefore, for the industrialization of high entropy alloys, it is essential to secure price competitiveness through control of alloy elements and to realize excellent cryogenic characteristics at the same time.

미국 공개특허공보 제2002/0159914호U.S. Patent Application Publication No. 2002/0159914

1. B. Gludovatz, et al., "A fracture-resistant high-entropy alloy for cryogenic applications", Science, 345 (2014) 1153-1158.1. B. Gludovatz, et al., "A fracture-resistant high-entropy alloy for cryogenic applications ", Science, 345 (2014) 1153-1158.

본 발명의 목적은, 종래의 Co-Cr-Fe-Mn-Ni계 합금을 대신하여 상대적으로 고가인 합금 원소의 함량을 낮추는 합금을 개발하여 가격 경쟁력을 확보하고, 동시에 극저온에서 변형유기 상변태를 유도하여 우수한 기계적 성질을 구현할 수 있는 중엔트로피 합금을 제공하는데 있다.It is an object of the present invention to develop an alloy which reduces the content of a relatively expensive alloy element in place of a conventional Co-Cr-Fe-Mn-Ni alloy to secure price competitiveness, To provide a trophic alloy capable of realizing excellent mechanical properties.

상기 과제를 해결하기 위해 본 발명은, Cr: 6 ~ 15 at%, Fe: 50 ~ 64 at%, Co: 13 ~ 25 at%, Ni: 13 ~ 25 at%와 나머지 불가피한 불순물을 포함하는 중엔트로피 합금을 제공한다.In order to solve the above-described problems, the present invention provides a method of manufacturing a steel sheet comprising 6 to 15 at% of Cr, 50 to 64 at% of Fe, 13 to 25 at% of Co, 13 to 25 at% of Ni and the remaining unavoidable impurities Alloy.

또한, 본 발명의 일 실시형태에 의한 중엔트로피 합금은, 상온에서는 준안정 FCC 상을 포함하며, 극저온 변형 시에 상기 준안정 FCC 상이 BCC 상으로 변형유기 상변태가 발생하여 합금의 기계적 특성이 향상된다.Further, the middle trophy alloy according to one embodiment of the present invention includes a metastable FCC phase at room temperature, and the metastable FCC phase is transformed into a BCC phase at the time of cryogenic deformation, and an organic phase transformation occurs, thereby improving the mechanical properties of the alloy .

본 발명에 따른 중엔트로피 합금은 저렴한 합금 원소인 Fe의 함량을 50 ~ 64 at% 까지 증가시켜 고가 원소인 Co, Cr, Ni 등의 첨가량을 줄여 가격 경쟁력을 확보할 수 있으며, 동시에 상기 중엔트로피 합금은 극저온(77K)에서의 인장강도가 1024 MPa 이상이고, 연신율이 47% 이상으로 우수한 특성을 갖는다.In the middle trophy alloy according to the present invention, the content of Fe, which is an inexpensive alloying element, is increased up to 50 to 64 at%, thereby reducing the amount of expensive elements such as Co, Cr, and Ni and thus ensuring price competitiveness. Has a tensile strength of 1024 MPa or more at a cryogenic temperature of 77 K and an excellent elongation of 47% or more.

또한, 본 발명의 일 실시형태에 따른 중엔트로피 합금은, 상온(298K)에서 준안정(metastable) FCC 상을 포함하며, 이 준안정 FCC 상이 극저온에서 변형 시 BCC 상으로 변하는 변형유기 상변태(deformation-induced phase transformation)에 의한 강화 효과가 발생하여, 더 향상된 극저온 기계적 특성을 얻을 수 있다.Further, the mid-trophy alloy according to one embodiment of the present invention comprises a metastable FCC phase at room temperature (298K), wherein the metastable FCC phase is deformed to a BCC phase at cryogenic temperatures, induced phase transformation, resulting in improved cryogenic mechanical properties.

도 1은 본 발명의 비교예 1과 2, 실시예 1 ~ 4에 따른 Co-Cr-Fe-Ni계 중엔트로피 합금의 X-ray diffraction (XRD) 측정 결과를 나타낸 것이다.
도 2는 본 발명의 비교예 1과 2, 실시예 1 ~ 4에 따른 Co-Cr-Fe-Ni계 중엔트로피 합금의 상온(298K)에서의 인장시험 결과를 나타낸 것이다.
도 3은 본 발명의 비교예 1과 2, 실시예 1 ~ 4에 따른 Co-Cr-Fe-Ni계 중엔트로피 합금의 극저온(77K)에서의 인장시험 결과를 나타낸 것이다.
도 4는 본 발명의 실시예 3에 따른 Co-Cr-Fe-Ni계 중엔트로피 합금의 상온 및 저온 변형 시 상변화에 대한 Electron Backscatter Diffraction (EBSD) 분석결과를 나타낸 것이다.
FIG. 1 shows X-ray diffraction (XRD) measurement results of a ternary alloy of Co-Cr-Fe-Ni based on Comparative Examples 1 and 2 and Examples 1 to 4 of the present invention.
Fig. 2 shows the results of tensile tests at room temperature (298K) of a ternary alloy of Co-Cr-Fe-Ni based on Comparative Examples 1 and 2 and Examples 1 to 4 of the present invention.
3 shows the results of tensile tests at a cryogenic temperature (77 K) of Co-Cr-Fe-Ni based tough alloy according to Comparative Examples 1 and 2 and Examples 1 to 4 of the present invention.
4 is a graph showing the results of Electron Backscatter Diffraction (EBSD) analysis of the phase change of the Co-Cr-Fe-Ni based trophy alloy according to Example 3 of the present invention at room temperature and low temperature deformation.

이하 첨부된 도면들을 참조하여 본 발명의 바람직한 실시 예에 따른 방법에 대해 상세하게 설명하겠지만 본 발명이 하기의 실시 예들에 제한되는 것은 아니다. 따라서 해당 분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 본 발명을 다양하게 변경할 수 있음은 자명하다.Hereinafter, a method according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings, but the present invention is not limited to the following embodiments. Accordingly, it is obvious that those skilled in the art can variously change the present invention without departing from the technical idea of the present invention.

본 발명자들은 극저온 환경에서 기계적 특성이 우수한 고엔트로피 합금의 가격 경쟁력을 높이면서 동시에 우수한 극저온 환경에서의 기계적 특성을 얻기 위해 연구한 결과, 저가 원소인 Fe의 함량을 50 ~ 64 at%로 종래의 고엔트로피 합금에 비해 현저하게 높이고 Fe 이외의 합금 원소의 함량을 조절할 경우, FCC 및 BCC 상 안정성이 변화하면서 변형 간에 변형유기 상변태가 유도되어 우수한 극저온 기계적 특성을 얻을 수 있음을 밝혀내었다.The present inventors have studied to obtain mechanical properties in a cryogenic environment at the same time as enhancing the price competitiveness of highly entropy alloys having excellent mechanical properties in a cryogenic environment. As a result, it has been found that the content of Fe, which is a low cost element, It is found that when the content of the alloying elements other than Fe is remarkably increased compared to the entropy alloy, the stability of FCC and BCC is changed, and the modified organic phase transformation is induced between the deformations and excellent cryogenic mechanical characteristics can be obtained.

특히, 상온에서 준안정 상태의 FCC 상을 포함하도록 합금설계를 할 경우, 이 준안정 상태의 FCC 상이 극저온 환경에서의 변형 과정에 BCC 상으로의 변형유기 상변태를 일으켜 극저온 기계적 특성이 더 향상될 수 있음을 밝혀내고 본 발명에 이르게 되었다.In particular, when alloys are designed to include a metastable FCC phase at room temperature, the metastable FCC phase may undergo deformation in the BCC phase during deformation in a cryogenic environment, thereby improving the cryogenic mechanical properties And reached the present invention.

이와 같이 본 발명에 있어서, 준안정 상태의 상이 소성변형 과정에서 변형유기 상변태를 일으켜 해당 온도에서 안정한 상태의 상으로 상변태되는 것을 준안정한 상으로 판단하였으며, 이러한 상들을 모두 준안정상으로 정의하였다. Thus, in the present invention, it was judged that the metastable state phase was transformed into a stable state at the corresponding temperature by causing the modified organic phase transformation in the plastic deformation process, and these phases were all defined as normal phase.

본 발명에 따른 중엔트로피 합금은, Cr: 6 ~ 15 at%, Fe: 50 ~ 64 at%, Co: 13 ~ 25 at%, Ni: 13 ~ 25 at%와 나머지 불가피한 불순물을 포함하는 합금 조성을 갖는 것을 특징으로 한다.The core trophy alloy according to the present invention has an alloy composition containing 6 to 15 at% of Cr, 50 to 64 at% of Fe, 13 to 25 at% of Co, 13 to 25 at% of Ni and unavoidable impurities .

또한, 본 발명에 따른 중엔트로피 합금은, 상온에서 준안정 FCC 상을 포함하며, 변형 시에 상기 준안정 FCC 상이 BCC 상으로 변형유기 상변태가 일어나는 것일 수 있다.Further, the middle trophy alloy according to the present invention may include a metastable FCC phase at room temperature, and at the time of modification, the metastable FCC phase may be transformed into a BCC phase.

크롬(Cr)은 6 at% 미만일 경우 FCC 상이 안정화되고, 15 at%를 초과할 경우에는 BCC 상이 안정화되므로, 6 ~ 15 at%가 바람직하다. 또한, 준안정 FCC 상을 형성하는 것이 극저온 기계적 특성의 향상이 더 유리하므로, 보다 바람직한 크롬(Cr)의 함량은 7.5 ~ 12.5 at%이다.When the Cr content is less than 6 at%, the FCC phase is stabilized. When the Cr content exceeds 15 at%, the BCC phase is stabilized. Therefore, the Cr content is preferably 6 to 15 at%. In addition, since it is more advantageous to improve the cryogenic mechanical properties to form the metastable FCC phase, the content of chromium (Cr) is more preferably 7.5 to 12.5 at%.

철(Fe)은 50 at% 미만일 경우 FCC 상이 안정화되고, 64 at%를 초과할 경우에는 BCC 상이 안정화되므로, 50 ~ 64 at%가 바람직하다. 준안정상으로 FCC 상을 형성하는 것이 극저온 기계적 특성의 향상이 더 유리하므로, 보다 바람직한 철(Fe)의 함량은 55 ~ 62.5 at%이다.When the iron (Fe) is less than 50 at%, the FCC phase is stabilized. When the iron (Fe) exceeds 64 at%, the BCC phase is stabilized. Since it is more advantageous to improve the cryogenic mechanical properties to form the FCC phase in the normal state, the content of iron (Fe) is more preferably 55 to 62.5 at%.

코발트(Co)는 13 at% 미만일 경우 FCC 상이 안정화되고, 25 at%를 초과할 경우에는 BCC 상이 안정화되므로, 13 ~ 25 at%가 바람직하다.When the cobalt (Co) is less than 13 at%, the FCC phase is stabilized. When the cobalt (Co) exceeds 25 at%, the BCC phase is stabilized, so 13 to 25 at% is preferable.

니켈(Ni)은 13 at% 미만일 경우 BCC 상이 안정화되고, 25 at%를 초과할 경우에는 FCC 상이 안정화되므로, 13 ~ 25 at%가 바람직하다.When the nickel (Ni) content is less than 13 at%, the BCC phase is stabilized. When the nickel (Ni) content exceeds 25 at%, the FCC phase is stabilized.

상기 코발트(Co)를 대체하는 성분인 몰리브덴(Mo) 및 알루미늄(Al) 중에서 선택된 1종 이상이 대체될 경우 13 at% 미만일 경우 FCC 상이 안정화되고, 25 at%를 초과할 경우에는 BCC 상이 안정화되므로, 13 ~ 25 at%가 바람직하다.When at least one selected from the group consisting of molybdenum (Mo) and aluminum (Al) substituted for cobalt (Co) is substituted, the FCC phase is stabilized when it is less than 13 at%, and the BCC phase is stabilized when it exceeds 25 at% , And 13 to 25 at%.

상기 니켈(Ni)을 대체하는 성분인 망간(Mn)은 13 at% 미만일 경우 BCC 상이 안정화되고, 25 at%를 초과할 경우에는 FCC 상이 안정화되므로, 13 ~ 25 at%가 바람직하다.When the content of manganese (Mn) is less than 13 at%, the BCC phase is stabilized. When the content exceeds 25 at%, the FCC phase is stabilized. Therefore, it is preferably 13 to 25 at%.

일반적으로 금속 합금에서 C나 N과 같은 침입형 원소는 금속의 기지(matrix)에 침입형으로 고용되어 금속의 변형 시 고용 강화 효과에 따른 합금의 강도를 높이는 역할을 한다. 하지만 C 및 N 중 1종 이상의 원소를 총 at%에 대비하여 1 at% 이상 첨가하는 경우 FCC 상이 안정화되므로, 준안정한 FCC 상을 유도하여 변형유기 상변태의 효과를 이용하기 위해서는 1 at% 미만으로 첨가하는 것이 바람직하다.In general, interstitial elements such as C and N in metal alloys are incorporated into the metal matrix to enhance the strength of the alloy due to the strengthening effect during the transformation of the metal. However, when at least 1 atomic percent of C and N is added in excess of 1 at%, the FCC phase is stabilized. Therefore, in order to induce a metastable FCC phase and utilize the effect of modified organic phase transformation, .

상기 불가피한 불순물은, 상기 합금원소 이외의 성분으로, 원료 또는 제조과정에 불가피하게 혼입되는 불가피한 성분이다.These unavoidable impurities are components other than the above-described alloying elements and are unavoidable components that are inevitably incorporated into the raw material or the manufacturing process.

또한, 상기 중엔트로피 합금은, 상온에서 준안정 FCC 상, 또는 준안정 FCC 상과 BCC 상의 혼합상으로 이루어질 수 있으며, 인장강도와 연신율의 향상의 측면에서 준안정 FCC 상의 분율이 높은 것이 바람직하다. 준안정 FCC 상의 분율은 50% 이상이 바람직하다. 그러나 준안정 FCC 상의 분율은 반드시 50% 이상일 필요는 없다. In addition, the above-mentioned trophic alloy may be composed of a metastable FCC phase at room temperature, or a mixed phase of a metastable FCC phase and a BCC phase, and it is preferable that the metastable FCC phase fraction is high in terms of improvement of tensile strength and elongation. The fraction of the metastable FCC phase is preferably at least 50%. However, the fraction of the metastable FCC need not necessarily be more than 50%.

또한, 상기 중엔트로피 합금은, 상온(298K)에서 인장강도가 500 MPa 이상이고, 연신율이 50% 이상일 수 있다. In addition, the above-mentioned trophic alloy may have a tensile strength of 500 MPa or more at room temperature (298K) and an elongation of 50% or more.

또한, 상기 중엔트로피 합금은, 극저온(77K)에서의 인장강도가 1000 MPa 이상이고, 연신율이 40% 이상일 수 있다. In addition, the above-mentioned trophic alloy may have a tensile strength of 1,000 MPa or more at a cryogenic temperature (77K) and an elongation of 40% or more.

[실시예 1 내지 4][Examples 1 to 4]

중엔트로피Trophies in the middle 합금의 제조 Manufacture of alloys

먼저, 순도 99.9% 이상의 Co, Cr, Fe, Ni 금속을 준비하였다.First, Co, Cr, Fe, and Ni metals having a purity of 99.9% or more were prepared.

이와 같이 준비한 금속을 아래 표 1과 같은 혼합 비율이 되도록 칭량하였다.The thus prepared metal was weighed so as to have the mixing ratio shown in Table 1 below.

원료 혼합 비율(at%)Raw material mixing ratio (at%) CoCo CrCr FeFe NiNi 실시예 1Example 1 17.5017.50 10.0010.00 55.0055.00 17.5017.50 실시예 2Example 2 16.2516.25 10.0010.00 57.5057.50 16.2516.25 실시예 3Example 3 15.0015.00 10.0010.00 60.0060.00 15.0015.00 실시예 4Example 4 13.7513.75 10.0010.00 62.5062.50 13.7513.75

이상과 같은 비율로 준비된 원료 금속을 도가니에 장입한 후, 1550 ℃로 가열하여 용해하고, 주형을 사용하여 두께 7.8 mm, 150g의 폭 33 mm, 길이 80 mm, 두께 7.8 mm의 직육면체 형상의 합금 잉곳(ingot)을 주조하였다.After charging the prepared raw metal into the crucible at the above ratios, 1550 占 폚 and dissolved. Using a mold, a rectangular parallelepiped having a thickness of 7.8 mm, 150 g, a width of 33 mm, a length of 80 mm, and a thickness of 7.8 mm Shaped alloy ingot was cast.

주조된 합금의 표면에 생성된 산화물을 제거하기 위하여, 표면 연마(grinding)를 하였으며, 연마된 잉곳의 두께는 7 mm가 되었다.To remove the oxides formed on the surface of the cast alloy, surface grinding was performed and the thickness of the polished ingot was 7 mm.

표면 연마된 두께 7 mm의 잉곳을 1100 ℃의 온도에 6시간 동안 균질화 열처리를 실시한 후, 두께 7 mm에서 1.5 mm까지 냉간압연을 진행하였다.A 7 mm thick ingot polished to a surface was subjected to a homogenization heat treatment at a temperature of 1100 ° C. for 6 hours, followed by cold rolling from a thickness of 7 mm to a thickness of 1.5 mm.

또한, 냉간압연 각 합금 판재들은 다시 800 ℃에서 10분간 소둔(annealing) 처리를 실시하였다.The cold rolled alloy sheets were further annealed at 800 ° C for 10 minutes.

[비교예 1과 2][Comparative Examples 1 and 2]

비교예를 위한 합금의 제조Preparation of alloys for comparative example

실시예와 동일한 방법으로 아래 표 2의 조성에 준하여 비교예를 위한 합금을 제조하였다. An alloy for comparative example was prepared according to the composition of Table 2 below in the same manner as in Example.

원료 혼합 비율(at%)Raw material mixing ratio (at%) CoCo CrCr FeFe NiNi 비교예 1Comparative Example 1 14.5014.50 5.005.00 66.0066.00 14.5014.50 비교예 2Comparative Example 2 12.5012.50 10.0010.00 65.0065.00 12.5012.50

실시예와 동일한 방법으로 합금 잉곳을 주조하였고, 실시예와 동일한 방법으로 1100 ℃의 온도에 6시간 동안 균질화 열처리를 실시한 후, 두께 7 mm에서 1.5 mm까지 냉간압연을 진행하였다.An alloy ingot was cast in the same manner as in Example, and homogenization heat treatment was performed at a temperature of 1100 캜 for 6 hours in the same manner as in Example, followed by cold rolling from 7 mm to 1.5 mm.

또한, 실시예와 동일한 방법으로 냉간압연 각 합금 판재들은 다시 800 ℃에서 10분간 소둔(annealing) 처리를 실시하였다.In addition, cold rolled alloy sheets were annealed at 800 DEG C for 10 minutes in the same manner as in Example.

성분 분석 결과Component analysis result

소둔 처리한 비교예 1과 2, 실시예 1 ~ 4에 따라 제조한 합금의 실제 성분을 EDS를 사용하여 분석하였으며, 아래 표 3는 그 결과를 나타낸 것이다.The actual components of the alloy prepared according to Comparative Examples 1 and 2 and Examples 1 to 4 annealed were analyzed using EDS, and the results are shown in Table 3 below.

EDS 분석 조성 (at%)EDS analysis composition (at%) CoCo CrCr FeFe NiNi 비교예 1Comparative Example 1 14.3414.34 5.105.10 66.2966.29 14.2714.27 실시예 1Example 1 17.3717.37 10.5210.52 55.5855.58 16.5316.53 실시예 2Example 2 16.1616.16 10.2110.21 57.4157.41 16.2216.22 실시예 3Example 3 14.5414.54 10.6810.68 60.8960.89 13.8913.89 실시예 4Example 4 13.5513.55 10.2710.27 62.5562.55 13.6313.63 비교예 2Comparative Example 2 12.2312.23 10.8110.81 65.3165.31 11.6511.65

표 3에 나타난 바와 같이, 실제 조성은 최초 원료 혼합비율에서 약간 벗어난 값을 나타내나, 원료의 순도와 제조 과정에 혼입될 수 있는 불순물 등을 고려할 때, 거의 동일한 수준이라고 할 수 있다. 모든 실시예의 경우 본 발명에 따른 중엔트로피 합금의 조성범위인 Cr: 6 ~ 15 at%, Fe: 50 ~ 64 at%, Co: 13 ~ 25 at%, Ni: 13 ~ 25 at%에 포함됨을 확인할 수 있었다.As shown in Table 3, the actual composition slightly deviates from the initial raw material mixing ratio, but it can be said to be almost the same level considering the purity of the raw material and the impurities that can be incorporated into the manufacturing process. In all of the examples, it is confirmed that the composition is contained in the composition ranges of Cr: 6 to 15 at%, Fe: 50 to 64 at%, Co: 13 to 25 at%, and Ni: 13 to 25 at% I could.

XRD 분석결과XRD analysis result

도 1은 소둔 처리한 비교예 1과 2, 실시예 1 ~4의 합금의 상온에서의 XRD 측정 결과를 나타낸 것이다.Fig. 1 shows the XRD measurement results of the alloys of Comparative Examples 1 and 2 and Examples 1 to 4 subjected to annealing at room temperature.

XRD 측정은 시편의 연마 시의 변형으로 인한 상변태를 최소화하기 위하여 사포 600번, 800번, 1200번 순서로 연마 후, 8% 과염소산(Perchloric acid)에서 전해 에칭을 수행한 후 진행하였다.XRD measurements were performed after polishing in the order of sandpaper 600, 800, and 1200, followed by electrolytic etching in 8% perchloric acid to minimize phase transformation due to deformation during polishing of the specimen.

그 결과, 도 1에서 확인되는 바와 같이, 비교예 1의 경우, BCC 상으로 이루어지고, 실시예 1 ~ 4의 경우 준안정 FCC 상이 주를 이루며, 비교예 2는 BCC 상이 주를 이루고 FCC 상을 소량 포함하는 상으로 관찰되었다.As a result, as shown in FIG. 1, in the case of Comparative Example 1, the BCC phase was formed. In the case of Examples 1 to 4, the metastable FCC phase was dominant. In Comparative Example 2, the BCC phase was main and the FCC phase And a small amount of phase was observed.

즉, Fe의 함량이 많아지고 Co 및 Ni의 함량이 낮아질수록 FCC 상의 안정성은 떨어지며, 결과적으로 실시예 1 ~ 4의 범위에서 준안정한 FCC 상이 형성되었다. 비교예 1과 2에서는 Fe의 함량이 65 at% 이상 첨가되어 더 이상 FCC 상이 준안정한 상태가 아닌 불안정한 상태가 되어 상대적으로 BCC 상이 안정화되는 현상이 나타나고 있음을 알 수 있다.That is, as the content of Fe was increased and the content of Co and Ni was lowered, the stability of the FCC phase was lowered. As a result, a metastable FCC phase was formed in the range of Examples 1 to 4. In Comparative Examples 1 and 2, Fe was added in an amount of 65 at% or more, indicating that the FCC phase was no longer in a quasi-stable state but became an unstable state and the BCC phase was stabilized relatively.

인장시험 결과Tensile test results

도 2 및 3과 아래 표 4은 각각 본 발명의 비교예 1과 2, 실시예 1 ~ 4에 따라 소둔 처리된 합금의 상온(298K) 및 극저온(77K)에서의 인장시험 결과를 나타낸 것이다.2 and 3 and Table 4 below show the tensile test results of the alloys annealed according to Comparative Examples 1 and 2 and Examples 1 to 4 of the present invention at room temperature (298K) and cryogenic temperature (77K), respectively.

시편Psalter 상온Room temperature 극저온 (77K)Cryogenic (77K) 항복강도
(MPa)
Yield strength
(MPa)
인장강도
(MPa)
The tensile strength
(MPa)
연신율
(%)
Elongation
(%)
항복강도
(MPa)
Yield strength
(MPa)
인장강도
(Mpa)
The tensile strength
(Mpa)
연신율
(%)
Elongation
(%)
비교예 1Comparative Example 1 850850 975975 2424 13361336 14551455 3333 실시예 1Example 1 280280 550550 6868 615615 10241024 126126 실시예 2Example 2 274274 568568 8686 543543 11641164 118118 실시예 3Example 3 226226 534534 9898 526526 15081508 8282 실시예 4Example 4 228228 787787 6767 620620 16491649 4747 비교예 2Comparative Example 2 579579 996996 2626 11101110 15161516 3030

도 2 및 3과 표 3에서 확인되는 바와 같이, 본 발명의 실시예 1 ~ 4에 따라 제조된 중엔트로피 합금의 상온 인장 특성은, 항복강도 226 ~ 280 MPa, 인장강도 534 ~ 787 MPa, 연신율 67 ~ 98%를 나타내었다.As can be seen from Figs. 2 and 3 and Table 3, the tensile properties at room temperature of the tungsten alloy produced according to Examples 1 to 4 of the present invention were as follows: yield strength 226 to 280 MPa, tensile strength 534 to 787 MPa, elongation 67 To 98%.

한편, 극저온에서의 인장 특성은 항복강도 526 ~ 620 MPa, 인장강도 1024 ~ 1649 MPa, 연신율 47 ~ 126%로 매우 우수한 극저온 인장특성을 나타낸다.On the other hand, the tensile properties at a cryogenic temperature show a very excellent cryogenic tensile characteristic with a yield strength of 526 to 620 MPa, a tensile strength of 1024 to 1649 MPa, and an elongation of 47 to 126%.

그에 반해, 비교예 1과 2에 따라 제조된 중엔트로피 합금의 상온 인장 특성은 초기 결정구조의 대부분이 BCC 구조로 이루어져 있어 상온 및 극저온 인장 변형 간에 변형유기 상변태에 따른 강화 및 연신율 증가 효과가 없으며, BCC 구조로 인해 상온 및 극저온 인장 항복강도와 인장강도가 높지만 연신율이 낮아 취성을 가지게 된다. On the other hand, the tensile properties at room temperature of the tropospheric alloy prepared according to Comparative Examples 1 and 2 are such that most of the initial crystal structure is composed of the BCC structure, so that there is no effect of strengthening and elongation increasing according to the modified organic phase transformation between room temperature and cryogenic tensile strain, Due to the BCC structure, tensile yield strength and tensile strength at room temperature and cryogenic temperature are high, but elongation is low and brittleness is obtained.

특히, 준안정 상태의 FCC 상을 다량 포함하고 있는 실시예 3에 따른 합금의 경우, 극저온 인장물성이 항복강도 526 MPa, 인장강도 1508 MPa, 연신율 82%의 기존에 보고되지 않은 뛰어난 극저온 인장 특성이 나타남을 확인하였다.In particular, in the case of the alloy according to Example 3 containing a large amount of metastable FCC phases, the cryogenic tensile properties have excellent tensile strengths of 526 MPa, tensile strengths of 1508 MPa, and elongation ratios of 82% Respectively.

추가적으로, 본 발명의 중엔트로피 합금에서, 상기 Cr과 Fe의 함량은 유지한 상태에서, Co를 대체하여 Mo 및 Al 중에서 선택된 1종 이상으로 Co의 함량만큼 대체하여 합금화 한 경우에도 본 발명에서 기대하는 효과인 변형 시에 변형유기 상변태가 일어나 저온 연성과 강성을 확인할 수 있었다.In addition, in the trophy alloy according to the present invention, when the content of Cr and Fe is maintained, the content of Co is replaced with the content of Co by at least one selected from Mo and Al, It was confirmed that low temperature ductility and stiffness occurred due to the transformation of organic phase during effect transformation.

또한, 본 발명의 중엔트로피 합금에 있어서, 상기 Cr과 Fe의 함량은 유지한 상태에서, Ni을 대체하여 Mn으로 Ni의 함량만큼 대체하여 합금화 한 경우에도 본 발명에서 기대하는 효과인 변형 시에 변형유기 상변태가 일어나 저온 연성과 강성을 확인할 수 있었다.In addition, in the middle eutectic alloy of the present invention, even when the content of Cr and Fe is kept and the content of Ni is replaced with Mn to replace the content of Ni with the content of Ni, the deformation Organic phase transformation occurred and low temperature ductility and rigidity were confirmed.

또한, 본 발명의 중엔트로피 합금에 C 및 N 중 1종 이상을 금속의 기지(matrix)에 침입형 원소로 고용시킨 경우, 고용 강화 효과로 인한 합금의 강도가 높아지는 것을 추가적으로 확인할 수 있었다. Further, it was further confirmed that when the at least one of C and N is incorporated in the metal matrix as the interstitial element, the strength of the alloy due to the solid solution strengthening effect is further confirmed.

변형유기 상변태Modified organic phase transformation

도 4는 본 발명의 실시예 3에 따른 중엔트로피 합금의 상온 및 극저온 변형 시 상변화에 대한 EBSD 분석결과를 나타낸 것이다.4 is a graph showing the results of EBSD analysis of the phase change at room temperature and cryogenic temperature of the middle trophy alloy according to Example 3 of the present invention.

도 4에 나타난 바와 같이, 변형전 실시예 3 합금은 극소량의 BCC 상을 포함하고 대부분 준안정한 FCC 상으로 이루어지며, 상온(298K) 및 극저온(77K) 변형 후에는 BCC 상의 상분율이 현저하게 증가하는 것을 할 수 있다. 특히 극저온 변형 후에는 전 영역에 걸쳐 FCC 상에서 BCC 상으로 상변태가 일어나며, 이와 같은 상변태가 도 3에 나타난 바와 같이, 극저온 기계적 특성의 향상에 크게 기여한다.As shown in Fig. 4, the pre-strain Example 3 alloy is composed of a sub-stable FCC phase containing a very small amount of BCC phase, and the phase fraction of BCC phase is remarkably increased after room temperature (298K) and cryogenic (77K) You can do that. In particular, after cryogenic deformation, a phase transformation occurs on the FCC over the entire region to the BCC phase, and such a phase transformation greatly contributes to the improvement of the cryogenic mechanical properties as shown in Fig.

따라서, 상기 극저온 기계적 특성은 상기 변형 전 FCC 상의 상분율은 50% 이상이 바람직하다. Therefore, the cryogenic mechanical property is preferably 50% or more of the phase fraction on the pre-strain FCC.

변형 전
(부피%)
Before transformation
(volume%)
변형 후(298K)
(부피%)
After transformation (298K)
(volume%)
변형 후(77K)
(부피%)
After deformation (77K)
(volume%)
비교예 1Comparative Example 1 91.2691.26 93.9693.96 98.9998.99 실시예 1Example 1 0.340.34 15.0715.07 28.4628.46 실시예 2Example 2 0.380.38 20.2620.26 36.1236.12 실시예 3Example 3 0.410.41 27.6827.68 56.7156.71 실시예 4Example 4 25.6825.68 62.2362.23 85.0885.08 비교예 2Comparative Example 2 87.8187.81 89.2089.20 94.8794.87

표 5는 본 발명의 비교예 1과 2, 실시예 1 ~ 4에 따라 제조된 합금의 변형 전, 상온 및 극저온 변형 후의 BCC 상분율(vol%)을 ferritescope로 측정한 결과를 나타낸 것이다. Table 5 shows the results of ferritescope measurement of the BCC phase fraction (vol%) before and after the transformation of the alloy prepared according to Comparative Examples 1 and 2 and Examples 1 to 4 of the present invention at room temperature and cryogenic temperature.

표 5에 나타난 바와 같이, 실시예 1 ~ 3의 합금은 변형 전, 소량의 BCC 상을 포함하고 있으며, 상온 및 극저온 변형 간의 상변태로 인해 BCC 상의 분율이 증가하는 것을 확인할 수 있다. 또한, 실시예 4 합금은 BCC 상 안정성이 실시예 1 ~ 3 합금에 비해 상대적으로 높아져, 변형 전, BCC 상을 25.68 at%를 포함하고 있으며, 상온 및 극저온 변형 간의 상변태로 인해 BCC 상의 분율이 증가하는 것을 확인할 수 있다. 비교예 1과 2의 합금은 BCC 상 안정성이 실시예 1 ~ 4 보다 현저히 높기 때문에, 변형전, 이미 각각 91.26 at%, 87.81 at%의 BCC 상을 포함하고 있으며, 상온 및 극저온 변형 간의 상변태로 인해 BCC 상의 분율이 증가하는 것을 확인할 수 있다.As shown in Table 5, the alloys of Examples 1 to 3 contain a small amount of BCC phase before deformation, and it can be confirmed that the BCC phase fraction increases due to the phase transformation between normal temperature and cryogenic temperature deformation. In addition, the stability of the BCC phase of the alloy of Example 4 was higher than that of Examples 1 to 3, and the BCC phase contained 25.68 at%, and the BCC phase fraction increased due to the phase transformation between the normal temperature and the cryogenic temperature . The alloys of Comparative Examples 1 and 2 contained BCC phases of 91.26 at% and 87.81 at%, respectively, before the strain, because the stability of the BCC phase was significantly higher than those of Examples 1 to 4, and due to the phase transformation between room temperature and cryogenic deformation It can be confirmed that the fraction of the BCC phase increases.

Claims (13)

Cr: 6 ~ 15 at%, Fe: 50 ~ 64 at%, Co: 13 ~ 25 at%, Ni: 13 ~ 25 at%와 나머지 불가피한 불순물으로 이루어진 합금으로, 소성변형 시 FCC 상이 BCC 상으로 변형유기 상변태가 일어나는 것을 특징으로 하는 중엔트로피 합금.An alloy consisting of Cr: 6 to 15 at%, Fe: 50 to 64 at%, Co: 13 to 25 at%, Ni: 13 to 25 at% and the remaining unavoidable impurities. Wherein a phase transformation takes place. 제1항에 있어서,
상기 변형유기 상변태는 준안정 FCC 상에서 일어나는 것에 특징이 있는 중엔트로피 합금.
The method according to claim 1,
Wherein said modified organic phase transformation is characterized by occurring on a metastable FCC.
제1항에 있어서,
상기 Cr의 함량은 6 ~ 12.5 at%인, 중엔트로피 합금.
The method according to claim 1,
The content of Cr is from 6 to 12.5 at%.
제3항에 있어서,
상기 Fe의 함량은 55 ~ 62.5 at%인, 중엔트로피 합금.
The method of claim 3,
Wherein the content of Fe is 55 to 62.5 at%.
제1항에 있어서,
상기 Co가 Mo 및 Al 중에서 선택된 1종 이상으로 치환 가능한 것에 특징이 있는 중엔트로피 합금.
The method according to claim 1,
Wherein the Co is substituted by at least one selected from Mo and Al.
제1항 또는 제5항에 있어서,
상기 Ni이 Mn으로 치환 가능한 것에 특징이 있는 중엔트로피 합금.
6. The method according to claim 1 or 5,
Wherein said Ni is replaceable with Mn.
제1항 또는 제4항에 있어서,
상기 중엔트로피 합금의 총 at%에 대비하여 C, N 중 1종 이상을 1 at% 미만으로 포함하여 제조된 중엔트로피 합금.
The method according to claim 1 or 4,
Wherein said at least one trout alloy comprises at least one of C and N in an amount of less than 1 at% relative to the total at% of said trophic alloy.
제6항에 있어서,
상기 중엔트로피 합금의 총 at%에 대비하여 C, N 중 1종 이상을 1 at% 미만으로 포함하여 제조된 중엔트로피 합금.
The method according to claim 6,
Wherein said at least one trout alloy comprises at least one of C and N in an amount of less than 1 at% relative to the total at% of said trophic alloy.
제1항에 있어서,
상기 변형은 상온(298K) 이하의 온도에서 일어나는 것에 특징이 있는 중엔트로피 합금.
The method according to claim 1,
Wherein said deformation occurs at a temperature below room temperature (298K).
제2항에 있어서,
상기 준안정 FCC 상의 상분율이 50% 이상인, 중엔트로피 합금.
3. The method of claim 2,
Wherein the phase fraction of the metastable FCC phase is greater than or equal to 50%.
제1항에 있어서,
상기 중엔트로피 합금은, BCC 상과 준안정 FCC 상의 혼합 상이거나, 준안정한 FCC 상으로만 이루어지는, 중엔트로피 합금.
The method according to claim 1,
Wherein the trophic alloy is a mixed phase of a BCC phase and a metastable FCC phase, or a metastable FCC phase.
제1항에 있어서,
상기 중엔트로피 합금은, 상온(298K)에서 인장강도가 226 MPa 이상이고, 연신율이 67% 이상인, 중엔트로피 합금.
The method according to claim 1,
Wherein said trophic alloy has a tensile strength of at least 226 MPa at room temperature (298 K) and an elongation of at least 67%.
제1항에 있어서,
상기 중엔트로피 합금은, 극저온(77K)에서의 인장강도가 1024 MPa 이상이고, 연신율이 47% 이상인, 중엔트로피 합금.
The method according to claim 1,
Wherein said trophic alloy has a tensile strength at cryogenic temperature (77K) of at least 1024 MPa and an elongation of at least 47%.
KR1020170094759A 2017-07-26 2017-07-26 Medium-entropy alloys with excellent cryogenic properties KR101910744B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020170094759A KR101910744B1 (en) 2017-07-26 2017-07-26 Medium-entropy alloys with excellent cryogenic properties
US16/308,517 US20210054486A1 (en) 2017-07-26 2017-08-28 Medium-entropy alloy having excellent cryogenic properties
EP17912348.4A EP3660178B1 (en) 2017-07-26 2017-08-28 Medium-entropy alloy having excellent cryogenic characteristics
JP2018565038A JP2019532169A (en) 2017-07-26 2017-08-28 Medium entropy alloy with excellent cryogenic properties
PCT/KR2017/009364 WO2019022283A1 (en) 2017-07-26 2017-08-28 Medium-entropy alloy having excellent cryogenic characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170094759A KR101910744B1 (en) 2017-07-26 2017-07-26 Medium-entropy alloys with excellent cryogenic properties

Publications (1)

Publication Number Publication Date
KR101910744B1 true KR101910744B1 (en) 2018-10-22

Family

ID=64102284

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170094759A KR101910744B1 (en) 2017-07-26 2017-07-26 Medium-entropy alloys with excellent cryogenic properties

Country Status (5)

Country Link
US (1) US20210054486A1 (en)
EP (1) EP3660178B1 (en)
JP (1) JP2019532169A (en)
KR (1) KR101910744B1 (en)
WO (1) WO2019022283A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110129731A (en) * 2019-05-22 2019-08-16 江苏理工学院 A kind of antifatigue high-entropy alloy film and preparation method thereof
KR20200041629A (en) * 2018-10-12 2020-04-22 포항공과대학교 산학협력단 Transformation-induced-plasticity dual-phase high-entropy alloy and manufacturing method of the same
KR20200042279A (en) * 2018-10-15 2020-04-23 포항공과대학교 산학협력단 Medium-entropy alloys and Manufacturing method of the same
WO2020085697A1 (en) * 2018-10-24 2020-04-30 포항공과대학교 산학협력단 Medium-entropy alloy having high strength and high toughness, and manufacturing method therefor
CN113234986A (en) * 2021-06-03 2021-08-10 哈尔滨工程大学 Low-activation refractory medium-entropy alloy and preparation method thereof
CN114058894A (en) * 2021-11-25 2022-02-18 中国科学院兰州化学物理研究所 Medium-entropy alloy self-lubricating composite material and preparation method thereof
CN115198162A (en) * 2022-09-19 2022-10-18 太原理工大学 Entropy alloy in high-toughness heterogeneous multi-phase core-shell organization structure and preparation method thereof
CN115323240A (en) * 2022-08-29 2022-11-11 沈阳工业大学 High-toughness metastable-state dual-phase FeMnCrCo high-entropy alloy and preparation method thereof
WO2022250475A1 (en) * 2020-12-17 2022-12-01 엘지전자 주식회사 Oldham ring for scroll compressor having medium-entropy alloy applied thereto

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019117519A1 (en) * 2017-12-11 2019-06-20 한국기계연구원 High entropy alloy, manufacturing method therefor, and rod for bolts, using same
CN110157970B (en) * 2019-06-11 2021-01-05 沈阳航空航天大学 High-strength-ductility CoCrNi intermediate-entropy alloy and preparation method thereof
US11353117B1 (en) 2020-01-17 2022-06-07 Vulcan Industrial Holdings, LLC Valve seat insert system and method
CN111676409B (en) * 2020-06-11 2021-07-02 北京科技大学 Preparation method of low-density low-cost Fe-Mn-Al-C intermediate entropy alloy
US11421679B1 (en) 2020-06-30 2022-08-23 Vulcan Industrial Holdings, LLC Packing assembly with threaded sleeve for interaction with an installation tool
US11421680B1 (en) 2020-06-30 2022-08-23 Vulcan Industrial Holdings, LLC Packing bore wear sleeve retainer system
CN111705254A (en) * 2020-06-30 2020-09-25 江苏鑫信润科技股份有限公司 CoNiFe intermediate entropy alloy for corrosion-resistant dynamic seal and preparation method thereof
US11384756B1 (en) 2020-08-19 2022-07-12 Vulcan Industrial Holdings, LLC Composite valve seat system and method
USD980876S1 (en) 2020-08-21 2023-03-14 Vulcan Industrial Holdings, LLC Fluid end for a pumping system
USD997992S1 (en) 2020-08-21 2023-09-05 Vulcan Industrial Holdings, LLC Fluid end for a pumping system
USD986928S1 (en) 2020-08-21 2023-05-23 Vulcan Industrial Holdings, LLC Fluid end for a pumping system
CN111876648B (en) * 2020-09-10 2021-07-30 燕山大学 CoCrNiSi medium-entropy alloy and preparation method thereof
US11391374B1 (en) 2021-01-14 2022-07-19 Vulcan Industrial Holdings, LLC Dual ring stuffing box
CN113403519B (en) * 2021-05-27 2022-07-12 西北工业大学 FeCoNiSnxMedium-entropy alloy and preparation method thereof
CN115491560B (en) * 2021-06-17 2024-06-04 西北工业大学 Method for improving low-temperature wear resistance of alloy
CN113667941B (en) * 2021-08-17 2023-04-11 西安邮电大学 Medium-entropy thermosensitive film and preparation method and application thereof
CN113878220B (en) * 2021-08-27 2023-03-28 合肥工业大学 Tungsten and steel layered metal composite material and diffusion bonding method thereof
CN114058888B (en) * 2021-10-25 2022-07-05 重庆大学 Smelting method of FeCrCoNiAl high-entropy alloy
CN114086049B (en) * 2021-11-17 2022-08-23 沈阳航空航天大学 2.0GPa grade CoCrNi-based medium entropy alloy with ultrahigh yield strength and plasticity and preparation method thereof
CN114231765B (en) * 2021-11-26 2022-06-21 北冶功能材料(江苏)有限公司 Preparation method and application of high-temperature alloy bar
US11434900B1 (en) 2022-04-25 2022-09-06 Vulcan Industrial Holdings, LLC Spring controlling valve
US11920684B1 (en) 2022-05-17 2024-03-05 Vulcan Industrial Holdings, LLC Mechanically or hybrid mounted valve seat
CN115074595B (en) * 2022-06-06 2023-04-21 北京科技大学 Acid corrosion resistant non-equal atomic ratio CoCrNi medium entropy alloy and preparation method thereof
CN114959613B (en) * 2022-06-15 2024-07-12 西安热工研究院有限公司 Method for enhancing corrosion resistance of medium-entropy alloy CoCrNi film
CN114990509B (en) * 2022-06-15 2024-07-12 西安热工研究院有限公司 Strengthening method of medium-entropy alloy coating
CN115786795B (en) * 2022-11-24 2024-01-26 陕西科技大学 CrFe 2 Ni 2 Nb x M y Eutectic medium-entropy alloy and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174350A (en) 2009-01-30 2010-08-12 Res Inst Electric Magnetic Alloys High elastic and constant-modulus alloy, method for producing the same, and precise mechanical equipment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3673010A (en) * 1970-05-19 1972-06-27 Tohoku Special Steel Works Ltd Cold-workable permanent magnet alloy
JPS5480570A (en) * 1977-12-09 1979-06-27 Tohoku Metal Ind Ltd Metallic magnetic material for thermoo sensitive element and lead switch employing same
WO1990000629A1 (en) * 1988-07-08 1990-01-25 Famcy Steel Corporation High damping capacity, two-phase fe-mn-al-c alloy
JP3216824B2 (en) * 1991-10-25 2001-10-09 日立金属株式会社 High strength low thermal expansion alloy
US20020159914A1 (en) 2000-11-07 2002-10-31 Jien-Wei Yeh High-entropy multielement alloys
JP5486050B2 (en) * 2012-07-11 2014-05-07 公益財団法人電磁材料研究所 Highly elastic / constant elastic alloy, its manufacturing method and precision instrument
JP6536927B2 (en) * 2014-07-25 2019-07-03 日立金属株式会社 Alloy structure
JP6388381B2 (en) * 2014-07-23 2018-09-12 日立金属株式会社 Alloy structure
KR101728936B1 (en) * 2014-07-28 2017-04-21 세종대학교산학협력단 High entropy alloy having excellent strength and ductility
KR101708763B1 (en) * 2015-05-04 2017-03-08 한국과학기술연구원 Bcc alloys with strong resistance against high temperature neutron irradiation damage

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174350A (en) 2009-01-30 2010-08-12 Res Inst Electric Magnetic Alloys High elastic and constant-modulus alloy, method for producing the same, and precise mechanical equipment

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200041629A (en) * 2018-10-12 2020-04-22 포항공과대학교 산학협력단 Transformation-induced-plasticity dual-phase high-entropy alloy and manufacturing method of the same
KR102181568B1 (en) 2018-10-12 2020-11-20 포항공과대학교 산학협력단 Transformation-induced-plasticity dual-phase high-entropy alloy and manufacturing method of the same
KR102178331B1 (en) 2018-10-15 2020-11-12 포항공과대학교 산학협력단 Medium-entropy alloys and Manufacturing method of the same
KR20200042279A (en) * 2018-10-15 2020-04-23 포항공과대학교 산학협력단 Medium-entropy alloys and Manufacturing method of the same
WO2020085697A1 (en) * 2018-10-24 2020-04-30 포항공과대학교 산학협력단 Medium-entropy alloy having high strength and high toughness, and manufacturing method therefor
KR102178332B1 (en) 2018-10-24 2020-11-12 포항공과대학교 산학협력단 High-strength and high-toughness medium entropy alloy and manufacturing method for the same
KR20200046454A (en) * 2018-10-24 2020-05-07 포항공과대학교 산학협력단 High-strength and high-toughness medium entropy alloy and manufacturing method for the same
CN110129731A (en) * 2019-05-22 2019-08-16 江苏理工学院 A kind of antifatigue high-entropy alloy film and preparation method thereof
WO2022250475A1 (en) * 2020-12-17 2022-12-01 엘지전자 주식회사 Oldham ring for scroll compressor having medium-entropy alloy applied thereto
CN113234986A (en) * 2021-06-03 2021-08-10 哈尔滨工程大学 Low-activation refractory medium-entropy alloy and preparation method thereof
CN114058894A (en) * 2021-11-25 2022-02-18 中国科学院兰州化学物理研究所 Medium-entropy alloy self-lubricating composite material and preparation method thereof
CN114058894B (en) * 2021-11-25 2022-08-02 中国科学院兰州化学物理研究所 Medium-entropy alloy self-lubricating composite material and preparation method thereof
CN115323240A (en) * 2022-08-29 2022-11-11 沈阳工业大学 High-toughness metastable-state dual-phase FeMnCrCo high-entropy alloy and preparation method thereof
CN115198162A (en) * 2022-09-19 2022-10-18 太原理工大学 Entropy alloy in high-toughness heterogeneous multi-phase core-shell organization structure and preparation method thereof
CN115198162B (en) * 2022-09-19 2022-12-02 太原理工大学 Entropy alloy in high-toughness heterogeneous multi-phase core-shell organization structure and preparation method thereof

Also Published As

Publication number Publication date
EP3660178B1 (en) 2022-10-19
EP3660178A1 (en) 2020-06-03
EP3660178A4 (en) 2020-06-03
JP2019532169A (en) 2019-11-07
WO2019022283A1 (en) 2019-01-31
US20210054486A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
KR101910744B1 (en) Medium-entropy alloys with excellent cryogenic properties
KR102236938B1 (en) Twinning/transformation induced plasticity high entropy steels and method for manufacturing the same
US10364487B2 (en) High entropy alloy having TWIP/TRIP property and manufacturing method for the same
KR101962229B1 (en) Boron-doped High Entropy Alloy and Manufacturing Method of the Same
KR101888299B1 (en) Cryogenic High Entropy Alloy
KR101888300B1 (en) High Entropy Alloy Based Chromium, Iron, Manganese, Nickel and Vanadium
EP2826877B1 (en) Hot-forgeable Nickel-based superalloy excellent in high temperature strength
KR101871590B1 (en) Stress-induced phase transformable dual-phase high entropy alloy and manufacturing method for the same
KR101418775B1 (en) Beta type titanium alloy with low elastic modulus and high strength
US11313018B2 (en) Transformation-induced plasticity high-entropy alloy and preparation method thereof
EP2479302A1 (en) Ni-based heat resistant alloy, gas turbine component and gas turbine
KR102178331B1 (en) Medium-entropy alloys and Manufacturing method of the same
KR101915906B1 (en) High Entropy Alloy Based Vanadium, Chromium, Iron and Nickle
EP3208354B1 (en) Ni-based superalloy for hot forging
KR101963020B1 (en) CrCoNi ALLOYS WITH MULTI-DEFORMATION MECHANISM SENSING TEMPERATURE AND STRESS AND MANUFACTURING METHOD THEREOF
KR20180105857A (en) Stress sensing deformation mechanism tunable alloy and manufacturing method thereof
CN108193144B (en) High-strength spring wire with high elastic modulus and preparation method thereof
EP3208355B1 (en) Ni-based superalloy for hot forging
EP3693483A1 (en) Transformation-induced plasticity high-entropy alloy, and manufacturing method therefor
EP2940174B1 (en) Fe-ni-based alloy having excellent high-temperature characteristics and hydrogen embrittlement resistance characteristics, and method for producing same
CN114774785A (en) Low-cost high-performance iron-based medium-entropy alloy
KR20170074265A (en) Austenitic stainless steel with improved creep resistance and tensile strength and method of manufacturing the same
KR101952015B1 (en) High Entropy Alloy Based Cobalt, Copper, Nickle and Manganese
KR20200041629A (en) Transformation-induced-plasticity dual-phase high-entropy alloy and manufacturing method of the same
KR102431831B1 (en) Medium entropy alloy and manufacturing method thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant