JP4737614B2 - Fe-Ni alloy plate and method for producing Fe-Ni alloy plate - Google Patents

Fe-Ni alloy plate and method for producing Fe-Ni alloy plate Download PDF

Info

Publication number
JP4737614B2
JP4737614B2 JP2005340553A JP2005340553A JP4737614B2 JP 4737614 B2 JP4737614 B2 JP 4737614B2 JP 2005340553 A JP2005340553 A JP 2005340553A JP 2005340553 A JP2005340553 A JP 2005340553A JP 4737614 B2 JP4737614 B2 JP 4737614B2
Authority
JP
Japan
Prior art keywords
less
alloy plate
ppm
permeability
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005340553A
Other languages
Japanese (ja)
Other versions
JP2007146208A (en
Inventor
恭之 飯田
計 佐々木
勝彦 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2005340553A priority Critical patent/JP4737614B2/en
Publication of JP2007146208A publication Critical patent/JP2007146208A/en
Application granted granted Critical
Publication of JP4737614B2 publication Critical patent/JP4737614B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、高い透磁率を有するFe−Ni系合金板及びFe−Ni系合金板の製造方法に関するものである。   The present invention relates to an Fe—Ni alloy plate having a high magnetic permeability and a method for producing an Fe—Ni alloy plate.

高い透磁率を有する合金としてJIS PCパーマロイがあり、磁気ヘッドや磁気シールド材として適用されている。
このPCパーマロイに関しては、透磁率をより高めるために種々の提案がなされている。例えば特開平7−188817号(特許文献1参照)には、基本的なパーマロイの組成に加えて、初透磁率を高めるために3.2≦(2.02×〔Ni〕−11.13×〔Mo〕−1.25×〔Cu〕−5.03×〔Mn〕)/(2.13×〔Fe〕)≦3.8という関係式を満足し、Sb等の不純物量を調整し、更に熱間加工性を改善するためにCaを添加する成分を開示している。
また、特開2002−173745号(特許文献2参照)に記されたPCパーマロイの製造方法は、鋳造時に溶鋼を素早く冷却して、等軸晶の面積割合が1%以下の鋳造組織に調整し、鋳造によりスラブとし、その鋳造スラブをソーキングし、次いで熱間圧延を施す方法により、磁気特性を改善する方法が示されている。
特開平7−188817号公報 特開2002−173745号公報
There is JIS PC permalloy as an alloy having a high magnetic permeability, which is applied as a magnetic head or a magnetic shield material.
With respect to this PC permalloy, various proposals have been made to further increase the magnetic permeability. For example, in JP-A-7-188817 (see Patent Document 1), in addition to the basic permalloy composition, 3.2 ≦ (2.02 × [Ni] -11.13 ×) in order to increase the initial permeability. [Mo] −1.25 × [Cu] −5.03 × [Mn]) / (2.13 × [Fe]) ≦ 3.8 is satisfied, the amount of impurities such as Sb is adjusted, Furthermore, the component which adds Ca in order to improve hot workability is disclosed.
Moreover, the manufacturing method of PC permalloy described in Unexamined-Japanese-Patent No. 2002-173745 (refer patent document 2) adjusts it to the cast structure | tissue where the area ratio of an equiaxed crystal is 1% or less by rapidly cooling molten steel at the time of casting. A method for improving magnetic properties by forming a slab by casting, soaking the cast slab, and then hot rolling is shown.
JP-A-7-188817 JP 2002-173745 A

Caを積極添加する特開平7−188817号では、CaをSとの重量比Ca/Sで1.5〜6.0の範囲で含有する。しかしながら、積極添加されたCaにより磁性を劣化させる介在物が増大するという問題がある。
また、特開2002−173745号に示される方法では、等軸晶の面積割合を1%以下として磁気特性を改善している。しかしながら、等軸晶の面積割合を1%以下とするには、溶鋼を素早く凝固させることができる特別な設備や例えば超扁平鋼塊が得られるような特殊な形状の鋳型がなければ、等軸晶の面積割合を1%以下とすることは極めて難しい。特に、介在物を少なくするために真空溶解−鋼塊といった工程で重量が5トン以上の大型鋼塊とする場合にはより一層困難になる。
本発明の目的は、高い透磁率を実現できる最適成分を有するFe−Ni系合金板と、大型鋼塊でも高い透磁率が得られる製造方法を提供することである。
In JP-A-7-188817 in which Ca is positively added, Ca is contained in a weight ratio Ca / S to S in the range of 1.5 to 6.0. However, there is a problem that inclusions that deteriorate magnetism increase due to positively added Ca.
In the method disclosed in JP-A-2002-173745, the area ratio of equiaxed crystals is set to 1% or less to improve the magnetic characteristics. However, in order to reduce the area ratio of equiaxed crystals to 1% or less, there is no special equipment that can quickly solidify molten steel or a specially shaped mold that can produce an ultra-flat steel ingot. It is extremely difficult to make the crystal area ratio 1% or less. In particular, in order to reduce inclusions, it becomes even more difficult when a large steel ingot having a weight of 5 tons or more is formed in a process such as vacuum melting-steel ingot.
An object of the present invention is to provide an Fe—Ni alloy plate having an optimum component capable of realizing a high magnetic permeability and a manufacturing method capable of obtaining a high magnetic permeability even with a large steel ingot.

高い透磁率を有するPCパーマロイであるが、例えば初透磁率が300000以上、最大透磁率が400000以上を安定的に得るのは非常に難しい。僅かな成分の違いにより所望の高い透磁率が得られない。そのため、最適な化学組成を鋭意検討した。
また、製造方法においても特別な製造設備や特殊形状の鋳型を用いることなく、安定して高い透磁率が得られる製造方法を検討した結果、本発明に到達した。
すなわち、本発明は、質量%でC:0.03%以下、Si:0.05〜2.0%、Mn:1.3〜2.0%、Ni:75.0〜80.0%、Mo:3.6〜4.5%、Cu:4.5〜5.5%、S:15ppm以下、O:30ppm以下、残部は11.0〜14.0%のFe及び不可避的不純物からなり、Ni/Fe比が5.6〜6.1の組成を有するFe−Ni系合金板である。
好ましくは、上記のFe−Ni系合金板は、更にMg:200ppm以下を含有するFe−Ni系合金板である。
また、本発明は、上記のFe−Ni系合金板を磁性焼鈍することで、初透磁率300000以上、最大透磁率400000以上のFe−Ni系合金板とすることができる。
Although it is a PC permalloy having a high magnetic permeability, it is very difficult to stably obtain, for example, an initial permeability of 300,000 or more and a maximum permeability of 400,000 or more. A desired high magnetic permeability cannot be obtained due to a slight difference in components. Therefore, the optimum chemical composition was studied earnestly.
Further, as a result of studying a manufacturing method that can stably obtain high magnetic permeability without using special manufacturing equipment or a specially shaped mold, the present invention has been achieved.
That is, the present invention, in mass%, C: 0.03% or less, Si: 0.05-2.0%, Mn: 1.3-2.0%, Ni: 75.0-80.0%, Mo: 3.6 to 4.5%, Cu: 4.5 to 5.5%, S: 15 ppm or less, O: 30 ppm or less, the balance being 11.0 to 14.0% Fe and inevitable impurities The Fe—Ni alloy plate having a composition with a Ni / Fe ratio of 5.6 to 6.1.
Preferably, the Fe—Ni based alloy plate is an Fe—Ni based alloy plate further containing Mg: 200 ppm or less.
Moreover, this invention can be set as the Fe-Ni type alloy board of initial magnetic permeability 300000 or more and maximum magnetic permeability 400000 or more by carrying out magnetic annealing of said Fe-Ni type alloy board.

また、本発明は、上述の組成を有するFe−Ni系合金板の製造方法であって、真空溶解により鋼塊を得る溶解工程と、該溶解工程後にソーキングを施すソーキング工程と、該ソーキング工程後のFe−Ni系合金を熱間圧延により板状に加工する熱間圧延工工程と、該熱間圧延工程後に圧延率60〜85%の冷間圧延を行う冷間加工工程とを含み、且つ、該冷間加工工程中は焼鈍を行わないFe−Ni系合金板の製造方法である。
好ましくは、上記のFe−Ni系合金は、更にMg:200ppm以下を含有するFe−Ni系合金板の製造方法である。
Further, the present invention is a method for producing an Fe-Ni alloy plate having the above-described composition, a melting step for obtaining a steel ingot by vacuum melting, a soaking step for performing soaking after the melting step, and after the soaking step A hot rolling process for processing the Fe-Ni-based alloy into a plate shape by hot rolling, and a cold working process for performing cold rolling at a rolling rate of 60 to 85% after the hot rolling process, and This is a method for producing an Fe—Ni alloy plate that is not annealed during the cold working process.
Preferably, the Fe—Ni alloy is a method for producing an Fe—Ni alloy plate further containing Mg: 200 ppm or less.

本発明のFe−Ni系合金板は、高い透磁率が得られる最適組成と、真空溶解、ソーキングとの組み合わせにより、初透磁率300000以上、最大透磁率400000以上の磁気特性を安定して得ることができる。
また、必ずしも特殊形状の鋳型等を用いる必要もなく、鋼塊を大型化できるので、600mm以上の幅の広いFe−Ni系合金とすることができ、磁気シールド用の素材として最適である。
The Fe—Ni-based alloy plate of the present invention can stably obtain magnetic characteristics of an initial permeability of 300000 or more and a maximum permeability of 400000 or more by combining an optimum composition capable of obtaining a high permeability, vacuum melting, and soaking. Can do.
In addition, it is not always necessary to use a specially shaped mold or the like, and the steel ingot can be enlarged, so that a wide Fe—Ni alloy having a width of 600 mm or more can be obtained, which is optimal as a magnetic shield material.

本発明で規定した元素とその含有量のうち、NiとFeとの比率と、高いMn量が最も重要である。先ず、Ni,Fe,Mnについて説明する。なお、規定する元素の含有量は全て質量%である。
Ni:75.0〜80.0%
Niを75.0〜80.0%の範囲としたのは、この範囲が本発明の目的とする高い透磁率を得るに必要な範囲であるためである。Niの含有量が75.0%未満、80.0%超の何れの場合も透磁率が低下する。好ましい範囲は75.5〜77.5%の範囲であり、更に好ましくは76.0〜77.0%の範囲である。
Fe:11.0〜14.0%
本発明において、FeはNi及び後述する各添加元素の残部として添加するが、FeはNiと同様に高い透磁率を得るために必要な含有量を確保することが重要である。Feの含有量が11.0%未満、14.0%超の何れの場合も透磁率が低下する。従って、Feは11.0〜14.0%の含有量が必要である。好ましくは、11.5〜13.5%の範囲であり、更に好ましくは12.3〜13.3%の範囲である。
Of the elements defined in the present invention and their contents, the ratio of Ni and Fe and the high Mn content are the most important. First, Ni, Fe, and Mn will be described. In addition, all content of the element to prescribe is mass%.
Ni: 75.0-80.0%
The reason why Ni is set in the range of 75.0 to 80.0% is that this range is a range necessary for obtaining the high magnetic permeability aimed at by the present invention. In any case where the Ni content is less than 75.0% or more than 80.0%, the magnetic permeability decreases. A preferred range is 75.5 to 77.5%, and a more preferred range is 76.0 to 77.0%.
Fe: 11.0 to 14.0%
In the present invention, Fe is added as Ni and the balance of each additive element described later, but it is important to secure the content of Fe necessary for obtaining a high magnetic permeability as with Ni. In any case where the Fe content is less than 11.0% or more than 14.0%, the magnetic permeability decreases. Therefore, the Fe content needs to be 11.0 to 14.0%. Preferably, it is in the range of 11.5 to 13.5%, more preferably in the range of 12.3 to 13.3%.

Ni/Fe比:5.6〜6.1
上述したNi及びFeの含有量を確保しながら、FeとNiとの比率をNi/Fe比で5.6〜6.1という極めて限定された範囲とすることが高い透磁率を得るのに重要である。
この限られた範囲内であれば、結晶磁気異方性と磁歪をゼロ近傍とすることができ、磁歪が正となって歪による磁気特性の劣化を最小限に抑制することができる。また、Ni/Fe比の最適化は大型鋼塊で製造した場合でも優れた透磁率を得ることを可能とする。このNi/Fe比のより好ましい範囲は、5.7〜6.05の範囲である。
Mn:1.3〜2.0%
Mnは磁気特性を向上させる本発明で重要な元素の一つであり、特に透磁率を向上させる効果がある。また、Mnの積極添加は大型鋼塊で製造した場合でも優れた透磁率を得ることを可能とする。そのためのMn量は1.3%未満であれば前記の効果が得られない。また、Mn量が2.0%を超えると、介在物を形成し易くなって透磁率がかえって悪くなる。そのため、Mnは1.3〜2.0%とした。好ましくは、1.4〜1.9%の範囲である。
Ni / Fe ratio: 5.6 to 6.1
It is important to obtain a high magnetic permeability by setting the ratio of Fe and Ni to a very limited range of 5.6 to 6.1 in terms of Ni / Fe ratio while ensuring the contents of Ni and Fe described above. It is.
Within this limited range, the magnetocrystalline anisotropy and magnetostriction can be made close to zero, and the magnetostriction becomes positive, so that deterioration of magnetic properties due to strain can be suppressed to a minimum. Further, the optimization of the Ni / Fe ratio makes it possible to obtain excellent magnetic permeability even when manufactured with a large steel ingot. A more preferable range of this Ni / Fe ratio is in the range of 5.7 to 6.05.
Mn: 1.3-2.0%
Mn is one of the important elements in the present invention for improving the magnetic properties, and is particularly effective for improving the magnetic permeability. Further, the positive addition of Mn makes it possible to obtain excellent magnetic permeability even when manufactured with a large steel ingot. Therefore, if the amount of Mn is less than 1.3%, the above effect cannot be obtained. On the other hand, if the amount of Mn exceeds 2.0%, inclusions are easily formed and the magnetic permeability is deteriorated. Therefore, Mn is set to 1.3 to 2.0%. Preferably, it is 1.4 to 1.9% of range.

次に本発明で規定した上記の元素以外の限定理由を説明する。
Mo:3.6〜4.5%
Moは磁気特性を向上させ、Moを3.6〜4.5%とすれば透磁率を向上させる。Moが3.6%未満であったり4.5%超であったりすると、透磁率を向上させる効果が得にくくなる。そのため、Moは3.6〜4.5%とした。好ましくは3.8〜4.3%の範囲である。
Cu:4.5〜5.5%
Cuは直流磁気特性を向上させる元素であり、本発明においては4.5〜5.5%の添加が必要となる。この効果は4.5%未満の範囲や5.5%超の範囲では得難くなるため、Cuを4.5〜5.5%とした。好ましくは4.7〜5.3%である。
Si:0.05〜2.0%
Siは磁性焼鈍後の結晶粒の粗大化を促進させる効果があるため、0.05〜2.0%の範囲で添加する。Siが2.0%を超えると介在物を形成し磁性特性が劣化し、0.05%未満であると結晶粒の粗大化を促進する効果が無くなる。そのため、Siを0.05〜2.0%とした。Siの好ましい範囲は0.07〜1.0%である。
Next, reasons for limitation other than the above-mentioned elements defined in the present invention will be described.
Mo: 3.6-4.5%
Mo improves the magnetic properties, and if Mo is 3.6 to 4.5%, the magnetic permeability is improved. If Mo is less than 3.6% or more than 4.5%, it is difficult to obtain the effect of improving the magnetic permeability. Therefore, Mo is set to 3.6 to 4.5%. Preferably it is 3.8 to 4.3% of range.
Cu: 4.5 to 5.5%
Cu is an element that improves DC magnetic characteristics, and in the present invention, it is necessary to add 4.5 to 5.5%. Since this effect is difficult to obtain in a range of less than 4.5% or in a range of more than 5.5%, Cu is set to 4.5 to 5.5%. Preferably it is 4.7 to 5.3%.
Si: 0.05-2.0%
Since Si has an effect of promoting the coarsening of crystal grains after magnetic annealing, it is added in the range of 0.05 to 2.0%. If Si exceeds 2.0%, inclusions are formed and the magnetic properties deteriorate, and if it is less than 0.05%, the effect of promoting the coarsening of crystal grains is lost. Therefore, Si was made 0.05 to 2.0%. A preferable range of Si is 0.07 to 1.0%.

以下に述べるC,S,Oは本発明おいては不純物である。
C:0.03%以下
Cを積極添加すると、炭化物の形成を通して磁性焼鈍後の結晶粒の成長を抑制し、軟磁気特性を劣化させる。そのため、Cは0.03%以下の範囲に限定する。より好ましくは0.015%以下の範囲である。
S:15ppm以下
Sを積極添加すると、硫化物の形成を通して磁性焼鈍後の結晶粒の成長を抑制し、軟磁気特性を劣化させるだけでなく、熱間加工性も劣化させる。そのため、Sは15ppm以下の範囲に限定する。より好ましくは10ppm以下の範囲である。
O:30ppm以下
Oは酸化物系介在物として存在し、その含有量が30ppmを超えると磁性焼鈍後の結晶粒成長性が阻害され、透磁率の向上を阻害する。そのため、Oは30ppm以下に限定する。より好ましくは15ppm以下であり、更に好ましくは10ppm以下である。
C, S and O described below are impurities in the present invention.
C: 0.03% or less When C is positively added, growth of crystal grains after magnetic annealing is suppressed through the formation of carbides, and soft magnetic properties are deteriorated. Therefore, C is limited to a range of 0.03% or less. More preferably, it is 0.015% or less of range.
S: 15 ppm or less When S is positively added, growth of crystal grains after magnetic annealing is suppressed through the formation of sulfides, not only deteriorating soft magnetic properties but also degrading hot workability. Therefore, S is limited to a range of 15 ppm or less. More preferably, it is the range of 10 ppm or less.
O: 30 ppm or less O is present as an oxide inclusion, and if its content exceeds 30 ppm, crystal grain growth after magnetic annealing is inhibited, and improvement in magnetic permeability is inhibited. Therefore, O is limited to 30 ppm or less. More preferably, it is 15 ppm or less, More preferably, it is 10 ppm or less.

Mg:200ppm以下
Mgは本発明において選択元素であり、必要に応じて200ppm以下の範囲で添加する。Mgは熱間加工性を阻害するSを固定して、熱間加工性を向上させるために必要に応じて添加する。但し、Mgが200ppm超の範囲はより一層のMgの熱間加工性改善効果が望めない。そのため、Mgの上限は200ppmとする。この熱間加工性改善効果をより確実に得るには2〜150ppmの範囲であると望ましく、更に望ましくは5〜100ppmの範囲である。
以上、説明する元素以外は、本発明では不可避的不純物である。
不可避的不純物の中には、化合物を形成して結晶粒の粗大化を抑制させたり、熱間加工性を劣化させたり、透磁率を劣化させる例えばP,N,Cr等の元素がある。これらの不可避的不純物はできる限り少ない方が良い。
Mg: 200 ppm or less Mg is a selective element in the present invention, and is added in a range of 200 ppm or less as necessary. Mg is added as necessary to fix S which inhibits hot workability and improve hot workability. However, in the range where Mg exceeds 200 ppm, a further effect of improving hot workability of Mg cannot be expected. Therefore, the upper limit of Mg is 200 ppm. In order to more reliably obtain this hot workability improving effect, it is preferably in the range of 2 to 150 ppm, more preferably in the range of 5 to 100 ppm.
In the present invention, elements other than the elements described above are unavoidable impurities.
Inevitable impurities include elements such as P, N, and Cr that form a compound to suppress the coarsening of crystal grains, deteriorate hot workability, and deteriorate magnetic permeability. These inevitable impurities should be as small as possible.

次に本発明の製造方法について説明する。
本発明の優れた透磁率を有するFe−Ni系合金を大型鋼塊で製造するに際しては、上述したように、Fe含有量、Ni含有量、Ni/Fe比、Mn含有量の最適化をはかることに加えて、透磁率を劣化させる介在物の形成を抑制するためにO,Sの低減を行うことも重要であり、これが共に実現できることから本発明においては真空溶解にて鋼塊を製造する溶解工程を適用する。
Fe−Ni系合金の製造方法としては連続鋳造により連鋳スラブを製造する方法もあるが、連続鋳造は大気溶解であるため、O含有量が高くなり、介在物が形成し易い。そして、冷却速度が速いため介在物が微細なまま存在するため透磁率を劣化させやすい。また、中央部に成分偏析が生じやすく、微細介在物も集中するため、本発明では真空溶解にて鋼塊を製造する。
Next, the manufacturing method of this invention is demonstrated.
When producing an Fe-Ni alloy having excellent permeability according to the present invention with a large steel ingot, the Fe content, Ni content, Ni / Fe ratio, and Mn content are optimized as described above. In addition, it is also important to reduce O and S in order to suppress the formation of inclusions that degrade the magnetic permeability. Since this can be realized together, in the present invention, a steel ingot is manufactured by vacuum melting. Apply the dissolution process.
As a method for producing an Fe—Ni alloy, there is a method of producing a continuous cast slab by continuous casting. However, since continuous casting is dissolved in the atmosphere, the O content increases and inclusions are easily formed. And since a cooling rate is quick and inclusions exist finely, it is easy to deteriorate magnetic permeability. Moreover, since component segregation is likely to occur in the central portion and fine inclusions are concentrated, the present invention produces a steel ingot by vacuum melting.

真空溶解の後にはソーキング工程を行う。ソーキングを行うタイミングとしては2つあり、1つは鋼塊にソーキングを行い、もう一つは鋼塊に熱間鍛造を施して、熱間鍛造後に行う。このソーキングは成分偏析を改善するために行うため、拡散距離を考慮すれば熱間鍛造後に行うのが有利である。なお、ソーキングの温度は1150℃〜1350℃、保持時間は10〜50時間が好ましい。
次に、このソーキング後のFe−Ni系合金を熱間圧延により板状に加工する熱間圧延工工程を行う。熱間圧延工程は特に限定しないが、熱間圧延後の熱間圧延板を素材として60%〜85%の冷間圧延を行うため、最終製品の厚さと、冷間圧延にて60%〜85%の圧延率が確保できるような厚みが熱間圧延後の熱間圧延板に求められる。
After the vacuum melting, a soaking process is performed. There are two timings for soaking, one is soaking the steel ingot, and the other is hot forging the steel ingot and after hot forging. Since this soaking is performed to improve component segregation, it is advantageous to perform the soaking after hot forging in consideration of the diffusion distance. The soaking temperature is preferably 1150 ° C to 1350 ° C, and the holding time is preferably 10 to 50 hours.
Next, a hot rolling process is performed in which the soaked Fe—Ni alloy is processed into a plate shape by hot rolling. Although the hot rolling process is not particularly limited, 60% to 85% cold rolling is performed using the hot rolled sheet after hot rolling as a raw material, and therefore the thickness of the final product and 60% to 85% by cold rolling. % Is required for the hot rolled sheet after hot rolling.

次に、熱間圧延工程により得られた熱間圧延板を用いて、圧延率60〜85%の冷間圧延を行う。この冷間圧延工程は、本発明において、透磁率を向上させる重要な工程である。
冷間圧延率が60%未満であると、所望の磁気特性を得るために実施する磁性焼鈍にて高い透磁率を得ることができない。また、85%を超える圧延率ではかえって透磁率が悪くなる。そのため、冷間圧延の圧延率は60〜85%の範囲に限定する。なお、圧延率とは、1−((冷間圧延終了時の板厚)/(冷間圧延開始した素材厚み))である。
また、本発明において、この冷間圧延工程中において焼鈍は行わない。焼鈍を行うと、冷間圧延中の歪が解放されて、磁性焼鈍時に結晶粒の粗大化が不十分となって高い透磁率が得られないためである。
なお、もし、機械設備の関係上、熱間加工工程後の熱間圧延板の板厚が、圧延率60〜85%の冷間圧延よっても最終製品との板厚とならない場合は、第一回目の冷間圧延工程を行って軟化焼鈍を実施し、第二回目の冷間圧延工程にて圧延率60〜85%で、焼鈍を行わない冷間加工工程を適用すると良い。
Next, cold rolling with a rolling rate of 60 to 85% is performed using the hot rolled sheet obtained by the hot rolling step. This cold rolling process is an important process for improving the magnetic permeability in the present invention.
When the cold rolling ratio is less than 60%, high magnetic permeability cannot be obtained by magnetic annealing performed to obtain desired magnetic characteristics. On the other hand, if the rolling rate exceeds 85%, the magnetic permeability is worsened. Therefore, the rolling rate of cold rolling is limited to a range of 60 to 85%. The rolling rate is 1-((sheet thickness at the end of cold rolling) / (material thickness starting cold rolling)).
Moreover, in this invention, annealing is not performed during this cold rolling process. This is because when annealing is performed, strain during cold rolling is released, and crystal grains are not sufficiently coarsened during magnetic annealing, so that high magnetic permeability cannot be obtained.
If the thickness of the hot-rolled sheet after the hot working process is not the same as that of the final product even if it is cold-rolled at a rolling rate of 60 to 85% due to mechanical equipment, It is preferable to perform the soft rolling annealing by performing the second cold rolling process, and to apply the cold working process in which the annealing is not performed at the rolling rate of 60 to 85% in the second cold rolling process.

以上、説明した製造工程で得られたFe−Ni系合金板は高い透磁率が得られる最適化学成分を有し、冷間圧延により歪が加わっており、しかも、結晶粒の粗大化を妨げる微細介在物も少ないため、これに磁性焼鈍を施すと、平均結晶粒径が400μm以上に成長し、初透磁率300000以上、最大透磁率400000以上のFe−Ni系合金板とすることができる。
磁性焼鈍は例えば1000〜1300℃、時間は0.5h〜3h、冷却速度は50〜200℃/h、還元性雰囲気中で実施する。
なお、本発明では大型鋼塊にて製造することが可能なため、冷間圧延したFe−Ni系合金板の幅を600mm以上の広幅にすることもでき、且つ、初透磁率300000以上、最大透磁率400000以上を達成できることから、磁気シールド用途に最適である。
As described above, the Fe—Ni-based alloy plate obtained by the manufacturing process described above has an optimum chemical component capable of obtaining a high magnetic permeability, is distorted by cold rolling, and is fine enough to prevent coarsening of crystal grains. Since there are few inclusions, when magnetic annealing is applied to this, an average crystal grain size grows to 400 μm or more, and an Fe—Ni alloy plate having an initial permeability of 300,000 or more and a maximum permeability of 400,000 or more can be obtained.
The magnetic annealing is performed in a reducing atmosphere, for example, 1000 to 1300 ° C., time 0.5 to 3 h, cooling rate 50 to 200 ° C./h.
In the present invention, since it is possible to manufacture with a large steel ingot, the width of the cold-rolled Fe-Ni alloy plate can be widened to 600 mm or more, and the initial permeability is 300,000 or more, the maximum Since it can achieve a magnetic permeability of 400,000 or more, it is optimal for magnetic shield applications.

真空溶解にてFe含有量、Ni含有量、Ni/Fe比、Mn含有量の最適化をはかったFe−Ni系合金を溶解して6トン鋼塊を得たそして、本実施例では3本の鋼塊を製造し、表1に示すNo.1及びNo.2が本発明、No.3が比較例である。
得られた鋼塊を大気中にて1280℃×40hのソーキングを行った。その鋼塊を熱間鍛造を行ってスラブとして、その後の熱間圧延での最終寸法は4.5mm(t)×700mm(w)であった。更にグラインダにて熱間スケールの除去を行った後、1.0t(77.8%の冷間圧延率)まで冷間圧延を行った。なお、この冷間圧延工程中は焼鈍はなしとした。
冷間圧延後のFe−Ni系合金板から磁気特性測定サンプル、結晶粒測定サンプル、化学成分測定サンプルを採取した。化学成分を表1に示す。
A 6-ton steel ingot was obtained by melting an Fe-Ni alloy in which the Fe content, Ni content, Ni / Fe ratio, and Mn content were optimized by vacuum melting. No. 1 shown in Table 1 were produced. 1 and no. 2 is the present invention, No.2. 3 is a comparative example.
The obtained steel ingot was soaked at 1280 ° C. × 40 h in the air. The steel ingot was subjected to hot forging to form a slab, and the final dimension in the subsequent hot rolling was 4.5 mm (t) × 700 mm (w). Further, after removing the hot scale with a grinder, cold rolling was performed to 1.0 t (a cold rolling rate of 77.8%). Note that annealing was not performed during this cold rolling process.
A magnetic property measurement sample, a crystal grain measurement sample, and a chemical component measurement sample were collected from the Fe-Ni alloy plate after cold rolling. The chemical components are shown in Table 1.

Figure 0004737614
Figure 0004737614

このFe−Ni系合金板を用いて磁性焼鈍を行った。
磁性焼鈍は、露点−40℃の水素雰囲気中にて1100℃×3hで行い、冷却は高い透磁率を得るに有利な50℃/hで冷却して、300℃で取り出した。
磁性焼鈍後の初透磁率、最大透磁率を表2に示す。
Magnetic annealing was performed using this Fe-Ni alloy plate.
Magnetic annealing was performed in a hydrogen atmosphere with a dew point of −40 ° C. at 1100 ° C. × 3 h. Cooling was performed at 50 ° C./h, which is advantageous for obtaining high magnetic permeability, and taken out at 300 ° C.
Table 2 shows the initial permeability and the maximum permeability after the magnetic annealing.

Figure 0004737614
Figure 0004737614

本発明のNo.1合金板では、初透磁率及び最大透磁率共に500000を超える結果が得られ、No.2合金板においても初透磁率300000以上、最大透磁率400000以上の結果が得られた。一方、Ni/Fe比及びMn量が本発明の範囲外の比較合金No.3では初透磁率300000以上、最大透磁率400000以上を達成することはできなかった。
次に、本発明No.1合金のみを用いて、実際の生産においても高い透磁率が得られるか実験を行った。冷却速度は100℃/hに速めて、処理温度を1000℃、1050℃、1100℃、1150℃として磁性焼鈍後の初透磁率と最大透磁率を測定した。なお、露点−40℃の水素雰囲気中で処理時間は3時間とした。
No. of the present invention. In the case of 1 alloy plate, both the initial magnetic permeability and the maximum magnetic permeability exceeded 500,000. The results of the initial permeability of 300000 or more and the maximum permeability of 400000 or more were also obtained with the 2-alloy plate. On the other hand, a comparative alloy No. having a Ni / Fe ratio and an Mn amount outside the range of the present invention was used. In No. 3, the initial permeability of 300,000 or more and the maximum permeability of 400,000 or more could not be achieved.
Next, the present invention No. Using only one alloy, an experiment was conducted to determine whether high magnetic permeability can be obtained even in actual production. The cooling rate was increased to 100 ° C./h, and the initial permeability and maximum permeability after magnetic annealing were measured at treatment temperatures of 1000 ° C., 1050 ° C., 1100 ° C., and 1150 ° C. The treatment time was 3 hours in a hydrogen atmosphere with a dew point of −40 ° C.

Figure 0004737614
Figure 0004737614

表3に示すとおり、冷却速度を速めても、初透磁率300000以上、最大透磁率400000以上を達成することができた。   As shown in Table 3, even when the cooling rate was increased, the initial permeability of 300,000 or more and the maximum permeability of 400,000 or more could be achieved.

本発明で製造したパーマロイは高い初透磁率、最大透磁率が得られ、しかも、大型鋼塊を用いることができるため、冷間圧延材の幅を広くすることが可能となり、例えば磁気シールドルームのような高い初透磁率と比較的広い幅の板材が求められる用途に好適となる。   The permalloy produced in the present invention has a high initial permeability and maximum permeability, and since a large steel ingot can be used, the width of the cold rolled material can be widened. This is suitable for applications requiring such a high initial permeability and a relatively wide plate.

Claims (5)

質量%でC:0.03%以下、Si:0.05〜2.0%、Mn:1.3〜2.0%、Ni:75.0〜80.0%、Mo:3.6〜4.5%、Cu:4.5〜5.5%、S:15ppm以下、O:30ppm以下、残部は11.0〜14.0%のFe及び不可避的不純物からなり、Ni/Fe比が5.6〜6.1の組成を有することを特徴とするFe−Ni系合金板。 C: 0.03% or less by mass%, Si: 0.05 to 2.0%, Mn: 1.3 to 2.0%, Ni: 75.0 to 80.0%, Mo: 3.6 to 4.5%, Cu: 4.5 to 5.5%, S: 15 ppm or less, O: 30 ppm or less, the balance is 11.0 to 14.0% Fe and inevitable impurities, Ni / Fe ratio is An Fe-Ni alloy plate having a composition of 5.6 to 6.1. Fe−Ni系合金板は、更にMg:200ppm以下を含有することを特徴とする請求項1に記載のFe−Ni系合金板。 The Fe-Ni alloy plate according to claim 1, wherein the Fe-Ni alloy plate further contains Mg: 200 ppm or less. Fe−Ni系合金板は、初透磁率300000以上、最大透磁率400000以上であることを特徴とする請求項1または2に記載のFe−Ni系合金板。   The Fe-Ni alloy plate according to claim 1 or 2, wherein the Fe-Ni alloy plate has an initial permeability of 300,000 or more and a maximum permeability of 400,000 or more. 質量%でC:0.03%以下、Si:0.05〜2.0%、Mn:1.3〜2.0%、Ni:75.0〜80.0%、Mo:3.6〜4.5%、Cu:4.5〜5.5%、S:15ppm以下、O:30ppm以下、残部は11.0〜14.0%のFe及び不可避的不純物からなり、Ni/Fe比が5.6〜6.1の組成を有するFe−Ni系合金板の製造方法であって、
真空溶解により鋼塊を得る溶解工程と、
該溶解工程後にソーキングを施すソーキング工程と、
該ソーキング工程後のFe−Ni系合金を熱間圧延により板状に加工する熱間圧延工工程と、
該熱間圧延工程後に圧延率60〜85%の冷間圧延を行う冷間加工工程とを含み、且つ、該冷間加工工程中は焼鈍を行わないことを特徴とするFe−Ni系合金板の製造方法。
C: 0.03% or less by mass%, Si: 0.05 to 2.0%, Mn: 1.3 to 2.0%, Ni: 75.0 to 80.0%, Mo: 3.6 to 4.5%, Cu: 4.5 to 5.5%, S: 15 ppm or less, O: 30 ppm or less, the balance is 11.0 to 14.0% Fe and unavoidable impurities, Ni / Fe ratio is A method for producing an Fe—Ni-based alloy sheet having a composition of 5.6 to 6.1,
A melting step of obtaining a steel ingot by vacuum melting;
A soaking step of performing soaking after the dissolving step;
A hot rolling process for processing the Fe—Ni-based alloy after the soaking process into a plate shape by hot rolling;
A Fe—Ni-based alloy sheet comprising: a cold working step in which cold rolling is performed at a rolling rate of 60 to 85% after the hot rolling step, and annealing is not performed during the cold working step. Manufacturing method.
Fe−Ni系合金は、更にMg:200ppm以下を含有することを特徴とする請求項4に記載のFe−Ni系合金板の製造方法。 The method for producing an Fe-Ni alloy plate according to claim 4, wherein the Fe-Ni alloy further contains Mg: 200 ppm or less.
JP2005340553A 2005-11-25 2005-11-25 Fe-Ni alloy plate and method for producing Fe-Ni alloy plate Active JP4737614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005340553A JP4737614B2 (en) 2005-11-25 2005-11-25 Fe-Ni alloy plate and method for producing Fe-Ni alloy plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005340553A JP4737614B2 (en) 2005-11-25 2005-11-25 Fe-Ni alloy plate and method for producing Fe-Ni alloy plate

Publications (2)

Publication Number Publication Date
JP2007146208A JP2007146208A (en) 2007-06-14
JP4737614B2 true JP4737614B2 (en) 2011-08-03

Family

ID=38207969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005340553A Active JP4737614B2 (en) 2005-11-25 2005-11-25 Fe-Ni alloy plate and method for producing Fe-Ni alloy plate

Country Status (1)

Country Link
JP (1) JP4737614B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2123783B1 (en) 2007-02-13 2013-04-10 Hitachi Metals, Ltd. Magnetic shielding material, magnetic shielding component, and magnetic shielding room
CN103817168B (en) * 2014-02-21 2015-06-17 无锡隆达金属材料有限公司 Drawing production process of monel alloy pipe
CN109524191B (en) * 2019-01-11 2020-09-04 北京北冶功能材料有限公司 High-performance iron-nickel soft magnetic alloy
CN115074641B (en) * 2022-06-30 2023-07-14 鞍钢股份有限公司 HB 400-grade high-wear-resistance cold-bendable steel plate and production method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248865A (en) * 1984-05-23 1985-12-09 Nippon Gakki Seizo Kk High magnetic permeability alloy
JPH046249A (en) * 1990-04-24 1992-01-10 Nippon Steel Corp Fe-ni magnetic alloy excellent in magnetic property and surface characteristic and its production
JP4107801B2 (en) * 2000-11-21 2008-06-25 日本冶金工業株式会社 Method for producing Fe-Ni-based permalloy alloy having excellent magnetic properties
JP3645821B2 (en) * 2001-03-07 2005-05-11 日本冶金工業株式会社 Method for producing Fe-Ni permalloy alloy

Also Published As

Publication number Publication date
JP2007146208A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
TWI488982B (en) Manufacturing method of titanium and copper for electronic parts
TWI551694B (en) Nonoriented electromagnetic steel sheet with excellent high frequency core loss property
EP3441497A1 (en) Lightweight steel and steel sheet with enhanced elastic modulus, and manufacturing method thereof
JP2005120399A (en) High-strength and low-specific-gravity steel sheet having excellent ductility, and its manufacturing method
JP5872334B2 (en) Soft magnetic stainless steel fine wire and method for producing the same
TWI789871B (en) Manufacturing method of Wostian iron-based stainless steel strip
WO2013150972A1 (en) Fe-Al ALLOY PRODUCTION METHOD
JP4737614B2 (en) Fe-Ni alloy plate and method for producing Fe-Ni alloy plate
TWI550104B (en) Nonoriented electromagnetic steel sheet with excellent high frequency core loss property
JP5263012B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4099395B2 (en) Method for producing high-strength aluminum alloy foil
JP2007119849A (en) Cold rolled ferritic stainless steel sheet having excellent press formability and its production method
JP2009120962A (en) High-strength low-specific gravity steel sheet excellent in ductility, and its production method
WO2019097691A1 (en) Austenitic stainless steel sheet and method for producing same
JP2005068549A (en) High strength low specific gravity steel sheet excellent in ductility and its manufacturing method
JPWO2019054390A1 (en) Austenitic stainless steel and manufacturing method thereof
JP3729454B2 (en) Copper alloy and manufacturing method thereof
JP2011174142A (en) Copper alloy plate, and method for producing copper alloy plate
JP2005273004A (en) Low-specific-gravity steel sheet excellent in ductility and its production method
JP6781960B2 (en) Manufacturing method of Fe-Ni alloy sheet and Fe-Ni alloy sheet
TWI776112B (en) Matian loose iron series stainless steel with excellent cold workability and high hardness and high corrosion resistance and its production method
JP4469269B2 (en) Electrical steel sheet with excellent high-frequency magnetic properties and manufacturing method thereof
JP2004099990A (en) Precipitation hardening type stainless steel and its production method
JP6686796B2 (en) Fe-Ni alloy, soft magnetic material, soft magnetic material, and method for manufacturing soft magnetic material
JP2002080948A (en) Nonoriented silicon steel sheet having excellent blanking workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4737614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350