JP5155346B2 - High-strength low-thermal-expansion alloy, manufacturing method thereof, and precision instrument - Google Patents
High-strength low-thermal-expansion alloy, manufacturing method thereof, and precision instrument Download PDFInfo
- Publication number
- JP5155346B2 JP5155346B2 JP2010025321A JP2010025321A JP5155346B2 JP 5155346 B2 JP5155346 B2 JP 5155346B2 JP 2010025321 A JP2010025321 A JP 2010025321A JP 2010025321 A JP2010025321 A JP 2010025321A JP 5155346 B2 JP5155346 B2 JP 5155346B2
- Authority
- JP
- Japan
- Prior art keywords
- thermal expansion
- alloy
- strength
- expansion coefficient
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Metal Extraction Processes (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、一般に超不変鋼(ス−パ−インバー)といわれているFe-Ni-Co系合金の改良に関するものであり、さらに詳しく述べるならば、機械的強度が高い低熱膨張合金、その製造方法及び当該合金を使用した精密機器に関するものである。 The present invention relates to an improvement of an Fe—Ni—Co alloy generally referred to as super invariant steel (super-invar), and more specifically, a low thermal expansion alloy having high mechanical strength, and its production The present invention relates to a method and a precision instrument using the alloy.
本出願人・財団法人の理事長であった増本量が発明者となっている特許文献1(特公昭5−2319号)は、超不変鋼(スーパーインバーともいわれる)と称するFe−Ni−Co系合金に関するものであり、その特許請求範囲は次のとおりである。「46〜70%Fe、Ni20〜54%、Co34%以下(但し0%を除く)を含む合金の焼鈍状態において、熱膨張係数12×10-6℃-1の値までの範囲内に属する微少なる熱膨張係数を有する新合金」である。
Patent document 1 (Japanese Examined Patent Publication No. 5-2319) in which the increased amount, which was the director of the present applicant / foundation, has become the inventor, is Fe-Ni-Co called super invariant steel (also called super invar). The claims of the present invention are as follows. “In the annealed state of alloys containing 46 to 70% Fe,
従来、低熱膨張合金としてのFe−Ni−Co系合金は、熱膨張係数が小さいことから、当該合金を棒材、線材、細線、板材及び薄板になし、精密機器、例えば標準尺、測量機、距離計、時計,温度調節装置、レ−ザ光源の器具、シャドウマスク、及びICリ−ドフレ−ム等に使用している。 Conventionally, Fe-Ni-Co based alloy as a low thermal expansion alloy has a small coefficient of thermal expansion, so that the alloy is made into a bar, wire, thin wire, plate and thin plate, precision equipment such as standard scale, surveying instrument, It is used for distance meters, clocks, temperature control devices, laser light source equipment, shadow masks, IC lead frames, and the like.
非特許文献1は,超不変鋼と称するFe−Ni−Co系合金の焼鈍状態における熱膨張
係数について詳細な研究を行い、「大きい磁化と低いキューリー温度をもつ組成でインバ
ー特性が得られる」という増本の経験則が導き出された。またこの研究によると、20℃
において非常に小さい熱膨張係数の値を得ているが、機械的強度(引張強さ及び硬度)
が低いのが欠点とされている。
Has obtained a very small coefficient of thermal expansion, but mechanical strength (tensile strength and hardness)
The low is a disadvantage.
非特許文献2「まてりあ」Vol.36(1977)、11、「インバー合金の各種精密制御機器への応用」岸田紀雄、増本健、第1080〜1085頁、は近年の精密機器の部品材料としては、-50(223K)〜100(373K)℃の広い温度範囲において熱膨張係数が小さく、且つ機械的強度が高いことが強く望まれていることを解説している。この文献は、各種インバー合金の特性を対比・整理しており、その幾つかを次表に引用する。
また、非特許文献2の図1を本願の図1として引用する。この図1から分かるようにいずれのインバー合金もγ相領域の組成をもつ。
Further, FIG. 1 of Non-Patent
特許文献2(特許第2796966号)は本出願人が提案した超低熱膨張合金(新スーパーインバー)であり、その請求項1は「重量比にてNi29.5〜35%、Co2.0〜7.0%の範囲において、同時に添加されたCr0.001〜2.0%以下とTi0.001〜2.0%以下とを含み、残部は実質的にはFeから成り、熱膨張係数が-2.0×10-6〜+0.5×10-6の範囲であることを特徴とする低熱膨張合金」である。さらに、その製造方法は、(A)600℃以上融点以下の高温で1分間以上加熱して均質溶体化処理をした後、焼入れするか或いは毎秒1℃以下の速度で徐冷して焼鈍を行う第1の工程と、(B)上記焼入れ後或いは焼鈍後、10%以上の冷間加工を行う第2の工程と、(C)上記冷間加工後、50℃以上300℃未満の温度で1分間以上100時間以下加熱しついで毎秒1℃以下の速度で徐冷する第3の工程と」を具える。この新スーパーインバーではスーパーインバーより優れた熱膨張特性及び強度が実現されており、さらに、冷間加工率を高めることにより負の熱膨張係数を得ることもできる。しかしながら、強度の冷間加工を行っているものの、引張強さは最高で80kg/mm2弱である。
Patent Document 2 (Patent No. 2,796,966) is an ultra-low thermal expansion alloy (new super invar) proposed by the applicant of the present invention, and its
特許文献1:特公昭5−2319号
特許文献2:特許第2796966号
Patent Document 1: Japanese Patent Publication No. 5-2319 Patent Document 2: Japanese Patent No. 2796966
非特許文献1:増本 量、金属の研究8(1931),237
非特許文献2:「まてりあ」Vol.36(1977)、11、「インバー合金の各種精密制御機器への応用」岸田紀雄、増本健、第1080〜1085頁
Non-patent document 1: Increased amount, metal research 8 (1931), 237
Non-Patent Document 2: “Materia” Vol. 36 (1977), 11, “Application of Invar alloy to various precision control devices” Norio Kishida, Takeshi Masumoto, pp.
特許文献2が提案する新スーパーインバー以外の従来の低熱膨張合金は、焼鈍状態において熱膨張係数が比較的小さいが、低い熱膨張係数を有する組成範囲が狭く、且つ焼鈍状態なので機械的強度が低い。さらに、超不変鋼は低熱膨張係数を有する温度範囲が狭い。新スーパーインバーのFe−Co−Ni系合金組成範囲は比較的広いが、CrとTiの添加を必須とし、さらに機械的強度はまだ満足できるものではないので、その改善が要望されていた。
さらに、新スーパーインバーを含む従来の低熱膨張合金はCo合金特有の加工性不良の問題があり、再現性良く大量に生産することは困難であり、これを改善することが強く要望されている。すなわち、溶解時の溶湯の流動性が悪く、健全な鋳塊を得ることが困難であり、さらに鍛造、熱間加工及び冷間加工も容易でないので、最終製品の歩留まりも悪い。
上述のような約80年前から最近までの低熱膨張合金開発の経緯と技術の現状に鑑み、本発明は、Fe−Ni−Co系合金の低い熱膨張率を保ちつつ機械的強度を更に向上することを主たる目的とする。
Conventional low thermal expansion alloys other than the new Super Invar proposed by
Furthermore, conventional low thermal expansion alloys including the new Super Invar have a problem of workability peculiar to the Co alloy, and it is difficult to mass-produce them with high reproducibility, and there is a strong demand for improvement. That is, the fluidity of the molten metal at the time of melting is poor, it is difficult to obtain a sound ingot, and further, forging, hot working and cold working are not easy, so the yield of the final product is also bad.
In view of the history of low thermal expansion alloy development from about 80 years ago to the present and the current state of the technology as described above, the present invention further improves the mechanical strength while maintaining the low thermal expansion coefficient of Fe-Ni-Co alloys. The main purpose is to do.
本発明者らはFe−Ni−Co系合金へのMg、Ca、Sr、BaのIIa族元素のフッ素化合物の添加に伴う、熱膨張係数の微少化と機械的強度の向上について鋭意研究した。
その結果、重量比にて、Ni30〜38%、Co1〜7%とMg、Ca、Sr、BaのIIa族元素のフッ素化合物のそれぞれ1%以下の1種又は2種以上の合計0.0001〜3%、及び残部Feからなる合金、或いは必要ならば、これに副成分としてCr、Mo、Wをそれぞれ7%以下、V、Nb、Ta、Cu、Mn、Ti、Zr、Hfをそれぞれ5%以下、Al、Si、Beをそれぞれ3%以下、B、Cをそれぞれ1%以下の1種又は2種以上の合計0.001〜10%を添加し、残部Feからなる合金は低熱膨張係数及び高強度をもつことが見出された。かかる特性は上記合金を冷間加工状態又は冷間加工した後再結晶化温度以下の70〜500℃の低温度で熱処理を施した状態で得られる。上記冷間加工状態に到達する前の工程では、鋳造、鍛造などの熱間加工工程を経、その後冷間加工が行われるが、これらの工程で必要になる溶湯の流動性、鍛造性、熱間及び冷間加工性は上記フッ素化合物の添加により著しく改善される。
The present inventors have intensively studied on the miniaturization of the thermal expansion coefficient and the improvement of the mechanical strength accompanying the addition of the fluorine compound of the group IIa element of Mg, Ca, Sr, and Ba to the Fe—Ni—Co alloy.
As a result, in terms of weight ratio,
本発明の特徴とする処は次の通りである。
(1)第1発明は、重量比にて、Ni30〜38%、Co1〜7%、Mg、Ca、Sr、Ba
のIIa族元素のフッ素化合物のそれぞれ1%以下の1種又は2種以上の合計0.0001〜3%、
及び残部Feと不可避的不純物からなり、引張強さ1000MPa以上及び-50〜100℃における
熱膨張係数(-1〜+1)×10 -6 ℃ -1 を有することを特徴とする高強度低熱膨張合金に関する。
The features of the present invention are as follows.
(1) 1st invention is Ni30-38%, Co1-7%, Mg, Ca, Sr, Ba by weight ratio.
1% or less of each of the fluorine compounds of group IIa elements of 0.001 to 3% in total,
And the balance Fe and inevitable impurities, having a tensile strength of 1000 MPa or more and a thermal expansion coefficient (-1 to +1) × 10 −6 ° C. −1 at −50 to 100 ° C. Regarding alloys.
(2)第2発明は、重量比にて、Ni30〜38%、Co1〜7%、Mg、Ca、Sr、
BaのIIa族元素のフッ素化合物のそれぞれ1%以下の1種又は2種以上の合計0.0001
〜3%、及び副成分としてCr、Mo、Wをそれぞれ7%以下、V、Nb、Ta、Cu、
Mn、Ti、Zr、Hfをそれぞれ5%以下、Al、Si、Beをそれぞれ3%以下、B、Cをそれぞれ1%以下の1種又は2種以上の合計0.001〜10%、及び残部Feと不可避的不純物からなり,引張強さ1000MPa以上及び-50〜100℃における熱膨張係数(-1〜+1)
×10 -6 ℃ -1 を有することを特徴とする高強度低熱膨張合金に関する。
(2) The second invention is Ni 30-38%, Co1-7%, Mg, Ca, Sr,
1% or less total of 0.001% of each fluorine compound of group IIa element of Ba Total 0.0001
~ 3%, and Cr, Mo, W as subcomponents each 7% or less, V, Nb, Ta, Cu,
Mn, Ti, Zr, and Hf are each 5% or less, Al, Si, and Be are each 3% or less, B and C are each 1% or less, a total of 0.001 to 10%, and the balance Fe It consists of inevitable impurities, has a tensile strength of 1000 MPa or more, and a thermal expansion coefficient at -50 to 100 ° C (-1 to +1)
× relates to a high-strength low thermal expansion alloy characterized by having 10 -6 ° C -1 .
(3)第3発明は、棒、線、板もしくは薄板に加工された(1)又は(2)項記載の高強度低熱膨張合金を用いた精密機器に関する。 (3) The third invention relates to a precision instrument using the high-strength, low-thermal-expansion alloy described in (1) or (2), which is processed into a rod, wire, plate or thin plate.
(4)第4発明は、上記(1)又は(2)項記載の組成を有する合金の鋳塊を、熱間鍛
造及び熱間加工にて適当な形状に加工し、900℃以上融点未満の温度で0.5〜10時間焼鈍
した後冷却し、ついで加工率60%以上の線引き加工を施して所望の太さの棒又は線にな
すことにより、引張強さ1000MPa以上及び-50〜100℃における熱膨張係数(-1〜+1)×10 -6 ℃ -1 を有することを特徴とする高強度低熱膨張合金の製造法に関する。
(4) In the fourth invention, an ingot of the alloy having the composition described in the above (1) or (2) is processed into an appropriate shape by hot forging and hot working, and the melting point is 900 ° C. or higher and lower than the melting point. After annealing at a temperature of 0.5 to 10 hours, cooling, and then drawing to a rod or wire with a desired thickness by drawing at a processing rate of 60% or more, at a tensile strength of 1000 MPa or more and -50 to 100 ° C The present invention relates to a method for producing a high-strength, low-thermal expansion alloy characterized by having a thermal expansion coefficient (−1 to +1) × 10 −6 ° C. −1 .
(5)第5発明は、第4発明において得られた棒又は線を70〜500℃の温度で0.5〜100時間加熱することを特徴とする高強度低熱膨張合金の製造法に関する。 (5) The fifth invention relates to a method for producing a high-strength low thermal expansion alloy, characterized in that the rod or wire obtained in the fourth invention is heated at a temperature of 70 to 500 ° C. for 0.5 to 100 hours.
(6)第6発明は、上記(1)又は(2)項記載の組成を有する合金の鋳塊を、熱間鍛
造及び熱間加工にて適当な形状に加工し、900℃以上融点未満の温度で0.5〜10時間焼鈍し
た後冷却し、ついで圧下率60%以上の圧延加工を施して所望の厚さの板又は薄板になすこ
とにより、引張強さ1000MPa以上及び-50〜100℃における熱膨張係数(-1〜+1)×10 -6 ℃ -1 を
有することを特徴とする高強度低熱膨張合金の製造法に関する。
(6) In the sixth invention, an ingot of the alloy having the composition described in the above (1) or (2) is processed into an appropriate shape by hot forging and hot working, and the melting point is 900 ° C. or higher and lower than the melting point. After annealing at a temperature of 0.5 to 10 hours, cooling, and then rolling to a reduction ratio of 60% or more to obtain a plate or thin plate with a desired thickness, heat at a tensile strength of 1000 MPa or more and −50 to 100 ° C. The present invention relates to a method for producing a high-strength, low-thermal-expansion alloy having an expansion coefficient (−1 to +1) × 10 −6 ° C. −1 .
(7)第7発明は、第6発明で得られた板又は薄板を70〜500℃の温度で0.5〜100時間加熱することを特徴とする高強度低熱膨張合金の製造法に関する。 (7) The seventh invention relates to a method for producing a high-strength, low-thermal-expansion alloy characterized by heating the plate or thin plate obtained in the sixth invention at a temperature of 70 to 500 ° C. for 0.5 to 100 hours.
(8)第8発明は、上記(1)又は(2)項記載の組成を有する合金の鋳塊を、熱間鍛
造及び熱間加工にて適当な形状に加工し、900℃以上融点未満の温度で0.5〜10時間焼鈍し
た後冷却し、ついで加工率40%以上の線引き加工を施して所望の太さの棒又は線になした
後、さらに当該棒又は線を圧下率40%以上の圧延加工を施して所望の厚さの板又は薄板に
なすことにより、引張強さ1000MPa以上及び-50〜100℃における熱膨張係数(-1〜+1)×
10 -6 ℃ -1 を有することを特徴とする高強度低熱膨張合金の製造法に関する。
(8) In the eighth invention, an ingot of the alloy having the composition described in the above (1) or (2) is processed into an appropriate shape by hot forging and hot working, and the melting point is 900 ° C. or higher and lower than the melting point. After annealing at a temperature for 0.5 to 10 hours, cooling, and then drawing a rod or wire of a desired thickness by drawing a rod with a processing rate of 40% or more, rolling the rod or wire further with a rolling reduction of 40% or more. By processing to make a plate or thin plate of the desired thickness, the tensile strength is 1000 MPa or more and the thermal expansion coefficient (-1 to +1) at -50 to 100 ° C. ×
The present invention relates to a method for producing a high-strength low thermal expansion alloy characterized by having 10 −6 ° C. −1 .
(9)第9発明は、第8発明で得られた板又は薄板を70〜500℃の温度で0.5〜100時間加熱することを特徴とする高強度低熱膨張合金の製造法に関する。
次ぎに、本発明を、高強度低熱膨張合金の組成、特性及び製造方法の順に説明する。
(9) The ninth invention relates to a method for producing a high-strength low thermal expansion alloy, characterized in that the plate or thin plate obtained in the eighth invention is heated at a temperature of 70 to 500 ° C. for 0.5 to 100 hours.
Next, the present invention will be described in the order of the composition, characteristics and manufacturing method of the high-strength low thermal expansion alloy.
組成
本発明合金の成分組成はNi30〜38%、Co1〜7%と、Mg、Ca、Sr、BaのIIa
族元素のフッ素化合物、例えばMgF2、CaF2、SrF2及びBaF2のそれぞれ1%以下の1種又は2種以上の合計0.0001〜3%、及び残部Fe及び不可避的不純物である。この成分組成では、表1及び図1に示すスーパーインバーよりも広い範囲のFe−Ni−Co系
組成において、-50〜100℃における熱膨張係数 (-1〜+1)×10 -6 ℃ -1 及び1000MPa以上
の引張強さが得られる。この組成範囲をはずれると、引張強さが1000MPa未満で、−50
〜100℃における熱膨張係数が-1×10 -6 ℃ -1 未満又は1×10 -6 ℃ -1 を超えるので、低熱膨張係
数を有する低熱膨張合金が得られない。
Composition The composition of the alloy of the present invention is Ni30-38%, Co1-7%, and Mg, Ca, Sr, Ba IIa
Fluorine compounds of group elements such as MgF 2 , CaF 2 , SrF 2 and BaF 2 are each 1% or less, or a total of 0.0001 to 3% of two or more, and the balance Fe and inevitable impurities. This component composition, the Fe-Ni-Co-based composition of a wider range than Super Invar shown in Table 1 and Figure 1, the thermal expansion coefficient at -50~100 ℃ (-1~ + 1) × 10 -6 ℃ - Tensile strength of 1 and 1000 MPa or more can be obtained. Outside this composition range, the tensile strength is less than 1000 MPa, −50
Since the thermal expansion coefficient at ˜100 ° C. is less than −1 × 10 −6 ° C.− 1 or exceeds 1 × 10 −6 ° C.− 1 , a low thermal expansion alloy having a low thermal expansion coefficient cannot be obtained.
そして、Mg、Ca、Sr、BaのIIa族元素のフッ素化合物のそれぞれ1%以下の何れか1種又は2種以上、合計で0.0001 〜3%を添加することによって、表2の分析値に示すように、微量に含有している燐、酸素、硫黄及び窒素等の不純物元素に良く反応して、脱燐・脱酸・脱硫・脱窒素の作用が顕著に現出し、これらの不純物元素を除去して、溶湯の流動性及び熱間加工若しくは冷間加工が著しく改善される。さらに、Fe−Ni30〜38%、Co1〜7%合金は、室温で均質な面心立方格子の単一相(γ相)であるが、これにMg、Ca、Sr、BaのIIa族元素のフッ素化合物を添加すると、γ相の母相中にこれらの元素の金属間化合物が微細に分散析出することにより基地を強固にすると共に、さらには、当該IIa族元素のフッ素化合物が結晶粒界に偏析することにより、粒界を強固にして、粒界における転位の移動を妨害する効果により、機械的強度を高めることができたのである。
さらに、これらの元素の金属間化合物が微細に分散析出したγ相の母相が,冷間加工を受けると,加工誘起変態が起こりγ相の基地に体心立方格子のα′相を生成する。このα′相は、熱膨張係数を負側に変化させて低熱膨張係数を得ることができる(第1、4発明)。
And it shows in the analytical value of Table 2 by adding 0.0001-3% in total in any 1 type or 2 types or less of each 1% or less of the fluorine compound of the IIa group element of Mg, Ca, Sr, and Ba In this way, it reacts well with impurity elements such as phosphorus, oxygen, sulfur and nitrogen contained in trace amounts, and the effects of dephosphorization / deoxidation / desulfurization / denitrogenation are noticeable, and these impurity elements are removed. Thus, the fluidity of the molten metal and hot working or cold working are remarkably improved. Furthermore, Fe-Ni 30-38%, Co1-7% alloy is a single phase (γ phase) of a face-centered cubic lattice that is homogeneous at room temperature, and this includes Mg, Ca, Sr, Ba IIa group elements. When a fluorine compound is added, the intermetallic compounds of these elements are finely dispersed and precipitated in the matrix of the γ phase, thereby strengthening the base, and further, the fluorine compound of the group IIa element is added to the crystal grain boundary. By segregating, the grain boundary was strengthened, and the mechanical strength could be increased by the effect of preventing the movement of dislocations at the grain boundary.
Furthermore, when the γ-phase matrix, in which intermetallic compounds of these elements are finely dispersed and precipitated, is subjected to cold working, a processing-induced transformation occurs, generating an α ′ phase of a body-centered cubic lattice at the base of the γ-phase. . The α ′ phase can obtain a low thermal expansion coefficient by changing the thermal expansion coefficient to the negative side (first and fourth inventions).
かかる冷間加工状態でα′相とγ相の混合組織を有するFe−Ni−Co系合金を70〜
500℃の再結晶温度以下の低温度で加熱処理を施して,α′相を適当量に加減することにより、(-1〜+1)×10 -6 ℃ -1 の範囲内の低熱膨張係数に調整することも可能になり、また70〜500℃の再結晶以下の温度で熱処理することにより、加工硬化によって生じた加工歪を適当に残留させ,1000MPa以上の強度を保ちつつ機械的特性を改良することもできる(第5、7、9発明)。
Fe—Ni—Co based alloy having a mixed structure of α ′ phase and γ phase in such cold working state is 70 to
A low thermal expansion coefficient within the range of ( -1 to +1) x 10 -6 ℃ -1 by heat treatment at a low temperature below the recrystallization temperature of 500 ℃ and adjusting the α 'phase to an appropriate amount. In addition, by heat-treating at a temperature below 70-500 ° C recrystallization, the work distortion caused by work hardening remains appropriately, and the mechanical properties are maintained while maintaining the strength of 1000 MPa or more. It can also be improved (5th, 7th and 9th inventions).
Fe−Ni−Co系合金に、Mg、Ca、Sr、BaのIIa族元素のフッ素化合物を添加すると、微量に含有している酸素、硫黄、燐及び窒素等の不純物元素に反応して、脱酸、脱硫、脱燐、脱窒素の作用が顕著に現れ、これらの不純物元素を良く除去する。このため、溶湯の流れが良好となり、鋳塊の介在物や不純物の偏析などが少なくなる。
したがって、鍛造性、熱間加工性及び冷間加工性が著しく改善され、最終製品の歩留まりが大きく向上する。
なお、表2は、本発明合金11、24、68と超不変鋼に含有されている不純物元素を示したものである。
When a fluorine compound of group IIa elements of Mg, Ca, Sr, and Ba is added to an Fe-Ni-Co alloy, it reacts with impurity elements such as oxygen, sulfur, phosphorus, and nitrogen contained in a trace amount, and desorbs. The action of acid, desulfurization, dephosphorization, and denitrification appears remarkably, and these impurity elements are well removed. For this reason, the flow of the molten metal becomes good, and inclusions in the ingot and segregation of impurities are reduced.
Therefore, forgeability, hot workability, and cold workability are remarkably improved, and the yield of the final product is greatly improved.
Table 2 shows impurity elements contained in the alloys of the present invention 11, 24, 68 and the ultra-invariant steel.
図2は、超不変鋼と同じ組成のFe−32%Ni−5%Co系合金にMgF2、CaF2、SrF2又はBaF2をそれぞれ添加した合金について、加工率85%の線引き加工を施した後200℃で5時間加熱した場合の、それぞれの添加量と熱膨張係数α及び引張強さσとの関係を示したグラフである。図からわかるとおり、IIa族元素のフッ素化合物は正の熱膨張係数を付与し、また引張強さを高める効果をもつ。 FIG. 2 shows a drawing process with a processing rate of 85% for an alloy obtained by adding MgF 2 , CaF 2 , SrF 2 or BaF 2 to an Fe-32% Ni-5% Co-based alloy having the same composition as that of the ultra-invariant steel. 6 is a graph showing the relationship between the respective addition amounts, thermal expansion coefficient α, and tensile strength σ when heated at 200 ° C. for 5 hours. As can be seen from the figure, the fluorine compound of the group IIa element imparts a positive thermal expansion coefficient and has the effect of increasing the tensile strength.
図3は、合金番号11に副成分のCr、Mo、W又はVをそれぞれ添加した合金について、図4は同じく合金番号11にNb、Ta、Cu又はMnをそれぞれ添加した合金について、図5は同じく合金番号11にTi、Zr、Hf、Al、Si、Be、B又はCをそれぞれ添加した合金について、加工率85%の線引き加工を施した後200℃で5時間加熱した場合の、添加量と熱膨張係数α及び引張強さσとの関係を示したものである。図3、4、5からわかるとおり、副成分は正の熱膨張率を付与し、また引張強さを高める効果をもつ。 FIG. 3 shows an alloy in which the subcomponents Cr, Mo, W, or V are added to alloy number 11, FIG. 4 shows an alloy in which Nb, Ta, Cu, or Mn is added to alloy number 11, and FIG. Similarly, the amount of alloy No. 11 added with Ti, Zr, Hf, Al, Si, Be, B, or C when heated at 200 ° C for 5 hours after drawing at a processing rate of 85% And the thermal expansion coefficient α and the tensile strength σ. As can be seen from FIGS. 3, 4, and 5, the subcomponent imparts a positive coefficient of thermal expansion and has the effect of increasing the tensile strength.
そして、さらに副成分としてCr、Mo、Wをそれぞれ7%以下、V、Nb、Ta、Cu、Mn、Ti、Zr、Hfをそれぞれ5%以下、Al、Si、Be3%以下、B、Cをそれぞれ1%以下の1種又は2種以上の合計0.001〜10%を添加すると、図3,4,及び5に示されるように、これら元素の添加は熱膨張係数の絶対値を小さくする効果がある。これらの内Cr、Mo、W、V、Nb、Ta、Cu、Ti、Zr、Hf、Al、Si、Be、B、Cを添加すると機械的強度を高める効果が大きく、またMn、Al、Si、Ti、Zr及びHfを添加すると脱酸・脱硫の効果が大きい。 Further, as subcomponents, Cr, Mo, W are each 7% or less, V, Nb, Ta, Cu, Mn, Ti, Zr, Hf are each 5% or less, Al, Si, Be3% or less, B, C. Addition of 1% or less, or a total of 0.001% to 10% of each, as shown in Figs. 3, 4, and 5, the addition of these elements has the effect of reducing the absolute value of the thermal expansion coefficient. is there. Of these, the addition of Cr, Mo, W, V, Nb, Ta, Cu, Ti, Zr, Hf, Al, Si, Be, B, and C greatly increases the mechanical strength, and Mn, Al, Si When Ti, Zr and Hf are added, the effect of deoxidation / desulfurization is large.
特性
(1)熱膨張係数
第1発明においては、正の熱膨張係数を付与するフッ素化合物と負の熱膨張係数
を付与するα′相の効果により、広いFe−Co−Ni系合金組成範囲において、-50
〜100℃の温度範囲で(-1〜+1)×10 -6 ℃ -1 で小さい熱膨張係数が得られる。
第2発明においては、正の熱膨張係数を付与するフッ素化合物及び副成分と負の
熱膨張係数を付与するα′相の効果により、広いFe−Co−Ni系合金組成範囲にお
いて、-50〜100℃の温度範囲で(-1〜+1)×10 -6 ℃ -1 で小さい熱膨張係数が得られる。
したがって、第1、2発明の合金は、低熱膨張係数を必要とする精密機器に好適
である。
(2)機械的強度
第1発明の合金の機械的強度(引張強さ及び硬度)は、冷間加工硬化ならびにフ
ッ素化合物の微細分散析出と粒界強化により、従来のFe−Ni−Co系低熱膨張合金
より大きくなっている。第2発明はさらに副成分が強化に寄与する。したがって本発明
の合金は低熱膨張で機械的強度を必要とする精密機器に好適である。
Characteristic (1) Thermal expansion coefficient In the first invention, the effect of the fluorine compound imparting a positive thermal expansion coefficient and the α ′ phase imparting a negative thermal expansion coefficient allows a wide Fe-Co-Ni alloy composition range. -50
A small thermal expansion coefficient is obtained at (-1 to +1) × 10 -6 ° C -1 in the temperature range of -100 ° C.
In the second invention, due to the effect of the fluorine compound imparting a positive thermal expansion coefficient and the secondary component and the α ′ phase imparting a negative thermal expansion coefficient, in a wide Fe—Co—Ni alloy composition range, A small thermal expansion coefficient is obtained at (-1 to +1) × 10 −6 ° C. −1 in the temperature range of 100 ° C.
Therefore , the alloys of the first and second inventions are suitable for precision instruments that require a low coefficient of thermal expansion.
(2) Mechanical strength The mechanical strength (tensile strength and hardness) of the alloy of the first invention is the same as that of conventional Fe-Ni-Co by cold work hardening, fine dispersion precipitation of fluorine compounds and grain boundary strengthening. It is larger than the low thermal expansion alloy. In the second invention, the subcomponent further contributes to strengthening. Therefore, the alloy of the present invention is suitable for precision instruments requiring low thermal expansion and mechanical strength.
製造法
(1)溶解
本発明の合金を造るには、重量比にてNi30〜38%、Co1〜7%とMg、Ca、Sr、BaのIIa族元素のフッ素化合物のそれぞれ1%以下の1種又は2種以上の合計0.0001〜3%、及び残部Feの組成をもつ原料の適当量を、空気中、好ましくは非酸化性雰囲気(水素、アルゴン、窒素などのガス)又は真空中において、適当な溶解炉、例えば高周波溶解炉等を用いて溶解した後、そのままか、さらにこれに副成分元素としてCr、Mo、Wをそれぞれ7%以下、V、Nb、Ta、Cu、Mn、Ti、Zr、Hfをそれぞれ5%以下、Al、Si、Beをそれぞれ3%以下、B、Cをそれぞれ1%以下の1種又は2種以上の合計0.001〜10%となるように、純金属、フェロアロイなどの合金など適当な形態の原料の所定量を添加し、充分に撹拌して組成的に均一な溶融合金を造る。
Production Method (1) Melting To produce the alloy of the present invention, 1 to 30% by weight of Ni, 30% to 38%, Co1 to 7%, and 1% or less of each of the fluorine compounds of group IIa elements of Mg, Ca, Sr and Ba. Appropriate amount of raw material having a composition of seeds or a total of 0.0001 to 3% of two or more kinds and the balance Fe in air, preferably in a non-oxidizing atmosphere (gas such as hydrogen, argon, nitrogen) or in vacuum A melting furnace such as a high-frequency melting furnace or the like, and as it is, further, Cr, Mo, W as subcomponent elements are 7% or less respectively, V, Nb, Ta, Cu, Mn, Ti, Zr Pure metals, ferroalloys, etc. so that the total amount of Hf is 5% or less, Al, Si, Be is 3% or less, and B or C is 1% or less, or a total of 0.001-10%. Add a predetermined amount of raw material in an appropriate form such as an alloy of To build a compositionally homogeneous molten alloy.
(2)鍛造及び熱間加工
次ぎに、溶融合金を、適当な形及び大きさの鋳型に注入して健全な鋳塊を得、さらに当該鋳塊を900℃以上融点未満、好ましくは1000〜1300℃において鍛造、熱間加工などを施して次工程の加工に適した形状にする。
(2) Forging and hot working Next, the molten alloy is poured into a mold of an appropriate shape and size to obtain a healthy ingot, and the ingot is 900 ° C. or higher and lower than the melting point, preferably 1000 to 1300. Forging, hot working, etc. are performed at ℃ to make the shape suitable for the next process.
(3)焼鈍処理
前工程で作られた素材を、900℃以上融点未満の温度、好ましくは950〜1300℃において適当時間、好ましくは0.5〜5時間加熱して焼鈍した後冷却することにより、熱間加工組織を均質化すると共に軟化する。
(3) By heating the material made in the pre-annealing process at a temperature of 900 ° C. or higher and lower than the melting point, preferably 950 to 1300 ° C. for an appropriate period of time, preferably 0.5 to 5 hours and then cooling, Homogenizes and softens the inter-processed structure.
(4)線引き加工又は圧延加工
図6(A)、7(A)及び8(A)(合金組成や加工法などは段落番号0040,0044、0048で説明する)に示すように、線引き加工又は圧延加工により、加工誘起変態によってγ相の基地に体心立方格子のα′相を生成させると引張強さσが上昇する。さらに、負の熱膨張係数αを得ることができる。線引き加工の加工率(即ち断面積減少率)又は圧延の圧下率(厚さ減少率)は60%以上が望ましい(第4、6発明)。線引き加工を施した後圧延加工を施す場合は、圧延加工の圧下率は40%以上が望ましい(第8発明)。また、加工率及び圧下率の増加と共に、加工硬化による機械的強度を高める効果が大きい。
線、棒、板及び薄板の寸法は精密機器の種類により定まり、線としては直径が0.01〜10.0mm、棒は10.0〜50.0mm、また薄板としては厚さ0.001〜1.0mm、幅0.01〜10mm、板は厚さが1.0〜10.0mm、幅が10.0〜100.0mmが一般的である。
(4) Drawing or rolling process As shown in FIGS. 6 (A), 7 (A) and 8 (A) (alloy compositions and processing methods are described in paragraph numbers 0040, 0044 and 0048), When the α ′ phase of the body-centered cubic lattice is generated at the base of the γ phase by rolling-induced transformation by rolling, the tensile strength σ increases. Furthermore, a negative thermal expansion coefficient α can be obtained. It is desirable that the drawing rate (that is, the cross-sectional area reduction rate) or rolling reduction (thickness reduction rate) of the drawing process is 60% or more (fourth and sixth inventions). When the rolling process is performed after the drawing process, the rolling reduction is preferably 40% or more (eighth invention). Moreover, the effect which raises the mechanical strength by work hardening is large with the increase in a processing rate and a rolling reduction.
The dimensions of the wire, bar, plate and thin plate are determined by the type of precision equipment.The diameter of the wire is 0.01 to 10.0 mm, the rod is 10.0 to 50.0 mm, the thickness is 0.001 to 1.0 mm, the width is 0.01 to 10 mm, The plate generally has a thickness of 1.0 to 10.0 mm and a width of 10.0 to 100.0 mm.
(5)加工後の加熱処理
図6(B)、7(B)及び8(B)(合金組成や加工法などは段落番号0040、0044、0048で説明する)に示すように、線引き加工又は圧延加工後、再結晶化温度より低い温度の70〜500℃、好ましくは100〜450℃の温度範囲で適当時間、好ましくは0.1〜100時間加熱処理すると、(-1〜+1)×10-6℃-1の範囲で小さくなり低熱膨張が得られ、また再結晶化温度より低い温度(70〜500℃)で加熱処理するので、加工硬化による加工歪が残留し,機械的強度が保持される。さらに、熱膨張係数αは、加工により発生したα′相が、熱処理により消滅するために、正の方向に変化する(第5、7、9発明)。しかし、70℃未満の温度における加熱では100時間加熱しても、加工によるα′相が消滅されず、熱膨張係数を正にする十分な効果が得られない。また、500℃以上の温度で加熱すると、α′相が完全に消滅して熱膨張係数が大きくなり、また再結晶化するので,加工硬化による加工歪も除去されて機械的強度も低下する。
(5) Heat treatment after processing As shown in FIGS. 6 (B), 7 (B) and 8 (B) (alloy composition and processing method will be described in paragraph numbers 0040, 0044 and 0048), After the rolling process, heat treatment is performed at a temperature lower than the recrystallization temperature of 70 to 500 ° C., preferably 100 to 450 ° C. for an appropriate time, preferably 0.1 to 100 hours, and (−1 to +1) × 10 − Smaller in the range of 6 ℃ -1 , low thermal expansion is obtained, and heat treatment is performed at a temperature lower than the recrystallization temperature (70 to 500 ℃), so that processing strain due to work hardening remains and mechanical strength is maintained. The Furthermore, the coefficient of thermal expansion α changes in the positive direction because the α ′ phase generated by processing disappears by heat treatment (5th, 7th and 9th inventions). However, in the case of heating at a temperature of less than 70 ° C., even if heating is performed for 100 hours, the α ′ phase due to processing is not lost, and a sufficient effect of making the thermal expansion coefficient positive cannot be obtained. Further, when heated at a temperature of 500 ° C. or higher, the α ′ phase is completely extinguished and the coefficient of thermal expansion is increased, and recrystallization occurs, so that processing strain due to work hardening is removed and mechanical strength is reduced.
本発明の合金は、熱膨張係数が(-1〜+1)×10 -6 ℃ -1 で小さく、優れた低熱膨張係数を有し、機械的強度も1000MPa以上と高いので精密機器、例えば標準尺、測量機、距離計、時計,温度調節装置、レ−ザ光源の器具、シャドウマスク及びICリ−ドフレ−ム等の使用に好適であり、低熱膨張係数を必要とするその他の精密機器に使用する低熱膨張材料としても好適である。 The alloy of the present invention has a small thermal expansion coefficient of (−1 to +1) × 10 −6 ° C. −1 , an excellent low thermal expansion coefficient, and a high mechanical strength of 1000 MPa or more. Suitable for use with scales, surveying instruments, distance meters, watches, temperature control devices, laser light source equipment, shadow masks, IC lead frames, etc., and other precision equipment that requires a low coefficient of thermal expansion It is also suitable as a low thermal expansion material to be used.
次に本発明の実施例について説明する。
実施例1
合金番号11(組成Ni=32.0%、Co=5.0%、SrF2=0.10%、Fe=残部)の合金;すなわち超不変鋼と同じ組成のFe−Ni−Co系合金にフッ素化合物を添加した合金の製造
原料として99.9%純度の電解鉄、電解ニッケル、電解コバルト、及びストロンチュ−ムフッ素化合物(SrF2)を用いた。試料を造るには、 原料の全重量 800gをアルミナ坩堝に入れ、真空中で高周波誘導電気炉によって溶かした後、よく撹拌して均質な溶融合金とした。ついで、これを直径25mm,高さ170mmの孔をもつ鋳型に注入し、得られた鋳塊を約1100℃で鍛造して18mmの角棒とした。さらに、約1050℃で直径10mmまで丸棒用熱間圧延機を用いて熱間ロ−ルした後、当該丸棒を1000℃で1時間加熱し、焼鈍した。ついで、常温で冷間線引き加工を施して5mmの線となした後、当該線を1050℃の真空中で2時間加熱して焼鈍し、さらに種々な加工率で適当な径の線になした後、適当な温度及び時間で熱処理を施して,種々な特性の測定を行い,表3のような特性値を得た。
Next, examples of the present invention will be described.
Example 1
Alloy of alloy number 11 (composition Ni = 32.0%, Co = 5.0%, SrF 2 = 0.10%, Fe = remainder); that is, an alloy in which a fluorine compound is added to an Fe—Ni—Co alloy having the same composition as that of super invariant steel As a raw material, 99.9% purity electrolytic iron, electrolytic nickel, electrolytic cobalt, and a strontium fluorine compound (SrF 2 ) were used. To make the sample, 800 g of the total weight of the raw material was placed in an alumina crucible, melted in a high-frequency induction electric furnace in vacuum, and then stirred well to obtain a homogeneous molten alloy. Next, this was poured into a mold having a hole with a diameter of 25 mm and a height of 170 mm, and the resulting ingot was forged at about 1100 ° C. to obtain an 18 mm square bar. Furthermore, after hot rolling using a hot rolling mill for round bars up to a diameter of 10 mm at about 1050 ° C., the round bars were heated at 1000 ° C. for 1 hour and annealed. Next, after cold drawing at room temperature to form a 5 mm wire, the wire was heated in a vacuum of 1050 ° C. for 2 hours and annealed to obtain a wire with an appropriate diameter at various processing rates. Thereafter, heat treatment was performed at an appropriate temperature and time, various characteristics were measured, and characteristic values as shown in Table 3 were obtained.
表3より、本発明実施例の線材は引張り強さが1000MPaを超え非常に高く、しかも線引き加工によりγ+α′混合組織となっているので、低熱膨張特性が得られていることがわかる。
なお、表3の(比較例)以外は第1及び5発明の実施例であり、第1〜3行の製造条件は第4発明の実施例であり、第4〜6行の製造条件は第5発明の実施例である。
From Table 3, it can be seen that the wire rods of the examples of the present invention have a very high tensile strength exceeding 1000 MPa and a γ + α ′ mixed structure by the drawing process, so that low thermal expansion characteristics are obtained.
Except for (Comparative Example) in Table 3, the examples of the first and fifth inventions are shown, the manufacturing conditions in the first to third rows are the examples of the fourth invention, and the manufacturing conditions in the fourth to sixth rows are the first. 5 is an embodiment of the invention.
さらに、図6(A)は、合金番号11について、表3に示した以外の種々な加工率で線引き加工を施した場合の、熱膨張係数α及び引張強さσと線引き加工率との関係を示したものである。図6(B)は、表3の2行目に示した加工率85%の線引き加工を施した後、表3に示した以外の種々な温度で加熱した場合の、熱膨張係数α及び引張強さσと加熱温度との関係を示したものである。 Further, FIG. 6 (A) shows the relationship between the thermal expansion coefficient α and the tensile strength σ and the drawing rate when the alloy number 11 is drawn at various processing rates other than those shown in Table 3. Is shown. FIG. 6 (B) shows the coefficient of thermal expansion α and the tensile strength when heated at various temperatures other than those shown in Table 3 after drawing with a processing rate of 85% shown in the second row of Table 3. It shows the relationship between the strength σ and the heating temperature.
実施例2
合金番号24(組成Ni=31.0%、Co=5.5%、CaF2=0.15%、Mo=3.0%、Fe=残部)の合金の製造。
原料として99.9%純度の電解鉄、電解ニッケル、電解コバルト、電解クロム、カルシュ−ムフッ素化合物(CaF2)及びモリブデンを用いた。試料を造るには、 原料の全重量 800gをアルミナ坩堝に入れ、真空中で高周波誘導電気炉によって溶かした後、よく撹拌して均質な溶融合金とした。ついで、これを直径25mm,高さ170mmの孔をもつ鋳型に注入し、得られた鋳塊を約1200℃で鍛造して18mmの角棒とした。さらに、約1150℃で厚さ10mmまで熱間圧延機を用いて板にした後、当該板を1100℃で1時間加熱し、焼鈍した。ついで、常温で冷間圧延機を用いて圧延加工を施して3mmの板となした後、当該板を1100℃の真空中で2時間加熱して焼鈍し、さらに種々な加工率で適当な厚さの薄板になした後、適当な温度及び時間で熱処理を施して,種々な特性の測定を行い,表4のような特性値を得た。
Example 2
Production of alloy No. 24 (composition Ni = 31.0%, Co = 5.5%, CaF 2 = 0.15%, Mo = 3.0%, Fe = balance).
99.9% purity electrolytic iron, electrolytic nickel, electrolytic cobalt, electrolytic chromium, calcium fluoride compound (CaF 2 ), and molybdenum were used as raw materials. To make the sample, 800 g of the total weight of the raw material was placed in an alumina crucible, melted in a high-frequency induction electric furnace in vacuum, and then stirred well to obtain a homogeneous molten alloy. Next, this was poured into a mold having a hole with a diameter of 25 mm and a height of 170 mm, and the obtained ingot was forged at about 1200 ° C. to obtain an 18 mm square bar. Furthermore, after making into a plate using a hot rolling mill at about 1150 ° C. to a thickness of 10 mm, the plate was heated at 1100 ° C. for 1 hour and annealed. Next, after rolling into a 3 mm plate at room temperature using a cold rolling mill, the plate is annealed by heating in a vacuum at 1100 ° C. for 2 hours, and with an appropriate thickness at various processing rates. After forming a thin plate, heat treatment was performed at an appropriate temperature and time, and various characteristics were measured, and characteristic values as shown in Table 4 were obtained.
表4より、本発明実施例の薄板は引張強さが1000MPaを超え非常に高く、しかも圧延加工によりγ+α′混合組織となっているので低熱膨張特性が得られることがわかる。
表4の比較例以外の製造条件は、第6及び7発明の実施例であり、表4の第1〜3行目の製造条件は第6発明の実施例であり、第4〜6行目の製造条件は第7発明の実施例である。
From Table 4, it can be seen that the thin plate of the embodiment of the present invention has a very high tensile strength exceeding 1000 MPa and has a γ + α ′ mixed structure by rolling, so that low thermal expansion characteristics can be obtained.
The manufacturing conditions other than the comparative examples in Table 4 are the examples of the sixth and seventh inventions, and the manufacturing conditions in the first to third lines of Table 4 are the examples of the sixth invention, and the fourth to sixth lines. The manufacturing conditions are the embodiment of the seventh invention.
さらに、図7(A)は、合金番号24について、表4の第1〜3行目の試料につき、圧下率を変えて種々な圧下率で圧延加工を施した場合の、熱膨張係数α及び引張強さσと圧下率との関係を示したものである。図7(B)は、表の第4〜6行目の試料につき圧下率を90%に変えて圧延加工を施した後、種々な温度で加熱した場合の、熱膨張係数α及び引張強さσと加熱温度との関係を示したものである。 Further, FIG. 7A shows the thermal expansion coefficient α and the alloy number 24 when the rolling process is performed with various rolling reduction ratios for the samples in the first to third rows of Table 4 while changing the rolling reduction ratio. It shows the relationship between the tensile strength σ and the rolling reduction. FIG. 7B shows the coefficient of thermal expansion α and tensile strength when the samples in the 4th to 6th rows of the table were subjected to rolling with the rolling reduction changed to 90% and then heated at various temperatures. The relationship between (sigma) and heating temperature is shown.
実施例3
合金番号68(組成Ni=33.0%、Co=6.0%、BaF2=0.32%、Cr=2.5%、Nb=2.5%、Fe=残部)の合金の製造。
原料として99.9%純度の電解鉄、電解ニッケル、電解コバルト、電解クロム,バリュウムフッ素化合物(BaF2)及びニオブを用いた。試料を造るには、 原料の全重量 800gをアルミナ坩堝に入れ、全圧10-1MPaのアルゴンガス中で高周波誘導電気炉によって溶かした後、よく撹拌して均質な溶融合金とした。ついで、これを直径25mm,高さ170mmの孔をもつ鋳型に注入し、得られた鋳塊を約1200℃で鍛造して直径18mmの丸棒とした。さらに、約1100℃で直径10mmまで丸棒用熱間圧延機を用いて熱間ロ−ルした後、当該丸棒を1100℃で1時間加熱し、焼鈍した。ついで、常温で冷間線引き加工を施して5mmの線となした後、当該線を1100℃の真空中で1時間加熱して焼鈍し、さらに冷間線引機を用いて種々な加工率で適当な径の線になした。さらに当該線を冷間圧延機を用いて適当な厚さまで圧延加工を施して薄板になした。ついで、当該薄板を適当な温度及び時間で熱処理を施して,種々な特性の測定を行い,表5のような特性値を得た。
Example 3
Production of alloy No. 68 (composition Ni = 33.0%, Co = 6.0%, BaF 2 = 0.32%, Cr = 2.5%, Nb = 2.5%, Fe = balance).
As raw materials, electrolytic iron, electrolytic nickel, electrolytic cobalt, electrolytic chromium, barium fluorine compound (BaF 2 ) and niobium having a purity of 99.9% were used. To make the sample, 800 g of the total weight of the raw material was put in an alumina crucible, melted in a high-frequency induction electric furnace in argon gas with a total pressure of 10 −1 MPa, and then stirred well to obtain a homogeneous molten alloy. Subsequently, this was poured into a mold having a hole with a diameter of 25 mm and a height of 170 mm, and the obtained ingot was forged at about 1200 ° C. to obtain a round bar with a diameter of 18 mm. Furthermore, after hot rolling at about 1100 ° C. to a diameter of 10 mm using a hot rolling mill for round bars, the round bars were heated at 1100 ° C. for 1 hour and annealed. Next, after cold drawing at room temperature to form a 5 mm wire, the wire was heated and annealed in a vacuum at 1100 ° C. for 1 hour, and further at various processing rates using a cold drawing machine. The wire was of an appropriate diameter. Further, the wire was rolled to an appropriate thickness using a cold rolling mill to form a thin plate. Next, the thin plate was subjected to heat treatment at an appropriate temperature and time, and various characteristics were measured, and characteristic values as shown in Table 5 were obtained.
表5より、本発明実施例の薄板は、引張強さが1000MPaを超え非常に高く、しかも線引き加工と圧延加工によりγ+α′の混合組織となっているので、低熱膨張特性が得られていることがわかる。
表5の比較例以外は第8及び9発明の製造条件を示す実施例であり、第1〜3行の製造条件は第8発明の実施例、第4〜6行の製造条件は第9発明の実施例である。
From Table 5, the thin plate of the embodiment of the present invention has a very high tensile strength exceeding 1000 MPa and has a mixed structure of γ + α ′ by drawing and rolling, so that low thermal expansion characteristics are obtained. I understand.
Except for the comparative examples in Table 5, the examples show the manufacturing conditions of the eighth and ninth inventions, the manufacturing conditions of the first to third rows are the examples of the eighth invention, and the manufacturing conditions of the fourth to sixth rows are the ninth invention. This is an example.
さらに、図8(A)は、合金番号68について、表5の第1〜3行の条件を変更したものであって、加工率50%の線引き加工を施して線になした後、当該線を種々な圧下率で圧延加工を施して薄板になした場合の、熱膨張係数α及び引張強さσと圧下率との関係を示したものである。この図から圧下率40%以上で、1000Mpa以上の引張強さσ及び
(-1〜+1)×10−6℃-1の熱膨張係数αが得られていることがわかる。
図8(B)は、表5の第4〜6行目の条件を変えたものであって、加工率50%の線引き加工を施した線を、さらに圧下率90%の圧延加工を施した後、種々な温度で加熱した場合の、熱膨張係数α及び引張強さσと加熱温度との関係を示したものである。
この図から、70〜 500℃の加熱温度範囲において、1000MPa以上の引張強さσ及び(-1〜+1)×10−6℃-1の熱膨張係数αが得られていることがわかる。
Further, FIG. 8A shows the alloy number 68 in which the conditions in the first to third rows of Table 5 are changed, and after drawing the wire at a processing rate of 50% to form a wire, 3 shows the relationship between the thermal expansion coefficient α and the tensile strength σ and the rolling reduction when rolling is made into a thin plate at various rolling reductions. From this figure, it can be seen that a tensile strength σ of 1000 MPa or more and a thermal expansion coefficient α of (−1 to +1) × 10 −6 ° C. −1 are obtained at a rolling reduction of 40% or more.
FIG. 8 (B) is the one in which the conditions in the fourth to sixth rows of Table 5 are changed, and a wire subjected to a drawing process with a processing rate of 50% is further subjected to a rolling process with a reduction rate of 90%. Thereafter, the relationship between the thermal expansion coefficient α and the tensile strength σ and the heating temperature when heated at various temperatures is shown.
From this figure, it can be seen that a tensile strength σ of 1000 MPa or more and a thermal expansion coefficient α of (−1 to +1) × 10 −6 ° C. −1 are obtained in the heating temperature range of 70 to 500 ° C.
実施例4
表6に示す組成の合金について線材試料を造った。表中で、圧下率の欄が「−」の合金番号は実施例1の工程にしたがって処理を行ない、但し実施例1の「1100℃、2時間焼鈍」に代えて表に示す条件の焼鈍を行なった。表中線引加工率の欄が「−」の合金番号は、実施例2の工程にしたがって処理を行ない、但し、「1100℃、2時間焼鈍」に代えて表に示す条件の焼鈍を行なった。
線もしくは薄板の特性値は、表7に示す通りである。
Example 4
Wire samples were made for alloys having the compositions shown in Table 6. In the table, the alloy number in which the reduction ratio column is “−” is processed in accordance with the steps of Example 1, except that the annealing of the conditions shown in the table is performed instead of “1100 ° C., 2 hour annealing” of Example 1. I did it. The alloy number in which the column of the drawing rate in the table is “−” was processed according to the process of Example 2, except that “1100 ° C., annealing for 2 hours” was replaced with the conditions shown in the table. .
Table 7 shows the characteristic values of the wire or the thin plate.
表6及び7から、広範囲のNi、Co含有量範囲及び各種フッ素化合物及び副成分添加組成について、すぐれた熱膨張係数、引張強さ及びビッカース硬度が得られることがわかる。
また、比較例として示した超不変鋼は機械的特性が著しく劣っている。また、フッ素化合物を添加しなかったために、超不変鋼は鋳型への注湯時の湯流れ性が優れなかった。そのために、出湯温度を実施例よりも約50℃高くした。さらに、鍛造などの熱間加工においては、割れが発生し易かったために、加工途中の再加熱を何回も行って鍛造を行った。
From Tables 6 and 7, it can be seen that excellent thermal expansion coefficient, tensile strength and Vickers hardness can be obtained for a wide range of Ni and Co contents and various fluorine compound and auxiliary component addition compositions.
Further, the ultra-invariant steel shown as a comparative example has remarkably inferior mechanical properties. In addition, since no fluorine compound was added, the ultra-invariant steel was not excellent in hot water flow during pouring into the mold. For this purpose, the temperature of the tapping water was increased by about 50 ° C. from the example. Furthermore, in hot working such as forging, cracking was likely to occur, so forging was performed by performing reheating several times during the working.
本発明合金は、熱膨張係数が(-1〜+1)×10 -6 ℃ -1 で小さく,優れた低熱膨張を有し、さらに高い機械的強度を有しているので、標準尺、測量機、距離計、時計の振り子及びひげぜんまい、温度調節装置、レ−ザ光源の器具、シャドウマスク、ICリ−ドフレ−ム、容器及び精密標準器等に好適であり、低熱膨張係数及び機械的強度を必要とするその他の精密機器に使用する低熱膨張材料としても好適であるので、産業上多大な貢献をなすものである。
The alloy of the present invention has a small thermal expansion coefficient of (-1 to +1) × 10 −6 ° C. −1 , excellent low thermal expansion, and higher mechanical strength. Suitable for machine, distance meter, watch pendulum and hairspring, temperature control device, laser light source equipment, shadow mask, IC lead frame, container and precision standard, etc., low thermal expansion coefficient and mechanical Since it is also suitable as a low thermal expansion material used for other precision instruments that require strength, it greatly contributes to the industry.
Claims (9)
元素のフッ素化合物のそれぞれ1%以下の1種又は2種以上の合計0.0001〜3%、及び残部
Feと不可避的不純物からなり、引張強さ1000MPa以上及び-50〜100℃における熱膨張係
数(-1〜+1)×10 -6 ℃ -1 を有することを特徴とする高強度低熱膨張合金。 By weight ratio, Ni30-38%, Co1-7%, Mg, Ca, Sr, Ba group IIa element fluorine compounds of 1% or less each, or a total of 0.0001-3%, and the balance A high-strength, low-thermal expansion alloy comprising Fe and inevitable impurities and having a tensile strength of 1000 MPa or more and a thermal expansion coefficient (-1 to +1) × 10 −6 ° C. −1 at −50 to 100 ° C.
元素のフッ素化合物のそれぞれ1%以下の1種又は2種以上の合計0.0001〜3%、及び副成
分としてCr、Mo、Wをそれぞれ7%以下、V、Nb、Ta、Cu、Mn、Ti、Zr、
Hfをそれぞれ5%以下、Al、Si、Beをそれぞれ3%以下、B、Cをそれぞれ1%以
下の1種又は2種以上の合計0.001〜10%、及び残部Feと不可避的不純物とからなり,引張強さ1000MPa以上及び-50〜100℃における熱膨張係数(-1〜+1)×10 -6 ℃ -1 を有することを特徴とする高強度低熱膨張合金。 In a weight ratio, Ni30-38%, Co1-7%, Mg, Ca, Sr, Ba group IIa element fluorine compound each 1% or less of one or two or more total 0.0001-3%, and sub Components of Cr, Mo, and W are each 7% or less, V, Nb, Ta, Cu, Mn, Ti, Zr,
Hf is 5% or less, Al, Si, and Be are 3% or less, B and C are 1% or less, respectively, and a total of 0.001 to 10%, and the balance Fe and inevitable impurities. , A high strength low thermal expansion alloy characterized by having a tensile strength of 1000 MPa or more and a thermal expansion coefficient (-1 to +1) × 10 -6 ° C -1 at -50 to 100 ° C.
合金を用いた精密機器。 A precision instrument using the high-strength low-thermal-expansion alloy according to claim 1 or 2 processed into a rod, wire, plate or thin plate.
て適当な形状に加工し、900℃以上融点未満の温度で0.5〜10時間焼鈍した後冷却し、つい
で加工率60%以上の線引き加工を施して所望の太さの棒又は線になすことにより、引張強
さ1000MPa以上及び-50〜100℃における熱膨張係数(-1〜+1)×10 -6 ℃ -1 を有することを特
徴とする高強度低熱膨張合金の製造法。 The ingot of the alloy having the composition according to claim 1 or 2 is processed into an appropriate shape by hot forging and hot working, annealed at a temperature of 900 ° C. or higher and lower than the melting point for 0.5 to 10 hours, and then cooled, Next, by drawing to a rod or wire with a desired thickness by drawing a wire with a processing rate of 60% or more, a thermal expansion coefficient (-1 to +1) × 10 − at tensile strength of 1000 MPa or more and −50 to 100 ° C. A method for producing a high-strength, low-thermal-expansion alloy, characterized by having 6 ° C -1 .
請求項4記載の高強度低熱膨張合金の製造法。 5. The method for producing a high-strength low-thermal-expansion alloy according to claim 4, wherein the bar or wire is heated at a temperature of 70 to 500 ° C. for 0.5 to 100 hours.
て適当な形状に加工し、900℃以上融点未満の温度で0.5〜10時間焼鈍した後冷却し、つい
で圧下率60%以上の圧延加工を施して所望の厚さの板又は薄板になすことにより、引張強
さ1000MPa以上及び-50〜100℃における熱膨張係数(-1〜+1)×10 -6 ℃ -1 を有することを特徴
とする高強度低熱膨張合金の製造法。 The ingot of the alloy having the composition according to claim 1 or 2 is processed into an appropriate shape by hot forging and hot working, annealed at a temperature of 900 ° C. or higher and lower than the melting point for 0.5 to 10 hours, and then cooled, Next, a rolling process with a rolling reduction of 60% or more is performed to form a plate or thin plate with a desired thickness, thereby obtaining a thermal expansion coefficient (-1 to +1) × 10 − at a tensile strength of 1000 MPa or more and −50 to 100 ° C. A method for producing a high-strength, low-thermal-expansion alloy, characterized by having 6 ° C -1 .
る請求項6記載の高強度低熱膨張合金の製造法。 7. The method for producing a high-strength low thermal expansion alloy according to claim 6, wherein the plate or the thin plate is heated at a temperature of 70 to 500 ° C. for 0.5 to 100 hours.
て適当な形状に加工し、900℃以上融点未満の温度で0.5〜10時間焼鈍した後冷却し、つい
で加工率40%以上の線引き加工を施して所望の太さの棒又は線になした後、さらに当該棒
又は線を圧下率40%以上の圧延加工を施して所望の厚さの板又は薄板になすことにより、
引張強さ1000MPa以上及び−50〜100℃における熱膨張係数(-1〜+1)×10 -6 ℃ -1 を有することを特徴とする高強度低熱膨張合金の製造法。 The alloy ingot having the composition according to claim 1 or 2 is processed into an appropriate shape by hot forging and hot working, annealed at a temperature of 900 ° C. or higher and lower than the melting point for 0.5 to 10 hours, and then cooled. Next, after drawing to a bar or wire having a desired thickness by performing a drawing process with a processing rate of 40% or more, the bar or wire is further subjected to a rolling process with a reduction rate of 40% or more to obtain a plate or sheet having a desired thickness. By doing
A method for producing a high-strength, low-thermal-expansion alloy having a tensile strength of 1000 MPa or more and a thermal expansion coefficient (-1 to +1) x 10 -6 ° C -1 at -50 to 100 ° C.
る請求項8記載の高強度低熱膨張合金の製造法。 The method for producing a high strength and low thermal expansion alloy according to claim 8, wherein the plate or the thin plate is heated at a temperature of 70 to 500 ° C for 0.5 to 100 hours.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010025321A JP5155346B2 (en) | 2010-02-08 | 2010-02-08 | High-strength low-thermal-expansion alloy, manufacturing method thereof, and precision instrument |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010025321A JP5155346B2 (en) | 2010-02-08 | 2010-02-08 | High-strength low-thermal-expansion alloy, manufacturing method thereof, and precision instrument |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011162820A JP2011162820A (en) | 2011-08-25 |
JP5155346B2 true JP5155346B2 (en) | 2013-03-06 |
Family
ID=44593863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010025321A Expired - Fee Related JP5155346B2 (en) | 2010-02-08 | 2010-02-08 | High-strength low-thermal-expansion alloy, manufacturing method thereof, and precision instrument |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5155346B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105296846B (en) * | 2014-07-02 | 2019-11-26 | 新报国制铁株式会社 | Low thermal expansion cast steel product and its manufacturing method |
KR102030834B1 (en) * | 2019-05-20 | 2019-10-10 | 국방과학연구소 | Heat treatment of Fe-Ni-Co ternary alloy and Fe-Ni-Co ternary alloy using the same |
CN111842527B (en) * | 2020-06-24 | 2022-12-27 | 江苏圣珀新材料科技有限公司 | Cold rolling process for LNG liquefied filling marine plate 4J36 plate |
CN115246001B (en) * | 2021-12-20 | 2024-06-11 | 北京科技大学 | Preparation method of high-precision ruler with near-zero expansion characteristic |
CN116288038A (en) * | 2023-04-12 | 2023-06-23 | 宝武特冶航研科技有限公司 | Alloy material with high yield strength and low thermal expansion coefficient |
CN116855811B (en) * | 2023-07-05 | 2024-02-02 | 华中科技大学 | Zero-expansion dual-phase high-entropy alloy and preparation method thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2796966B2 (en) * | 1987-11-06 | 1998-09-10 | 財団法人電気磁気材料研究所 | Ultra-low thermal expansion alloy and manufacturing method |
JP2784613B2 (en) * | 1991-03-15 | 1998-08-06 | 住友特殊金属株式会社 | Method for producing low thermal expansion material |
JPH0570894A (en) * | 1991-09-17 | 1993-03-23 | Hitachi Metals Ltd | Alloy wire having high strength and low thermal expansion and excellent in twisting characteristic and its production |
JP3510278B2 (en) * | 1992-09-22 | 2004-03-22 | 住友特殊金属株式会社 | Fe-Ni-Co low thermal expansion alloy |
JP3730360B2 (en) * | 1997-05-13 | 2006-01-05 | 東北特殊鋼株式会社 | High strength low thermal expansion alloy |
JP2004176077A (en) * | 2002-11-22 | 2004-06-24 | Kobe Steel Ltd | Method for producing fe-ni base alloy |
JP5059035B2 (en) * | 2009-01-30 | 2012-10-24 | 公益財団法人電磁材料研究所 | Highly elastic / constant elastic alloy, its manufacturing method and precision instrument |
-
2010
- 2010-02-08 JP JP2010025321A patent/JP5155346B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011162820A (en) | 2011-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113025865B (en) | Preparation method of AlCoCrFeNi series two-phase structure high-entropy alloy | |
CN104195404B (en) | A kind of wide temperature range high strength constant modulus alloy and preparation method thereof | |
CA2725206C (en) | Iron-nickel alloy | |
JP5155346B2 (en) | High-strength low-thermal-expansion alloy, manufacturing method thereof, and precision instrument | |
JP6628902B2 (en) | Low thermal expansion alloy | |
JP2009503257A (en) | Corrosion resistance, cold formability, machinability high strength martensitic stainless steel | |
JP5059035B2 (en) | Highly elastic / constant elastic alloy, its manufacturing method and precision instrument | |
US11851735B2 (en) | High-strength and ductile multicomponent precision resistance alloys and fabrication methods thereof | |
JP6188643B2 (en) | Extremely low thermal expansion alloy and manufacturing method thereof | |
CN114990382B (en) | Ultra-low-gap phase transition induced plasticity metastable beta titanium alloy and preparation method thereof | |
JP5486050B2 (en) | Highly elastic / constant elastic alloy, its manufacturing method and precision instrument | |
WO2014157146A1 (en) | Austenitic stainless steel sheet and method for manufacturing high-strength steel material using same | |
JP2017145456A (en) | Low thermal expansion cast steel article and manufacturing method therefor | |
WO2021221003A1 (en) | Alloy material and method for producing same | |
JP4737614B2 (en) | Fe-Ni alloy plate and method for producing Fe-Ni alloy plate | |
JP2020056076A (en) | Low thermal expansion cast | |
JP2022095215A (en) | Low thermal expansion alloy | |
JP2796966B2 (en) | Ultra-low thermal expansion alloy and manufacturing method | |
JP5929251B2 (en) | Iron alloy | |
JP5037352B2 (en) | Iron-nickel alloy strips for integrated circuit leadframe grid manufacturing | |
JP2020056075A (en) | Low thermal expansion alloy | |
WO2023243533A1 (en) | Fe-Mn ALLOY, HAIRSPRING FOR WATCH, AND METHOD FOR PRODUCING Fe-Mn ALLOY | |
TWI761253B (en) | High-strength maraging steel plate and method for manufacturing the same | |
CN115558853B (en) | High-strength and high-toughness maraging steel and preparation method thereof | |
JP4296303B2 (en) | High Cr ferritic iron alloy with excellent toughness and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121119 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121206 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151214 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |