JP2010174350A - High elastic and constant-modulus alloy, method for producing the same, and precise mechanical equipment - Google Patents

High elastic and constant-modulus alloy, method for producing the same, and precise mechanical equipment Download PDF

Info

Publication number
JP2010174350A
JP2010174350A JP2009019957A JP2009019957A JP2010174350A JP 2010174350 A JP2010174350 A JP 2010174350A JP 2009019957 A JP2009019957 A JP 2009019957A JP 2009019957 A JP2009019957 A JP 2009019957A JP 2010174350 A JP2010174350 A JP 2010174350A
Authority
JP
Japan
Prior art keywords
modulus
young
alloy
wire
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009019957A
Other languages
Japanese (ja)
Other versions
JP5059035B2 (en
Inventor
Takeshi Masumoto
剛 増本
Yuetsu Murakami
雄悦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elect & Magn Alloys Res Inst
Research Institute for Electromagnetic Materials
Original Assignee
Elect & Magn Alloys Res Inst
Research Institute for Electromagnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elect & Magn Alloys Res Inst, Research Institute for Electromagnetic Materials filed Critical Elect & Magn Alloys Res Inst
Priority to JP2009019957A priority Critical patent/JP5059035B2/en
Publication of JP2010174350A publication Critical patent/JP2010174350A/en
Application granted granted Critical
Publication of JP5059035B2 publication Critical patent/JP5059035B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a constant-modulus alloy which has a high Young's modulus, and in which the temperature coefficient thereof is low, and further to provide precision mechanical equipment using the same. <P>SOLUTION: An alloy having a composition containing, by mass, 20 to 40% Co, 10 to 20% Ni, 5 to 15% Cr, the IIa group metals of Ca, Sr and Ba of each at most 2%, and one or more kinds selected from the fluorine compounds of the IIa group elements of each at most 1% and of the total of 0.0001 to 5%, and the balance Fe is annealed at 900°C to less than the melting point, is thereafter cooled, and is next subjected to wire drawing at a working ratio of at least 50% so as to be a wire rod or a fine wire with a desired thickness, and thereafter, the wire rod or fine wire is heated at 550 to 720°C so as to obtain a high elastic and constant-modulus alloy having a Young's modulus of at least 190 GP a, and in which the temperature coefficient of the Young's modulus at 0 to 40°C is (-5 to 5)x10<SP>-5</SP>. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、一般にコエリンバーといわれているFe-Co-Ni-Cr系合金の改良に関するものであり、さらに詳しく述べるならば、Ca,Sr,BaのI Ia族元素及び当該I Ia族元素のフッ素化合物の1種又は2種以上を添加することにより、ヤング率の温度係数が小さいというコエリンバーの特長を保ちつつ、ヤング率自体を高めた高弾性・恒弾性合金に関するものである。さらに、本発明は、副成分として,Mo、W、V,Nb、Ta、Cu,Mn、Ti、Zr、Hf、Au,Ag,白金族元素、Al、Si、希土類元素、Be、B、Cの1種又は2種以上を含有せしめた高弾性・恒弾性合金に関するものである。加えて、本発明は、本発明合金を高い生産性で製造するとともに、その特性の再現性を高めることができる高弾性・恒弾性合金の製造方法及び当該合金を使用した精密機器に関するものである。   The present invention relates to an improvement in an Fe—Co—Ni—Cr alloy generally referred to as a coelin bar. More specifically, the present invention relates to an I Ia group element of Ca, Sr, Ba and fluorine of the I Ia group element. The present invention relates to a highly elastic / constant elastic alloy in which the Young's modulus itself is increased while maintaining the characteristics of the Coelin bar that the temperature coefficient of Young's modulus is small by adding one or more compounds. Further, the present invention provides Mo, W, V, Nb, Ta, Cu, Mn, Ti, Zr, Hf, Au, Ag, platinum group elements, Al, Si, rare earth elements, Be, B, C as subcomponents. The present invention relates to a highly elastic / constant elastic alloy containing one or more of the above. In addition, the present invention relates to a method for producing a highly elastic / constant elastic alloy capable of producing the alloy of the present invention with high productivity and improving the reproducibility of the characteristics, and a precision instrument using the alloy. .

本出願人・財団法人の理事長であった増本 量が発明者となっている特許文献135850号(特公昭16-5622号公報)は、コエリンバーに関するものであり、その特許請求の範囲は次のとおりである。「1 〜74.9% Co,2〜 17% Cr,16〜 68%Fe,0.1〜 38%Ni,但しNi及びCoの総和25〜 75%を含む合金を常温又は高温で加工して所定形に作り、これに適当な熱処理を施し、常用範囲の温度変化に対し略々不変振動数又は不変偏倚を有する弾性作働体」である。したがって、特許文献1で開示されているコエリンバーの製造工程は、熱間又は冷間加工及びこれに続く熱処理からなるものである。 Patent Document No. 135850 (Japanese Patent Publication No. 16-5622), which is the inventor of the applicant and the foundation of the foundation, relates to the coelin bar. It is as follows. “1-74.9% Co, 2-17% Cr, 16-68% Fe, 0.1-38% Ni, except that an alloy containing 25-75% of the total of Ni and Co is processed at room temperature or high temperature into a predetermined shape. This is an elastic working body which has been subjected to an appropriate heat treatment and has a substantially invariant frequency or invariant bias with respect to a temperature change in a normal range. Therefore, the manufacturing process of the coelin bar disclosed in Patent Document 1 includes hot or cold working and subsequent heat treatment.

特許文献1の発表以来、コエリンバーは主として時計に使用されてきたが、特許文献1から約17年後の時点において実用されていたコエリンバーの組成及び特性に関して、本出願人・財団法人の理事であった斉藤が非特許文献1:「新時代の磁性材料」工業調査会1983年6月10日発行2刷、第258〜264頁に発表している。それは(1)43.6%Co,34.6%Fe,12.7%Cr,9.1%Ni,熱膨張係数(10〜50℃)7.4 ×10-6,横弾性係数7080kg/mm2,横弾性係数の温度係数 (20〜50℃)0.0、及び(2)27.7%Co,39.2%Fe,10.0%Cr,23.1%Ni,熱膨張係数(10〜 50℃)8.1 ×10-6,横弾性係数6610kg/mm2,横弾性係数の温度係数 (20〜50℃)-0.2×10-5である。また、非特許文献1では、コエリンバーは加工と熱処理により硬化し、高弾性となり、また合金元素の酸化が特性の再現性に影響すると解説されている。 Since the publication of Patent Document 1, Coelin Bar has been used mainly for watches, but was the director of the applicant and incorporated foundation regarding the composition and properties of Coelin Bar that had been put into practical use about 17 years after Patent Document 1. Saito et al., Non-Patent Document 1: “New Magnetic Materials” published on June 10, 1983, 2nd edition, pages 258-264. It is (1) 43.6% Co, 34.6% Fe, 12.7% Cr, 9.1% Ni, thermal expansion coefficient (10-50 ° C) 7.4 × 10 -6 , transverse elastic modulus 7080 kg / mm 2 , transverse elastic modulus temperature Coefficient (20-50 ° C) 0.0, and (2) 27.7% Co, 39.2% Fe, 10.0% Cr, 23.1% Ni, thermal expansion coefficient (10-50 ° C) 8.1 × 10 -6 , transverse elastic modulus 6610kg / mm 2 、 Temperature coefficient of transverse elastic modulus (20 ~ 50 ℃) -0.2 × 10 -5 . Non-Patent Document 1 describes that a coelin bar is hardened by processing and heat treatment and becomes highly elastic, and that oxidation of an alloy element affects the reproducibility of characteristics.

さらに、新しいコエリンバーの組成・特性などは非特許文献2:「改訂4版金属データブック」日本金属学会編、平成16年2月29日発行、第249頁に発表されており、これを次に引用する。 Furthermore, the composition and characteristics of the new Coelin bar are published in Non-Patent Document 2: “Revised 4th Edition Metal Data Book” edited by the Japan Institute of Metals, February 29, 2004, page 249. Quote.

Figure 2010174350
Figure 2010174350

従来、Fe−Co−Ni−Cr系合金(コエリンバ−)は、ヤング率の温度係数が小さい恒弾性特性を有していることから、吊り線、コイルばね、板ばね及びひげぜんまい等に用いており、さらに当該吊り線、コイルばね、板ばね及びひげぜんまいは精密機器、例えば測量機、地震計、回転計及び時計等に使用されている。   Conventionally, Fe-Co-Ni-Cr-based alloys (coelin bar) have constant elastic properties with a small Young's modulus temperature coefficient, so they are used for suspension wires, coil springs, leaf springs, and balance springs. In addition, the suspension line, coil spring, leaf spring, and hairspring are used in precision instruments such as surveying instruments, seismometers, tachometers, and watches.

非特許文献1で提案されたコエリンバーのCrをMo,W,V又はMnで置き換えた各種恒弾性合金が提案されている。一方で、コエリンバーの基本成分であるFe−Co−Ni−Cr合金成分をそのまま維持しつつ特性の改良を試みた発表は、上記非特許文献では示されていない。本出願人は特許文献1の特許成立当時から現在までコエリンバーを製造しているので、非特許文献1,2で公表された組成以外について良好な特性を達成することは困難であったと評価できる。 Various constant elastic alloys in which Cr of the coelin bar proposed in Non-Patent Document 1 is replaced with Mo, W, V, or Mn have been proposed. On the other hand, the above-mentioned non-patent literature does not show an announcement that attempts to improve the characteristics while maintaining the Fe—Co—Ni—Cr alloy component, which is the basic component of the coelin bar. Since the present applicant has manufactured a coelin bar from the time when the patent of Patent Document 1 was established to the present, it can be evaluated that it was difficult to achieve good characteristics other than the compositions published in Non-Patent Documents 1 and 2.

さらに、本発明者らは、非特許文献2の特性を再現するために製造上条件を変えてコエリンバーを製造したところ、後述の表6の条件により当該特性を得ることができ、一方、線引き加工率などさらに高めるとヤング率の温度係数は悪化するので、表6の条件が最良であることを確認した。したがって、非特許文献2の特性は現時点におけるコエリンバーのチャンピオンデータであるといえる。
また製造方法については、コエリンバーは、Fe-Ni系合金と比べると健全な鋳塊、特に大型鋳塊を得ることが困難である。さらに、Co系合金特有の加工性不良の問題がある。これらの問題は小型鋳塊を多くの工程を経て加工すると対応は可能であるが、生産性が著しく低下する。さらに、非特許文献2においては、特性の再現性を高めるためには製造中の酸化を防止することが有効であると解説されており、実際に真空溶解などが行われているが、十分な成果は挙げられていなかった。
Furthermore, when the present inventors manufactured a coelin bar by changing the manufacturing conditions in order to reproduce the characteristics of Non-Patent Document 2, the characteristics can be obtained according to the conditions shown in Table 6 below, while the drawing process is performed. When the ratio and the like are further increased, the temperature coefficient of Young's modulus deteriorates, so the conditions in Table 6 were confirmed to be the best. Therefore, it can be said that the characteristic of Non-Patent Document 2 is the current Coelin Champion data.
As for the manufacturing method, it is difficult for Coelin Bar to obtain a sound ingot, particularly a large ingot, as compared with an Fe—Ni alloy. Furthermore, there is a problem of workability defects peculiar to Co-based alloys. These problems can be dealt with when a small ingot is processed through many processes, but the productivity is significantly reduced. Furthermore, Non-Patent Document 2 describes that it is effective to prevent oxidation during production in order to enhance the reproducibility of characteristics, and although actual vacuum melting or the like is performed, sufficient No results were given.

特許文献1:特公昭16−5622号公報     Patent Document 1: Japanese Patent Publication No. 16-5622

非特許文献1:「新時代の磁性材料」工業調査会1983年6月10に発行2刷、第258〜264頁
非特許文献2:「改訂4版金属データブック」日本金属学会編、平成16年2月29日発行、第249頁
Non-Patent Document 1: “New Material Magnetic Materials”, published in June 10, 1983, 2nd edition, pp. 258-264 Non-Patent Document 2: “Revised 4th Edition Metal Data Book” edited by the Japan Institute of Metals, 2004 Published February 29, pp. 249

上述のように、従来のコエリンバーは、ヤング率の温度係数を本来の低い値に保ちつつ同時にヤング率自体を高くすることができず、また、恒弾性特性を有する組成範囲が狭いという問題があった。
さらに、特許文献1で開示されたコエリンバーの製造方法は、甚だ簡略であり、実際にコエリンバーを製造するには適していない。上述のようにコエリンバーは酸化などにより再現性が劣る特質があるので、再現性良く、かつ大量に生産する方法を提供することが強く要望されている。
As described above, the conventional coelin bar has a problem that the Young's modulus itself cannot be increased at the same time while keeping the temperature coefficient of Young's modulus at the original low value, and the composition range having a constant elastic property is narrow. It was.
Furthermore, the manufacturing method of the coelin bar disclosed in Patent Document 1 is very simple and is not suitable for actually manufacturing the coelin bar. As described above, coelin bar has a characteristic that it is inferior in reproducibility due to oxidation or the like, and thus it is strongly desired to provide a method for producing in large quantities with good reproducibility.

本発明は、このような現状に鑑み、Fe−Co−Ni−Cr合金のコエリンバーに、Ca,Sr,BaのI Ia族元素及び当該I Ia族元素のフッ素化合物を添加して、ヤング率、ヤング率の温度係数等について鋭意研究した結果、見出されたものである。その結果、質量比にて、Co20〜40%,Ni10〜20%、Cr5〜15%とCa,Sr,Baのそれぞれ2%以下のI Ia族元素及び当該I Ia族元素のフッ素化合物のそれぞれ1%以下の1種又は2種以上の合計0.0001〜5%、及び残部Feからなる合金、或いは必要ならば、これに副成分としてMo、Wをそれぞれ10%以下、V,Nb、Ta、Cu,Mn、Ti、Zr、Hfをそれぞれ7%以下、Au,Ag,白金族元素、Al、Si、希土類元素をそれぞれ5%以下、Be3%以下,B、Cをそれぞれ1%以下の1種又は2種以上の合計0.001〜15%を添加した合金が見出された。
さらに、コエリンバーの製造に際して、溶解、熱間鍛造及び圧延、焼鈍、線引き加工及び熱処理からなる工程条件を設定するに際して、前記のI Ia族元素及び当該I Ia族元素のフッ素化合物を所定量添加した改良コエリンバーは、上記製造条件を、ヤング率の温度係数及びヤング率の両方が良好になるように、有利に設定できることを見出した。また、製造中の酸化などに対する再現性不良が抑えられることを見出した。
In view of such a current situation, the present invention adds a Ca, Sr, Ba I Ia group element and a fluorine compound of the I Ia group element to a coelin bar of an Fe—Co—Ni—Cr alloy. It was discovered as a result of earnest research on the temperature coefficient of Young's modulus. As a result, in terms of mass ratio, Co20-40%, Ni10-20%, Cr5-15%, Ca, Sr, Ba and each 2% or less of each of the I Ia group element and the fluorine compound of the I Ia group element are each 1 % Or less, a total of 0.0001 to 5% of one or more, and the balance Fe, or if necessary, Mo and W as subcomponents of 10% or less, V, Nb, Ta, Cu, Mn, Ti, Zr, Hf each 7% or less, Au, Ag, platinum group elements, Al, Si, rare earth elements 5% or less, Be3% or less, B, C 1% or less each 1 or 2 Alloys with a total addition of 0.001-15% above the seed were found.
Further, in the production of the coelin bar, when setting the process conditions consisting of melting, hot forging and rolling, annealing, wire drawing and heat treatment, a predetermined amount of the aforementioned I Ia group element and a fluorine compound of the I Ia group element was added. The improved coelin bar has found that the above production conditions can be advantageously set so that both the temperature coefficient of Young's modulus and Young's modulus are good. Moreover, it discovered that the reproducibility defect with respect to oxidation etc. during manufacture was suppressed.

本発明の特徴とする処は次の通りである。
(1)第1発明は、質量比にて、Co20〜40%,Ni10〜20%、Cr5〜15%とCa,Sr,Baのそれぞれ2%以下のI Ia族元素及び当該I Ia族元素のフッ素化合物のそれぞれ1%以下の1種又は2種以上の合計0.0001〜5%、及び残部Feと不可避的不純物からなり、ヤング率190GPa以上及び0〜40℃におけるヤング率の温度係数(-5〜5)x10−5を有することを特徴とする高弾性・恒弾性合金に関する。
The features of the present invention are as follows.
(1) According to the first invention, in terms of mass ratio, Co20-40%, Ni10-20%, Cr5-15%, and each of Ca, Sr, Ba and 2% or less of each of the I Ia group elements and the I Ia group elements It consists of 0.0001-5% in total of 1 or 2 or more kinds of fluorine compounds of 1% or less respectively, and the balance Fe and unavoidable impurities. Young's modulus is 190 GPa or more and the temperature coefficient of Young's modulus at 0-40 ° C (-5- 5) relates to a high elastic-constant modulus alloy and having a x10 -5.

(2)第2発明は、 質量比にて、Co20〜40%,Ni10〜20%、Cr5〜15%とCa,Sr,Baのそれぞれ2%以下のI Ia族元素及び当該I Ia族元素のフッ素化合物のそれぞれ1%以下の1種又は2種以上の合計0.0001〜5%、及び副成分としてMo、Wをそれぞれ10%以下、V,Nb、Ta、Cu、Mn,Ti、Zr、Hfをそれぞれ7%以下、Au,Ag,白金族元素、Al、Si、希土類元素をそれぞれ5%以下、Be3%以下,B、Cをそれぞれ1%以下の1種又は2種以上の合計0.001〜15%、及び残部Feと不可避的不純物とからなり,ヤング率190GPa以上及び0〜40℃におけるヤング率の温度係数(-5〜5)x10−5 を有することを特徴とする高弾性・恒弾性合金に関する。 (2) The second invention relates to a mass ratio of Co20-40%, Ni10-20%, Cr5-15% and Ca, Sr, Ba of 2% or less of each of the I Ia group elements and the I Ia group elements. 1% or less of each fluorine compound, or a total of 0.0001 to 5% of 2 or more types, and Mo and W as subcomponents of 10% or less, V, Nb, Ta, Cu, Mn, Ti, Zr, and Hf, respectively. 7% or less each, Au, Ag, platinum group elements, Al, Si, rare earth elements each 5% or less, Be3% or less, B, C 1% each 1 type or 2 types total 0.001-15% , And the balance Fe and inevitable impurities, and has a Young's modulus of 190 GPa or more and a Young's modulus temperature coefficient of 0 to 40 ° C. (−5 to 5) × 10 −5 .

(3)第3発明は、線材、細線、板材もしくは薄板に加工された上記(1)又は(2)項記載の高弾性・恒弾性合金を用いた精密機器に関する。   (3) The third invention relates to a precision instrument using the highly elastic / constant elastic alloy described in the above item (1) or (2) processed into a wire, fine wire, plate or thin plate.

(4)第4発明は、上記(1)又は(2)項記載の組成を有する合金を、熱間鍛造及び熱間加工にて適当な形状に加工し、900℃以上融点未満の温度で焼鈍した後冷却し、ついで加工率50%以上の線引き加工を施して所望の太さの線材又は細線になした後、当該線材又は細線を550〜720℃の温度で加熱することにより、ヤング率190GPa以上及び0〜40℃におけるヤング率の温度係数(-5〜5)x10−5を有する高弾性・恒弾性合金の製造法に関する。 (4) In the fourth invention, the alloy having the composition described in the above (1) or (2) is processed into an appropriate shape by hot forging and hot working, and annealed at a temperature of 900 ° C. or higher and lower than the melting point. After cooling, and then drawing to a processing rate of 50% or more to form a wire or fine wire with a desired thickness, the wire or fine wire is heated at a temperature of 550 to 720 ° C. The present invention relates to a method for producing a highly elastic / constant elastic alloy having a temperature coefficient of Young's modulus (−5 to 5) × 10 −5 at 0 to 40 ° C.

(5)第5発明は、上記(1)又は(2)項記載の組成を有する合金を、熱間鍛造及び熱間加工にて適当な形状に加工し、900℃以上融点未満の温度で焼鈍した後冷却し、ついで圧下率50%以上の圧延加工を施して所望の厚さの板又は薄板になした後、当該板又は薄板を550〜720℃の温度で加熱することにより、ヤング率190GPa以上及び0〜40℃におけるヤング率の温度係数(-5〜5)x10−5を有する高弾性・恒弾性合金の製造法に関する。 (5) In the fifth invention, an alloy having the composition described in (1) or (2) above is processed into an appropriate shape by hot forging and hot working, and annealed at a temperature of 900 ° C. or higher and lower than the melting point. Then, after cooling and then rolling to a reduction ratio of 50% or more to obtain a plate or thin plate with a desired thickness, the plate or thin plate is heated at a temperature of 550 to 720 ° C. The present invention relates to a method for producing a highly elastic / constant elastic alloy having a temperature coefficient of Young's modulus (−5 to 5) × 10 −5 at 0 to 40 ° C.

(6)第6発明は、上記(1)又は(2)項記載の組成を有する合金を,熱間鍛造及び熱間加工にて適当な形状に加工し、900℃以上融点未満の温度で焼鈍した後冷却し、ついで加工率50%以上の線引き加工を施して所望の太さの線材又は細線になした後,さらに当該線材又は細線に圧下率30%以上の圧延加工を施して所望の厚さの板又は薄板になした後、当該板又は薄板を550〜720℃の温度で加熱することにより、ヤング率190GPa以上及び0〜40℃におけるヤング率の温度係数(-5〜5)x10−5を有する高弾性・恒弾性合金の製造法に関する。
次に、本発明を、高弾性・恒弾性合金の組成、特性及び製造方法の順に説明する。
(6) In the sixth invention, an alloy having the composition described in (1) or (2) above is processed into an appropriate shape by hot forging and hot working, and annealed at a temperature of 900 ° C. or higher and lower than the melting point. After cooling, the wire is then drawn to a processing rate of 50% or more to form a wire or fine wire with a desired thickness, and then the wire or thin wire is further rolled to a reduction rate of 30% or more to obtain a desired thickness. After forming the plate or thin plate, the plate or thin plate is heated at a temperature of 550 to 720 ° C., whereby the Young's modulus is 190 GPa or more and the Young's modulus temperature coefficient at 0 to 40 ° C. (−5 to 5) × 10 − The present invention relates to a method for producing a highly elastic / constant elastic alloy having 5 .
Next, the present invention will be described in the order of the composition, characteristics, and manufacturing method of the highly elastic / constant elastic alloy.

組成
本発明合金の成分組成系は、Co20〜40%,Ni10〜20%、Cr5〜15%、下記の特定のIIa族元素及びそのフッ素化合物、及び残部Feと不可避的不純物からなる。本発明者らは、非特許文献1の組成(2)及び非特許文献2の組成を中心にCo,Ni,Cr量を増減させ、かつ下記の特定のIIa族元素及びそのフッ素化合物を添加して、ヤング率及びその温度係数を測定した。即ち、Ca,Sr,Baのそれぞれ2%以下のI Ia族元素及び当該I Ia族元素のフッ素化合物、例えばCaF2,SrF2及びBaF2のそれぞれ1%以下の1種又は2種以上の合計0.0001〜5%を添加した。その結果、上記した組成範囲ではヤング率が190GPa以上で、0〜40℃におけるヤング率の温度係数が(-5〜5)x10−5となることを見出した。即ち、非特許文献1の組成(2)及び非特許文献2の組成よりも組成範囲を拡張することができるが、この組成範囲をはずれると、ヤング率が190GPa以下で、0〜40℃におけるヤング率の温度係数が-5x10−5以下又は5x10−5以上となり、高弾性・恒弾性合金が得られない。
Composition The component composition system of the alloy of the present invention is composed of Co 20 to 40%, Ni 10 to 20%, Cr 5 to 15%, the following specific group IIa elements and their fluorine compounds, and the balance Fe and inevitable impurities. . The present inventors increased or decreased the amount of Co, Ni, and Cr, centering on the composition (2) of Non-Patent Document 1 and the composition of Non-Patent Document 2, and added the following specific IIa group elements and their fluorine compounds. The Young's modulus and its temperature coefficient were measured. That, Ca, Sr, respectively fluorine compound 2% or less I Ia group element and the I Ia group element, for example CaF 2, SrF 2 and respectively one or the sum of two or more of 1% or less of BaF 2 and Ba 0.0001-5% was added. As a result, it was found that the Young's modulus was 190 GPa or more and the temperature coefficient of Young's modulus at 0 to 40 ° C. was (−5 to 5) × 10 −5 in the composition range described above. That is, the composition range can be expanded as compared to the composition (2) of Non-Patent Document 1 and the composition of Non-Patent Document 2, but if this composition range is exceeded, the Young's modulus is 190 GPa or less and the Young's modulus at 0 to 40 ° C. temperature coefficient rate becomes -5X10 -5 or less, or 5x10 -5 or more can not be obtained high elasticity, constantly elastic alloy.

Fe−Co20〜40%,Ni10〜20%、Cr5〜15%合金は、均質な面心立方格子の単一相(γ相)の多結晶からなり、鋳塊を熱間及び冷間加工を施し、かつ加熱処理を施すと、鋳造組織はほとんど残らず、塑性加工組織が再結晶化された状態となっている。上記したFe−Co−Ni−Cr系合金に添加されたCa,Sr,Baのそれぞれ2%以下のI Ia族元素及び当該I Ia族元素のフッ素化合物のそれぞれ1%以下の何れか1種又は2種以上(以下「Caなど」ということもある)は、γ相の母相中に分散析出することにより基地を強固にすると共に、さらには、結晶粒界に偏析することにより、粒界を強固にして、粒界における転位の移動を妨害する効果により、ヤング率及び強度を高める。また、恒弾性特性は磁性と緊密な関係にあるので、非磁性元素であるCaなどの適当量を添加することにより、飽和磁束密度及び磁気変態点が低下し、恒弾性特性が得られる。 Fe-Co20-40%, Ni10-20%, Cr5-15% alloy is made of single face (γ phase) polycrystal with homogeneous face centered cubic lattice, and the ingot is subjected to hot and cold working When the heat treatment is performed, almost no cast structure remains and the plastic working structure is recrystallized. 2% or less of each of I, Ia group elements of Ca, Sr, Ba added to the Fe-Co-Ni-Cr alloy, and 1% or less of each of the fluorine compounds of the group I Ia elements, or Two or more kinds (hereinafter sometimes referred to as “Ca” or the like) strengthen the matrix by being dispersed and precipitated in the matrix of the γ phase, and further segregate at the grain boundaries to The Young's modulus and strength are increased by the effect of strengthening and preventing the movement of dislocations at the grain boundaries. In addition, since the constant elastic characteristics are closely related to magnetism, the addition of an appropriate amount such as Ca, which is a nonmagnetic element, lowers the saturation magnetic flux density and the magnetic transformation point, thereby obtaining the constant elastic characteristics.

Caなどは、Fe−Co−Ni−Cr系合金が微量に含有している燐、酸素、硫黄及び窒素等の不純物元素に良く反応して、脱燐・脱酸・脱硫・脱窒素の作用が顕著に現出し、これらの不純物元素を除去する。したがって、Fe−Co−Ni−Cr系合金を溶解炉から取鍋を経て鋳型に注入する際に湯流れが良好になり、鋳型を完全に充満した状態で凝固が起こり、鋳塊での介在物や不純物の偏析などが少なくなる。さらに、鋳塊や中間素材が介在物などを多く含有していると、熱間加工性若しくは冷間加工性が損なわれるが、これらの加工性が著しく改善される。なお、表2は、通常Fe−Co−Ni−Cr系合金に含有される不純物を示すものであり、それぞれ後述の実施例に相当している。 Ca and the like react well with impurity elements such as phosphorus, oxygen, sulfur and nitrogen contained in a trace amount of Fe-Co-Ni-Cr alloy, and have the effects of dephosphorization, deoxidation, desulfurization and denitrification. Remarkably appear and remove these impurity elements. Therefore, when the Fe-Co-Ni-Cr alloy is poured from the melting furnace through the ladle into the mold, the hot water flow becomes good and solidification occurs in a state where the mold is completely filled, and inclusions in the ingot. And segregation of impurities are reduced. Furthermore, if the ingot or intermediate material contains a large amount of inclusions, hot workability or cold workability is impaired, but these workability are remarkably improved. Table 2 shows impurities usually contained in the Fe—Co—Ni—Cr alloy, and each corresponds to an example described later.

Figure 2010174350
Figure 2010174350

図1は、コエリンバ−にCa,Sr,Ba、CaF2,SrF2又はBaF2をそれぞれ添加した合金について、加工率99%の線引き加工を施した後630℃で1時間加熱した場合の、添加量とヤング率及びその温度係数との関係を示したものである。
図1の横軸は、Ca,Ba, Sr,CaF2,SrF2又はBaF2(即ち、「Caなど」)の添加量を示している。横軸の10−4%は、原子吸光分析法による分析限界を示している。この図1において、Caなどの添加量とともにヤング率Eが単調に増加しているのは、Caなどによる不純物除去及び粒界強化に関連していると考えられる。ヤング率の温度係数eは、図1の範囲内では恒弾性特性を示している。但し、10−1%以上の添加量においてヤング率の温度係数が小さくなり、望ましい恒弾性特性となる。これはCaなどが非磁性元素であるので飽和磁束密度及び磁気変態点が低下するためと考えられる。
Figure 1 is Koerinba - to Ca, Sr, Ba, the CaF 2, SrF 2 or BaF 2 were added each alloy, when heated for one hour at 630 ° C. was subjected to wiredrawing working ratio of 99%, it added The relationship between the quantity, Young's modulus and its temperature coefficient is shown.
The horizontal axis in FIG. 1 indicates the amount of Ca, Ba, Sr, CaF 2 , SrF 2 or BaF 2 (ie, “Ca etc.”) added. 10 −4 % on the horizontal axis indicates the limit of analysis by atomic absorption spectrometry. In FIG. 1, the Young's modulus E monotonously increasing with the addition amount of Ca or the like is considered to be related to impurity removal by Ca or the like and grain boundary strengthening. The temperature coefficient e of Young's modulus shows a constant elastic characteristic within the range of FIG. However, the temperature coefficient of Young's modulus becomes small at an addition amount of 10 −1 % or more, and desirable constant elastic properties are obtained. This is presumably because the saturation magnetic flux density and the magnetic transformation point are lowered because Ca and the like are nonmagnetic elements.

そして、さらに副成分としてMo,Wをそれぞれ10%以下、V,Nb、Ta、Cu,Mn、Ti、Zr、Hfをそれぞれ7%以下、Au,Ag,白金族元素、Al、Si、希土類元素をそれぞれ5%以下、Be3%以下,B、Cをそれぞれ1%以下の1種又は2種以上の合計0.001〜15%を添加すると、図2,3,及び4に示されるように、これら元素の添加はヤング率及び強度を高める効果とともに、これ等の添加元素は非磁性であるので、適当量を添加すると飽和磁束密度及び磁気変態点を低下させ、ヤング率の温度係数を小さくする効果がある。さらに、これらの内Mn,Al,Si,Ti,希土類元素を添加すると脱酸・脱硫の効果が特に大きい。   Further, as subcomponents, Mo and W are each 10% or less, V, Nb, Ta, Cu, Mn, Ti, Zr and Hf are each 7% or less, Au, Ag, platinum group elements, Al, Si, rare earth elements 5% or less, Be 3% or less, B, C 1% or less, or a total of 0.001 to 15% of each of these elements, as shown in FIGS. In addition to the effect of increasing the Young's modulus and strength, these additive elements are non-magnetic, so adding an appropriate amount reduces the saturation magnetic flux density and the magnetic transformation point, and reduces the Young's modulus temperature coefficient. is there. Furthermore, when Mn, Al, Si, Ti and rare earth elements are added, the effect of deoxidation / desulfurization is particularly great.

図2は、合金番号30に副成分のMo,W,V,Nb又はTaをそれぞれ添加した合金について、図3は同じく合金番号30にCu,Mn,Ti、Zr又はHfをそれぞれ添加した合金について、図4は同じく合金番号30にAu、Ag,Pt,Al,Si,La,Be,Y,B又はCをそれぞれ添加した合金について、加工率99%の線引き加工を施した後650℃で2時間加熱した場合の、添加量とヤング率及びその温度係数との関係を示したものである。
なお、希土類元素はSc,Y及びランタン系元素からなるものであるが、その効果は均等であり、また白金族元素はPt,Ir,Ru,Rh,Pd,Osからなるが、その効果も均等であり、同効成分と見做し得る。
FIG. 2 shows an alloy obtained by adding subcomponents Mo, W, V, Nb or Ta to Alloy No. 30, and FIG. 3 shows an alloy obtained by adding Cu, Mn, Ti, Zr or Hf to Alloy No. 30. FIG. 4 shows that the alloy No. 30 is added with Au, Ag, Pt, Al, Si, La, Be, Y, B, or C, respectively. The relationship between the added amount, Young's modulus, and temperature coefficient when heated for a period of time is shown.
The rare earth element is composed of Sc, Y and a lanthanum element, but the effect is uniform, and the platinum group element is composed of Pt, Ir, Ru, Rh, Pd, Os, but the effect is also uniform. And can be regarded as a synergistic ingredient.

特性
(1)ヤング率
本発明のヤング率は、190GPa以上の高弾性であるが、線材及び板の場合は自由共振法で、細線及び薄板の場合は動的粘弾性法で測定した。
(2)ヤング率の温度係数
本発明のヤング率の温度係数は、0〜40℃の温度範囲で(-5〜5)x10−5で小さく、優れた恒弾性特性を有している。測定法は、ヤング率の測定と同様である。
Characteristics (1) Young's modulus The Young's modulus of the present invention is high elasticity of 190 GPa or more, but was measured by a free resonance method in the case of a wire and a plate, and by a dynamic viscoelastic method in the case of a thin wire and a thin plate.
(2) Temperature coefficient of Young's modulus The temperature coefficient of Young's modulus of the present invention is small (-5 to 5) x 10-5 in the temperature range of 0 to 40 ° C, and has excellent constant elastic properties. The measurement method is the same as the measurement of Young's modulus.

製造法
(1)溶解
本発明の合金を造るには、原料である金属コバルト、金属ニッケル、金属クロム及び電解鉄ならびに金属Ca,Sr,BaのI Ia族元素及び当該I Ia族元素のフッ素化合物を適当に混合して、質量比にてCo20〜40%,Ni10〜20%、Cr5〜15%とCa,Sr,Baのそれぞれ2%以下のI Ia族元素及び当該I Ia族元素のフッ素化合物のそれぞれ1%以下の1種又は2種以上の合計0.0001〜5%、及び残部Feの組成となるようにする。これらの原料はFe−Niプレアロイ、あるいはFeとCaなどとのプレアロイとすることができる。
原料は空気中、好ましくは非酸化性雰囲気(水素、アルゴンなどのガス)又は真空中において、適当な溶解炉、例えば高周波溶解炉等を用いて溶解する。副成分元素を含有する場合は、Mo、Wをそれぞれ10%以下、V,Nb、Ta、Cu,Mn、Ti、Zr、Hfをそれぞれ7%以下、Au,Ag,白金族元素、Al、Si、希土類元素をそれぞれ5%以下、Be3%以下,B、Cをそれぞれ1%以下の1種又は2種以上の合計0.001〜15%の所定量を添加して充分に撹拌して組成的に均一な溶融合金を造る。
Production Method (1) Melting In order to produce the alloy of the present invention, the raw materials are metallic cobalt, metallic nickel, metallic chromium and electrolytic iron, and metallic Ca, Sr, Ba, group I Ia elements and fluorine compounds of the group I Ia elements. Are appropriately mixed, and in terms of mass ratio, Co20-40%, Ni10-20%, Cr5-15%, and Ca, Sr, Ba, 2% or less of each of the I Ia group elements and the fluorine compounds of the I Ia group elements The total amount is 0.0001 to 5% of 1 type or 2 types or less, and the balance is Fe. These raw materials can be Fe-Ni prealloys or prealloys of Fe and Ca.
The raw material is melted in air, preferably in a non-oxidizing atmosphere (gas such as hydrogen or argon) or in a vacuum using a suitable melting furnace such as a high-frequency melting furnace. When sub-component elements are contained, Mo and W are each 10% or less, V, Nb, Ta, Cu, Mn, Ti, Zr, and Hf are each 7% or less, Au, Ag, platinum group elements, Al, Si 1% or less of each rare earth element 5% or less, Be 3% or less, and B and C 1% or more. A new molten alloy.

(2)鍛造及び熱間加工
次に、溶融合金を、1450〜1550℃で適当な形及び大きさの鋳型に注入して鋳塊を得る。鋳塊の大きさは1〜10kg程度が好ましい。さらに当該鋳塊を900℃以上融点未満、好ましくは1000〜1300℃に加熱して、鋳塊を熱間鍛造により適当な形状にする。その後、鍛造された素材に熱間圧延、丸棒用熱間ロ−ルなどの熱間加工を施して適当な形状の中間素材にする。
(2) Forging and hot working Next, the molten alloy is poured into a mold having an appropriate shape and size at 1450 to 1550 ° C. to obtain an ingot. The size of the ingot is preferably about 1 to 10 kg. Further, the ingot is heated to 900 ° C. or higher and lower than the melting point, preferably 1000 to 1300 ° C., and the ingot is made into an appropriate shape by hot forging. Thereafter, the forged material is subjected to hot working such as hot rolling or a hot roll for a round bar to obtain an intermediate material having an appropriate shape.

(3)均質化熱処理
恒弾性合金の用途である精密部品は、1個の重量が非常に小さく、かつ多量に使用されるので、小さい部品のそれぞれが一定した特性をもっていることが重要であるので、均質化熱処理が行われる。
上記した中間素材を、均質化熱処理する。即ち、熱間の鍛造加工及びその後の熱間加工により、ある程度鋳造組織は破壊されているが、まだ鋳造組織は残っているので、これを均質化する必要がある。さらに、中間素材に熱処理を施すことにより、均質化を促進することができる。均質化においては、900℃以上融点未満の温度、好ましくは950〜1300℃において適当時間、好ましくは0.5〜5時間加熱して焼鈍した後冷却する。均質化熱処理が900℃未満であると、凝固中に生じた組成的に不均質な組織を、均質な組織にできない。
(3) Homogenization heat treatment The precision parts that are used for a constant elastic alloy are very small in weight and are used in large quantities, so it is important that each of the small parts has certain characteristics. A homogenization heat treatment is performed.
The above intermediate material is subjected to homogenization heat treatment. That is, the cast structure is destroyed to some extent by the hot forging process and the subsequent hot process, but the cast structure still remains, so it is necessary to homogenize it. Furthermore, homogenization can be promoted by heat-treating the intermediate material. In the homogenization, heating is performed at a temperature of 900 ° C. or higher and lower than the melting point, preferably 950 to 1300 ° C. for an appropriate time, preferably 0.5 to 5 hours, and then cooled. When the homogenization heat treatment is less than 900 ° C., the compositionally heterogeneous structure generated during solidification cannot be made into a homogeneous structure.

(4)線引き加工又は圧延加工
精密部品にするためには、中間素材の寸法をさらに小さくする必要があり、さらに、図5,6及び7に示すように、線引き加工又は圧延加工により、組織は硬化し、ヤング率を高めることができる。したがって、加工率50%以上の線引き加工又は圧延加工が望ましいが、加工率50%以上の線引き加工を施した後圧延加工を施す場合は、圧延加工の圧下率は30%以上が望ましい。
(4) Drawing process or rolling process In order to make a precision part, it is necessary to further reduce the size of the intermediate material. Further, as shown in FIGS. It can harden and increase Young's modulus. Accordingly, drawing or rolling with a processing rate of 50% or more is desirable, but when rolling is performed after drawing with a processing rate of 50% or more, the rolling reduction is preferably 30% or more.

(5)加工後の加熱処理
線引き又は圧延加工後、550〜720℃、好ましくは580〜700℃の温度範囲で適当時間、好ましくは0.5〜20時間加熱処理すると、図5,6,及び7に示すように、ヤング率は190GPa以上と大きく保たれ、その温度係数も(-5〜5)x10−5で小さく恒弾性特性が得られる。しかし、550℃以下の温度における加熱では、加工による硬化が除去されず機械的柔軟性が失われ、また恒弾性特性も得られない。また、720℃以上の温度で加熱すると組織が軟化し、ヤング率が低下すると共に、その温度係数が大きくなり恒弾性特性が失われる。
(5) Heat treatment after processing After drawing or rolling, when heat treatment is performed at a temperature range of 550 to 720 ° C., preferably 580 to 700 ° C. for an appropriate time, preferably 0.5 to 20 hours, FIG. As shown, the Young's modulus is kept as large as 190 GPa or more, and the temperature coefficient thereof is also small (-5 to 5) × 10 −5 , and constant elastic characteristics can be obtained. However, heating at a temperature of 550 ° C. or lower does not remove the curing due to processing, loses mechanical flexibility, and does not provide constant elastic properties. In addition, when heated at a temperature of 720 ° C. or higher, the structure softens, the Young's modulus decreases, the temperature coefficient increases, and the constant elastic properties are lost.

本発明の高弾性・恒弾性合金、その製造方法及び用途を効果の面からさらに説明する。
(1)ヤング率
本発明合金の基本成分系であるFe−Co−Ni−Cr系合金にCaなどを所定量添加するとともに、圧延・線引き加工及び加工後の熱処理条件を調整することにより、190GPa以上という高いヤング率を得ることができる。すなわち、Caなどは上記基本成分系の合金を強化し、また、従来のコエリンバーよりも圧延・線引き加工を、ヤング率が高くなるような条件に設定することができるので、高いヤング率を得ることができる。これに対して、従来のコエリンバーはこのような加工条件を設定しようとすると、ヤング率の温度係数が低下して、恒弾性特性が失れる。
(2)耐衝撃性
本発明の合金は上述のように高加工度の加工が可能であるから硬化が大きく、このため精密機器が使用される条件における耐衝撃性に優れている。
(3)ヤング率の温度係数
本発明の合金は、ヤング率の温度係数が(-5〜5)x10−5であり、小さくて優れた恒弾性特性を有する。
(4)製造方法
非特許文献1,2で示すように従来コエリンバーとして具体的に発表された組成は数例にしか過ぎなかったが、本発明によると後述の実施例で示すように組成を広範囲に変えたFe−Co−Ni−Cr系合金について所望の特性を得ることができる。これはCaなどを添加することにより加工が格段に容易になったためである。
(5)用途
吊り線、コイルばね、板ばね及びひげぜんまい等に好適であり、さらに吊り線を使用する測量機、コイルばねを使用する地震計、板ばねを使用する回転計及びひげぜんまいを使用する時計等の高弾性・恒弾性合金としても好適であるばかりでなく、高弾性及び恒弾性特性並びに耐衝撃性を必要とする一般の精密機器に使用する弾性材料としても好適である。
The highly elastic / constant elastic alloy of the present invention, its production method and application will be further described in terms of effects.
(1) Young's modulus 190 GPa by adding a predetermined amount of Ca and the like to the Fe-Co-Ni-Cr alloy, which is a basic component system of the alloy of the present invention, and adjusting the heat treatment conditions after rolling / drawing and working. A high Young's modulus as described above can be obtained. In other words, Ca and the like strengthen the above-mentioned basic component-based alloy, and rolling and wire drawing can be set under conditions such that the Young's modulus is higher than that of a conventional coelin bar, so that a high Young's modulus can be obtained. Can do. On the other hand, when trying to set such processing conditions for the conventional coelin bar, the temperature coefficient of Young's modulus decreases and the constant elasticity characteristic is lost.
(2) Impact resistance Since the alloy of the present invention can be processed at a high degree of processing as described above, it is highly cured, and therefore has excellent impact resistance under conditions in which precision equipment is used.
(3) Temperature coefficient of Young's modulus The alloy of the present invention has a temperature coefficient of Young's modulus of (-5 to 5) x 10-5 , and has small and excellent constant elastic properties.
(4) Manufacturing method As shown in Non-Patent Documents 1 and 2, the composition specifically disclosed as a conventional coelin bar was only a few examples. However, according to the present invention, a wide range of compositions can be obtained as shown in the following examples. Desirable characteristics can be obtained for the Fe—Co—Ni—Cr based alloy changed to 1. This is because processing has become much easier by adding Ca or the like.
(5) Applications Suitable for suspension lines, coil springs, leaf springs, and hairsprings, etc. In addition, surveying instruments that use suspension lines, seismometers that use coil springs, tachometers that use leaf springs, and hairsprings are used. It is suitable not only as a highly elastic / constant elastic alloy such as a watch, but also as an elastic material used in general precision equipment that requires high elasticity and constant elastic characteristics and impact resistance.

コエリンバ−に、Ca,Sr,Ba、CaF2,SrF2又はBaF2をそれぞれ添加した合金の添加量と、ヤング率及びその温度係数との関係を示す特性図である。FIG. 6 is a characteristic diagram showing the relationship between the amount of alloy added with Ca, Sr, Ba, CaF 2 , SrF 2, or BaF 2 , the Young's modulus, and the temperature coefficient thereof in coelin bar. 合金番号30に、Mo,W,V,Nb又はTaをそれぞれ添加した合金の添加量と、ヤング率及びその温度係数との関係を示す特性図である。It is a characteristic view which shows the relationship between the addition amount of the alloy which added Mo, W, V, Nb, or Ta to the alloy number 30, and Young's modulus and its temperature coefficient, respectively. 合金番号30に、Cu,Mn,Ti、Zr又はHfをそれぞれ添加した合金の添加量と、ヤング率及びその温度係数との関係を示す特性図である。It is a characteristic view which shows the relationship between the addition amount of the alloy which added Cu, Mn, Ti, Zr, or Hf to the alloy number 30, and Young's modulus and its temperature coefficient, respectively. 合金番号30に、Au、Ag,Pt,Al,Si,La,Be,Y,B又はCをそれぞれ添加した合金の添加量と、ヤング率及びその温度係数との関係を示す特性図である。It is a characteristic view which shows the relationship between the addition amount of the alloy which added Au, Ag, Pt, Al, Si, La, Be, Y, B, or C to the alloy number 30, and Young's modulus and its temperature coefficient. (A)合金番号30に、線引き加工を施した後630℃で1時間加熱した場合の、線引き加工率と、ヤング率及びその温度係数との関係を示す特性図である。 (B)合金番号30に、加工率99%の線引き加工を施した後種々な加熱温度で1時間加熱した場合の、加熱温度とヤング率及びその温度係数との関係を示す特性図である。(A) It is a characteristic view which shows the relationship between a drawing rate, a Young's modulus, and its temperature coefficient at the time of heating at 630 degreeC for 1 hour after performing a drawing process to the alloy number 30. FIG. (B) It is a characteristic view which shows the relationship between a heating temperature, a Young's modulus, and its temperature coefficient at the time of heating at various heating temperatures for 1 hour after performing a drawing process with a processing rate of 99% on Alloy No. 30. (A)合金番号43に、圧延加工を施した後650℃で2時間加熱した場合の、圧下率と、ヤング率及びその温度係数との関係を示す特性図である。 (B)合金番号43に、圧下率98%の圧延加工を施した後種々な加熱温度で2時間加熱した場合の、加熱温度とヤング率及びその温度係数との関係を示す特性図である。(A) It is a characteristic view which shows the relationship between a rolling reduction, a Young's modulus, and its temperature coefficient at the time of heating at 650 degreeC for 2 hours after rolling to alloy number 43. FIG. (B) It is a characteristic view which shows the relationship between a heating temperature, a Young's modulus, and its temperature coefficient at the time of heating at various heating temperature for 2 hours after giving rolling processing of 98% of reduction ratio. (A)合金番号126に、加工率95%の線引き加工を施した後種々な圧下率で圧延加工し、さらに670℃で2時間加熱した場合の、圧下率とヤング率及びその温度係数との関係を示す特性図である。 (B)合金番号126に、加工率95%の線引き加工を施した後圧下率60%の圧延加工し、さらに種々な加熱温度で2時間加熱した場合の、加熱温度とヤング率及びその温度係数との関係を示す特性図である。(A) Alloy No. 126 is drawn at a reduction rate of 95%, rolled at various reduction rates, and further heated at 670 ° C. for 2 hours. It is a characteristic view which shows a relationship. (B) Heating temperature, Young's modulus and temperature coefficient when alloy No. 126 is drawn at a processing rate of 95%, rolled at a reduction rate of 60%, and further heated at various heating temperatures for 2 hours It is a characteristic view which shows the relationship.

次に本発明の実施例について説明する。
実施例1
合金番号30(組成Co=28.8%、Ni=16.0%,Cr=9.5%,Sr=0.8%,BaF=0.10%、Fe=残部)の合金の製造。
原料としては、何れも市販の99.9%純度の電解鉄、電解ニッケル、電解コバルト、電解クロム、金属ストロンチウム及びバリウムフッ素化合物(BaF)を用いた。原料の全重量 800gをアルミナ坩堝に入れ、真空中で高周波誘導電気炉によって溶かした後、よく撹拌して均質な溶融合金とした。ついで、これを1500℃で直径25mm,高さ170mmの孔をもつ金型鋳型に注入し、完全に凝固後鋳塊を鋳型から分離した。その後鋳塊を約1200℃に加熱して鍛造して直径20mmの角棒とした。さらに、この角棒を約1200℃に再加熱した後、直径10mmまで丸棒用熱間ロ−ル機を用いて丸棒に熱間加工して、放冷した。その後、当該丸棒を1150℃で1時間加熱し、焼鈍した。ついで、常温で冷間線引き加工を施して5mmの線材となした後、当該線材を1050℃の真空中で2時間加熱して焼鈍し、さらに種々な加工率で適当な径の線材になした後、適当な温度及び時間で熱処理を施して,種々な特性の測定を行い,表3のような特性値を得た。
Next, examples of the present invention will be described.
Example 1
Production of alloy No. 30 (composition Co = 28.8%, Ni = 16.0%, Cr = 9.5%, Sr = 0.8%, BaF 2 = 0.10%, Fe = balance).
As raw materials, commercially available 99.9% pure electrolytic iron, electrolytic nickel, electrolytic cobalt, electrolytic chromium, metal strontium, and barium fluorine compound (BaF 2 ) were used. A total weight of 800 g of the raw material was put in an alumina crucible, melted in a high-frequency induction electric furnace in vacuum, and then stirred well to obtain a homogeneous molten alloy. Subsequently, this was poured into a mold having holes of 25 mm in diameter and 170 mm in height at 1500 ° C., and after completely solidified, the ingot was separated from the mold. Thereafter, the ingot was heated to about 1200 ° C. and forged to obtain a square bar having a diameter of 20 mm. Furthermore, after reheating this square bar to about 1200 ° C., it was hot-worked into a round bar using a hot roll machine for round bars up to a diameter of 10 mm and allowed to cool. Then, the said round bar was heated at 1150 degreeC for 1 hour, and annealed. Next, after cold-drawing at room temperature to obtain a 5 mm wire, the wire was heated in a vacuum of 1050 ° C. for 2 hours and annealed to obtain a wire having an appropriate diameter at various processing rates. Thereafter, heat treatment was performed at an appropriate temperature and time, various characteristics were measured, and characteristic values as shown in Table 3 were obtained.

Figure 2010174350
Figure 2010174350

さらに、図5(A)は、合金番号30について、種々な加工率で線引き加工を施した後、630℃で1時間加熱した場合の、線引き加工率とヤング率E及びその温度係数eとの関係を示したものである。図5(B)は、加工率99%の線引き加工を施した後、種々な温度で加熱した場合の、加熱温度とヤング率E及びその温度係数eとの関係を示したものである。   Further, FIG. 5 (A) shows the drawing ratio, Young's modulus E, and temperature coefficient e when alloy number 30 is drawn at various working rates and then heated at 630 ° C. for 1 hour. It shows the relationship. FIG. 5B shows the relationship between the heating temperature, Young's modulus E, and temperature coefficient e when the wire is drawn at a working rate of 99% and then heated at various temperatures.

実施例2
合金番号43(組成Co=31.0%、Ni=15.0%,Cr=10.0%,Ca=0.6%,SrF=0.05%、Mo=7.0%、Fe=残部)の合金の製造。
原料として,何れも市販の99.9%純度の電解鉄、電解ニッケル、電解コバルト、電解クロム、金属カルシウム、ストロンチウムフッ素化合物(SrF)及びモリブデンを用いた。続いて、溶解、造塊及び鍛造を実施例1と同様に行い得られた20mmの角棒を、約1150℃で厚さ10mmまで熱間圧延機を用いて板にした後、当該板を1100℃で2時間加熱し、焼鈍した。ついで、常温で冷間圧延機を用いて圧延加工を施して3mmの板材となした後、当該板材を1100℃の真空中で2時間加熱して焼鈍し、さらに種々な圧下率で適当な厚さの薄板になした後、適当な温度及び時間で熱処理を施して,種々な特性の測定を行い,表4のような特性値を得た。
Example 2
Production of alloy No. 43 (composition Co = 31.0%, Ni = 15.0%, Cr = 10.0%, Ca = 0.6%, SrF 2 = 0.05%, Mo = 7.0%, Fe = balance).
As raw materials, commercially available 99.9% purity electrolytic iron, electrolytic nickel, electrolytic cobalt, electrolytic chromium, metallic calcium, strontium fluorine compound (SrF 2 ) and molybdenum were used. Subsequently, a 20 mm square bar obtained by melting, ingot forming and forging in the same manner as in Example 1 was made into a plate using a hot rolling mill at about 1150 ° C. to a thickness of 10 mm, and then the plate was made 1100. Heated at ℃ for 2 hours and annealed. Next, after rolling into a 3 mm plate at room temperature using a cold rolling mill, the plate is annealed by heating in a vacuum at 1100 ° C. for 2 hours, and at a suitable thickness at various reduction rates. After forming a thin plate, heat treatment was performed at an appropriate temperature and time, and various characteristics were measured, and characteristic values as shown in Table 4 were obtained.

Figure 2010174350
Figure 2010174350

さらに、図6(A)は、合金番号43について、種々な圧下率で圧延加工を施した後、650℃で2時間加熱した場合の、圧下率とヤング率E及びその温度係数eとの関係を示したものである。図6(B)は、圧下率98%の圧延加工を施した後、種々な温度で加熱した場合の、加熱温度とヤング率E及びその温度係数eとの関係を示したものである。   Further, FIG. 6 (A) shows the relationship between the rolling reduction ratio, Young's modulus E, and temperature coefficient e when alloy number 43 is rolled at various rolling reduction ratios and heated at 650 ° C. for 2 hours. Is shown. FIG. 6B shows the relationship between the heating temperature, the Young's modulus E, and the temperature coefficient e when heated at various temperatures after rolling with a rolling reduction of 98%.

実施例3
合金番号126(組成Co=28.0%、Ni=14.7%,Cr=8.8%,Ba=0.8%,CaF=0.12%、W=6.5%、Nb=3.5%、Fe=残部)の合金の製造。
原料として、何れも市販の99.9%純度の電解鉄、電解ニッケル、電解コバルト、電解クロム、バリュウム、カルシュウムフッ素化合物、タングステン及びニオブを用いた。溶解、造塊を実施例1と同様に行い、これを約1200℃で鍛造して直径20mmの丸棒を得る方法で分塊を行った。鍛造丸棒を約1150℃に加熱した後、直径10mmまで丸棒用熱間ロ−ル機を用いて熱間加工した後放冷し、当該丸棒を1200℃で1時間加熱し、焼鈍した。ついで、常温で冷間線引き加工を施して5mmの線材となした後、当該線材を1200℃の真空中で1時間加熱して焼鈍し、さらに冷間線引機を用いて種々な加工率で適当な径の線材になした後、さらに当該線材を冷間圧延機を用いて適当な厚さまで圧延加工して薄板になした。ついで、当該薄板を適当な温度及び時間で熱処理を施して,種々な特性の測定を行い,表5のような特性値を得た。
Example 3
Alloy No. 126 (composition Co = 28.0%, Ni = 14.7%, Cr = 8.8%, Ba = 0.8%, CaF 2 = 0.12%, W = 6.5%, Nb = 3.5%, Fe = remainder) Manufacturing.
As raw materials, commercially available 99.9% pure electrolytic iron, electrolytic nickel, electrolytic cobalt, electrolytic chromium, barium, calcium fluoride compound, tungsten and niobium were used. Melting and ingot forming were carried out in the same manner as in Example 1, and this was forged at about 1200 ° C. to obtain a round bar having a diameter of 20 mm to carry out the ingot. The forged round bar was heated to about 1150 ° C, then hot worked to a diameter of 10mm using a hot roll machine for round bars, allowed to cool, and the round bar was heated at 1200 ° C for 1 hour and annealed. . Next, after cold drawing at room temperature to form a 5 mm wire, the wire was heated and annealed in a vacuum of 1200 ° C. for 1 hour, and further at various processing rates using a cold drawing machine. After forming a wire having an appropriate diameter, the wire was further rolled to an appropriate thickness using a cold rolling mill to form a thin plate. Subsequently, the thin plate was subjected to heat treatment at an appropriate temperature and time, and various characteristics were measured, and characteristic values as shown in Table 5 were obtained.

Figure 2010174350
Figure 2010174350

さらに、図7(A)は、合金番号126について、加工率95%の線引き加工を施して細線になした後、当該細線を種々な圧下率で圧延加工を施して薄板になし、さらに当該薄板を670℃で2時間加熱した場合の、圧延加工率(圧下率)とヤング率E及びその温度係数eとの関係を示したものである。図7(B)は、加工率95%の線引き加工を施した細線を、さらに圧下率60%の圧延加工を施した後、種々な温度で2時間加熱した場合の、加熱温度とヤング率E及びその温度係数eとの関係を示したものである。   Further, FIG. 7A shows that alloy No. 126 was drawn into a thin wire by performing a drawing process at a processing rate of 95%, and then the thin wire was rolled at various reduction ratios to form a thin plate. 3 shows the relationship between the rolling process rate (rolling rate), Young's modulus E, and temperature coefficient e when heated at 670 ° C. for 2 hours. FIG. 7B shows the heating temperature and Young's modulus E when a thin wire subjected to a drawing process with a processing rate of 95% is further rolled at a reduction rate of 60% and then heated at various temperatures for 2 hours. And the relationship with the temperature coefficient e.

実施例4
表6及び7に組成を示す合金(但し、合金組成の残部はFeである)につき線材及び細線又は板及び薄板を製造した。即ち、表6において加工率が「−」となっている合金は実施例2の製造方法により、圧下率が「−」となっている合金は実施例1の製造方法により、それ以外は実施例3の製造方法により、線材及び細線又は板材及び薄板を製造した。
Example 4
Wires and fine wires or plates and thin plates were produced for the alloys shown in Tables 6 and 7 (where the balance of the alloy composition is Fe). That is, in Table 6, an alloy having a processing rate of “−” is manufactured by the manufacturing method of Example 2, an alloy having a rolling reduction of “−” is manufactured by the manufacturing method of Example 1, and the other examples are the examples. According to the production method 3, a wire and a thin wire or a plate and a thin plate were produced.

Figure 2010174350
Figure 2010174350

Figure 2010174350
Figure 2010174350

本発明合金は、ヤング率が190GPa以上で高く、0〜40℃におけるヤング率の温度係数は(-5〜5)x10−5で小さく、優れた恒弾性特性を有しており、測量機、地震計、回転計、及び時計ばかりでなく、高弾性及び恒弾性特性を必要とする,一般の精密機器の弾性材料としても好適であるので、産業上多大な貢献をなすものである。
The alloy of the present invention has a high Young's modulus of 190 GPa or higher, a temperature coefficient of Young's modulus at 0 to 40 ° C. is small (-5 to 5) × 10 −5 , and has excellent constant elastic properties. Since it is suitable not only for seismometers, tachometers, and watches, but also as an elastic material for general precision equipment that requires high elasticity and constant elasticity, it makes a great contribution to the industry.

Claims (6)

質量比にて、Co20〜40%,Ni10〜20%、Cr5〜15%とCa,Sr,Baのそれぞれ2%以下のI Ia族元素及び当該I Ia族元素のフッ素化合物のそれぞれ1%以下の1種又は2種以上の合計0.0001〜5%、及び残部Feと不可避的不純物からなり、ヤング率190GPa以上及び0〜40℃におけるヤング率の温度係数(-5〜5)x10−5 を有することを特徴とする高弾性・恒弾性合金。 In terms of mass ratio, Co20-40%, Ni10-20%, Cr5-15% and Ca, Sr, Ba, 2% or less of each of the I Ia group element and 1% or less of the fluorine compound of the I Ia group element. one or more total from 0.0001 to 5%, and the balance being Fe and unavoidable impurities, the temperature coefficient of the Young's modulus at least a Young's modulus 190GPa and 0 to 40 ° C. (-5~5) have a x10 -5 Highly elastic and constant elastic alloy characterized by 質量比にて、Co20〜40%,Ni10〜20%、Cr5〜15%とCa,Sr,Baのそれぞれ2%以下のI Ia族元素及び当該I Ia族元素のフッ素化合物のそれぞれ1%以下の1種又は2種以上の合計0.0001〜5%、及び副成分としてMo、Wをそれぞれ10%以下、V,Nb、Ta、Cu、Mn,Ti、Zr、Hfをそれぞれ7%以下、Au,Ag,白金族元素、Al、Si、希土類元素をそれぞれ5%以下、Be3%以下,B、Cをそれぞれ1%以下の1種又は2種以上の合計0.001〜15%、及び残部Feと不可避的不純物とからなり,ヤング率190GPa以上及び0〜40℃におけるヤング率の温度係数(-5〜5)x10−5 を有することを特徴とする高弾性・恒弾性合金。 By mass ratio, Co20-40%, Ni10-20%, Cr5-15% and Ca, Sr, Ba each 2% or less I Ia group element and each I Ia group element fluorine compound 1% or less One or two or more total 0.0001-5%, Mo and W as subcomponents 10% or less, V, Nb, Ta, Cu, Mn, Ti, Zr, Hf 7% or less, Au, Ag , Platinum group elements, Al, Si, rare earth elements 5% or less, Be3% or less, B, C 1% or less, total of 0.001-15%, and the balance Fe and inevitable impurities A high-elasticity / constant-elasticity alloy having a Young's modulus of 190 GPa or more and a Young's modulus temperature coefficient of 0 to 40 ° C. (−5 to 5) × 10 −5 . 線材、細線、板材もしくは薄板に加工された請求項1又は2記載の高弾性・恒弾性合金を用いた精密機器。   3. A precision instrument using a highly elastic / constant elastic alloy according to claim 1 or 2 processed into a wire, fine wire, plate or thin plate. 請求項1又は2記載の組成を有する合金の鋳塊を、熱間鍛造及び熱間加工にて適当な形状に加工し、900℃以上融点未満の温度で焼鈍した後冷却し、ついで加工率50%以上の線引き加工を施して所望の太さの線材又は細線になした後、当該線材又は細線を550〜720℃の温度で加熱することにより、ヤング率190GPa以上及び0〜40℃におけるヤング率の温度係数(-5〜5)x10−5を有する高弾性・恒弾性合金の製造法。 The ingot of the alloy having the composition according to claim 1 or 2 is processed into an appropriate shape by hot forging and hot working, annealed at a temperature of 900 ° C. or higher and lower than the melting point, cooled, and then processed at a processing rate of 50 % To obtain a wire or thin wire having a desired thickness, and then heating the wire or thin wire at a temperature of 550 to 720 ° C., thereby Young's modulus of 190 GPa or more and Young's modulus at 0 to 40 ° C. A method for producing a highly elastic / constant elastic alloy having a temperature coefficient of (-5 to 5) × 10 −5 . 請求項1又は2記載の組成を有する合金の鋳塊を、熱間鍛造及び熱間加工にて適当な形状に加工し、900℃以上融点未満の温度で焼鈍した後冷却し、ついで圧下率50%以上の圧延加工を施して所望の厚さの板又は薄板になした後、当該板又は薄板を550〜720℃の温度で加熱することにより、ヤング率190GPa以上及び0〜40℃におけるヤング率の温度係数(-5〜5)x10−5を有する高弾性・恒弾性合金の製造法。 The ingot of the alloy having the composition according to claim 1 or 2 is processed into an appropriate shape by hot forging and hot working, annealed at a temperature of 900 ° C. or higher and lower than the melting point, cooled, and then reduced to 50%. % To obtain a plate or thin plate having a desired thickness, and then the plate or thin plate is heated at a temperature of 550 to 720 ° C., whereby a Young's modulus of 190 GPa or more and a Young's modulus at 0 to 40 ° C. A method for producing a highly elastic / constant elastic alloy having a temperature coefficient of (-5 to 5) × 10 −5 . 請求項1又は2記載の組成を有する合金を,熱間鍛造及び熱間加工にて適当な形状に加工し、900℃以上融点未満の温度で焼鈍した後冷却し、ついで加工率50%以上の線引き加工を施して所望の太さの線材又は細線になした後,さらに当該線材又は細線を圧下率30%以上の圧延加工を施して所望の厚さの板又は薄板になした後、当該板又は薄板を550〜720℃の温度で加熱することにより、ヤング率190GPa以上及び0〜40℃におけるヤング率の温度係数(-5〜5)x10−5を有する高弾性・恒弾性合金の製造法。




















The alloy having the composition according to claim 1 or 2 is processed into a suitable shape by hot forging and hot working, annealed at a temperature of 900 ° C. or higher and lower than the melting point, cooled, and then processed at a processing rate of 50% or higher. After drawing into a wire or fine wire with a desired thickness, the wire or fine wire is further rolled to a reduction ratio of 30% or more to obtain a plate or thin plate with a desired thickness, and then the plate Alternatively, a method for producing a highly elastic / constant elastic alloy having a Young's modulus of 190 GPa or more and a Young's modulus temperature coefficient (-5 to 5) × 10 −5 at 0 to 40 ° C. by heating the thin plate at a temperature of 550 to 720 ° C. .




















JP2009019957A 2009-01-30 2009-01-30 Highly elastic / constant elastic alloy, its manufacturing method and precision instrument Expired - Fee Related JP5059035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009019957A JP5059035B2 (en) 2009-01-30 2009-01-30 Highly elastic / constant elastic alloy, its manufacturing method and precision instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009019957A JP5059035B2 (en) 2009-01-30 2009-01-30 Highly elastic / constant elastic alloy, its manufacturing method and precision instrument

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012155120A Division JP5486050B2 (en) 2012-07-11 2012-07-11 Highly elastic / constant elastic alloy, its manufacturing method and precision instrument

Publications (2)

Publication Number Publication Date
JP2010174350A true JP2010174350A (en) 2010-08-12
JP5059035B2 JP5059035B2 (en) 2012-10-24

Family

ID=42705591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009019957A Expired - Fee Related JP5059035B2 (en) 2009-01-30 2009-01-30 Highly elastic / constant elastic alloy, its manufacturing method and precision instrument

Country Status (1)

Country Link
JP (1) JP5059035B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162820A (en) * 2010-02-08 2011-08-25 Res Inst Electric Magnetic Alloys High-strength low-thermal-expansion alloy, method for producing the same, and precision instrument
CN105483541A (en) * 2015-12-09 2016-04-13 苏州市吴中区胥口丰收机械配件厂 Corrosion-resistant spring and processing process thereof
CN106634444A (en) * 2016-12-29 2017-05-10 安徽浩丰特种电子材料有限公司 Epoxy resin paint with low depainting possibility and high glossiness
CN107326275A (en) * 2017-06-09 2017-11-07 太仓东旭精密机械有限公司 A kind of mechanical five metals material
KR101910744B1 (en) 2017-07-26 2018-10-22 포항공과대학교 산학협력단 Medium-entropy alloys with excellent cryogenic properties
KR101913943B1 (en) 2017-05-26 2018-11-01 포항공과대학교 산학협력단 Medium entropy alloy based iron, cobalt, nickel and chromium and manufacturing method for the same
WO2020080660A1 (en) * 2018-10-15 2020-04-23 포항공과대학교 산학협력단 Medium-entropy alloy and manufacturing method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145910A (en) * 1992-11-05 1994-05-27 Nippon Steel Corp Alloy for boiler excellent in field workability
JPH07211143A (en) * 1994-01-24 1995-08-11 Hitachi Cable Ltd Low thermal expansion and high strength conductor for transmission line, and low loosening cable using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145910A (en) * 1992-11-05 1994-05-27 Nippon Steel Corp Alloy for boiler excellent in field workability
JPH07211143A (en) * 1994-01-24 1995-08-11 Hitachi Cable Ltd Low thermal expansion and high strength conductor for transmission line, and low loosening cable using same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162820A (en) * 2010-02-08 2011-08-25 Res Inst Electric Magnetic Alloys High-strength low-thermal-expansion alloy, method for producing the same, and precision instrument
CN105483541A (en) * 2015-12-09 2016-04-13 苏州市吴中区胥口丰收机械配件厂 Corrosion-resistant spring and processing process thereof
CN106634444A (en) * 2016-12-29 2017-05-10 安徽浩丰特种电子材料有限公司 Epoxy resin paint with low depainting possibility and high glossiness
KR101913943B1 (en) 2017-05-26 2018-11-01 포항공과대학교 산학협력단 Medium entropy alloy based iron, cobalt, nickel and chromium and manufacturing method for the same
CN107326275A (en) * 2017-06-09 2017-11-07 太仓东旭精密机械有限公司 A kind of mechanical five metals material
KR101910744B1 (en) 2017-07-26 2018-10-22 포항공과대학교 산학협력단 Medium-entropy alloys with excellent cryogenic properties
WO2020080660A1 (en) * 2018-10-15 2020-04-23 포항공과대학교 산학협력단 Medium-entropy alloy and manufacturing method therefor

Also Published As

Publication number Publication date
JP5059035B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP5059035B2 (en) Highly elastic / constant elastic alloy, its manufacturing method and precision instrument
JP5189580B2 (en) Magnetic insensitive high hardness constant elastic alloy and method for manufacturing the same, hairspring, mechanical drive device and timepiece
JP2010138491A5 (en)
JP4493028B2 (en) Α-β type titanium alloy with excellent machinability and hot workability
JP2012144807A (en) Alloy for golf club head and method for producing the same
JP5916983B2 (en) Alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component
JP5486050B2 (en) Highly elastic / constant elastic alloy, its manufacturing method and precision instrument
CN107090556B (en) Ni base superalloy for hot forging
JP5155346B2 (en) High-strength low-thermal-expansion alloy, manufacturing method thereof, and precision instrument
JP6634912B2 (en) Low thermal expansion alloy
JPS625972B2 (en)
JPH0158261B2 (en)
EP3643797A1 (en) Fe-based soft magnetic alloy and method for manufacturing the same
JP4737614B2 (en) Fe-Ni alloy plate and method for producing Fe-Ni alloy plate
JPH06184700A (en) Alloy with high strength, non-magnetism, and low thermal expansion
JPS5924178B2 (en) Square hysteresis magnetic alloy and its manufacturing method
JPS5947017B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JP4037104B2 (en) High corrosion resistance magnet alloy and manufacturing method
JP2574528B2 (en) High hardness low magnetic permeability non-magnetic functional alloy and method for producing the same
JPS63149356A (en) Soft magnetic alloy for reed chip, manufacture thereof and reed switch
JP6822238B2 (en) Low thermal expansion alloy
JP3707825B2 (en) Low thermal expansion cast iron and method for producing the same
JP2006219728A (en) Ferro-alloy for resistor having high resistance
JPS58150119A (en) Alloy having high magnetic permeability for magnetic recording and reproducing head and its production, and magnetic recording and reproducing head
JP2020056075A (en) Low thermal expansion alloy

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100603

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees